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Abstract—In this paper, a dynamic surface control strategy
based on disturbance observer is proposed to stabilize three
attitude angles of a quadrotor unmanned aerial vehicle (UAV) in
the presence of external disturbance. To compensate for external
disturbance, a disturbance observer with exponential convergence
is developed. Considering the problem of explosion of complexity
in traditional backstepping control, a first-order low-pass filter
is used to avoid repeated differentiation of virtual control signal.
Based on the disturbance observer and the filter, a robust attitude
dynamic surface trajectory tracking control technique is designed
for a quadrotor. The convergence of disturbance observation
error and tracking error is proved using Lyapunov theory. The
comparative simulations are carried out to demonstrate the
effectiveness of the proposed control scheme.

Index Terms—Quadrotor UAV, Dynamic surface control, First-
order low-pass filter, Disturbance observer, Attitude tracking

I. INTRODUCTION

Recently, the attitude stabilization of quadrotor has attracted
the attention of researchers. Many control methods have been
proposed to control attitude of a quadrotor, which can be
divided into two categories, i.e. model-free control and model-
based control. In the model-free control scheme of quadrotor,
proportional-integral-differential (PID) control [1] and active
disturbance rejection control (ADRC) [2] are two typical
control algorithms. In fact, ADRC is an innovation of PID,
which is first proposed by Jingqing Han [3]. Compared with
PID, internal and external disturbances can be estimated and
compensated in ADRC. Besides, in [4], a model-free control
technique based on attractive ellipsoid method is presented to
achieve attitude tracking for a quadrotor. In [5], a model-free
event-triggered control scheme using reinforcement learning
algorithm is developed to stabilize three attitude angles of a
quadrotor. In model-based control of quadrotor, some popular
control techniques, e.g. linear quadratic regulator (LQR) [6],
sliding mode control [7], H∞ control [8] and model predictive
control [9], have been introduced to realize attitude trajectory
tracking for a quadrotor. In these model-based control meth-
ods, backstepping control is a widely used control strategy
in four-rotor system. In [10]–[13], a backstepping approach
is designed and applied to attitude dynamics of a quadrotor.
However, there exists a problem of explosion of complexity.
To address this problem, a robust dynamic surface control
algorithm [14]–[17] is developed for a quadrotor.

When a quadrotor system flies outdoors, it is always ad-
versely affected by various external disturbances, such as
wind. In order to ensure the attitude stabilization of quadrotor
under external disturbance, the compensation for disturbance
should be considered in the design of attitude controller.
Designing a disturbance observer is an effective method to
compensate for external disturbance. In [15], [18], a nonlin-
ear disturbance observer is presented to estimate disturbance
acting attitude dynamics of a quadrotor. In [19], an observer-
based estimator for disturbance torque is proposed to improved
attitude tracking accuracy of a quadrotor system. In [7], a
sliding mode observer is employed to estimate disturbance in
attitude subsystem of a four-rotor drone. In [16], an extended
state observer is used to deal with external disturbance in
quadrotor attitude channel. By designing these observers, the
disturbance of attitude dynamics of quadrotor can be estimated
and compensated effectively. Therefore, the stability of attitude
can be improved in the presence of disturbance.

In this paper, a disturbance observer is proposed to estimate
and compensate for external disturbance. Then, a robust dy-
namic surface control strategy based on the disturbance estima-
tion result is designed to stabilize three attitude angles. Such
a control framework can guarantee that the desired attitude
trajectory is closely followed under external disturbance.

This paper is organized as follows. The mathematical model
of quadrotor is introduced in Section II. The controller design
of quadrotor and stability analysis are described in detail in
Section III. In section IV, the simulations are performed to
highlight the effectiveness of the designed controller and the
related discussion is given. The conclusion of the work is
drawn in Section V.

