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Abstract

We introduce Physics Informed Symbolic Networks (PISN) which utilize physics-
informed loss to obtain a symbolic solution for a system of Partial Differential
Equations (PDE). Given a context-free grammar to describe the language of sym-
bolic expressions, we propose to use weighted sum as continuous approximation for
selection of a production rule. We use this approximation to define multilayer sym-
bolic networks. We consider Kovasznay flow (Navier-Stokes) and two-dimensional
viscous Burger’s equations to illustrate that PISN are able to provide a performance
comparable to PINNs across various start-of-the-art advances: multiple outputs
and governing equations, domain-decomposition, hypernetworks. Furthermore,
we propose Physics-informed Neurosymbolic Networks (PINSN) which employ a
multilayer perceptron (MLP) operator to model the residue of symbolic networks.
PINSN s are observed to give 2-3 orders of performance gain over standard PINN.

1 Introduction

Physics Informed Neural Networks [1]] (PINNs) have gained popularity for numerically solving
PDEs. However in the absence of an explicit inductive bias, MLPs can struggle to learn even simple
functions in a sample efficient manner [2, [3], Appendix [[ Meanwhile a symbolic form has the
potential to exhibit better systematic generalization, with interpretability as a useful byproduct.
Although symbolic regression has been studied extensively using a variety of algorithms, such as tree
search [4H6], sequence generation [[7, 18], sparse selection from a bank of primitive expressions [9]]
and genetic programming [10]], none of the existing works have explored the use of physics-informed
loss (as done in PINNs) for obtaining a symbolic solution for a system of complex PDEs. We believe
that potentially many of the above mentioned approaches can be extended to accommodate a physics-
informed loss. However, our preliminary experimentation (A.3) with [5, 7] led to poor performance
for complex examples of PDEs. Hence in this work we consider the problem of physics-informed
symbolic regression and make three major contributions towards it.

First, we propose Physics Informed Symbolic Networks (PISNs) that utilize differentiable program-
ming and physics-informed loss for symbolic regression. We assume that the desired expression
belongs to a language defined by a context free grammar with [sin, exp, +, *] as symbolic operations.
Inspired by recent works on differential synthesis of programs [[L1} [12], we approximate a selection
of production rule by a weighted linear sum of the individual rules. This approximation is used to
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induce a multilayer symbolic network. We illustrate that PISNs provide a performance at par with
PINNSs, with Kovasznay flow (Navier Stokes) and two-dimensional viscous-Burger’s equation as
examples.

Second, we demonstrate that physics-informed training of the symbolic networks can be extended to
recent advances in PINN, such as HyperNetworks[13] and Domain-decomposition [[14} [15]] that have
enabled applying PINNs to multiple outputs and governing equations, along with faster training.

Lastly, one cannot guarantee universal approximation even with larger number of compositions over
an arbitrary set of operators. Therefore similar to [11], we allow the MLP operator to be a part of
the grammar. Specifically, we capture the residual of the symbolic approximation with a MLP and
show that a Physics Informed Neuro-Symbolic Network (PINSN) is able to provide 2-3 orders of
magnitude performance gain over PINNs in terms of the maximum error.

2 Methodology

2.1 Symbolic Networks

We consider symbolic expressions that belong to a language defined by the context-free grammar, G
[16]], described by (I), where x, y, t, ¢ are the terminal symbols. We employ a continuous relaxation
of G by taking a weighted sum over all the production rules as shown in ().

an=sina; | exp a; |Add o oo | Multiply oy as |z |y | t] ¢ (1

o = wi sin(ay) + wy exp(as) + ws(as+ay) + wa(as*ag) + wsx + wgy + wrt + wsgl  (2)
Eqn. (@) is used to induce a Symbolic Network of depth d+2, where d is the total number of hidden
layers. In the following equations, x = [x,y, ¢, 1] is the input, W) = [w),, w),, wl,, w),] are the
weight vectors for the first hidden layer and W, = [w.,, wi,, W}5, W}, W}, W}, W), Whe] are the
weight vectors for all the other hidden layers and W are the weights used at the output layer.

