
Under review as a conference paper at ICLR 2023

DEEP UNSUPERVISED DOMAIN ADAPTATION FOR
TIME SERIES CLASSIFICATION: A BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Unsupervised Domain Adaptation (UDA) aims to harness labeled source data to
train models for unlabeled target data. Despite extensive research in domains like
computer vision and natural language processing, UDA remains underexplored
for time series data, which has widespread real-world applications ranging from
medicine and manufacturing to earth observation and human activity recognition.
Our paper addresses this gap by introducing a comprehensive benchmark for eval-
uating UDA techniques for time series classification, with a focus on deep learn-
ing methods. We provide seven new benchmark datasets covering various domain
shifts and temporal dynamics, facilitating fair and standardized UDA method as-
sessments with state of the art neural network backbones (e.g. Inception) for time
series data. This benchmark offers insights into the strengths and limitations of the
evaluated approaches while preserving the unsupervised nature of domain adap-
tation, making it directly applicable to practical problems. Our paper serves as
a vital resource for researchers and practitioners, advancing domain adaptation
solutions for time series data and fostering innovation in this critical field.

1 INTRODUCTION

The realm of time series classification has witnessed a remarkable surge in recent years, driven by
the omnipresence of time series data across multitude of domains. These temporal data sequences,
characterized by their inherent ordering, have become central in diverse cognitive tasks. Time Series
Classification (TSC) stands as a pivotal task within this domain, entailing the precise labeling of time
series data given a set of labeled training examples (Ismail Fawaz et al., 2019). With the advent of the
Internet of Things (IoT) and the proliferation of big data, the manipulation and analysis of time series
data have become integral components of data science practices spanning fields such as medicine,
telecommunications, remote sensing, and human activity recognition (Sanz et al., 2022; Kamalov
et al., 2021). This paper embarks on a comprehensive exploration of the intricate landscape of TSC,
offering novel insights, methodologies, and applications within this evolving discipline.

In numerous scenarios, including those devoid of temporal dynamics, a notable discrepancy arises
between the data observed in the deployment environment of a machine learning model and the
data employed during its training phase. This disparity emerges due to the distinct characteristics
inherent to the new operational context. For instance, variations in genomic profiles or the medi-
cal condition of a patient (Wagner et al., 2020), fluctuations in the density of devices or shifts in
patterns of communication data utilization (Park & Simeone, 2022), or changes in weather condi-
tions and soil properties within remote sensing applications (Nyborg et al., 2022), all contribute to
this phenomenon. An analogous situation occurs when models are trained using synthetic data then
later used for real-world data analysis. Consequently, it becomes imperative to adapt the model
to accommodate this data distribution shift, which constitutes the fundamental objective of domain
adaptation. This challenge assumes an even greater degree of complexity when labels are entirely
absent in the new domain, thereby giving rise to the subfield of unsupervised domain adaptation.

Domain Adaptation (DA) and Unsupervised Domain Adaptation (UDA) have garnered substantial
attention in the fields of Natural Language Processing (NLP) and Computer Vision (CV) (Ruder
et al., 2019; Li et al., 2020; Xu et al., 2022). These domains have witnessed the emergence of
numerous methodological approaches to address data distribution disparities. One commonly em-
ployed strategy involves the transfer of specific layers from Neural Networks (NN), followed by the

1

Under review as a conference paper at ICLR 2023

freezing of these layers during the forward pass (Ismail Fawaz et al., 2018). In the context of data
shift, particularly covariate shift, more intricate algorithms have been developed. These include:
(1) Domain-Adversarial Neural Network (DANN) (Ganin et al., 2016), which advocates adversarial
training to minimize the divergence between source and target domain distributions; (2) Conditional
Adversarial Domain Adaptation (CDAN) (Long et al., 2018), which aligns conditional distribu-
tions; and (3) algorithms grounded in optimal transport theory (Courty et al., 2015; Damodaran
et al., 2018). To assess the efficacy of these methodologies, benchmarking initiatives have been es-
tablished (Zhao et al., 2020). Ringwald & Stiefelhagen (2021) conducted a comparative evaluation
of these approaches using image datasets, revealing notable challenges related to image noise and
annotation errors while demonstrating significant improvements upon addressing them. Zhao et al.
(2020) concentrated predominantly on evaluating deep unsupervised methods within their bench-
marking framework. While this benchmark tackles classification tasks, other works focus on DA
regression tasks, such as Wei et al. (2022) who proposed to take advantage of a Kernel that takes
into consideration the domain of the compared samples.

In contrast to the well-established benchmarking frameworks in computer vision and NLP, the time
series data community currently lacks a comprehensive overview of the existing techniques and
datasets available for benchmarking UDA in the context of TSC, which is highlighted in a recent
UDA method for temporal data called SASA (Cai et al., 2021). While an initial work in this direction
has been made by Ragab et al. (2023), it remains somewhat constrained in terms of data diversity,
dataset quantity, and statistical analysis for assessing the performance of multiple time series classi-
fiers across various datasets. Unlike the review in Ragab et al. (2023), the benchmark we introduce
is specifically tailored to deep learning approaches, for unsupervised domain adaptation in the realm
of time series data. We evaluate 9 algorithms integrated with cutting-edge backbone architectures
(e.g. InceptionTime’s backbone) and scrutinize their performance across a set of 12 datasets, includ-
ing 7 novel ones we introduce to diversify domain contexts. Additionally, we delve into the crucial
aspect of hyperparameter tuning criteria, an important point in UDA, given the absence of labeled
data in the target domain.

2 UNSUPERVISED DOMAIN ADAPTATION BACKGROUND

2.1 NOTATIONS AND PROBLEM STATEMENT

Let DS = {(Xs
i ,y

s
i)}

nS
i=1 be a source domain consisting of nS labeled time series, where Xs

i
represents the time series data and ys

i represents the corresponding labels. Additionally, let DT =
{XT

j }
nT
j=1 represent a target domain solely consisting of nT unlabeled time series. The objective of

UDA is to learn a classifier capable of accurately estimating the labels of the time series in the target
domain by making use of the labeled time series from source domain. As some datasets contain
multiple domains, each adaptation from one domain to another is referred to as a scenario.

In the majority of the DA literature, the theoretical findings (Ben-David et al., 2006) as well as
the underlying motivation of the algorithms (Ganin et al., 2016) presume that the shift between the
two domains adheres to the covariate shift assumption (Farahani et al., 2021). The latter posits
that the distribution of input data (i.e., the time series data) differs between the source and target
domains, while the conditional distribution of labels, given the input data, remains unchanged, i.e.
pS(X) ̸= pT (X) but pS(y|X) = pT (y|X) for any X ∼ X and y ∼ Y , with X and Y the input and
label spaces, and pS and pT the source and target distributions.

2.2 UDA ALGORITHMS FOR TIME SERIES

The focus of this work is on deep UDA algorithms for TSC, where the goal is to classify unlabeled
data in the target domain. These algorithms rely on two main components: a backbone, which
encodes the input into a domain-invariant latent space, and a classifier. During training, labeled data
from the source domain is used to train the classifier for the main classification task, while unlabeled
data from the target domain is used to adapt the model to the target domain. Table 1 summarizes the
algorithms considered in this work. In the following, we describe these algorithms in more detail.

Baseline InceptionTime (Ismail Fawaz et al., 2020) is used as a baseline with no adaptation to
compare with UDA approaches and highlight the benefits of applying domain adaptation. This

2

Under review as a conference paper at ICLR 2023

Table 1: Deep UDA algorithms for TSC (top) and baselines (bottom). All algorithms consist of a
backbone and a classifier, other modules are listed in the table. LC , LA, LVRNN, LR, LContrastive,
H , and LSinkhorn denote the classification, adversarial, VRRN, reconstrution, and contranstive loss
functions, the entropy and the Sinkhorn divergence respectively. See A.3 for more details.

Algorithms Backbone Other Modules Loss function

VRADA VRNN Discriminator LC + LA + LVRNN

CoDATS 1D CNN Discriminator LC + LA

InceptionDANN Inception Discriminator LC + LA

InceptionCDAN Inception Discriminator, Multilinear Map LC + LA

CoTMix 1D CNN Temporal Mixup LC + LContrastive +H
InceptionMix Inception Temporal Mixup LC + LContrastive +H
Raincoat 1D CNN Frequency encoder, Decoder LC + LR + LSinkhorn

InceptionRain Inception Frequency encoder, Decoder LC + LR + LSinkhorn

InceptionTime Inception - LC

OTDA - Transport map -

state-of-the-art approach for time series classification is trained with the source domain data, and
the target domain data is only used for hyperparameter tuning. We also use it in this benchmark as a
backbone for other domain adaptation algorithms, referred to as the “Inception” backbone, allowing
the comparison of different UDA algorithms independently of their backbones.

Adversarial domain adaptation This technique uses a discriminator to train the backbone, en-
forcing domain adaptation. During training the discriminator learns how to distinguish between
source domain and target domain samples. Simultaneously, the backbone learns how to fool the
discriminator. This technique was inspired by Generative Adversarial Networks (Goodfellow et al.
(2014)) and originally proposed for domain adaptation in Ganin et al. (2016).

Variational Recurrent Adversarial Deep Domain Adaptation (VRADA) from Purushotham et al.
(2016), Convolutional deep Domain Adaptation model for Time Series data (CoDATS) from Wilson
et al. (2020) and InceptionDANN (proposed in this work) all use adversarial domain adaptation. For
all these algorithms, the architecture of the classifier and discriminator consists of a stack of fully
connected layers. The main difference between these algorithms lies in their backbones.

VRADA is a domain adaptation algorithm tailored for time series which enforces domain adaptation
through adversarial learning. The backbone of VRADA is a Variational Recurrent Neural Network
(VRNN) (Chung et al. (2015)), which integrates elements of a Variational Auto-Encoder (Kingma
& Welling (2014)) into a Recurrent Neural Network in order to achieve the variability observed in
highly structured time series data. CoDATS proposes the use of a 1-dimensional fully convolutional
neural network (1D CNN) to build the backbone. This architecture significantly reduces training
time and offers better results in comparison to that of VRADA. InceptionDANN is proposed to
compare adversarial domain adaptation to other algorithms with the same backbone. The algorithm
is the same as CoDATS, but uses the Inception backbone. Additionally, we propose InceptionC-
DAN, a deep UDA method based on Conditional DANN (Long et al. (2018)), where multilinear
conditioning is used to capture the cross-covariance between feature representations and classifier
predictions. This method also uses the Inception backbone.

Contrastive learning Contrastive learning aims at aligning the predictions made by the model
for pairs of samples coming from two different domains, thus enforcing domain adaptation. CoT-
Mix (Eldele et al., 2023) implements contrastive learning between the soft probabilities of source
domain samples and their source dominant counterparts and between the soft probabilities of tar-
get domain samples and their target dominant counterparts. Source dominant and target dominant
samples are produced through the temporal mixup operation.

The temporal mixup operation selects a source (or target) domain sample and a target (respectively
source) domain sample. The temporal mixup is produced by a component-wise weighted sum be-
tween the first sample and a moving average of the second sample. Each temporal mixup should
preserve the characteristics of the dominant domain while considering the temporal information
from the other, less dominant, domain.

3

Under review as a conference paper at ICLR 2023

CoTMix’s bakcbone is a 1D CNN. InceptionMix, proposed in this work, applies the same learning
algorithm as CoTMix while employing the Inception backbone.

Frequency domain analysis Raincoat is a novel method for UDA in time series proposed by He
et al. (2023) in which the temporal features and frequency features of the time series are analyzed
separately. Raincoat consists of three different modules: an encoder, a decoder and a classifier.

The main novelty is in the encoder, which treats separately time and frequency features. Time
features are analyzed by a traditional backbone, such as a 1D CNN, while the frequency features are
extracted by: (1) smoothing, (2) applying a discrete Fourier transform, (3) multiplying by a learned
weight matrix, (4) transforming into amplitude and phase components, and (5) concatenating. Once
the frequency and time features are extracted, these are concatenated and passed on to a classifier
which is trained for the main classification task.

The role of the decoder is to reconstruct the input samples from the features extracted by the encoder.
A reconstruction loss computed over both source and target domain samples forces the encoder to
produce an accurate representation of the target samples. Additionally, the Sinkhorn divergence
between the extracted source domain and target domain features is computed and used to align the
target and source domain representations. InceptionRain, proposed in this work, uses the Inception
backbone as a time feature encoder for the Raincoat algorithm.

Non-deep UDA In addition to the algorithms mentioned above, we consider Optimal Transport
Domain Adaptation (OTDA) (Courty et al., 2015) as a non-deep approach, which consists in aligning
the source distribution over the target one using the Optimal Transport plan. Note however that this
approach is not originally designed for time series.

2.3 TUNING MODELS WITHOUT LABELS

The hyperparameter tuning step is particularly challenging in UDA, given the absence of labels in
the target domain for model evaluation, and can drastically impact the methods’ performances (Mus-
grave et al., 2022). While it is a common practice in many UDA papers to manually set hyperpa-
rameters for each scenario (Tzeng et al., 2017; Wilson et al., 2020), three standard approaches for
an automatic selection of hyperparameters are presented below.

Target Risk Several methods (Long et al., 2015; Courty et al., 2015; Saito et al., 2018) rely on
target risk to select models, where the risk is computed on target labels, which are assumed to be
available at least partially. However, this method is questionable because it will not be applicable
for real UDA experiments and serves more as an oracle and an upper bound on performance.

Source Risk Ganin & Lempitsky (2015) selects hyperparameters by using the empirical source
risk. Although it should lead in theory to a misestimation of the target risk in the presence of a large
domain gap, Musgrave et al. (2022) have shown that it results in good performance on UDA for
computer vision.

Importance Weighted Cross Validation (IWCV) A more theoretically sound approach to esti-
mate the target risk is proposed by Sugiyama et al. (2007) and applied in Eldele et al. (2023); Long
et al. (2018), where each source sample X is weighted by the ratio between the probability density
of the target pT (X) and the source pS(X). The authors prove that the following equality holds under
the covariant shift assumption with any loss function L and classifier f

Target loss(f,L) = E(X,y)∼pS

[
pT (X)

pS(X)
L(y, f(X))

]
.

Taking L as the 0 − 1 loss function leads to a proxy of the target risk. In practice, the performance
of IWCV are strongly limited by the unverifiability of covariate shift assumption and the difficulty
of estimating the densities.

Although other methods exist in the literature, such as Zhong et al. (2010); You et al. (2019); Rob-
biano et al. (2022); Chuang et al. (2020); Saito et al. (2021); Musgrave et al. (2022), we choose
the approaches that offer the best practicality, robustness, lowest computational cost, and are well
studied in the literature.

4

Under review as a conference paper at ICLR 2023

3 DATASETS USED FOR EVALUATION

The most commonly used datasets in UDA for TSC revolve around human activity recognition, fault
detection and sleep stage prediction: (1) Human Activity Recognition (HAR); (2) Heterogeneity
Human Activity Recognition (HHAR); (3) Machine Fault Diagnosis (MFD); (4) Sleep Stage; (5)
Wireless Sensor Data Mining (WISDM) (Anguita et al., 2013; Stisen et al., 2015; Lessmeier et al.,
2016; Ragab et al., 2023; Kwapisz et al., 2011). In an effort to increase the diversity in terms of
applications as well as having a larger sample for comparing the classifiers, we introduce seven
new datasets. Table 2, presents an overview of each dataset, including important statistics like the
number of domains, the number of classes, the length of each time series, the number of channels
and the four different themes: machinery, motion, medical and remote sensing. The following is a
brief summary describing each of the new datasets proposed in this paper with a focus on: (1) the
time series classification task and (2) the domain adaptation problem. For datasets where the number
of possible UDA scenarios exceeds five, we have taken a random selection of five scenarios to limit
the number of experiments which increases exponentially with each additional scenario.