II. DYNAMIC MODEL OF QUADROTOR UAV

The sketch of the quadrotor UAV is shown in Fig. 1, where
{Oe : Xe − Ye − Ze} and {Ob : Xb − Yb − Zb} represent
the earth and body frames respectively. Let [φ θ ϕ] represent
attitude output of the quadrotor, where φ is the roll angle,
defined as the angle between the projection of the axis ObZb
of the body frame system on the Oe − Ze −Xe plane of the
earth frame system and the axis OeZe; θ is the pitch angle,
defined as the angle between the projection of the axis ObYb
of the body frame system on the Oe − Ye − Ze plane of the



earth frame system and the axis OeYe; ϕ is the yaw angle,
defined as the angle between the projection of the axis ObXb

of the body frame system on the Oe −Xe − Ye plane of the
earth frame system and the axis OeXe.
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Fig. 1. Quadrotor UAV

The attitude dynamical model of the quadrotor subject to
external disturbance can be expressed by [8]

φ̈ =
(Jy − Jz)θ̇ϕ̇+ Jr θ̇Ω + LFφ

Jx
+ dφ,

θ̈ =
(Jz − Jx)φ̇ϕ̇− Jrφ̇Ω + LFθ

Jy
+ dθ,

ϕ̈ =
(Jx − Jy)φ̇θ̇ + fFϕ

Jz
+ dϕ,

(1)

where Jx, Jy and Jz are the moments of inertia of the
quadrotor around x, y and z axes, respectively; Jr is the
moment of inertia of rotor; Ω is the speed difference of the
diagonal rotor; L is the distance from the center of the rotor
to the center of the quadrotor system; f is the scaling factor
from force to moment. Fφ, Fθ and Fϕ are the control inputs;
dφ, dθ and dϕ are the external inputs of the quadrotor system
in the form of disturbances.

It is worth mentioning that compared with brushless motor,
the rotor is light. Therefore, the terms Jr θ̇Ω

Jx
and Jrφ̇Ω

Jy
can be

ignored.

III. CONTROL DESIGN

The following assumptions are given to make the subse-
quent analysis rigorous.

Assumption 1: It is assumed that the disturbances dφ, dθ
and dϕ acting on the attitude channel of the quadrotor system
change slowly, i.e., ḋφ = ḋθ = ḋϕ = 0.

Assumption 2: Suppose that both the first derivative and the
second derivative of attitude desired trajectories φd, θd and ϕd
are bounded.

Assumption 3: It is assumed that the first derivative of
attitude output φ, θ and ϕ is bounded.

It should be noted that, the desired trajectory is given
manually. Therefore, the boundedness of its first derivative and
second derivative can be guaranteed. The quadrotor UAV can
not be required to track a trajectory with infinitely fast changes
in speed and acceleration for any specific task. Moreover,
In the actual quadrotor system, the output of the attitude

angle cannot be changed infinitely fast, which makes its first
derivative bounded.

Lemma 1 [20]: Suppose that there exists a continuous,
positive definite function V (t) such that

V̇ (t) ≤ −αV (t) + f(t),∀t ≥ t0 ≥ 0, (2)

where α is any finite constant and f(t) is a function of time
t. Then, the following inequality holds

V (t) ≤ e−α(t−t0)V (t0) +

∫ t

t0

e−α(t−τ)f(τ)dτ , (3)

where e is the base of the natural logarithm and V (t0) is initial
value of V (t).

A. Disturbance observer design

To compensate for external disturbance, a disturbance ob-
server with exponential convergence is introduced. Define the
estimation error of disturbance observer as

ēχ = dχ − d̂χ, (4)

where χ = φ, θ, ϕ and d̂χ is the estimation of dχ. Then, the
disturbance observer is designed as

ζ̇χ = −λχζχ − λ2
χχ̇− λχPχ − λχQχFχ,

d̂χ = ζχ + λχχ̇,
(5)

where λχ is a positive constant and ζχ is state variable of the
observer. Moreover, Pχ =

Jy−Jz
Jx

θ̇ϕ̇ and Qχ = L
Jx

when χ =

φ; Pχ = Jz−Jx
Jy

φ̇ϕ̇ and Qχ = L
Jy

when χ = θ; Pχ =
Jx−Jy
Jz

φ̇θ̇

and Qχ = f
Jz

when χ = ϕ.
Theorem 1: Considering the dynamics (1) of the quadrotor,

if the Assumption 1 holds and the disturbance observer is
designed as (5), then the disturbance estimation error (4) will
converge to zero as t→∞ exponentially.

Proof 1: Differentiating d̂χ in (5), it is obtained

˙̂
dχ = ζ̇χ + λχχ̈. (6)

Substituting the first equation in (5) into (6), one has

˙̂
dχ = −λχ − λ2

χχ̇− λχPχ − λχQχFχ + λχχ̈. (7)

Applying (1) to (7) yields

˙̂
dχ = −λχζχ − λ2

χχ̇+ λχdχ

= −λχ(d̂χ − dχ)

= λχēχ.