Upisn = W' - h* (3a)
W = [sin(WY - h7), exp(W) - h7), W} - b/ + W -h/ W] -0 « W} -0/ z,y,t]  (3b)
hl = [SZH(W? ’ X)a exp(W(Q) : X)7 Wg "X+ WAOL - X, Wg “Xx Wg X, T, Y, ﬂ (30

Eqn. could be used to induce a multilayer symbolic network similar to the differentiable program
architectures proposed in [[11]. Such an approach would guarantee that the network is capable of
exact representation of all the expressions with a depth proportional to the depth of the network.
Nevertheless in such an architecture the number of parameters would grow exponentially with depth.
On the contrary, the network defined by Eqn. (3) ensures that the number of parameters increases
linearly with depth. However this does come at the cost of losing out on the power to exactly represent
"wide" expressions. In spite of this, we have observed that for the examples considered in this work,
the approximations provided by our symbolic network are comparable with a symbolic network based
upon [11]], with neither approach providing a consistently better accuracy. Our approach is able to
sometimes provide a advantage in terms of training time. Detailed investigation of this issue remains.

2.2 NeuroSymbolic Networks

The expressive capacity of G can be improved by adding a MLP operator, F(; §) as an additional
parameterized terminal symbol to the grammar:

a z=sina; | exp a; | Add o a2 | Multiply oy as |z |y | t] ¢ | F(x;0) 4)

Similar to symbolic networks we can make a continuous approximation of (@) as well. However
instead of adding a neural operator at all depths, for examples considered in this work, we observed
substantial gains even by just approximating the residue of the symbolic networks. Therefore we
define the neurosymbolic networks as follows.

Upinsn = Upisn + F(X; eres) )



Table 1: Kovasznay Flow: Pointwise-Max-L2-Error viz-a-viz exact analytical solution

Hypernetwork Vanilla
Re  Architecture X-velocity Y-velocity Pressure X-velocity Y-velocity Pressure
PINN 1.76e-5 4.95e-5 1.26e-5 4.93e-6 2.41e-5 4.23e-6
125 PISN 6.88e-4 7.53e-4 2.00e-4 5.89%e-5 5.49¢-5 5.87e-5
PINSN 1.04e-6 1.27e-6 4.54e-6 7.79e-7 6.06e-7 2.44e-6
PINN 2.36e-5 2.27e-6 1.74e-5 1.19e-5 6.49¢-6 1.33e-5
375 PISN 2.86e-4 5.73e-5 4.58e-5 5.58e-5 1.26e-5 1.86e-5
PINSN 4.05e-7 9.62e-8 1.15e-7 1.85e-6 4.05e-7 3.34e-7
PINN 5.21e-5 5.48e-5 1.96e-5 7.72e-5 1.42e-6 6.34e-6
475 PISN 2.33e-4 1.77e-5 1.75e-5 1.54e-5 4.09e-5 9.01e-5
PINSN 4.63e-7 1.49e-7 1.35e-7 2.35e-7 1.87e-7 3.34e-8
PINN 8.83e-6 5.10e-6 3.89%¢-6 9.39e-6 7.14e-6 4.22e-6
725 PISN 3.41e-5 1.31e-5 2.02e-5 5.87e-5 4.31e-5 1.09e-5
PINSN 2.59e-7 3.34e-7 8.12¢-7 4.29¢-6 1.87e-7 3.34e-8
PINN 6.32e-5 2.37e-6 5.42e-5 3.54e-5 1.53e-6 4.37e-6
975 PISN 1.19e-4 1.06e-5 1.09e-4 1.35e-4 4.19e-5 1.37e-4
PINSN 4.63e-6 4.14e-8 1.91e-7 4.29¢-6 3.45e-7 6.60e-8

2.3 Hypernetworks

We propose HyperPISN which consists of a hypernetwork H,;,, which takes in the task parameteri-
zation Ap, as input and outputs 6,5, (the weights of the PISN network M,;s,). We consider examples
where the initial conditions, boundary conditions and the coefficients of the PDE are all determined
by single parameter A\. We use different values of A to sample tasks and train the hypernetwork, but
show generalization to unseen value of A. Since 0., can be used to determine the final symbolic
expression, HyperPISN can produce symbolic expressions for parameterized PDEs .

episn = Hpisn(Ah; 68)7 Upisn = ]\/[pisn (X; episn) (6)