Table 2: Description of unsupervised domain adaptation time series datasets. Bold indicates the new
datasets proposed in this benchmark.

Dataset Domains Classes Length Channels Theme

ford 2 2 500 1 machinery
cwrBearing 4 4 512 1 machinery
mfd 4 3 5120 1 machinery
ptbXLecg 3 5 1000 12 medical
ultrasoundMuscleContraction 8 2 3000 1 medical
sleepStage 20 5 3000 1 medical
OnHWeq 2 15 64 13 motion
sportsActivities 8 19 125 45 motion
hhar 9 6 128 3 motion
wisdm 36 6 128 6 motion
har 30 6 128 9 motion
miniTimeMatch 4 8 39 10 remote sensing

Ford (Dau et al., 2019) was initially employed in the IEEE World Congress on Computational
Intelligence in 2008 as part of a competition. The primary classification task involved diagnosing
specific symptoms within an automotive subsystem. Each instance in the dataset comprises 500
measurements of engine noise alongside a corresponding classification label of whether or not an
anomaly exists in the engine. There are two distinct domains: (1) FordA where data were gathered
under typical operational conditions, characterized by minimal noise interference; (2) FordB where
data were collected under noisy conditions. CWR Bearing (Zhang et al., 2019) consists of motor
vibration data collected using accelerometers placed at the 12 o’clock position at both the drive end
and fan end of the motor housing in order to detect normal and faulty bearings, with one normal
class and 3 fault classes. The data was collected at 12,000 and 48,000 samples per second for drive
end bearing experiments. Five distinct scenarios are generated from different motor conditions.
PTB XL ECG (Wagner et al., 2020) is a collection of 549 high-resolution 15 channels ECGs. The
data was recorded at different clinical sites and gathers 294 subjects, including healthy subjects as
well as patients with a variety of heart diseases representing the 5 different classes. Five domain
adaptation scenarios are created from 4 clinical sites. Ultrasound Muscle Contraction (Brausch
et al., 2022) is a collection of 21 sets of one-dimensional ultrasound raw radio frequency data (A-
Scans) measured on calf muscles of 8 healthy volunteers, each A-Scan consisting of 3000 amplitude
values. The purpose is to determine whether the muscle is contracted or not. Each individual subject
is considered as an independent domain. Online Handwritten Equations (Ott et al., 2022) consists
of recognizing handwritten equations based on multivariate time series data captured from sensors
placed on a sensor enhanced pen. With 12 possible equations and 55 different writers, the time
series classification task is based on 12 labels while domain adaptation scenarios are split based
on the writer’s identity. Sport Activities (Altun et al., 2010) comprises motion sensor data of 19
daily sports activities performed by 8 subjects in their own style for 5 minutes. Data was recorded
using five Xsens MTx sensor units placed on the torso, arms, and legs. Each individual subject
is considered as an independent domain. Mini Time Match (Nyborg et al., 2022) is a crop-type

5

Under review as a conference paper at ICLR 2023

mapping that covers 4 regions across Europe. It comprises a series of time-stamped multi-spectral
measurements derived from satellite imagery captured at specific geographic coordinates. The aim
is to recognize the type of crop of a parcel among 8 categories, such as corn or wheat, each region
being an independent domain.

4 EXPERIMENTAL SETUP

The framework that we have developed consists of five stages, similar to a traditional machine learn-
ing pipeline: (1) Loading: raw time series datasets are downloaded from their original source that
we separate into train, validation and test sets if not already split. In the source domain, labels were
utilized to ensure an equitable distribution of classes across all three sets. This stratification was not
performed in the target domain, where labels are not supposed to be available. However, in line with
supervised ML conventions, the class proportions between the test set and the training/validation
sets remain consistent in the target domain. Additionally, when possible, temporal causality is en-
sured for all the splits. (2) Preprocessing: each raw time series is preprocessed in the same way
for all methods and following the recommendations of the paper that proposed the dataset (e.g.
z-normalization). (3) Tuning: for each couple of (dataset, classifier), we search for the best hyper-
parameters using the three methods presented in Section 2.3. For IWCV, the marginal distributions
pT (X) and pS(X) are estimated by a 5-Gaussian mixture with L denoting the cross-entropy. For
all 3 methods, the source or target risk is estimated using the validation set, which is unseen during
training. (4) Training: for each of the three model selection methods, we take the best hyperpa-
rameter set, we re-train the model, check-pointing the weights at each epoch using the same metric
and validation set used during tuning. (5) Evaluation: for each trained model, we evaluate the final
metric over the previously unseen test set (source and target). Thus, contrary to some DA settings,
the test data are never seen during training nor validation.

To ensure fairness across all algorithms, we fixed the hyperparameter tuning budget for all exper-
iments to 12 hours of GPU time. Similarly, during the training stage, we specify the maximum
training budget to 2 hours of GPU time for each model on a given dataset for a given set of hy-
perparameters. Our benchmark results in 1458 different experiments, with 12 datasets (54 domain
adaptation scenarios), 3 hyperparameter tuning methods and 9 deep UDA algorithms. Thus, the
total sequential runtime of this benchmark is approximately 8748 hours, corresponding to almost
one year. Finally, in the spirit of reproducible machine learning research, we are planning to open
source the code upon acceptance of the paper.

5 RESULTS AND ANALYSIS OF THE BENCHMARK

In the following subsections we start by presenting an overview of the results while comparing mul-
tiple classifiers over multiple datasets, as well as analyzing the best classifier’s accuracy. In later
subsections, we perform a statistical analysis between the various hyperparameter tuning methods
used for each experiment and we showcase the impact of the neural network architecture (backbone)
when using the same adaptation technique. The complete results for each dataset are provided in
Appendix A.1. Note that some of our results differ in accuracy from the original papers, which pre-
sented the following limitations: (1) hard-coded hyperparameters were set for a given scenario (He
et al., 2023); or (2) target labels were used for tuning the hyperparameters (Wilson et al., 2020); or
(3) the time series segmentation did not respect temporal causality thus introducing data leakage (El-
dele et al., 2023).

5.1 COMPARISON OF CLASSIFIERS OVER ALL DATASETS

For the overall comparison we carry out the analysis depending on the choice of the hyperparam-
eter tuning method. Following the classical approach for comparing multiple time series classi-
fiers (Bagnall et al., 2017), we first perform a Friedman test over all the algorithms which rejects the
null hypothesis over the different repeated measures (Friedman, 1940). Each repeated measure cor-
responds to an unsupervised domain adaptation scenario. For comparing multiple classifiers over
multiple datasets, we make use of the critical difference diagram (Demšar, 2006). However we
omit the post-hoc analysis based on Wilcoxon-signed rank test with Holm’s alpha correction as this
introduces artifacts into the diagram (Lines et al., 2018).

6

Under review as a conference paper at ICLR 2023

12345678910

7.5200OTDA
7.2600VRADA
6.0300CoTMix
5.9300Inception
5.8000InceptionMix 5.2400InceptionCDAN

5.0700Raincoat
4.6100CoDATS
3.8400InceptionDANN
3.7000InceptionRain

(a) Source Risk

12345678910

7.8800OTDA
7.2800VRADA
5.9000CoTMix
5.6800InceptionMix
5.5600Inception 5.0100CoDATS

4.7200InceptionCDAN
4.6800InceptionDANN
4.4600Raincoat
3.8300InceptionRain

(b) IWCV

12345678910

8.5800OTDA
8.4000VRADA
6.1300InceptionMix
5.6600CoTMix
5.6200Inception 4.2100CoDATS

4.2100InceptionCDAN
4.1200Raincoat
4.1000InceptionRain
3.9700InceptionDANN

(c) Target Risk

Figure 1: Average rank diagrams based on accuracy for different hyperparameter tuning methods

Figure 1a, showcases the average rank of all classifiers when using the Source Risk to tune the hyper-
parameters of the algorithms. We can identify InceptionRain with the highest average rank among
all 9 models. In addition to these 9 classifiers, we have moved the results for a single model called
SASA (Cai et al., 2021) (with both LSTM and Inception backbones) into Appendix A.4 where we
provide detailed explanation for these additional results. Furthermore in Figure 1b, when tuning the
hyperparameters using the IWCV method, InceptionRain still has the best performance in terms of
accuracy over all the datasets on average. In Figure 1c, we notice a small drop in InceptionRain’s
performance relative to the other classifiers when using the Target Risk for selecting the best hy-
perparameters. Moreover, we notice across the three diagrams, three cluster of algorithms starting
with VRADA and OTDA comprising the worst two classifiers. The second cluster consists of In-
ceptionMix, CoTMix and Inception showing very similar average ranking. This can be explained by
the fact that InceptionMix and CoTMix differ solely with the neural network backbone architecture
using the same contrastive loss approach presented by CoTMix in Eldele et al. (2023). Surprisingly,
Inception was able to achieve similar results to CoTMix and InceptionMix without employing a
domain adaptation technique, suggesting that the method proposed by CoTMix is not able to gener-
alize to the larger benchmark presented here, compared to the results provided in CoTMix’ original
paper. Additionally, we can pinpoint a third cluster of algorithms based on adversarial training as
well as the Raincoat approach. Nevertheless InceptionRain remains a constant top performing al-
gorithm across the three different hyperparameter tuning methods. Finally, we can notice across
the three diagrams that the intra-cluster distance (in terms of average rank) decreases significantly
when using the Target Risk for hyperparameter tuning. The latter observation suggests that a good
hyperparameter tuning method can close the gap between several classifiers, which is in line with
the recent domain adaptation reviews for computer vision (Musgrave et al., 2021). Other average
rank diagrams, using the F1-score, are depicted in Appendix A.2 with similar conclusion.

Following the overall comparison over all the datasets, we provide a pairwise accuracy plot com-
parison of InceptionRain (best classifier) against Inception and Raincoat. Figure 2a showcases the

7

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Inception

0.0

0.2

0.4

0.6

0.8

1.0

In
ce

pt
io

nR
ai

n
InceptionRain

wins here

InceptionRain
loses here

wins=38;ties=2;loss=14;p-value=0.001

IWCV
Source Risk
Target Risk

(a) InceptionRain vs Inception (no adaptation)

0.0 0.2 0.4 0.6 0.8 1.0
Raincoat

0.0

0.2

0.4

0.6

0.8

1.0

In
ce

pt
io

nR
ai

n

InceptionRain
wins here

InceptionRain
loses here

wins=30;ties=1;loss=23;p-value=0.276

IWCV
Source Risk
Target Risk

(b) InceptionRain vs Raincoat

Figure 2: Pairwise accuracy comparison of InceptionRain against Inception and Raincoat. The sta-
tistical analysis and comparison above the figures are computed using only results based on IWCV.

impact of the UDA method proposed in Raincoat (He et al., 2023), by comparing Inception’s back-
bone without DA against InceptionRain. The latter model achieves significantly better accuracy
than its pure backbone counterpart with a Win/Tie/Loss equal to 38/2/14 and a p− value = 0.001,
demonstrating the advantage of using domain adaptation. Finally, Figure 2b presents the difference
between Raincoat and InceptionRain with a Win/Tie/Loss equal to 30/1/23 and a p−value = 0.276
suggesting that with a change in backbone one is not able to reject the null hypothesis, thus provid-
ing evidence that the domain adaption technique, rather than its backbone, is the main reason behind
the top performance of InceptionRain in this benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Source Risk

0.0

0.2

0.4

0.6

0.8

1.0

IW
CV

IWCV
wins here

IWCV
loses here

wins=269;ties=73;loss=273;p-value=0.943

0.0

0.2

0.4

0.6

0.8

1.0

(a) IWCV vs Source Risk

0.0 0.2 0.4 0.6 0.8 1.0
Target Risk

0.0

0.2

0.4

0.6

0.8

1.0

IW
CV

IWCV
wins here

IWCV
loses here

wins=112;ties=56;loss=447;p-value=3.72e-52

0.0

0.2

0.4

0.6

0.8

1.0

(b) IWCV vs Target Risk

Figure 3: Pairwise accuracy comparison of three hyperparameter tuning methods. Colors acts as
a proxy for the shift between source and target domains. They are generated based on Inception’s
relative accuracy between source and target. Purple meaning that Inception performs equally in
source and target, suggesting a high similarity between the two domains.

5.2 COMPARISON OF HYPERPARAMETER TUNING METHODS

We now provide some insight about the choice of approach for tuning the hyperparameters. Figure 3
displays the pairwise accuracy comparison with IWCV against Source Risk and Target Risk. In
addition, we have included a colormap based on the variations in Inception’s accuracy between the
source and the target test set as a surrogate for estimating the degree of shift between source and

8

Under review as a conference paper at ICLR 2023

0 50 100 150 200 250
hparams iteration (sorted by target val accuracy)

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

(Smoothed) CoDATS for har[6->23]

Target Risk
Source Risk

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

cr
os

s e
nt

ro
py

IWCV

Figure 4: Accuracy and cross entropy loss dur-
ing the hyperparameter tuning stage

0.0 0.2 0.4 0.6 0.8 1.0
CoDATS CoTMix Raincoat

0.0

0.2

0.4

0.6

0.8

1.0

In
ce

pt
io

n[
DA

NN
,M

ix
,R

ai
n] Inception

wins here

Inception
loses here

wins=82;ties=3;loss=77;p-value=0.844

IWCV
Source Risk
Target Risk

Figure 5: Pairwise comparison of Inception
backbone vs other backbones

target for each scenario, with red hinting at a large shift and blue at a small shift. Figure 3a indicates
that IWCV and Source Risk are not significantly different with a p− value close to 1, but the colors
indicate that the larger the shift between source and target, the larger the difference between IWCV
and Source Risk. This suggests that IWCV is more beneficial whenever the shift between source
and target is large, a shift that should be theoretically corrected by IWCV. However, Figure 3b shows
that IWCV is still significantly worse than Target Risk (which leverages the labels), thus suggesting
that there is still room for improving the hyperparameter tuning methods and further research into
this direction seems promising. In addition to the latter overall comparison, Figure 4 displays one
example of hyperparameter tuning where we can see that there exists a correlation between the target
risk and the two proxy used. More examples similar to Figure 4 are given in Appendix A.2.5, further
validating the current trend seen for CoDATS over the HAR dataset.

5.3 COMPARISON OF BACKBONES

This final subsection takes a deeper look into the different backbones, investigating how impactful
the choice of the backbone is to the domain adaptation problem. We saw in Figure 2b that for
the Raincoat approach, changing the backbone to Inception (with InceptionRain) does not have a
significant impact on target accuracy. This conclusion holds for CoTMix and CoDATS as shown
in Appendix A.2.6. To further validate this across all backbones, Figure 5 displays the pairwise
accuracy comparison between CoDATS, Raincoat and CoTMix against the three same methods
based on the Inception backbone. The statistical comparison indicates a small difference with a
p − value above 0.8 thus suggesting that given the current benchmark, backbones do not have a
significant impact and the main difference stems from the UDA technique itself.

6 CONCLUSION

This study presents a comprehensive benchmark evaluation of contemporary algorithms for deep
unsupervised domain adaptation in the context of time series classification. Additionally, we intro-
duce novel datasets designed to establish a strong baseline for performance evaluation, facilitating a
clearer understanding of the research landscape. This benchmark enables a fair comparison among
algorithms by employing various hyperparameter tuning methods maintaining a consistent time bud-
get for the tuning process.