(8)

Meanwhile, according to Assumption 1 and (4), the dynamics
of disturbance observation error can be expressed by

˙̄eχ = ḋχ − ˙̂
dχ

= − ˙̂
dχ.

(9)

Combining (8) and (9), we have

˙̄eχ = −λχēχ. (10)



Solving (11), one has

ēχ = e−λχtēχ(0). (11)

where ēχ(0) is initial value of observation error. Obviously, the
disturbance observation error in attitude channel has a property
of exponential convergence.

This completes the proof. �

B. Attitude controller design

Define tracking error as

eχ1 = χd − χ, (12)

where χd is desired attitude signal. To avoid repeated differen-
tiation of virtual control signal, define the following first-order
low-pass filter in Laplace domain

ξχ =
1

Tχs+ 1
γχ, (13)

where s is a variable in Laplace domain; Tχ is a filter time
constant; ξχ is output of the filter; γχ is input of the filter,
defined as

γχ = −cχ1eχ1 − χ̇d, (14)

where cχ1 is a positive constant. The expression of (13) in
time domain can be further written as

ξ̇χ =
γχ − ξχ
Tχ

. (15)

The attitude controller is designed as

Fχ =
1

Qχ
(−Pχ − ξ̇χ + cχ2eχ2 − d̂χ), (16)

where cχ2 is a positive constant and eχ2 is defined as

eχ2 = −ξχ − χ̇. (17)

Theorem 2: For the attitude dynamics of the quadrotor in
(1), if the disturbance observer is designed as (5) and the
controller is chosen as (16), then the attitude tracking error
(12) of the closed-loop system will be guaranteed to converge
to zero asymptotically.

Proof 2: Define the following Lyapunov function candidate

Vχ =
1

2
e2
χ1 +

1

2
e2
χ2 +

1

2
e2
ξγχ, (18)

where eξγχ is filter error, defined as

eξγχ = ξχ − γχ. (19)

The derivative of Vχ with respect to time is

V̇χ = eχ1ėχ1 + eχ2ėχ2 + eξγχėξγχ. (20)

In the following, we calculate ėχ1, ėχ2 and ėξγχ, respectively.
ėχ1 is first addressed. Using (12), one has

ėχ1 = χ̇d − χ̇. (21)

Substituting (17) into (21) yields

ėχ1 = χ̇d + eχ2 + ξχ. (22)

Substituting (19) into (22), we have

ėχ1 = χ̇d + eχ2 + eξγχ + γχ. (23)

Applying (14) into (23), it is obtained that

ėχ1 = −cχ1eχ1 + eχ2 + eξγχ. (24)

Then, ėχ2 is addressed. According to (17), one has

ėχ2 = −ξ̇χ − χ̈. (25)

Substituting (1) into (25), the expression of ėχ2 can be given
by

ėχ2 = −ξ̇χ − Pχ −QχFχ − dχ. (26)

Furthermore, ėξγχ is addressed. Considering the definition of
filter error (19), we get

ėξγχ = ξ̇χ − γ̇χ. (27)

Substituting (15) and (14) into (27) yields

ėξγχ =
γχ − ξχ
Tχ

+ cχ1ėχ1 + χ̈d. (28)

(28) can be rewritten as from (19)

ėξχ =
−eξχ
Tχ

+ cχ1ėχ1 + χ̈d. (29)

Substituting (24), (26) and (29) into (20), one has

V̇χ =eχ1(−cχ1eχ1 + eχ2 + eξγχ)

+ eχ2(−ξ̇χ − Pχ −QχFχ − dχ)

+ eξγχ(
−eξγχ
Tχ

+ cχ1ėχ1 + χ̈d).

(30)

Applying the designed attitude controller (16) to (30), it
follows that

V̇χ =eχ1(−cχ1eχ1 + eχ2 + eξγχ)

+ eχ2(−cχ2eχ2 + d̂χ − dχ)

+ eξγχ(
−eξγχ
Tχ

+ cχ1ėχ1 + χ̈d)

=eχ1eχ2 + eχ1eξγχ − cχ1e
2
χ1 − cχ2e

2
χ2

+ eχ2(d̂χ − dχ)−
e2
ξγχ

Tχ
+ eξγχfχ,

(31)

where fχ = cχ1ėχ1 + χ̈d. According to Assumption 2 and
Assumption 3, fχ is a bounded function. Therefore, fχ has a
maximum value, and suppose this maximum value is Mfχ .
Moreover, the term d̂χ − dχ will converge to zero as t→∞
from Theorem 1. Obviously, (31) can be rewritten as

V̇χ =eχ1eχ2 + eχ1eξγχ − cχ1e
2
χ1 − cχ2e

2
χ2

−
e2
ξγχ

Tχ
+ eξγχfχ.