We extend PINSNs to HyperPINSNs whose training follows a two step approach. In first step, Hy;sn,
(HyperPISN) is trained for a set of task parameters \. In second step, HyperPISN weights are frozen
and H,..s (hypernetwork of MLP operator F’) is trained to predict 0,..; (weights of F).

apisn = Hpisn ()\h7 05)7 Gres = Hres(>\h; 9h)7 Upinsn = Mpisn (X; opisn) + F(Xa ares) (7)

3 Experiments

3.1 Kovasznay flow (Navier Stokes)

Kovasznay flow is a laminar flow governed by two-dimensional steady state Navier-Stokes equation.
It’s governing equations and true analytical solutions are mentioned in Table [6] We obtain the
boundary conditions from the exact solutions mentioned in Table[6] The governing equations and
boundary conditions are parameterizeed by the Reynolds number Re €[100,1000]. We train the
hypernetwork architectures by using 10 equidistant train-tasks. We elaborate on the training process,
hyperparameter details and the mean-L2-Error results in Appendix[A.4.1]

3.2 Two-dimensional coupled viscous Burger’s equation

The two-dimensional coupled viscous Burger’s equation is used to model various physical phenomena
like shock-wave propogation, turbulence, sedimentation, etc, whose governing equations and true
analytical solutions are defined in Table[9} We consider the range of viscosity coefficient v €[le-3,le-
2] as parameter A for governing equations. In order to capture the dynamics in every sub-domain,
we provide sub-domainwise comparative results for one test-task in Appendix and figures
451671 Additional information regarding pointwise mean-L2-error results, training schedule and
hyperparameter details are mentioned in Appendix



Table 2: 2D Burger’s: Pointwise-Max-L2-Error viz-a-viz exact analytical solution

Hypernetwork Vanilla
v (1e-3) Architecture X-velocity Y-velocity X-velocity  Y-velocity
PINN 7.65¢e-4 5.96e-3 7.55e-4 3.11e-3
2.2 PISN 7.61e-3 6.98e-3 6.91e-3 3.96e-3
PINSN 1.95e-5 2.21e-4 3.14e-5 3.96e-5
PINN 8.82e-4 2.18e-2 5.85e-4 4.37e-2
43 PISN 1.33e-3 1.19e-2 3.97e-2 1.93e-2
PINSN 1.45e-4 1.67e-4 9.23e-5 1.69¢-3
PINN 3.38¢e-4 3.71e-2 3.28e-4 3.70e-2
5.8 PISN 4.99¢-3 7.05e-2 4.98e-3 7.04e-2
PINSN 4.17e-5 7.25e-3 3.61e-5 7.21e-3
PINN 8.45¢e-3 8.22e-3 8.44e-3 8.21e-2
7.5 PISN 2.73e-2 4.36e-2 2.73e-2 4.35e-2
PINSN 2.94e-5 4.05e-3 2.73e-4 4.07e-4
PINN 3.93e-3 8.71e-3 3.92e-3 8.65¢e-3
9.3 PISN 4.65e-3 2.56e-2 4.64e-3 2.55e-2
PINSN 2.25e-4 7.57e-4 1.92¢-4 6.46e-4

4 Observations

We compare PISN with state-of-the-art Symbolic Regression methods in Appendix [A.3] From table
M] we observe AI-Feynman [5]] produces exact symbolic expressions for simpler examples, as the
simplifying properties are easier to capture, but struggles for complex examples. SymbolicGPT [7] on
the other hand fails to capture symbolic expressions even for simpler PDE setups without any noisy
inputs. Multivariate Symbolic Function Learner (MSFL) [17] performs better than SymbolicGPT
and provides reasonably accurate solutions for simpler PDEs setups, however they fail to scale up
to complex examples, as they are constrained by numerical approximations. We observe, our PISN
architecture outperforms all the benchmark methods for complex examples. We compare PISN to
alternative symbolic differentiable program architecture methods in Table 5] We observe, PISNs
outperform MSFL+Autograd on all tasks, and on an average, is 36.5 times better on the ratio of
max-error of PISN and MSFL+Autograd. PISNs also have 1.2 times lower error than differentiable
program architecture method proposed in [[L1]], despite having lower number of parameters.