In the future, we aspire to expand the framework’s capabilities to accommodate a wider array of
hyperparameter tuning techniques. Indeed our findings showcased the significance of careful model
selection methods, thereby encouraging further exploration and refinement of hyperparameter tuning
strategies within unsupervised domain adaptation for time series data. Finally, we aspire to address
another outstanding issue related to the interplay between the degree of shift and the performance of
UDA approaches. This challenge centers on accurately estimating the shift, a task that is inherently
difficult overall when dealing specifically with multivariate time series data.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Kerem Altun, Billur Barshan, and Orkun Tunçel. Comparative study on classifying human activities
with miniature inertial and magnetic sensors. Pattern Recognition, 43(10):3605–3620, 2010.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public
domain dataset for human activity recognition using smartphones. In Esann, volume 3, pp. 3,
2013.

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The great time se-
ries classification bake off: a review and experimental evaluation of recent algorithmic advances.
Data mining and knowledge discovery, 31(3):606–660, 2017.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. Advances in neural information processing systems, 19, 2006.

Lukas Brausch, Holger Hewener, and Paul Lukowicz. Classifying muscle states with one-
dimensional radio-frequency signals from single element ultrasound transducers. Sensors, 22
(7):2789, 2022.

Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan
Yang, and Zhenjie Zhang. Time series domain adaptation via sparse associative structure align-
ment. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6859–
6867, 2021.

Ching-Yao Chuang, Antonio Torralba, and Stefanie Jegelka. Estimating generalization under distri-
bution shifts via domain-invariant representations. Proceedings of Machine Learning Research,
119, 2020.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and
Yoshua Bengio. A recurrent latent variable model for sequential data. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 28. Curran Associates, Inc., 2015. URL
https://proceedings.neurips.cc/paper_files/paper/2015/file/
b618c3210e934362ac261db280128c22-Paper.pdf.

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for do-
main adaptation. CoRR, abs/1507.00504, 2015. URL http://arxiv.org/abs/1507.
00504.

Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas
Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adapta-
tion. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 447–463,
2018.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Machine Learning
Research, 7:1–30, 2006.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, and Xiaoli
Li. Contrastive domain adaptation for time-series via temporal mixup. IEEE Transactions on
Artificial Intelligence, pp. 1–10, 2023. doi: 10.1109/tai.2023.3293473. URL https://doi.
org/10.1109%2Ftai.2023.3293473.

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A brief review of domain
adaptation. Advances in data science and information engineering: proceedings from ICDATA
2020 and IKE 2020, pp. 877–894, 2021.

Milton Friedman. A comparison of alternative tests of significance for the problem of m rankings.
The annals of mathematical statistics, 11(1):86–92, 1940.

10

https://proceedings.neurips.cc/paper_files/paper/2015/file/b618c3210e934362ac261db280128c22-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/b618c3210e934362ac261db280128c22-Paper.pdf
http://arxiv.org/abs/1507.00504
http://arxiv.org/abs/1507.00504
https://doi.org/10.1109%2Ftai.2023.3293473
https://doi.org/10.1109%2Ftai.2023.3293473

Under review as a conference paper at ICLR 2023

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. The journal of machine learning research, 17(1):2096–2030, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, and Marinka Zit-
nik. Domain adaptation for time series under feature and label shifts. In International Conference
on Machine Learning, 2023.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Transfer learning for time series classification. In 2018 IEEE international conference on
big data (Big Data), pp. 1367–1376. IEEE, 2018.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data mining and knowledge
discovery, 33(4):917–963, 2019.

Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F. Schmidt,
Jonathan Weber, Geoffrey I. Webb, Lhassane Idoumghar, Pierre-Alain Muller, and François Pe-
titjean. Inceptiontime: Finding alexnet for time series classification. Data Min. Knowl. Dis-
cov., 34(6):1936–1962, nov 2020. ISSN 1384-5810. doi: 10.1007/s10618-020-00710-y. URL
https://doi.org/10.1007/s10618-020-00710-y.

Mikhail Kamalov, Aurélie Boisbunon, Carlo Fanara, Ingrid Grenet, and Jonathan Daeden. Pazoe:
classifying time series with few labels. In 2021 29th European Signal Processing Conference
(EUSIPCO), pp. 1561–1565. IEEE, 2021.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114.

Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell phone
accelerometers. ACM SigKDD Explorations Newsletter, 12(2):74–82, 2011.

Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition mon-
itoring of bearing damage in electromechanical drive systems by using motor current signals of
electric motors: A benchmark data set for data-driven classification. In PHM Society European
Conference, volume 3, 2016.

Xuhong Li, Yves Grandvalet, Franck Davoine, Jingchun Cheng, Yin Cui, Hang Zhang, Serge Be-
longie, Yi-Hsuan Tsai, and Ming-Hsuan Yang. Transfer learning in computer vision tasks: Re-
member where you come from. Image and Vision Computing, 93:103853, 2020.

Jason Lines, Sarah Taylor, and Anthony Bagnall. Time series classification with hive-cote: The
hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl. Discov. Data,
12(5), jul 2018. ISSN 1556-4681. doi: 10.1145/3182382. URL https://doi.org/10.
1145/3182382.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
deep adaptation networks. In International conference on machine learning, pp. 97–105. PMLR,
2015.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Advances in neural information processing systems, 31, 2018.

11

https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1007/s10618-020-00710-y
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1145/3182382
https://doi.org/10.1145/3182382

Under review as a conference paper at ICLR 2023

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. Unsupervised domain adaptation: A reality
check. arXiv preprint arXiv:2111.15672, 2021.

Kevin Musgrave, Serge J. Belongie, and Ser Nam Lim. Three new validators and a large-scale
benchmark ranking for unsupervised domain adaptation. ArXiv, abs/2208.07360, 2022.

Joachim Nyborg, Charlotte Pelletier, Sébastien Lefèvre, and Ira Assent. Timematch: Unsupervised
cross-region adaptation by temporal shift estimation. ISPRS Journal of Photogrammetry and
Remote Sensing, 188:301–313, 2022.

Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore.
Pmlb: a large benchmark suite for machine learning evaluation and comparison. BioData Mining,
10(1):36, Dec 2017. ISSN 1756-0381. doi: 10.1186/s13040-017-0154-4. URL https://doi.
org/10.1186/s13040-017-0154-4.

Felix Ott, David Rügamer, Lucas Heublein, Tim Hamann, Jens Barth, Bernd Bischl, and Christo-
pher Mutschler. Benchmarking Online Sequence-to-Sequence and Character-based Handwriting
Recognition from IMU-Enhanced Pens. In International Journal on Document Analysis and
Recognition (IJDAR), September 2022. doi: 10.1007/s10032-022-00415-6.

Sangwoo Park and Osvaldo Simeone. Predicting multi-antenna frequency-selective channels via
meta-learned linear filters based on long-short term channel decomposition. arXiv preprint
arXiv:2203.12715, 2022.

S. Purushotham, Wilka Carvalho, Tanachat Nilanon, and Yan Liu. Variational recurrent adversarial
deep domain adaptation. In International Conference on Learning Representations, 2016. URL
https://api.semanticscholar.org/CorpusID:51837620.

Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen, Min Wu,
Chee-Keong Kwoh, and Xiaoli Li. Adatime: A benchmarking suite for domain adaptation on
time series data. ACM Transactions on Knowledge Discovery from Data, 17(8):1–18, 2023.

Tobias Ringwald and Rainer Stiefelhagen. Adaptiope: A modern benchmark for unsupervised do-
main adaptation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pp. 101–110, 2021.

Luca Robbiano, Muhammad Rameez Ur Rahman, Fabio Galasso, Barbara Caputo, and Fabio Maria
Carlucci. Adversarial branch architecture search for unsupervised domain adaptation. In Pro-
ceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 2918–2928,
2022.

Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf. Transfer learning
in natural language processing. In Proceedings of the 2019 conference of the North American
chapter of the association for computational linguistics: Tutorials, pp. 15–18, 2019.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier dis-
crepancy for unsupervised domain adaptation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 3723–3732, 2018.

Kuniaki Saito, Donghyun Kim, Piotr Teterwak, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Tune
it the right way: Unsupervised validation of domain adaptation via soft neighborhood density. In
2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9164–9173. IEEE
Computer Society, 2021.

Fernando Garcı́a Sanz, Masoumeh Ebrahimi, and Andreas Johnsson. Exploring approaches for
heterogeneous transfer learning in dynamic networks. In NOMS 2022-2022 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–9. IEEE, 2022.

Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun Kjærgaard,
Anind Dey, Tobias Sonne, and Mads Møller Jensen. Smart devices are different: Assessing and
mitigatingmobile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM
conference on embedded networked sensor systems, pp. 127–140, 2015.

12

https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1186/s13040-017-0154-4
https://api.semanticscholar.org/CorpusID:51837620

Under review as a conference paper at ICLR 2023

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift adaptation by
importance weighted cross validation. Journal of Machine Learning Research, 8(5), 2007.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 7167–7176, 2017.

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze, Wojciech
Samek, and Tobias Schaeffter. Ptb-xl, a large publicly available electrocardiography dataset.
Scientific data, 7(1):154, 2020.

Pengfei Wei, Yiping Ke, Yew Soon Ong, and Zejun Ma. Adaptive transfer kernel learning for transfer
gaussian process regression. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022.

Garrett Wilson, Janardhan Rao Doppa, and Diane J. Cook. Multi-source deep domain adaptation
with weak supervision for time-series sensor data. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’20, pp. 1768–1778,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi:
10.1145/3394486.3403228. URL https://doi.org/10.1145/3394486.3403228.

Yuecong Xu, Haozhi Cao, Zhenghua Chen, Xiaoli Li, Lihua Xie, and Jianfei Yan. Video un-
supervised domain adaptation with deep learning: A comprehensive survey. arXiv preprint
arXiv:2211.10412, 2022.

Kaichao You, Ximei Wang, Mingsheng Long, and Michael Jordan. Towards accurate model selec-
tion in deep unsupervised domain adaptation. In International Conference on Machine Learning,
pp. 7124–7133. PMLR, 2019.

Shen Zhang, Shibo Zhang, Bingnan Wang, and Thomas G Habetler. Machine learning and deep
learning algorithms for bearing fault diagnostics-a comprehensive review. arxiv preprints. arXiv
preprint arXiv:1901.08247, 2019.

Sicheng Zhao, Xiangyu Yue, Shanghang Zhang, Bo Li, Han Zhao, Bichen Wu, Ravi Krishna,
Joseph E Gonzalez, Alberto L Sangiovanni-Vincentelli, Sanjit A Seshia, et al. A review of single-
source deep unsupervised visual domain adaptation. IEEE Transactions on Neural Networks and
Learning Systems, 33(2):473–493, 2020.

Erheng Zhong, Wei Fan, Qiang Yang, Olivier Verscheure, and Jiangtao Ren. Cross validation
framework to choose amongst models and datasets for transfer learning. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona,
Spain, September 20-24, 2010, Proceedings, Part III 21, pp. 547–562. Springer, 2010.

13

https://doi.org/10.1145/3394486.3403228

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 COMPLETE RESULTS PER DATASET

A.1.1 ALL DATASETS PERFORMANCES

The different datasets and scenario are evaluated in more details in this section. Results of the
accuracy per dataset per method of hyperparameter tuning are presented in 36 different tables from
3 to 38. The source only model is trained using Inception (Ismail Fawaz et al., 2020) on the source
data without consideration of any adaptation. It is then tested on target-domain data. This could
be seen as a lower bound on the different UDA algorithms. The target only model is trained using
using Inception (Ismail Fawaz et al., 2020) on the target domain with class labels revealed. This can
be seen as an upper bound on the different UDA algorithms. As explained in the experiments setup
(section 4), due to the runtime constraint, we report the model’s accuracy after only one run of the
best selected hyperprameter (per method: source risk, target risk and the IWCV).

It is also worth noting that the results sometimes present large discrepancies in performance for dif-
ferent source-target couples within a dataset. Such discrepancies come mostly from the differences
in domains. For instance, FordA is noiseless data while FordB is noisy, thus performance tend to
be better for FordB → FordA than for FordA → FordB. Other examples of differences between do-
mains are visible for HHAR dataset, which including elder people who present more noisy data, and
on miniTimeMatch dataset, where two crops come from France (FR1 and FR2), having a similar
weather, while the other crops come from Denmark (DK1) and Austria (AT1).

Table 3: Accuracy results on cwrBearing dataset using IWCV for the model selection and evaluated
on Target Test

0 → 1 3 → 0 0 → 3 1 → 3 2 → 0 Avg
Source only 0.848 0.767 0.788 0.948 0.916 0.853 ± 0.07
CoDATS 0.798 0.890 0.830 0.872 0.710 0.82 ± 0.064
CoTMix 0.861 0.871 0.782 0.640 0.861 0.803 ± 0.088
InceptionCDAN 0.816 0.926 0.824 0.893 0.853 0.862 ± 0.042
InceptionDANN 0.898 0.942 0.834 0.904 0.958 0.907 ± 0.043
InceptionMix 0.933 0.844 0.828 0.867 0.850 0.864 ± 0.036
InceptionRain 0.880 0.949 0.684 0.780 0.873 0.833 ± 0.092
OTDA 0.535 0.709 0.603 0.716 0.685 0.65 ± 0.07
Raincoat 0.868 0.907 0.775 0.933 0.897 0.876 ± 0.055
VRADA 0.475 0.492 0.430 0.428 0.505 0.466 ± 0.032
Target only 0.991 0.991 0.988 0.991 0.995 0.991 ± 0.002

Table 4: Accuracy results on cwrBearing dataset using Source Risk for the model selection and
evaluated on Target Test

0 → 1 3 → 0 0 → 3 1 → 3 2 → 0 Avg
Source only 0.838 0.849 0.734 0.938 0.852 0.842 ± 0.065
CoDATS 0.938 0.740 0.881 0.868 0.871 0.86 ± 0.065
CoTMix 0.888 0.907 0.806 0.800 0.801 0.84 ± 0.047
InceptionCDAN 0.849 0.784 0.819 0.938 0.891 0.856 ± 0.054
InceptionDANN 0.878 0.923 0.848 0.947 0.950 0.909 ± 0.04
InceptionMix 0.929 0.757 0.853 0.860 0.847 0.849 ± 0.055
InceptionRain 0.900 0.908 0.702 0.849 0.934 0.859 ± 0.083
OTDA 0.789 0.709 0.689 0.809 0.597 0.719 ± 0.076
Raincoat 0.731 0.926 0.831 0.922 0.941 0.87 ± 0.08
VRADA 0.465 0.498 0.430 0.477 0.467 0.467 ± 0.022
Target only 0.991 0.991 0.988 0.991 0.995 0.991 ± 0.002

14

Under review as a conference paper at ICLR 2023

Table 5: Accuracy results on cwrBearing dataset using Target Risk for the model selection and
evaluated on Target Test

0 → 1 3 → 0 0 → 3 1 → 3 2 → 0 Avg
Source only 0.935 0.891 0.799 0.963 0.912 0.9 ± 0.056
CoDATS 0.935 0.910 0.854 0.895 0.907 0.9 ± 0.027
CoTMix 0.909 0.791 0.801 0.893 0.844 0.848 ± 0.047
InceptionCDAN 0.922 0.868 0.847 0.936 0.898 0.894 ± 0.033
InceptionDANN 0.942 0.879 0.846 0.954 0.938 0.912 ± 0.042
InceptionMix 0.926 0.879 0.845 0.896 0.907 0.891 ± 0.027
InceptionRain 0.899 0.929 0.840 0.911 0.948 0.905 ± 0.037
OTDA 0.790 0.733 0.745 0.825 0.695 0.758 ± 0.045
Raincoat 0.903 0.879 0.870 0.922 0.915 0.898 ± 0.02
VRADA 0.466 0.089 0.430 0.501 0.550 0.407 ± 0.164
Target only 0.991 0.991 0.988 0.991 0.995 0.991 ± 0.002