(32)



Applying Young’s inequality to (32), it is obtained that

V̇χ ≤
1

2
(e2
χ1 + e2

χ2) +
1

2
(e2
χ1 + e2

ξγχ)

− cχ1e
2
χ1 − cχ2e

2
χ2 −

e2
ξγχ

Tχ
+ eξγχfχ

≤(1− cχ1)e2
χ1 + (

1

2
− cχ2)e2

χ2 +
1

2
e2
ξγχ

−
e2
ξγχ

Tχ
+ eξγχfχ.

(33)

Meanwhile, note that since the following inequality

(eξγχfχ − cfχ)2 ≥ 0 (34)

always holds with cfχ being a positive constant, we have

eξγχfχ ≤
1

2cfχ
e2
ξγχf

2
χ +

cfχ
2
. (35)

Combining (33) and (35), one has

V̇χ ≤(1− cχ1)e2
χ1 + (

1

2
− cχ2)e2

χ2 +
1

2
e2
ξγχ

−
e2
ξγχ

Tχ
+

1

2cfχ
e2
ξγχf

2
χ +

cfχ
2

≤(1− cχ1)e2
χ1 + (

1

2
− cχ2)e2

χ2

+ (
1

2cfχ
f2
χ +

1

2
− 1

Tχ
)e2
ξγχ +

cfχ
2
.

(36)

Let
δχ ≥ 0,

cχ1 ≥ 1 + δχ,

cχ1 ≥
1

2
+ δχ,

1

Tχ
≥ 1

2cfχ
M2
fχ +

1

2
+ δχ,

(37)

then (36) can be rewritten as

V̇χ ≤− δχe2
χ1 − δχe2

χ2

+ (
1

2cfχ
f2
χ −

1

2cfχ
M2
fχ − δχ)e2

ξγχ +
cfχ
2

≤− δχe2
χ1 − δχe2

χ2 −−δχe2
ξγχ

+ (
1

2cfχ
f2
χ −

1

2cfχ
M2
fχ)e2

ξγχ +
cfχ
2

≤− 2δχVχ + (
1

2cfχ
f2
χ −

1

2cfχ
M2
fχ)e2

ξγχ +
cfχ
2
.

(38)

Let Γ = ( 1
2cfχ

f2
χ − 1

2cfχ
M2
fχ

)e2
ξγχ, we have

Γ =(
1

2cfχ

M2
fχ
f2
χ

M2
fχ

− 1

2cfχ
M2
fχ)e2

ξγχ

=(
f2
χ

M2
fχ

− 1)
1

2cfχ
M2
fχe

2
ξγχ.

(39)

Since Mfχ is maximum value of fχ,
f2
χ

M2
fχ

≤ 1. Obviously,
Γ ≤ 0 from (39). Using (38), we have

V̇χ ≤− 2δχVχ +
cfχ
2
. (40)

From Lemma 1, the solution of (40) can be given by

Vχ ≤ e−2δχ(t−t0)Vχ(t0) +

∫ t

t0

e−2δχ(t−τ) cfχ
2
dτ

≤ e−2δχ(t−t0)Vχ(t0) +
cfχ
2
e−2δχt

1

2δχ
(e2δχt − e2δχt0)

≤ e−2δχ(t−t0)Vχ(t0) +
cfχ
2

1

2δχ
(1− e−2δχ(t−t0)),

(41)
where Vχ(t0) is initial value of Vχ. When t0 = 0, (41) can be
further rewritten as

Vχ ≤ e−2δχ(t)Vχ(0) +
cfχ
2

1

2δχ
(1− e−2δχt). (42)

Thereby, we get
lim
t→∞

Vχ ≤
cfχ
4δχ

. (43)

To guarantee that the attitude tracking error converges to a
neighborhood of zero, the value of δχ should be selected as
greater as possible than that of cfχ . Thus, the convergence
accuracy of attitude tracking error can be improved.