Tables[T]and [2] shows the results for Kovasznay flow and coupled-Burger’s equations respectively. We
provide one illustrative example for Navier Stokes and it’s corresponding error maps in Figures|2|and
[3] For all examples across both the experiments, the difference of errors between a PISN architecture
and it’s corresponding PINN architecture is less than that of an order. This same observation holds for
HyperPISNs, Domain-decomposed-PISNs, and Domain-decomposed-HyperPISNs, which implies
recent-advances in PINNs can be combined with PISNs.

When we compare the performance of HyperPISN with PISN we observe ratio of maximum error is
on average less than 2 for the 2D Burger’s equations and less than 4.1 for Kovasznay Flow equations.
The increase in ratio of error in case of Kovasznay Flow can be largely attributed to case of Re
equal to 125 where the ratio of error averaged across the 3 outputs is 9.6, which is still within an
order of magnitude. We can therefore say that HyperPISNs are hyper symbolic solvers that can
generalize across complex parameterized PDEs without the need for training on every value of A. Its
not straightforward to conceive such a generalization for other symbolic solvers.

We observe PINSN outperform PINN and PISN by 2-3 orders of magnitude across all tasks, and this
observation further extends to HyperPINSN, Domain-decomposed-PINSN, and Domain-decomposed-
HyperPINSN. This implies adding a MLP operator to the grammar is highly advantageous, as that
MLP operator is capable of capturing the residues of underlying symbolic expression. We provide
an illustrative example for 1 Burger’s equation test-case in Figures[d] 5] [6l[7] We notice, for every
subdomain, PINSNs capture the residues from PISNs and have lower error magnitudes than PINNs
from the error heat-maps.



5 Limitations and Future Work

Our current setup for PISN suffers from training-collapse when we use operators which drastically
change the symbolic expression search space e.g. division, logarithm, which restricts the choice of
operators. This leads to our current expressions being long and cumbersome. For better interpretability
of mathematical expressions, crisper analytical solutions are necessary. Hence, in future, we seek to
explore techniques that incorporate additional operators.

6 Broader Impact

Modeling of a real world phenomenon in terms of differential equations is often an iterative process.
In this context, symbolic solutions not only lend themselves to increased interpretability but also
allow for a human in the loop discovery of solutions of PDEs. We imagine that domain experts and
scientist could often guess some approximate behavior of the solution. This can be used to constrain
or initialize the weights of the symbolic network.
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A.5 Additional Differential Equations
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A.5.2 Two-dimensional Burgers: conservation equation

* A.6 Sample Mathematical Expressions generated for experiments in section A.3

* A.7 Impact of L-BFGS Optimizer and increasing the depth of Symbolic Network

A.1 Preliminaries
A.1.1 Physics-Informed Loss
We consider Partial Differential Equations of the form
Nz, t,u(z,t)] =0,t € [0,T],2 € Q (8)

Where N is a non-linear differential operator consisting of space and time derivatives, x and t refer to
the spatial and temporal variables respectively. All the three architectures, PINN, PISN and PINSN
employ a physics-informed loss to learn their respective parameters which is defined as follows:

L(#) = Lphysics(0) + Lipc(8) + Linc(0) + Lpc(0) )



where,
du(ze,te) du(ze,te)

LPh sics(e) = N(u(xcatc)axmtca ) 7~'~)2 (103)
Y mcgec dt dx
Lipo(0) = Y (u(@:,0) = f(x:))? (10b)
z;,€IDC
- au(xl, 0) 2
Lie(®) = Y (5= —g() (10¢)
z, €INC
Lpc(0) = > (w(@be,ti) = h(@per,))’ (10d)
Tpe,t; EBC

C represents the set of collocation points on which the Physics-loss is calculated. IDC, INC,
BC represents the set of points at which Initial Dirichlet Conditions, Initial Neumann Conditions
and Boundary Conditions are evaluated. \;, where i € 1,2,3,4 are scalers which are user-defined
hyperparameters used to control the loss function. All the three networks, PINN, PISN and PINSN
employ physics-informed loss to train their respective architectures. In case of PINN, 6 represents
the weights of the neural network, whereas for PISN and PINSN, 6 represents the weights of the
continuous approximation of rules defined by context-free grammar.