Table 6: Accuracy results on ford dataset using IWCV for the model selection and evaluated on
Target Test

FordB → FordA FordA → FordB Avg
Source only 0.516 0.796 0.656 ± 0.14
CoDATS 0.484 0.488 0.486 ± 0.002
CoTMix 0.515 0.512 0.514 ± 0.002
InceptionCDAN 0.516 0.500 0.508 ± 0.008
InceptionDANN 0.516 0.494 0.505 ± 0.011
InceptionMix 0.484 0.506 0.495 ± 0.011
InceptionRain 0.492 0.494 0.493 ± 0.001
OTDA 0.484 0.494 0.489 ± 0.005
Raincoat 0.592 0.815 0.704 ± 0.111
VRADA 0.492 0.506 0.499 ± 0.007
Target only 0.953 0.827 0.89 ± 0.063

Table 7: Accuracy results on ford dataset using Source Risk for the model selection and evaluated
on Target Test

FordB → FordA FordA → FordB Avg
Source only 0.830 0.846 0.838 ± 0.008
CoDATS 0.877 0.821 0.849 ± 0.028
CoTMix 0.887 0.790 0.838 ± 0.048
InceptionCDAN 0.842 0.735 0.788 ± 0.053
InceptionDANN 0.862 0.840 0.851 ± 0.011
InceptionMix 0.859 0.790 0.824 ± 0.034
InceptionRain 0.884 0.802 0.843 ± 0.041
OTDA 0.492 0.475 0.484 ± 0.009
Raincoat 0.872 0.802 0.837 ± 0.035
VRADA 0.491 0.500 0.496 ± 0.005
Target only 0.953 0.827 0.89 ± 0.063

15

Under review as a conference paper at ICLR 2023

Table 8: Accuracy results on ford dataset using Target Risk for the model selection and evaluated on
Target Test

FordB → FordA FordA → FordB Avg
Source only 0.896 0.809 0.852 ± 0.043
CoDATS 0.892 0.778 0.835 ± 0.057
CoTMix 0.917 0.821 0.869 ± 0.048
InceptionCDAN 0.906 0.759 0.832 ± 0.074
InceptionDANN 0.861 0.809 0.835 ± 0.026
InceptionMix 0.908 0.772 0.84 ± 0.068
InceptionRain 0.906 0.809 0.858 ± 0.048
OTDA 0.495 0.562 0.528 ± 0.034
Raincoat 0.911 0.827 0.869 ± 0.042
VRADA 0.516 0.500 0.508 ± 0.008
Target only 0.953 0.827 0.89 ± 0.063

Table 9: Accuracy results on har dataset using IWCV for the model selection and evaluated on
Target Test

7 → 13 12 → 16 9 → 18 2 → 11 6 → 23 Avg
Source only 0.838 0.609 0.291 0.684 0.661 0.617 ± 0.18
CoDATS 0.919 0.600 0.927 0.663 0.902 0.802 ± 0.141
CoTMix 0.869 0.818 0.900 0.937 0.911 0.887 ± 0.041
InceptionCDAN 0.889 0.618 0.836 0.853 0.643 0.768 ± 0.114
InceptionDANN 0.828 0.655 0.918 0.674 0.866 0.788 ± 0.105
InceptionMix 0.818 0.745 0.936 0.853 0.902 0.851 ± 0.067
InceptionRain 0.929 0.791 0.873 0.842 0.902 0.867 ± 0.048
OTDA 0.475 0.336 0.336 0.895 0.598 0.528 ± 0.208
Raincoat 0.939 0.691 0.782 0.853 0.911 0.835 ± 0.09
VRADA 0.727 0.409 0.536 0.337 0.688 0.539 ± 0.152
Target only 1.000 0.982 1.000 1.000 1.000 0.996 ± 0.007

Table 10: Accuracy results on har dataset using Source Risk for the model selection and evaluated
on Target Test

7 → 13 12 → 16 9 → 18 2 → 11 6 → 23 Avg
Source only 0.707 0.600 0.227 0.621 0.670 0.565 ± 0.173
CoDATS 0.879 0.591 0.636 0.832 0.804 0.748 ± 0.114
CoTMix 0.768 0.645 0.545 0.516 0.696 0.634 ± 0.094
InceptionCDAN 0.818 0.727 0.782 0.516 0.670 0.703 ± 0.106
InceptionDANN 0.889 0.655 0.818 0.579 0.839 0.756 ± 0.118
InceptionMix 0.707 0.582 0.964 0.621 0.795 0.734 ± 0.137
InceptionRain 0.919 0.636 0.809 0.811 0.902 0.815 ± 0.1
OTDA 0.535 0.573 0.545 0.853 0.795 0.66 ± 0.136
Raincoat 0.899 0.618 0.745 0.895 0.768 0.785 ± 0.105
VRADA 0.616 0.409 0.591 0.495 0.580 0.538 ± 0.076
Target only 1.000 0.982 1.000 1.000 1.000 0.996 ± 0.007

16

Under review as a conference paper at ICLR 2023

Table 11: Accuracy results on har dataset using Target Risk for the model selection and evaluated
on Target Test

7 → 13 12 → 16 9 → 18 2 → 11 6 → 23 Avg
Source only 0.919 0.745 0.609 0.853 0.830 0.791 ± 0.107
CoDATS 0.879 0.873 0.864 1.000 0.875 0.898 ± 0.051
CoTMix 0.919 0.845 0.818 0.958 0.929 0.894 ± 0.053
InceptionCDAN 0.909 0.818 0.891 0.558 0.938 0.823 ± 0.138
InceptionDANN 0.899 0.673 0.764 0.916 0.893 0.829 ± 0.095
InceptionMix 0.949 0.682 0.955 0.642 0.964 0.838 ± 0.145
InceptionRain 0.949 0.773 0.900 0.916 0.902 0.888 ± 0.06
OTDA 0.808 0.609 0.582 0.874 0.607 0.696 ± 0.121
Raincoat 0.879 0.818 0.845 0.832 0.911 0.857 ± 0.034
VRADA 0.727 0.609 0.609 0.621 0.661 0.645 ± 0.045
Target only 1.000 0.982 1.000 1.000 1.000 0.996 ± 0.007

Table 12: Accuracy results on hhar dataset using IWCV for the model selection and evaluated on
Target Test

e → f g → h c → d i → a a → b Avg
Source only 0.766 0.510 0.585 0.473 0.540 0.575 ± 0.102
CoDATS 0.869 0.818 0.717 0.680 0.668 0.75 ± 0.079
CoTMix 0.840 0.538 0.740 0.559 0.698 0.675 ± 0.113
InceptionCDAN 0.690 0.421 0.474 0.576 0.585 0.549 ± 0.094
InceptionDANN 0.854 0.548 0.572 0.500 0.626 0.62 ± 0.124
InceptionMix 0.835 0.561 0.598 0.700 0.620 0.663 ± 0.097
InceptionRain 0.769 0.593 0.489 0.483 0.616 0.59 ± 0.104
OTDA 0.596 0.411 0.371 0.229 0.410 0.403 ± 0.117
Raincoat 0.866 0.465 0.511 0.578 0.461 0.576 ± 0.151
VRADA 0.596 0.804 0.512 0.410 0.503 0.565 ± 0.133
Target only 0.952 0.947 0.951 0.937 0.948 0.947 ± 0.005

Table 13: Accuracy results on hhar dataset using Source Risk for the model selection and evaluated
on Target Test

e → f g → h c → d i → a a → b Avg
Source only 0.708 0.506 0.573 0.412 0.504 0.541 ± 0.098
CoDATS 0.766 0.471 0.755 0.511 0.668 0.634 ± 0.122
CoTMix 0.875 0.591 0.744 0.580 0.687 0.695 ± 0.109
InceptionCDAN 0.687 0.391 0.619 0.456 0.446 0.52 ± 0.113
InceptionDANN 0.855 0.535 0.679 0.595 0.670 0.667 ± 0.108
InceptionMix 0.850 0.666 0.652 0.672 0.622 0.692 ± 0.081
InceptionRain 0.853 0.612 0.710 0.646 0.462 0.657 ± 0.128
OTDA 0.617 0.395 0.447 0.387 0.442 0.458 ± 0.083
Raincoat 0.793 0.448 0.482 0.481 0.475 0.536 ± 0.129
VRADA 0.617 0.770 0.564 0.538 0.712 0.64 ± 0.088
Target only 0.952 0.947 0.951 0.937 0.948 0.947 ± 0.005

17

Under review as a conference paper at ICLR 2023

Table 14: Accuracy results on hhar dataset using Target Risk for the model selection and evaluated
on Target Test

e → f g → h c → d i → a a → b Avg
Source only 0.798 0.666 0.593 0.554 0.637 0.65 ± 0.083
CoDATS 0.916 0.943 0.810 0.777 0.700 0.829 ± 0.09
CoTMix 0.894 0.644 0.748 0.601 0.756 0.729 ± 0.102
InceptionCDAN 0.883 0.712 0.691 0.618 0.684 0.718 ± 0.088
InceptionDANN 0.857 0.627 0.732 0.776 0.686 0.736 ± 0.078
InceptionMix 0.877 0.917 0.565 0.686 0.694 0.748 ± 0.131
InceptionRain 0.886 0.908 0.720 0.665 0.603 0.756 ± 0.121
OTDA 0.577 0.448 0.442 0.387 0.422 0.455 ± 0.065
Raincoat 0.913 0.921 0.752 0.705 0.674 0.793 ± 0.104
VRADA 0.809 0.542 0.581 0.590 0.682 0.641 ± 0.096
Target only 0.952 0.947 0.951 0.937 0.948 0.947 ± 0.005

Table 15: Accuracy results on mfd dataset using IWCV for the model selection and evaluated on
Target Test

1 → 2 0 → 1 1 → 3 1 → 0 0 → 3 Avg
Source only 0.684 0.454 0.993 0.440 0.523 0.619 ± 0.206
CoDATS 0.754 0.569 0.951 0.173 0.454 0.58 ± 0.264
CoTMix 0.675 0.555 0.922 0.534 0.532 0.644 ± 0.149
InceptionCDAN 0.792 0.455 0.988 0.688 0.669 0.718 ± 0.174
InceptionDANN 0.734 0.454 0.992 0.366 0.472 0.604 ± 0.23
InceptionMix 0.507 0.573 0.950 0.445 0.580 0.611 ± 0.176
InceptionRain 0.799 0.717 0.993 0.450 0.493 0.69 ± 0.2
OTDA 0.478 0.474 0.528 0.476 0.476 0.486 ± 0.021
Raincoat 0.745 0.454 0.997 0.497 0.454 0.629 ± 0.213
VRADA 0.454 0.454 0.454 0.454 0.454 0.454 ± 0.0
Target only 1.000 1.000 1.000 0.993 1.000 0.999 ± 0.003

Table 16: Accuracy results on mfd dataset using Source Risk for the model selection and evaluated
on Target Test

1 → 2 0 → 1 1 → 3 1 → 0 0 → 3 Avg
Source only 0.777 0.491 0.958 0.371 0.518 0.623 ± 0.213
CoDATS 0.735 0.455 0.947 0.315 0.454 0.581 ± 0.228
CoTMix 0.605 0.565 0.954 0.487 0.570 0.636 ± 0.164
InceptionCDAN 0.789 0.468 0.946 0.576 0.590 0.674 ± 0.171
InceptionDANN 0.821 0.454 0.994 0.471 0.454 0.639 ± 0.226
InceptionMix 0.656 0.555 0.991 0.555 0.505 0.652 ± 0.176
InceptionRain 0.902 0.700 1.000 0.350 0.635 0.717 ± 0.226
OTDA 0.492 0.481 0.534 0.430 0.485 0.484 ± 0.033
Raincoat 0.716 0.454 0.977 0.302 0.444 0.579 ± 0.24
VRADA 0.456 0.447 0.461 0.455 0.455 0.455 ± 0.004
Target only 1.000 1.000 1.000 0.993 1.000 0.999 ± 0.003

18

Under review as a conference paper at ICLR 2023

Table 17: Accuracy results on mfd dataset using Target Risk for the model selection and evaluated
on Target Test

1 → 2 0 → 1 1 → 3 1 → 0 0 → 3 Avg
Source only 0.795 0.582 0.999 0.688 0.495 0.712 ± 0.175
CoDATS 0.719 0.584 0.989 0.634 0.686 0.722 ± 0.141
CoTMix 0.695 0.612 0.922 0.670 0.586 0.697 ± 0.119
InceptionCDAN 0.896 0.670 0.997 0.880 0.544 0.797 ± 0.165
InceptionDANN 0.836 0.956 0.997 0.455 0.808 0.81 ± 0.191
InceptionMix 0.738 0.779 0.997 0.645 0.735 0.779 ± 0.118
InceptionRain 0.865 0.729 0.999 0.889 0.744 0.845 ± 0.1
OTDA 0.469 0.472 0.475 0.528 0.448 0.478 ± 0.027
Raincoat 0.908 0.476 0.974 0.657 0.580 0.719 ± 0.191
VRADA 0.454 0.447 0.471 0.440 0.455 0.453 ± 0.01
Target only 1.000 1.000 1.000 0.993 1.000 0.999 ± 0.003

Table 18: Accuracy results on miniTimeMatch dataset using IWCV for the model selection and
evaluated on Target Test

Fr2 → Dk1 Fr1 → At1 Dk1 → Fr1 At1 → Fr2 Fr1 → Fr2 Avg
Source only 0.292 0.845 0.711 0.668 0.861 0.675 ± 0.206
CoDATS 0.435 0.658 0.720 0.780 0.833 0.685 ± 0.138
CoTMix 0.266 0.266 0.470 0.501 0.333 0.367 ± 0.1
InceptionCDAN 0.793 0.888 0.693 0.918 0.841 0.827 ± 0.079
InceptionDANN 0.828 0.929 0.741 0.888 0.880 0.853 ± 0.065
InceptionMix 0.140 0.140 0.663 0.140 0.140 0.245 ± 0.209
InceptionRain 0.699 0.950 0.847 0.914 0.915 0.865 ± 0.089
OTDA 0.448 0.439 0.439 0.439 0.439 0.441 ± 0.004
Raincoat 0.445 0.875 0.676 0.840 0.908 0.749 ± 0.172
VRADA 0.469 0.435 0.518 0.735 0.807 0.593 ± 0.15
Target only 0.896 0.672 0.838 0.976 0.976 0.872 ± 0.113

Table 19: Accuracy results on miniTimeMatch dataset using Source Risk for the model selection
and evaluated on Target Test

Fr2 → Dk1 Fr1 → At1 Dk1 → Fr1 At1 → Fr2 Fr1 → Fr2 Avg
Source only 0.588 0.671 0.749 0.856 0.866 0.746 ± 0.107
CoDATS 0.721 0.654 0.578 0.769 0.822 0.709 ± 0.086
CoTMix 0.378 0.241 0.501 0.638 0.426 0.437 ± 0.132
InceptionCDAN 0.838 0.943 0.713 0.931 0.948 0.875 ± 0.09
InceptionDANN 0.807 0.936 0.796 0.913 0.883 0.867 ± 0.056
InceptionMix 0.140 0.140 0.140 0.140 0.140 0.14 ± 0.0
InceptionRain 0.783 0.953 0.805 0.733 0.929 0.841 ± 0.086
OTDA 0.439 0.439 0.439 0.268 0.439 0.405 ± 0.068
Raincoat 0.763 0.947 0.648 0.870 0.892 0.824 ± 0.106
VRADA 0.459 0.545 0.566 0.731 0.819 0.624 ± 0.131
Target only 0.896 0.672 0.838 0.976 0.976 0.872 ± 0.113

19

Under review as a conference paper at ICLR 2023

Table 20: Accuracy results on miniTimeMatch dataset using Target Risk for the model selection and
evaluated on Target Test