This completes the proof. �

IV. SIMULATION RESULTS AND DISCUSSION

In simulation, the proposed control scheme is compared
with DSC without disturbance observer (DSC-WDO) and
LQR. Note that in order to ensure the fairness of the tracking
results, the proposed controller and DSC-WDO choose the
same control gains. The parameters of the quadrotor UAV
are set as follows [21]: L = 0.4 m, Jx = 0.16 kgm2,
Jy = 0.16 kgm2, Jz = 0.32 kgm2, f = 0.05 m. All the
initial attitude states of the quadrotor system are set to 0 rad.
We consider the following two cases for desired attitude and
external disturbance in simulations.

Case 1: The desired attitude signals are constant, and the
external disturbances are time-varying, i.e. φd = θd = ϕd =
0.32, dφ = 1.2 cos(π3 t + π

6 ) + 0.14, dθ = 1 for t ∈ [0, 4] ∪
(8, 12] ∪ (16, 20), dθ = 0 for t ∈ (4, 8] ∪ (12, 16], dϕ =
0.45t + 0.2 for t ∈ [0, 5], dϕ = 2.45 for t ∈ (5, 10], and
dϕ = −0.16t+ 5.45 for t ∈ (10, 20].

The observations of the external disturbances for the three
attitude channels is shown in Fig. 2, where we find there
will be a small observation error using the proposed observer
when the external disturbances are time-varying. However, the
external disturbances can be accurately observed when they are
constant.

The control inputs of the three attitude channels are depicted
in Fig. 3. The corresponding tracking results of the three
attitude angles are plotted in Fig. 4. In roll channel, it can
be seen that when the quadrotor UAV encounters a time-
varying disturbance with periodic oscillation, the tracking
result produces a more obvious oscillation using LQR control
scheme, while a more stable tracking result is provided by the
proposed controller. In pitch channel, we observe that when
the disturbance does not exist, the three control algorithms give
roughly equal tracking performance, but when the disturbance
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Fig. 2. The observation results of external disturbances in case 1.

occurs, such as the interval of 8s to 12s, the tracking ability
of the proposed control algorithm is significantly better than
that of the other two algorithms. In yaw channel, only the
proposed control approach can enable the desired signal to
be closely followed when the disturbance in the form of a
piecewise function is injected into the quadrotor systems.
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Fig. 3. The control inputs of the quadrotor in case 1.

Case 2: The desired attitude signals are time-varying, and
the external disturbances are constant, i.e. φd = 0.015t+0.12,
θd = 0.24 sin(π4 t), ϕd = 0.17 cos(π3 t + π

6 ) and dφ = dθ =
dϕ = 2.6.

The observations of the external disturbances for the three
attitude channels are given in Fig. 5. As shown in Fig. 5,
the designed nonlinear disturbance observer can accurately
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Fig. 4. The tracking results for the desired attitude in case 1.

estimate the external constant disturbances. Therefore, the
compensation of these disturbances can be achieved in the
attitude controllers.
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Fig. 5. The observation results of external disturbances in case 2.

The control inputs of the three attitude channels are shown
in Fig. 6, from which we find these control signals are similar
in the steady-state stage. The tracking results for the three
desired attitude angles are shown in Fig. 7. In roll channel,
there is an obvious steady-state tracking error when LQR is
applied to the quadrotor. Such tracking result is unacceptable
in the actual application of quadrotor UAV. In pitch channel,
all three control algorithms can help quadrotor drone to
accurately track standard sinusoidal signal. However, when the
desired standard sinusoidal signal is shifted, it can be seen that



LQR and DSC-WDO produce a larger tracking error, while
the actual output can still follow the reference input using the
proposed control technique.
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Fig. 6. The control inputs of the quadrotor in case 2.
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Fig. 7. The tracking results for the desired attitude in case 2.

V. CONCLUSION

In this paper, a robust dynamic surface control scheme
is proposed to achieve attitude tracking of a quadrotor. To
compensate for external disturbance, a nonlinear disturbance
observer with exponential convergence is developed to es-
timate external disturbance. A first-order low-pass filter is
employed to address the problem of explosion of complexity in
traditional backstepping. The stability of closed-loop system is
rigorously proved based on Lyapunov theory. The comparative

simulations are carried out to illustrate the effectiveness of the
proposed control strategy.
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