Fr2 → Dk1 Fr1 → At1 Dk1 → Fr1 At1 → Fr2 Fr1 → Fr2 Avg
Source only 0.604 0.900 0.777 0.829 0.860 0.794 ± 0.103
CoDATS 0.729 0.832 0.668 0.897 0.906 0.806 ± 0.094
CoTMix 0.364 0.215 0.529 0.497 0.468 0.415 ± 0.114
InceptionCDAN 0.846 0.949 0.830 0.928 0.948 0.9 ± 0.052
InceptionDANN 0.855 0.956 0.779 0.931 0.949 0.894 ± 0.068
InceptionMix 0.140 0.140 0.613 0.140 0.140 0.235 ± 0.189
InceptionRain 0.853 0.957 0.679 0.933 0.952 0.875 ± 0.105
OTDA 0.439 0.466 0.365 0.602 0.645 0.503 ± 0.104
Raincoat 0.787 0.943 0.718 0.893 0.912 0.851 ± 0.085
VRADA 0.504 0.540 0.468 0.700 0.790 0.6 ± 0.124
Target only 0.896 0.672 0.838 0.976 0.976 0.872 ± 0.113

Table 21: Accuracy results on OnHWeq dataset using IWCV for the model selection and evaluated
on Target Test

L → R R → L Avg
Source only 0.389 0.486 0.438 ± 0.048
CoDATS 0.633 0.583 0.608 ± 0.025
CoTMix 0.357 0.334 0.346 ± 0.011
InceptionCDAN 0.353 0.494 0.424 ± 0.07
InceptionDANN 0.526 0.495 0.51 ± 0.016
InceptionMix 0.522 0.435 0.479 ± 0.044
InceptionRain 0.512 0.503 0.508 ± 0.005
OTDA 0.419 0.431 0.425 ± 0.006
Raincoat 0.499 0.514 0.506 ± 0.008
VRADA 0.348 0.454 0.401 ± 0.053
Target only 0.933 0.932 0.933 ± 0.001

Table 22: Accuracy results on OnHWeq dataset using Source Risk for the model selection and
evaluated on Target Test

L → R R → L Avg
Source only 0.423 0.510 0.466 ± 0.044
CoDATS 0.552 0.476 0.514 ± 0.038
CoTMix 0.393 0.323 0.358 ± 0.035
InceptionCDAN 0.322 0.492 0.407 ± 0.085
InceptionDANN 0.415 0.506 0.46 ± 0.046
InceptionMix 0.547 0.459 0.503 ± 0.044
InceptionRain 0.540 0.487 0.514 ± 0.027
OTDA 0.431 0.431 0.431 ± 0.0
Raincoat 0.563 0.525 0.544 ± 0.019
VRADA 0.375 0.454 0.414 ± 0.04
Target only 0.933 0.932 0.933 ± 0.001

20

Under review as a conference paper at ICLR 2023

Table 23: Accuracy results on OnHWeq dataset using Target Risk for the model selection and eval-
uated on Target Test

L → R R → L Avg
Source only 0.437 0.513 0.475 ± 0.038
CoDATS 0.667 0.584 0.626 ± 0.042
CoTMix 0.441 0.334 0.388 ± 0.053
InceptionCDAN 0.660 0.492 0.576 ± 0.084
InceptionDANN 0.676 0.526 0.601 ± 0.075
InceptionMix 0.540 0.458 0.499 ± 0.041
InceptionRain 0.677 0.613 0.645 ± 0.032
OTDA 0.457 0.431 0.444 ± 0.013
Raincoat 0.580 0.546 0.563 ± 0.017
VRADA 0.362 0.438 0.4 ± 0.038
Target only 0.933 0.932 0.933 ± 0.001

Table 24: Accuracy results on ptbXLecg dataset using IWCV for the model selection and evaluated
on Target Test

0 → 1 0 → 3 2 → 1 1 → 3 0 → 2 Avg
Source only 0.690 0.740 0.654 0.623 0.645 0.67 ± 0.041
CoDATS 0.572 0.623 0.585 0.597 0.569 0.589 ± 0.02
CoTMix 0.507 0.649 0.607 0.597 0.640 0.6 ± 0.05
InceptionCDAN 0.686 0.636 0.672 0.610 0.695 0.66 ± 0.032
InceptionDANN 0.644 0.571 0.609 0.636 0.614 0.615 ± 0.026
InceptionMix 0.594 0.675 0.688 0.636 0.613 0.641 ± 0.036
InceptionRain 0.644 0.442 0.663 0.649 0.654 0.61 ± 0.084
OTDA 0.585 0.416 0.585 0.416 0.513 0.503 ± 0.076
Raincoat 0.584 0.519 0.505 0.571 0.550 0.546 ± 0.03
VRADA 0.605 0.571 0.681 0.558 0.594 0.602 ± 0.043
Target only 0.699 0.636 0.704 0.571 0.675 0.657 ± 0.049

Table 25: Accuracy results on ptbXLecg dataset using Source Risk for the model selection and
evaluated on Target Test

0 → 1 0 → 3 2 → 1 1 → 3 0 → 2 Avg
Source only 0.668 0.649 0.645 0.675 0.639 0.655 ± 0.014
CoDATS 0.681 0.688 0.583 0.506 0.618 0.615 ± 0.067
CoTMix 0.454 0.649 0.581 0.623 0.645 0.59 ± 0.072
InceptionCDAN 0.709 0.623 0.660 0.584 0.674 0.65 ± 0.043
InceptionDANN 0.607 0.727 0.700 0.597 0.664 0.659 ± 0.051
InceptionMix 0.611 0.675 0.691 0.584 0.665 0.645 ± 0.041
InceptionRain 0.686 0.610 0.683 0.623 0.670 0.654 ± 0.032
OTDA 0.585 0.416 0.585 0.416 0.513 0.503 ± 0.076
Raincoat 0.659 0.597 0.517 0.571 0.607 0.59 ± 0.046
VRADA 0.587 0.571 0.677 0.545 0.582 0.592 ± 0.045
Target only 0.699 0.636 0.704 0.571 0.675 0.657 ± 0.049

21

Under review as a conference paper at ICLR 2023

Table 26: Accuracy results on ptbXLecg dataset using Target Risk for the model selection and
evaluated on Target Test

0 → 1 0 → 3 2 → 1 1 → 3 0 → 2 Avg
Source only 0.696 0.636 0.653 0.675 0.673 0.667 ± 0.02
CoDATS 0.660 0.636 0.654 0.610 0.632 0.638 ± 0.018
CoTMix 0.585 0.571 0.638 0.623 0.641 0.612 ± 0.028
InceptionCDAN 0.698 0.688 0.672 0.688 0.685 0.686 ± 0.008
InceptionDANN 0.700 0.701 0.693 0.545 0.644 0.657 ± 0.06
InceptionMix 0.695 0.688 0.665 0.623 0.658 0.666 ± 0.025
InceptionRain 0.660 0.597 0.685 0.610 0.630 0.636 ± 0.032
OTDA 0.581 0.364 0.586 0.364 0.514 0.482 ± 0.099
Raincoat 0.657 0.494 0.605 0.584 0.590 0.586 ± 0.053
VRADA 0.601 0.558 0.672 0.545 0.560 0.587 ± 0.046
Target only 0.699 0.636 0.704 0.571 0.675 0.657 ± 0.049

Table 27: Accuracy results on sleepStage dataset using IWCV for the model selection and evaluated
on Target Test

12 → 5 0 → 11 16 → 1 7 → 18 9 → 14 Avg
Source only 0.300 0.466 0.571 0.530 0.680 0.509 ± 0.126
CoDATS 0.788 0.563 0.635 0.519 0.811 0.663 ± 0.118
CoTMix 0.533 0.489 0.555 0.754 0.772 0.621 ± 0.118
InceptionCDAN 0.861 0.570 0.553 0.802 0.814 0.72 ± 0.131
InceptionDANN 0.615 0.592 0.624 0.746 0.784 0.672 ± 0.077
InceptionMix 0.665 0.539 0.703 0.784 0.734 0.685 ± 0.083
InceptionRain 0.717 0.640 0.729 0.716 0.780 0.716 ± 0.045
OTDA 0.241 0.518 0.534 0.360 0.404 0.411 ± 0.108
Raincoat 0.811 0.566 0.658 0.777 0.726 0.708 ± 0.088
VRADA 0.457 0.455 0.571 0.479 0.552 0.503 ± 0.049
Target only 0.868 0.881 0.859 0.848 0.944 0.88 ± 0.034

Table 28: Accuracy results on sleepStage dataset using Source Risk for the model selection and
evaluated on Target Test

12 → 5 0 → 11 16 → 1 7 → 18 9 → 14 Avg
Source only 0.736 0.495 0.569 0.583 0.683 0.613 ± 0.086
CoDATS 0.726 0.601 0.793 0.636 0.833 0.718 ± 0.089
CoTMix 0.736 0.574 0.729 0.693 0.664 0.679 ± 0.059
InceptionCDAN 0.767 0.653 0.480 0.807 0.843 0.71 ± 0.132
InceptionDANN 0.780 0.661 0.480 0.754 0.779 0.691 ± 0.114
InceptionMix 0.806 0.401 0.409 0.769 0.719 0.621 ± 0.178
InceptionRain 0.712 0.570 0.764 0.777 0.847 0.734 ± 0.093
OTDA 0.434 0.518 0.534 0.314 0.399 0.44 ± 0.081
Raincoat 0.726 0.632 0.639 0.772 0.656 0.685 ± 0.055
VRADA 0.552 0.430 0.582 0.479 0.455 0.5 ± 0.058
Target only 0.868 0.881 0.859 0.848 0.944 0.88 ± 0.034

22

Under review as a conference paper at ICLR 2023

Table 29: Accuracy results on sleepStage dataset using Target Risk for the model selection and
evaluated on Target Test

12 → 5 0 → 11 16 → 1 7 → 18 9 → 14 Avg
Source only 0.795 0.526 0.697 0.760 0.836 0.723 ± 0.108
CoDATS 0.833 0.694 0.777 0.769 0.826 0.78 ± 0.05
CoTMix 0.799 0.649 0.799 0.746 0.744 0.747 ± 0.055
InceptionCDAN 0.832 0.825 0.806 0.786 0.678 0.785 ± 0.056
InceptionDANN 0.778 0.726 0.742 0.799 0.847 0.778 ± 0.043
InceptionMix 0.743 0.559 0.735 0.746 0.767 0.71 ± 0.076
InceptionRain 0.835 0.759 0.796 0.746 0.753 0.778 ± 0.033
OTDA 0.434 0.518 0.534 0.339 0.390 0.443 ± 0.074
Raincoat 0.802 0.682 0.769 0.774 0.792 0.764 ± 0.043
VRADA 0.561 0.464 0.584 0.564 0.525 0.54 ± 0.042
Target only 0.868 0.881 0.859 0.848 0.944 0.88 ± 0.034

Table 30: Accuracy results on sportsActivities dataset using IWCV for the model selection and
evaluated on Target Test

p7 → p3 p4 → p2 p1 → p8 p5 → p4 p5 → p6 Avg
Source only 0.596 0.610 0.496 0.662 0.364 0.546 ± 0.106
CoDATS 0.820 0.632 0.535 0.794 0.399 0.636 ± 0.158
CoTMix 0.219 0.206 0.285 0.355 0.246 0.262 ± 0.054
InceptionCDAN 0.588 0.316 0.404 0.675 0.697 0.536 ± 0.151
InceptionDANN 0.706 0.500 0.469 0.711 0.548 0.587 ± 0.103
InceptionMix 0.053 0.539 0.482 0.053 0.053 0.236 ± 0.225
InceptionRain 0.434 0.846 0.478 0.711 0.412 0.576 ± 0.172
OTDA 0.307 0.526 0.531 0.469 0.535 0.474 ± 0.087
Raincoat 0.596 0.706 0.702 0.820 0.566 0.678 ± 0.09
VRADA 0.346 0.368 0.232 0.482 0.360 0.358 ± 0.079
Target only 0.991 1.000 0.978 0.991 0.987 0.989 ± 0.007

Table 31: Accuracy results on sportsActivities dataset using Source Risk for the model selection and
evaluated on Target Test

p7 → p3 p4 → p2 p1 → p8 p5 → p4 p5 → p6 Avg
Source only 0.548 0.557 0.504 0.592 0.439 0.528 ± 0.053
CoDATS 0.768 0.759 0.482 0.539 0.610 0.632 ± 0.115
CoTMix 0.254 0.360 0.289 0.421 0.316 0.328 ± 0.058
InceptionCDAN 0.737 0.478 0.333 0.518 0.360 0.485 ± 0.144
InceptionDANN 0.544 0.803 0.443 0.728 0.500 0.604 ± 0.138
InceptionMix 0.053 0.772 0.509 0.053 0.053 0.288 ± 0.3
InceptionRain 0.627 0.636 0.526 0.662 0.478 0.586 ± 0.071
OTDA 0.298 0.526 0.557 0.456 0.553 0.478 ± 0.097
Raincoat 0.408 0.588 0.575 0.719 0.259 0.51 ± 0.16
VRADA 0.298 0.368 0.232 0.206 0.285 0.278 ± 0.056
Target only 0.991 1.000 0.978 0.991 0.987 0.989 ± 0.007

23

Under review as a conference paper at ICLR 2023

Table 32: Accuracy results on sportsActivities dataset using Target Risk for the model selection and
evaluated on Target Test

p7 → p3 p4 → p2 p1 → p8 p5 → p4 p5 → p6 Avg
Source only 0.596 0.675 0.526 0.838 0.623 0.652 ± 0.105
CoDATS 0.921 0.851 0.724 0.886 0.789 0.834 ± 0.07
CoTMix 0.250 0.307 0.325 0.443 0.285 0.322 ± 0.065
InceptionCDAN 0.741 0.746 0.592 0.825 0.557 0.692 ± 0.101
InceptionDANN 0.886 0.754 0.684 0.789 0.697 0.762 ± 0.073
InceptionMix 0.053 0.776 0.434 0.053 0.053 0.274 ± 0.291
InceptionRain 0.711 0.636 0.632 0.728 0.610 0.663 ± 0.047
OTDA 0.289 0.526 0.531 0.461 0.535 0.468 ± 0.094
Raincoat 0.768 0.860 0.895 0.864 0.912 0.86 ± 0.05
VRADA 0.478 0.325 0.250 0.776 0.268 0.419 ± 0.196
Target only 0.991 1.000 0.978 0.991 0.987 0.989 ± 0.007

Table 33: Accuracy results on ultrasoundMuscleContraction dataset using IWCV for the model
selection and evaluated on Target Test

sb1 → sb8 sb8 → sb6 sb2 → sb7 sb5 → sb4 sb3 → sb5 Avg
Source only 0.365 0.396 0.539 0.460 0.651 0.482 ± 0.103
CoDATS 0.581 0.355 0.461 0.508 0.359 0.453 ± 0.087
CoTMix 0.533 0.486 0.500 0.422 0.718 0.532 ± 0.1
InceptionCDAN 0.330 0.645 0.539 0.493 0.359 0.473 ± 0.116
InceptionDANN 0.419 0.355 0.461 0.481 0.641 0.471 ± 0.095
InceptionMix 0.513 0.271 0.645 0.456 0.465 0.47 ± 0.12
InceptionRain 0.350 0.645 0.539 0.513 0.623 0.534 ± 0.104
OTDA 0.581 0.645 0.539 0.460 0.641 0.573 ± 0.069
Raincoat 0.532 0.645 0.470 0.472 0.515 0.527 ± 0.064
VRADA 0.581 0.645 0.539 0.508 0.641 0.583 ± 0.054
Target only 0.980 0.993 0.939 0.980 0.982 0.975 ± 0.019

Table 34: Accuracy results on ultrasoundMuscleContraction dataset using Source Risk for the model
selection and evaluated on Target Test

sb1 → sb8 sb8 → sb6 sb2 → sb7 sb5 → sb4 sb3 → sb5 Avg
Source only 0.413 0.274 0.451 0.488 0.359 0.397 ± 0.075
CoDATS 0.584 0.352 0.444 0.554 0.406 0.468 ± 0.088
CoTMix 0.595 0.488 0.512 0.561 0.502 0.532 ± 0.04
InceptionCDAN 0.419 0.347 0.465 0.445 0.389 0.413 ± 0.042
InceptionDANN 0.414 0.368 0.566 0.442 0.506 0.459 ± 0.07
InceptionMix 0.331 0.420 0.818 0.423 0.516 0.502 ± 0.169
InceptionRain 0.556 0.292 0.601 0.510 0.417 0.475 ± 0.11
OTDA 0.581 0.645 0.484 0.508 0.438 0.531 ± 0.073
Raincoat 0.403 0.299 0.472 0.476 0.359 0.402 ± 0.068
VRADA 0.581 0.645 0.539 0.508 0.641 0.583 ± 0.054
Target only 0.980 0.993 0.939 0.980 0.982 0.975 ± 0.019

24

Under review as a conference paper at ICLR 2023

Table 35: Accuracy results on ultrasoundMuscleContraction dataset using Target Risk for the model
selection and evaluated on Target Test

sb1 → sb8 sb8 → sb6 sb2 → sb7 sb5 → sb4 sb3 → sb5 Avg
Source only 0.419 0.361 0.827 0.540 0.593 0.548 ± 0.162
CoDATS 0.647 0.645 0.783 0.572 0.644 0.658 ± 0.069
CoTMix 0.722 0.680 0.812 0.529 0.793 0.707 ± 0.101
InceptionCDAN 0.581 0.649 0.790 0.598 0.359 0.595 ± 0.139
InceptionDANN 0.581 0.645 0.843 0.581 0.641 0.658 ± 0.096
InceptionMix 0.517 0.352 0.753 0.501 0.478 0.52 ± 0.13
InceptionRain 0.586 0.645 0.624 0.557 0.619 0.606 ± 0.031
OTDA 0.581 0.645 0.578 0.604 0.641 0.61 ± 0.029
Raincoat 0.664 0.648 0.649 0.593 0.670 0.645 ± 0.027
VRADA 0.581 0.645 0.539 0.508 0.641 0.583 ± 0.054
Target only 0.980 0.993 0.939 0.980 0.982 0.975 ± 0.019

Table 36: Accuracy results on wisdm dataset using IWCV for the model selection and evaluated on
Target Test

3 → 5 27 → 3 5 → 1 7 → 30 21 → 31 Avg
Source only 0.804 0.621 0.042 0.171 0.451 0.418 ± 0.281
CoDATS 0.565 0.621 0.417 0.537 0.577 0.543 ± 0.069
CoTMix 0.609 0.448 0.792 0.463 0.718 0.606 ± 0.136
InceptionCDAN 0.630 0.707 0.417 0.512 0.662 0.586 ± 0.106
InceptionDANN 0.413 0.414 0.104 0.707 0.507 0.429 ± 0.195
InceptionMix 0.326 0.517 0.375 0.659 0.465 0.468 ± 0.116
InceptionRain 0.630 0.810 0.854 0.634 0.648 0.715 ± 0.097
OTDA 0.435 0.310 0.417 0.366 0.352 0.376 ± 0.045
Raincoat 0.739 0.672 0.729 0.244 0.549 0.587 ± 0.184
VRADA 0.239 0.293 0.667 0.488 0.380 0.413 ± 0.152
Target only 0.630 0.707 0.833 0.512 0.563 0.649 ± 0.113

Table 37: Accuracy results on wisdm dataset using Source Risk for the model selection and evaluated
on Target Test

3 → 5 27 → 3 5 → 1 7 → 30 21 → 31 Avg
Source only 0.413 0.362 0.417 0.244 0.338 0.355 ± 0.063
CoDATS 0.696 0.793 0.417 0.439 0.423 0.554 ± 0.159
CoTMix 0.304 0.431 0.479 0.098 0.239 0.31 ± 0.137
InceptionCDAN 0.630 0.603 0.417 0.244 0.380 0.455 ± 0.144
InceptionDANN 0.609 0.328 0.583 0.098 0.507 0.425 ± 0.191
InceptionMix 0.761 0.259 0.021 0.049 0.718 0.362 ± 0.32
InceptionRain 0.630 0.776 0.417 0.000 0.394 0.443 ± 0.263
OTDA 0.348 0.293 0.417 0.439 0.380 0.375 ± 0.052
Raincoat 0.652 0.793 0.792 0.293 0.718 0.65 ± 0.186
VRADA 0.652 0.328 0.417 0.146 0.437 0.396 ± 0.164
Target only 0.630 0.707 0.833 0.512 0.563 0.649 ± 0.113

25

Under review as a conference paper at ICLR 2023

Table 38: Accuracy results on wisdm dataset using Target Risk for the model selection and evaluated
on Target Test

3 → 5 27 → 3 5 → 1 7 → 30 21 → 31 Avg
Source only 0.413 0.741 0.417 0.561 0.775 0.581 ± 0.154
CoDATS 0.413 0.690 0.771 0.488 0.761 0.625 ± 0.147
CoTMix 0.630 0.672 0.833 0.610 0.775 0.704 ± 0.086
InceptionCDAN 0.413 0.931 0.792 0.488 0.859 0.697 ± 0.207
InceptionDANN 0.413 0.362 0.792 0.732 0.380 0.536 ± 0.186
InceptionMix 0.804 0.310 0.375 0.659 0.817 0.593 ± 0.213
InceptionRain 0.630 0.759 0.792 0.512 0.972 0.733 ± 0.155
OTDA 0.413 0.362 0.583 0.488 0.380 0.445 ± 0.081
Raincoat 0.652 0.724 0.792 0.537 0.859 0.713 ± 0.112
VRADA 0.413 0.362 0.417 0.488 0.380 0.412 ± 0.043
Target only 0.630 0.707 0.833 0.512 0.563 0.649 ± 0.113

A.1.2 AVERAGE PERFORMANCES: DATASETS AND CLASSIFIERS

In this section, we provide a comprehensive summary of the performance of the 36 different ta-
bles from 3 to 38 that are individually presented for each dataset across different model selection
methods in the subsection A.1.1. The initial summary, depicted in Table 39, illustrates the average
accuracy per dataset. This summary considers accuracy average of all classifiers evaluated using the
three model selection methods: Source Risk, IWCV, and Target Risk. The second summary, dis-
played in Table 40, showcases the average accuracy per classifier across all datasets, again evaluated
using the three model selection methods.

From both tables 39 and 39, it is evident that the Target Risk selection method emerges as the most
effective for hyperparameter selection. This is expected as it utilizes the target labels, making it akin
to an upper bound. The difference between the IWCV and Source Risk methods is not substantial,
indicating similar performances.

Table 39 highlights the difficulties or the challenges of the different datasets. Notably, the most
challenging ones include OnHWeq, wisdm, sports activities, and sleep stages. Among these, two
datasets, Wisdm 51 and sleep stages 48, stand out as particularly imbalanced, further complicat-
ing the classification task. OnHWeq also presents difficulty due to its high number of classes (15
classes).

Table 40 reaffirms the observations and conclusions derived from the critical diagrams presented in
sections 5.1 and A.2.1 concerning the ranking of algorithms and the performance of the backbones.

Table 39: Accuracy results summary table of average accuracy per dataset valuated the 3 model
selection methods: Source Risk, IWCV and Target Risk

dataets IWCV Source Risk Target Risk
cwrBearing 0.79 ± 0.02 0.81 ± 0.02 0.83 ± 0.04

ford 0.56 ± 0.05 0.76 ± 0.02 0.77 ± 0.02
har 0.76 ± 0.06 0.71 ± 0.04 0.82 ± 0.04

hhar 0.62 ± 0.04 0.62 ± 0.03 0.71 ± 0.03
mfd 0.63 ± 0.09 0.63 ± 0.09 0.71 ± 0.07

TimeMatch 0.63 ± 0.06 0.64 ± 0.03 0.68 ± 0.04
OnHWeq 0.49 ± 0.02 0.49 ± 0.02 0.54 ± 0.02
ptbXLecg 0.6 ± 0.02 0.61 ± 0.02 0.62 ± 0.02

sleepStage 0.62 ± 0.03 0.64 ± 0.04 0.7 ± 0.02
sportsActivities 0.52 ± 0.05 0.51 ± 0.07 0.61 ± 0.07

Muscle 0.55 ± 0.03 0.53 ± 0.04 0.64 ± 0.05
wisdm 0.51 ± 0.06 0.45 ± 0.07 0.59 ± 0.06

26

Under review as a conference paper at ICLR 2023

Table 40: Accuracy results summary table evaluated the 3 model selection methods: Source Risk,
IWCV and Target Risk

classifier IWCV Source Risk Target Risk
Source only 0.59 ± 0.07 0.6 ± 0.06 0.7 ± 0.05

CoDATS 0.64 ± 0.07 0.66 ± 0.05 0.76 ± 0.04
CoTMix 0.57 ± 0.05 0.57 ± 0.04 0.66 ± 0.03

InceptionCDAN 0.64 ± 0.05 0.63 ± 0.04 0.75 ± 0.06
InceptionDANN 0.63 ± 0.06 0.67 ± 0.06 0.75 ± 0.05

InceptionMix 0.56 ± 0.07 0.57 ± 0.1 0.63 ± 0.08
InceptionRain 0.67 ± 0.06 0.68 ± 0.07 0.77 ± 0.04

OTDA 0.48 ± 0.06 0.5 ± 0.04 0.53 ± 0.03
Raincoat 0.66 ± 0.06 0.65 ± 0.06 0.76 ± 0.05

SASA 0.45 ± 0.03 0.48 ± 0.02 0.5 ± 0.03
VRADA 0.5 ± 0.05 0.5 ± 0.05 0.52 ± 0.06

Target only 0.9 ± 0.04 0.9 ± 0.04 0.9 ± 0.04

A.1.3 DATA IMBALANCE ANALYSIS

In this section we propose to quantify the data imbalance in both source (train, test) and target (train,
test). Following what is done in Olson et al. (2017), the degree of class imbalance in each dataset
is measured using a score I ∈ [0, 1), where 0 represents perfectly balanced classes, and values
approaching 1 indicate extreme class imbalance. I score is computed as follow:

I = k

k∑
i=1

(
ni

N
− 1

k
)2

where k is the number of classes, ni is the number of instances for class i, and N is the total
number of samples. This calculation captures the deviation of class distribution from perfect balance,
assigning higher values as the imbalance increases, particularly when a single class dominates the
dataset. Tables from 41 to 51 present the used samples and the I score for both source (train, test)
and target (train, test). We define a threshold, categorizing datasets as highly imbalanced if their I
scores is higher than 0.6. We therefore note than that only 3 datasets out of 12 presents imbalanced
class ratios: ptbXLecg dataset, sleepStage dataset and wisdm dataset. Finally we should note that
out of these three imabalanced datasets, ptbXLecg is the sole dataset proposed in this benchmark.

Table 41: Data Imbalance stats on Ford dataset

Source Target
K N train N test I train I test N train N test I train I test

Ford A-Ford B 2 3601 1320 0.001 0.001 648 162 0 0
Ford B-Ford A 2 648 162 0 0 3601 1320 0.001 0.001

Table 42: Data Imbalance stats on cwrBearing dataset

Source Target
K N train N test I train I test N train N test I train I test

0 1 4 7511 1877 0.284 0.348 10081 2520 0.208 0.292
0 3 4 7511 1877 0.284 0.348 10256 2563 0.207 0.304
1 3 4 10081 2520 0.208 0.292 10256 2563 0.207 0.304
2 0 4 10260 2565 0.207 0.305 7511 1877 0.284 0.348
3 0 4 10256 2563 0.207 0.304 7511 1877 0.284 0.348

A.2 FURTHER ANALYSIS OF THE BENCHMARK

A.2.1 AVERAGE RANKS ON ALL EXPERIMENTS

The average accuracy rank of all algorithms and model selection methods is illustrated in Figure 6.
Different colors are used to distinguish hyperparameter tuning methods for model selection. IWCV

27

Under review as a conference paper at ICLR 2023

Table 43: Data Imbalance stats on har dataset

Source Target
K N train N test I train I test N train N test I train I test

2 11 6 211 91 0.008 0.009 221 95 0.008 0.009
12 16 6 224 96 0.011 0.009 256 110 0.035 0.043
9 18 6 201 87 0.005 0.006 254 110 0.011 0.012
6 23 6 227 98 0.005 0.003 260 112 0.015 0.019
7 13 6 215 93 0.005 0.004 228 99 0.009 0.009

Table 44: Data Imbalance stats on hhar dataset

Source Target
K N train N test I train I test N train N test I train I test

a b 6 2900 746 0.007 0.008 3227 831 0.012 0.011
c d 6 3027 785 0.002 0.002 2863 738 0.009 0.009
e f 6 3120 805 0.005 0.005 2821 726 0.004 0.004
g h 6 3169 818 0.012 0.012 3111 806 0.004 0.004
i a 6 3264 839 0.001 0.001 2900 746 0.007 0.008

Table 45: Data Imbalance stats on mfd dataset

Source Target
K N train N test I train I test N train N test I train I test

0 1 3 1828 901 0.263 0.264 1828 901 0.263 0.264
0 3 3 1828 901 0.263 0.264 1828 901 0.263 0.264
1 0 3 1828 901 0.263 0.264 1828 901 0.263 0.264
1 2 3 1828 901 0.263 0.264 1828 901 0.263 0.264
1 3 3 1828 901 0.263 0.264 1828 901 0.263 0.264

Table 46: Data Imbalance stats on OnHWeq dataset

Source Target
K N train N test I train I test N train N test I train I test

R L 15 27750 11893 0.087 0.087 4396 1884 0.097 0.098
L R 15 4396 1884 0.097 0.098 27750 11893 0.087 0.087

Table 47: Data Imbalance stats on ptbXLecg dataset

Source Target
K N train N test I train I test N train N test I train I test

0 1 5 5424 1356 0.933 0.933 3708 927 0.961 0.965
0 2 5 5424 1356 0.933 0.933 3055 764 0.679 0.676
0 3 5 5424 1356 0.933 0.933 307 77 0.383 0.387
1 3 5 3708 927 0.961 0.965 307 77 0.383 0.387
2 1 5 3055 764 0.679 0.676 3708 927 0.961 0.965

Table 48: Data Imbalance stats on sleepStage dataset

Source Target
K N train N test I train I test N train N test I train I test

16 1 5 1502 645 0.39 0.388 1602 687 0.713 0.715
9 14 5 1565 672 0.567 0.571 1369 587 0.372 0.37
12 5 5 1420 609 0.278 0.277 1342 576 0.397 0.396
7 18 5 1574 675 0.211 0.212 1318 566 0.247 0.248
0 11 5 1377 591 0.191 0.191 1211 519 0.711 0.709

28

Under review as a conference paper at ICLR 2023

Table 49: Data Imbalance stats on sportsActivities dataset

Source Target
K N train N test I train I test N train N test I train I test

p1 p8 19 912 228 0 0 912 228 0 0
p7 p3 19 912 228 0 0 912 228 0 0
p4 p2 19 912 228 0 0 912 228 0 0
p5 p6 19 912 228 0 0 912 228 0 0
p5 p4 19 912 228 0 0 912 228 0 0

Table 50: Data Imbalance stats on UltrasoundMuscleContraction dataset

Source Target
K N train N test I train I test N train N test I train I test

sb1 sb8 2 73600 18400 0.162 0.162 32000 8000 0.026 0.026
sb8 sb6 2 32000 8000 0.026 0.026 8000 2000 0.084 0.084
sb2 sb7 2 1600 400 0.003 0.003 16000 4000 0.006 0.006
sb5 sb4 2 8000 2000 0.08 0.08 16000 4000 0 0
sb3 sb5 2 15097 3775 0.001 0.002 8000 2000 0.08 0.08

Table 51: Data Imbalance stats on wisdm dataset

Source Target
K N train N test I train I test N train N test I train I test

5 1 6 174 46 0.653 0.531 184 48 0.736 0.682
3 5 6 214 58 0.598 0.534 174 46 0.653 0.531
27 3 6 214 57 0.653 0.564 214 58 0.598 0.534
21 31 6 215 58 0.453 0.377 271 71 0.646 0.601
7 30 6 188 51 0.5 0.46 156 41 0.751 0.686

method is represented by the green color, the Source Risk method by blue, and the Target Risk
method by red. As expected, the initial top cluster encompasses different algorithms when employ-
ing the Target Risk model selection method. This is because the target labels are utilized to choose
the optimal hyperparameters, which is not feasible in the unsupervised domain adaptation setup.
The IWCV and Source Risk methods, as previously discussed in Section 5.2, have quite similar
performances. As depicted in the figure 6, it is challenging to discern distinct clusters for either
method (blue and green are visually evenly distributed after the top red cluster). This is explained
by the fact that the Source Risk method is robust in the presence of small domain shifts. However,
as the shift magnitude escalates, the robustness of the Source Risk method diminishes. Conse-
quently, the utilization of an alternative method, such as IWCV, becomes more advantageous for
effectively adapting to substantial shifts. In our benchmarking experiments, where diverse datasets
and distinct pairs are examined, we observe varying degrees of shifts — small, medium, or large —
between the source and target domains. This variability contributes to the convergence in perfor-
mance between the two methods (Source Risk and IWCV) within the scope of this paper. For both
the IWCV and Source Risk methods, InceptionRain consistently exhibits the highest average rank
among all nine models. As previously discussed in Section 5.2, we observe a slight non significant
decrease in InceptionRain’s performance compared to other classifiers (mainly to InceptionDANN)
when employing Target Risk for hyperparameter selection. Additionally, three main discernible
clusters of algorithms are visible in this diagram. The first cluster, comprising VRADA and OTDA,
represents the two poorest classifiers across all three model selection methods. The second cluster
encompasses all algorithms utilizing both IWCV and Source Risk methods, alongside Inception-
Mix, CoTMix, and Inception with the Target Risk method, demonstrating very similar or closely
ranked performance. The third cluster, featuring InceptionDANN, InceptionRain, InceptionCDAN,
RainCoat, and CoDATS using the Target Risk method, showcases the superior performance of these
algorithms among all tested methods.

29

Under review as a conference paper at ICLR 2023

123456789101112131415161718192021222324252627282930

23.64OTDA
23.41OTDA
22.26VRADA
21.97OTDA
21.75VRADA
20.84VRADA
18.95CoTMix
18.49Inception
18.41CoTMix
18.08InceptionMix
17.79InceptionMix
17.34Inception
16.43InceptionCDAN
16.29Raincoat
15.65CoDATS 15.36 InceptionDANN

15.13 InceptionCDAN
15.03 CoDATS
14.46 Raincoat
13.82 InceptionMix
13.39 InceptionDANN
13.08 InceptionRain
12.89 CoTMix
12.04 InceptionRain
11.05 Inception
7.82 CoDATS
7.60 Raincoat
7.50 InceptionCDAN
7.29 InceptionRain
7.24 InceptionDANN

Figure 6: Average rank diagrams, using accuracy on all tested algorithms and hyperparameter tuning
methods. The different colors specify the employed hyperparameter tuning method: green for IWCV
IWCV, blue for Source Risk and red for Target Risk

12345678910

7.8300OTDA
7.5800VRADA
5.9500Inception
5.5900CoTMix
5.3600InceptionCDAN 5.3400InceptionMix

4.9200Raincoat
4.6400CoDATS
4.0500InceptionRain
3.7400InceptionDANN

(a) Source Risk

12345678910

8.2500OTDA
7.6100VRADA
5.2800Inception
5.2800InceptionMix
5.2500CoTMix 5.0800CoDATS

4.9600InceptionCDAN
4.8000InceptionDANN
4.2500Raincoat
4.2400InceptionRain

(b) IWCV

12345678910

8.6800OTDA
8.5500VRADA
5.8900InceptionMix
5.7200CoTMix
5.6300Inception 4.3900InceptionRain

4.1600Raincoat
4.0000CoDATS
4.0000InceptionDANN
3.9800InceptionCDAN

(c) Target Risk

Figure 7: Average rank diagrams, using F1-score, with different criteria for hyperparameter tuning

A.2.2 AVERAGE RANKS WITH F1-SCORE

Figure 7 showcases the average rank of all algorithms based on F1-score and depending on the
hyperparameter tuning method. These diagrams are very similar to the ones for accuracy, except
for a few inversions of some algorithms such as InceptionRain and InceptionDANN on Figure 7a
or CoTMix and Inception on Figure 7b, which have very similar average ranks. There are more

30

Under review as a conference paper at ICLR 2023

differences on Figure 7c, but again these differences concern algorithms of similar rank. Overall,
our conclusion hold, therefore the accuracy is a sufficient metric to evaluate the performance of the
models.

A.2.3 ACCURACY OF ALGORITHMS OVER ALL DATASENTS

The distribution of the predicted accuracy of the target test by different classifier using the three
methods of model selection (IWCV 8a, source risk 8c and target risk 8e) can be visually displayed
by the violin plots in 8. The median is marked with a dashed line, and the range of quartile is
represented by a dotted line. The more centralized the data distribution is, the wider the violin is.
As concluded before in section 5.2, we can see again in these plots that InceptionRain displays the
best performance compared to other classifiers, in terms of median and quartiles of the accuracy.
IWCV presents more variance than Source Risk, we are convinced that estimating time series data
with only 5 Gaussian is not enough. Source Risk is a good method for hyperprameter tuning if the
shift between the distribution is not very big.

(a) Accuracy: IWCV (b) F1-score: IWCV

(c) Accuracy: Source Risk (d) F1-score: Source Risk

(e) Accuracy: Target Risk (f) F1-score: Target Risk

Figure 8: Violin plots of algorithms performance, accuracy on the left and F1-score on the right, per
hyperparameter selection method for all the run experiments

31

Under review as a conference paper at ICLR 2023

A.2.4 FURTHER ANALYSIS FOR IMBALANCED DATASETS

Since we noticed some imbalanced datasets in our experiments we present additionally the violin
plots with the F1-score metric. Figure 8 presents the distribution of the predicted F1-score of the
target test by different classifier using the three methods of model selection (IWCV 8b, Source
Risk 8d and Target Risk 8f) can be visually displayed by the violin plots in 8.

A.2.5 ANALYSIS OF HYPERPARAMETER TUNING APPROACHES

Figure 9 displays several examples of hyperparameter tuning for different datasets/pairs and for
different UDA algorithms. The graphs from this figure show the values of each tuning approach
for each set of hyperparameters, where the indices are sorted with respect to the target accuracy on
the validation set. We can see that there exists a correlation between the target risk and the two
proxy used, as the source risk and IWCV both show a tendency to evolve similarly as the target risk.
However, we can note on one hand that the Source Risk displays a plateau behaviour, with many
hyperparameter sets having similar values, while their target risk is clearly different. It thus makes
it difficult for the source risk to differentiate between models the ones more probable to get good
target performance. On the other hand, IWCV sometimes shows better values (lower cross entropy)
for hyperparameters having higher target accuracy, as it is the case on Fig. 9b, but at other times it
selects a hyperparameter set at much lower target accuracy than the best possible, for instance for
Figs 9a and 9d. These graphs thus explain the gap of performance between target risk on one side,
and source risk and IWCV on the other side.

0 5 10 15 20 25
hparams iteration (sorted by target val accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(Smoothed) InceptionDANN for hhar[g->h]

Target Risk
Source Risk

0.0

0.5

1.0

1.5

2.0

cr
os

s e
nt

ro
py

IWCV

(a) InceptionDANN - HHAR with pair (g-h)

0 2 4 6 8 10 12 14
hparams iteration (sorted by target val accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(Smoothed) CoTMix for mfd[0->1]

Target Risk
Source Risk

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

cr
os

s e
nt

ro
py

IWCV

(b) CoTMix - mfd with pair (0,1)

0 2 4 6 8 10 12 14
hparams iteration (sorted by target val accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(Smoothed) Raincoat for OnHWeq[OnHW_equations_R->OnHW_equations_L]

Target Risk
Source Risk

0.55

0.60

0.65

0.70

0.75

0.80

0.85

cr
os

s e
nt

ro
py

IWCV

(c) Raincoat - OnHWeq with pair (R,L)

0 2 4 6 8 10 12 14 16 18
hparams iteration (sorted by target val accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(Smoothed) Inception for sleepStage[7->18]

Target Risk
Source Risk

0.5

1.0

1.5

2.0

2.5

3.0
cr

os
s e

nt
ro

py

IWCV

(d) Inception - sleepStage with pair (7,18)

Figure 9: Accuracy and cross entropy loss during the hyperparameter tuning stage for several
datasets and UDA algorithms.

Figure 10 compares the behaviour of the hyperparameter tuning approaches for several algorithms
on the HAR dataset for the same pair of source-target. The previous analysis is still valid here, which
suggests that it does not depend much on the UDA algorithm but probably more on the dataset.

32

Under review as a conference paper at ICLR 2023

0 50 100 150 200 250
hparams iteration (sorted by target val accuracy)

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

(Smoothed) CoDATS for har[9->18]

Target Risk
Source Risk

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

cr
os

s e
nt

ro
py

IWCV

(a) CoDATS - HAR dataset with pair (9,18)

0 20 40 60 80 100 120
hparams iteration (sorted by target val accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(Smoothed) InceptionRain for har[9->18]

Target Risk
Source Risk

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

cr
os

s e
nt

ro
py

IWCV

(b) InceptionRain - HAR dataset with pair (9,18)

0 50 100 150 200
hparams iteration (sorted by target val accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(Smoothed) Raincoat for har[9->18]

Target Risk
Source Risk

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

cr
os

s e
nt

ro
py

IWCV

(c) RainCoat - HAR dataset with pair (9,18)

Figure 10: Accuracy and cross entropy loss during the hyperparameter tuning stage for HAR dataset
and 3 UDA algorithms.

0.0 0.2 0.4 0.6 0.8 1.0
CoDATS

0.0

0.2

0.4

0.6

0.8

1.0

In
ce

pt
io

nD
AN

N

InceptionDANN
wins here

InceptionDANN
loses here

wins=26;ties=2;loss=26;p-value=0.783

IWCV
Source Risk
Target Risk

(a) InceptionDANN vs CoDATS

0.0 0.2 0.4 0.6 0.8 1.0
CoTMix

0.0

0.2

0.4

0.6

0.8

1.0

In
ce

pt
io

nM
ix

InceptionMix
wins here

InceptionMix
loses here

wins=26;ties=0;loss=28;p-value=0.608

IWCV
Source Risk
Target Risk

(b) InceptionMix vs CotMix

Figure 11: Pairwise accuracy comparison between CoDATS, CotMix and Raincoat against the same
methods with Inception backbone instead of the backbone originally proposed. The statistical anal-
ysis and comparison above the figures are computed using only results based on IWCV.

A.2.6 DETAILED COMPARISON OF BACKBONES

This section gives additional details about the importance of backbones. Figures 11 compare the
performance of the three original backbones used in CoDATS, CotMix and Raincoat against an

33

Under review as a conference paper at ICLR 2023

Inception backbone. Consistent with the averaged result presented in Figure 5, there is no significant
differences between the 3 original backbones and the Inception backbone.

Figures 12 provides a deeper analysis on the four different themes of dataset. Firstly, as the number
of data points are sometimes quite small, the confidence on the statistical analysis is small. There-
fore, there is no statistical difference in those graphs. There is still two interesting observations,
firstly the original backbones get the best performance compared to Inception in datasets related to
motion. This could be explained by the fact that most of the established TSC UDA dataset (three out
of five in total) are part of the motion theme, thus leading to a bias that those models where designed
to work for those types of datasets. Secondly, there is a couple of datasets (miniTimeMatch and
sportsActivity), where InceptionMix always predict the same classes thus has a very low accuracy.
As this is also true for the Target Risk, the reason does not seem to be the hyperparameter search
but rather an unexpected mismatch between those two specifics datasets, CoTMix algorithm and the
Inception backbone.

0.0 0.2 0.4 0.6 0.8 1.0
CoDATS CoTMix Raincoat

0.0

0.2

0.4

0.6

0.8

1.0

In
ce

pt
io

n[
DA

NN
,M

ix
,R

ai
n] Inception

wins here

Inception
loses here

wins=21;ties=0;loss=15;p-value=0.388

IWCV
Source Risk
Target Risk

(a) Machinery theme

0.0 0.2 0.4 0.6 0.8 1.0
CoDATS CoTMix Raincoat

0.0

0.2

0.4

0.6

0.8

1.0

In
ce

pt
io

n[
DA

NN
,M

ix
,R

ai
n] Inception

wins here

Inception
loses here

wins=27;ties=3;loss=15;p-value=0.079

IWCV
Source Risk
Target Risk

(b) Medical theme

0.0 0.2 0.4 0.6 0.8 1.0
CoDATS CoTMix Raincoat

0.0

0.2

0.4

0.6

0.8

1.0

In
ce

pt
io

n[
DA

NN
,M

ix
,R

ai
n] Inception

wins here

Inception
loses here

wins=23;ties=0;loss=43;p-value=0.079

IWCV
Source Risk
Target Risk

(c) Motion theme

0.0 0.2 0.4 0.6 0.8 1.0
CoDATS CoTMix Raincoat

0.0

0.2

0.4

0.6

0.8

1.0

In
ce

pt
io

n[
DA

NN
,M

ix
,R

ai
n] Inception

wins here

Inception
loses here

wins=11;ties=0;loss=4;p-value=0.252

IWCV
Source Risk
Target Risk

(d) Remote sensing theme

Figure 12: Pairwise accuracy comparison between original backbone against Inception backbone
for the 4 different dataset themes. The statistical analysis and comparison above the figures are
computed using only results based on IWCV.

A.2.7 META-FEATURES INTEROPERABILITY OF THE BENCHMARK

Within this section, our aim is to offer a deeper and high level analysis of the various algorithms’
performance and experiments showcased in the benchmark, employing explainability and inter-
pretability techniques facilitated by metadata. The metadata, or dataset characteristics, we consider
here consists of the following quantities. ”Shift proxy” denotes a proxy of the data shift computed
as the relative difference of Inception’s performance (i.e. with no DA) between target and source.
”Pair std” denotes the variability of Inception’s performance (with no DA) among the different pairs

34

Under review as a conference paper at ICLR 2023

of source-data, which can be considered as another proxy of the shift. ”Imbalance” is the imbalance
score of the data as computed in A.1.3. Finally, ”No. classes”, ”No. instances” and ”Length” re-
spectively denote the number of classes, the number of time series in the training set, and the length
of the time series, as provided in Table 2.

In order to assess how these metadata affect the performance of each UDA algorithm, we propose
to run a regression task with the metadata as input and the considered algorithm’s performance
as output, using XGBoost. We then extract the feature importance scores provided by XGBoost.
Figure 13 display the importance score of the metadata for each UDA algorithm, and Figures 14
to 22 show the evolution of each algorithm’s performance with respect to its 4 most important
metadata. The latter plots are made with seaborn’s regplot, which also provide an estimation of the
relationship and its variance (the colors indicate the metadata considered). From these plots, we can
easily see that the UDA algorithms are affected differently by the metadata. The shift proxy seems
to affect most of the methods, whose performance decrease as the shift increases. It is particularly
true for InceptionCDAN and InceptionRain. Note however that it is expected as those methods
rely on the Inception backbone, which we used for the estimation of the shift. The number of
classes affect mostly CoDATS, VRADA, InceptionMix, and to a lesser extend InceptionCDAN and
InceptionDANN. Indeed, performance seems to be decreasing with the number of classes. The
length of the time series is found to be important for OTDA, Raincoat, and InceptionDANN. This is
understandable for OTDA, as the time series are flattened. Concerning Raincoat, the reason stems
from the architecture of the initial step of time series alignment, where the proposed CNN backbone
relies on a fixed kernel size. However, it is observed that the significance of time series length
diminishes when using the Inception backbone. The Inception backbone, by design, is not negatively
impacted by the length, as it incorporates different kernel sizes in parallel, facilitating adaptation to
the length of the time series. The variability among pairs mostly affect CoTMix, InceptionCDAN
and InceptionRain, who seem to have better performance when the pairs look less alike. Finally,
the imbalance in data mostly affect InceptionRain, while the number of instances seems to have an
impact only for Raincoat and InceptionRain.

A.3 DETAILS OF LEARNING ALGORITHMS

Let X be the input space. Let Y be the label space, a vector space where the labels represented as
one-hot vectors and the predictions represented as categorical probabilities live. DS is the source
domain consisting of nS labeled time series. For a sample (Xs,ys) ∈ DS let Xs ∈ X represent
the time series data and ys ∈ Y represent the corresponding label. DT ⊂ X is the target domain
consisting solely of nT unlabeled time series. Z is the latent space.

Time series classification: Let E : X → Z be the backbone. The backbone is usually a highly
non-linear function, such as a neural network, designed according to the input data. In the case of
time series data, the backbone can be a RNN, a 1D CNN. Its role is to encode the input into the
latent space. Let C : Z → Y be the classifier, mapping the latent space representation of the input
into a categorical probability.

Let L : Y × Y → R be a loss function, such as the cross-entropy, which evaluates the quality of
the classifier by assigning a number to each label-prediction pair. Let DS = {(Xs

i ,y
s
i)}

nS
i=1 be the

source domain. In the traditional time series classification framework, the classification loss is,

LC(E,C) =
1

nS

nS∑
i=1

L (C (E(Xs
i)) ,y

s
i) . (1)

The learning objective is to minimize this loss with respect to the classifier C and the backbone E.

Adversarial domain adaptation: The goal of this learning framework is to achieve domain adap-
tation by forcing the backbone to produce a latent representation that is domain invariant. A dis-
criminator D : Z → {ys

domain,y
t
domain} is introduced with the task of separating source and target

domain samples, where ys
domain and yt

domain are binary labels indicating that the corresponding
sample belongs to the source or target domain, respectively. During training the discriminator learns
how to separate source domain samples from target domain samples and the backbone learns how
to fool the discriminator.

35

Under review as a conference paper at ICLR 2023

Figure 13: Impact of different dataset characteristics (metadata) on the performance of UDA algo-
rithms, measured from XGBoost’s feature importance score.

Figure 14: Visualization of CoDATS performance versus its four more important data characteristics
returned from XGBoost.

Let DS = {(Xs
i ,y

s
i)}

nS
i=1 and DT = {Xt

i}
nT
i=1 be the source and target domains, respectively. The

adversarial loss is,

LA(E,D) =
1

nS

nS∑
i=1

L (D (E(Xs)) ,ys
domain) +

1

nT

nT∑
i=1

L
(
D

(
E(Xt)

)
,yt

domain

)
, (2)

where L is a binary loss function, such as the binary cross entropy loss. The total loss for the
adversarial domain adaptation framework is,

36

Under review as a conference paper at ICLR 2023

Figure 15: Visualization of CoTMix performance versus its four more important data characteristics
returned from XGBoost.

Figure 16: Visualization of InceptionCDAN performance versus its four more important data char-
acteristics returned from XGBoost.

Figure 17: Visualization of InceptionDANN performance versus its four more important data char-
acteristics returned from XGBoost.

Figure 18: Visualization of InceptionMix performance versus its four more important data charac-
teristics returned from XGBoost.

Ltotal(E,C,D) = LC(E,C)− λLA(E,D) , (3)

Where λ is a trade-off between the adversarial and classification losses. During training, the objec-
tive 3 is minimized with respect to the classifier C and encoder E and maximized with respect to
the discriminator D.

37

Under review as a conference paper at ICLR 2023

Figure 19: Visualization of InceptionRain performance versus its four more important data charac-
teristics returned from XGBoost.

Figure 20: Visualization of OTDA performance versus its four more important data characteristics
returned from XGBoost.

Figure 21: Visualization of Raincoat performance versus its four more important data characteristics
returned from XGBoost.

Figure 22: Visualization of VRADA performance versus its four more important data characteristics
returned from XGBoost.

The algorithm VRADA implements adversarial learning and uses a VRNN as a backbone. The
learning objective of a VRNN is to minimize the distance in distribution between the inference
model generated by the VRNN and a prior and to minimize the log-likelihood of the reconstructed
input. The VRNN loss is a function of the VRNN itself and we use LVRNN to refer to it. The total
loss for VRADA is

38

Under review as a conference paper at ICLR 2023

Ltotal(E,C,D) = LVRNN(E) + LC(E,C)− λLA(E,D) . (4)

This objective is minimized with respect to the classifier C and encoder E and maximized with
respect to the discriminator D.

The Conditional DANN (CDANN) algorithm (Long et al. (2018)) was originally proposed for do-
main adaptation on images. Basen on DANN, CDANN is also tries to enforce domain adaptation
through adversarial learning. In this work we propose the InceptionCDAN algorithm, adapting
CDANN to the problem of TSC. In addition to the backbone E, classifier C, and discriminator D,
CDANN requires a multilinear map T : Z × Y → Z ′, which combines the latent space representa-
tion produced by the backbone with the soft probabilities output by the classifier, thus conditioning
the input of the discriminator on the predicted class, with Z ′ the input space of D.

With the multilinear map, the adversarial loss becomes,

LA(E,C,D) =
1

nS

nS∑
i=1

L (D (T (E(Xs), C(E(Xs)))) ,ys
domain) (5)

+
1

nT

nT∑
i=1

L
(
D (T (E(Xs), C(E(Xs)))) ,yt

domain

)
. (6)

The optimization problem is the same as for the general adversarial domain adaptation framework,
with the addition of the multilinear map. Note that T has no learnable parameters.

Contrastive Learning Contrastive learning tries to align the predictions made by the model for
pairs of samples coming from two different domains. The CoTMix algorithm computes the Class-
aware constrastive loss, LCAC, to align the predictions between source and source dominant samples
from the same class, and the unsupervised contrastive loss LUC to align the predictions between
target and target dominant samples.

Given nS , the total number of source domain samples, nS source dominant samples are generated
through the temporal mixup operation, making a total of 2nS samples. Let the output probabilities
of source domain samples be os

i = C(E(Xs
i)) for any i ∈ [nS] and let the output probabilities of

source dominant samples be osd
i = C(E(Xsd

i)) for any i ∈ [nS], with encoder E and classifier C.
Let the overall source samples be {(Xso

i ,yso
i)}2nS

i=1 , and their corresponding output probabilities be
{oso

i }2nS
i=1 , assuming that the class label is the same for any two corresponding samples from both

domains, i.e. ys
i = ysd

i for any i ∈ [nS]. Let U(k) = {u ∈ [2nS] \ k : yso
u = yso

k } be the set of
indices different than k such that their corresponding labels are the equal to yso

k . Thus, the class-
aware contrastive loss tries to align the prediction for all source (domain and dominant) samples
belonging to the same class.

LCAC(E,C) =

2nS∑
k=1

−1

|U(k)|
∑

u∈U(k)

log
exp (oso

k · oso
u /τ)∑

a ̸=k exp (o
so
k · oso

a /τ)
, (7)

where the symbol · denotes inner product, τ is a temperature parameter, and |U(k)| is the cardinality
of U(k).

In the target domain, no information is available about the class labels. Thus, contrastive learning can
only be done in an unsupervised manner. Given nT , the total number of target domain samples, nT

target dominant samples are generated through the temporal mixup operation, making a total of 2nT

overall target samples. Let the output probabilities of target domain samples be ot
i = C(E(Xt

i)) for
any i ∈ [nT] and let the output probabilities of target dominant samples be otd

i = C(E(Xtd
i)) for

any i ∈ [nT]. The overall target samples are {Xto
i }2nS

i=1 , and their corresponding output probabilities
are {oto

i }2nS
i=1 , forming a set such that oto

i = ot
i if i ≤ nT and oto

i = otd
i otherwise. Define f(k)

as the index positive pair of k, such that for any k ∈ [2nT] f(k) = k + nT if k ≤ nT , and
f(k) = k − nT otherwise. Thus, the unsupervised contrastive loss tries to align the predictions

39

Under review as a conference paper at ICLR 2023

for pairs of samples, assuming that each target domain sample belongs to the sample class as its
corresponding target dominant sample,

LUC(E,C) =
−1

2nT

2nS∑
k=1

log
exp (oso

k · oso
f(k)/τ)∑

a̸=k exp (o
so
k · oso

a /τ)
. (8)

The overall contrastive loss Lcontrastive is the sum of LCAC(E,C) and LUC(E,C). Additionally,
the CoTMix learning algorithm minimizes the cross-entropy loss over source domain samples, LC ,
and the entropy over target domain samples,

H(E,C) = − 1

nT

nT∑
i=1

ot
i · log ot

i . (9)

The total loss for the contrastive learning framework is,

Ltotal(E,C) = LC(E,C) +H(E,C) + λLcontrastive(E,C) , (10)

where λ is a trade-off between the classification and the contrastive loss functions. The loss function
10 is the learning objective used by the CoTMix and InceptionMix models in our framework.

Frenquency domain analysis One of the main contributions from He et al. (2023) is to analyse
time and frequency domain features separately. This allows the model to learn shifts in the distri-
bution of frequency features that might be vital for the main classification task. To this purpose,
the Raincoat model uses a frequency encoder, EF : X → ZF , which transforms the input into
frequency features, with ZF the frequency feature space.

On the other hand, time features are extracted by a traditional backbone, such as a 1D CNN in
the case of Raincoat or the Inception backbone in the case of InceptionRain. We denote the time
encoder ET : X → ZT , withZF the time feature space. The output of the overall encoder is the
concatenation of the ouputs of the time and frequency encoders, E(X) = (ET (X), EF (X)), for
any X ∼ X .

The Raincoat algorithm aims to align the latent space representations of source and target domain
samples. Let ZS = {E(X) : X ∈ DS} be the set of latent space representations of samples
in the source domain, and similarly for the target domain let ZT = {E(X) : X ∈ DT }. The
Sinkhorn divergence is computed between the sets ZS and ZT and minimized with respect to E.
Thus, LSinkhorn(E) = Sinkhorn(ZS ,ZT).

Additionally, Raincoat promotes learning of semantic features by minimizing a reconstruction loss.
Let G : Z → X be a decoder function that reconstructs the input from its latent space represen-
tation. The reconstruction loss is computed between input samples and their reconstructed coun-
terparts, and it is optimized with respect to the encoder E and the decoder G. Thus, LR(E,G) =
1
nS

∑nS

i=1 d(X
s
i , G(E(Xs

i))) +
1
nT

∑nT

i=1 d(X
t
i, G(E(Xt

i))), with d some distance in X . The total
loss function used in the Raincoat algorithm is,

Ltotal(E,G,C) = LC(E,C) + LSinkhorn(E) + LR(E,G) . (11)

A.4 ADDITIONAL UDA CLASSIFIER: SASA

In this section we explore the Sparse Associative Structure Alignment (SASA) model published
in Cai et al. (2021). The latter algorithm uses the sparse associative structure discovery method cou-
pled with an adaptive summarization of subsequences extracted from the original series and a final
Maximum Mean Discrepancy (MMD) based structure alignment method to transfer the knowledge
from the source domain to the target domain. The default backbone for extracting features from
subsequences is a single layer LSTM. The results depicted in Figure 23 show that SASA occupies
the lowest average rank amongst all classifiers which is expected and can be explained by various

40

Under review as a conference paper at ICLR 2023

123456789101112

9.11SASA
8.62OTDA
8.25VRADA
7.96InceptionSASA
6.82CoTMix
6.51InceptionMix 6.38 Inception

5.77 InceptionCDAN
5.49 Raincoat
4.94 CoDATS
4.20 InceptionDANN
3.95 InceptionRain

(a) Source Risk

123456789101112

9.68SASA
8.89OTDA
8.17InceptionSASA
8.06VRADA
6.54CoTMix
6.28InceptionMix 5.98 Inception

5.49 CoDATS
5.03 InceptionDANN
5.00 InceptionCDAN
4.86 Raincoat
4.02 InceptionRain

(b) IWCV

123456789101112

10.11SASA
9.66OTDA
9.40VRADA
8.95InceptionSASA
6.71InceptionMix
5.99CoTMix 5.85 Inception

4.36 InceptionCDAN
4.33 CoDATS
4.25 InceptionRain
4.21 Raincoat
4.18 InceptionDANN

(c) Target Risk

Figure 23: Average rank diagrams based on accuracy for different hyperparameter tuning methods
with the Sparse Associative Structure Alignment (SASA) model added to the mix of classifiers

reasons. First, the model is originally designed for detecting events in a time series rather than classi-
fying a whole time series as input, which explains the author’s approach of taking into consideration
solely the last (τ < length) time steps when generating the subsequences while disregarding the
earlier time steps. Given that the task of TSC does not assume any prior on the importance of differ-
ent time stamps, the task seems to be inherently different for SASA. For example for a very long time
series such as in those present in the SleepStage dataset, SASA might drop more than 90% of the
whole series and use the last 10% for classification. Nevertheless we have implemented and included
the model here in an extension of the benchmark depicted in Figure 23, but rather removed it from
the original benchmark in the main paper given the tasks’ dissimilarities. Finally we should note that
the backbone used by SASA is a recurrent neural network which is well adapted given the aforemen-
tioned task of event detection, however not very well suited for traditional TSC (Ismail Fawaz et al.,
2019). The latter claim is further validated when comparing the rank of InceptionSASA to SASA,
clearly substituting the LSTM backbone with an Inception backbone gives a boost in performance,
yet not enough to overcome the average methods for UDA that fully utilize the complete input time
series.

41

	Introduction
	Unsupervised Domain Adaptation Background
	Notations and Problem Statement
	UDA Algorithms for time series
	Tuning models without labels

	Datasets used for evaluation
	Experimental setup
	Results and analysis of the benchmark
	Comparison of classifiers over all datasets
	Comparison of hyperparameter tuning methods
	Comparison of backbones

	Conclusion
	Appendix
	Complete results per dataset
	All Datasets performances
	Average performances: datasets and classifiers
	Data Imbalance Analysis

	Further analysis of the benchmark
	Average ranks on all experiments
	Average ranks with F1-score
	Accuracy of algorithms over all datasents
	Further Analysis for imbalanced datasets
	Analysis of hyperparameter tuning approaches
	Detailed comparison of backbones
	Meta-Features interoperability of the benchmark

	Details of learning algorithms
	Additional UDA classifier: SASA