A.1.2 HyperPINN

Fillipe et al. in [13]] introduced HyperPINNs to solve for parameterized differential equations (Lorenz
System and one-dimensional Burger’s equation).

em = Hpinn(Ay Hh), upinn(x; t) = Mpinn(xy tv em) (1 1)
HyperPINN consists of two components, a hypernetwork H,;,,,, and a main-network Mp;nn. Hpinn
takess in task parameterization A, as input and outputs the weights of the main-network 6,,. 6,, is
directly supplied to the main-network for evaluating the solutions of the differential equation w,;,.

We use different values of A to sample tasks and train the hypernetwork, but show generalization to
unseen value of A.

A.2 Extrapolation Failure of MLPs

In this section, we illustrate the extrapolation properties of MLPs for various well-known primitive
functions. We consider a MLP with 6 hidden layers, 20 neurons each, considering 100,000 training
points within the domain. Training domain extents for each function are - linear: [-1,1], exp:[1,3],
log:[4,8], sin:[—57/8,57/8]. Blue and orange lines in Figure [I|denote the true function and the

Figure 1: Extrapolation failure of MLPs for well-known primitive functions

f(x)=x f(x)=exp(x) f(x)=log(x) f(x)=sin(x)
150 A 1 —~
2.5 21 —
100 A / /
0.0 | / 4 01
/ 50 0 \
-2.54 /
0= -2

extrapolation by MLPs respectively. While MLPs have excellent interpolation properties, they are
astonishingly poor extrapolators.

A.3 PISN Vs Symbolic Regression Solvers

In this section, we compare PISN to existing state-of-the-art Symbolic Regression solvers. Al-
Feynman [5] comprises simplifying properties of the functions of interest such as symmetry, compo-
sitionality and separability among others, to discover the symbolic expressions. SymbolicGPT [[7]



Table 3: PDE information for ablation experiments

B.C. u(x,0) wu(x,0) True Solution
Wave: u(0,t) =0 ) . .
it — s u((ﬂ,t)) —0 0 sin(z)  sin(z)sin(t)
Heat: u(0,t) =0 . . _
Uy = 1o u((ﬂ,t)) _ 0 sin(z) - sin(x)e™*

Fokker-Plank-1:

Up = Uy + Ugy ) T ) (z+1)

Fokker-Plank-2:

Ut = Pz + oz _ _ t
p(z,t) = u(x,t) xx . re
q(x,t) = u(x,t) * 22

Fokker-Plank-3:

Ut = Pz + Gaz _ t

p(z,t) = —u(z,t) * (x + 1) z+1 (@ +1)e

q(z,t) = u(x,t) * 2% * et
Table 4: PISN comparison with existing benchmarks
AI-FN AI-FN SGPT SGPT MSFL PISN
(PINN) (PINN)

Wave Exact  3.52e-7 1.24 1.38 1.35e-4  2.41e-7
Heat Exact  2.98¢-9 2.18 8.41 1.18e-4  2.99e-7
FP-1 Exact 1.68¢-8 7.70e-2 6.16 1.26e-6  1.09e-9
FP-2 Exact  2.58e-7 6.36 2.85 1.74e-4  1.14e-7
FP-3 Exact  4.26e-6 6.35 9.18 8.86e-3  7.71e-7
NS (u) 0.21 5.71 091 0.84 1.29¢-2  1.03e-6
NS (v) 1.00 1.70e+3 3.23 7.77 2.45e-2  3.72e-6

NS (P) 5.43e-9 6.02¢4 2.96 12.24  7.17e-2  5.0le-6
Burger’s (u) 1.07e+3 1.52e+3 2.0de+3 4.09¢e+3 1.19¢-1 1.76e-4
Burger’s (v) 1.86e+3 2.45e+3 1.53e+3 3.90e+3 5.82e-2 1.77e-4

is a generative-transformer based language model to generate mathematical expressions based on a
given set of input-output values. Panju et al. in [[17] developed a Multivariate Symbolic Function
Learner (MSFL) to generate parse-trees, which can be used to extract mathematical expressions.
While their Taylor-series approximations provide reasonably accurate approximations for lower
order derivatives, they deteriorate for higher order and multivariate derivatives. On the other hand,
Automatic differentiation [18]] provides accurate derivatives even for higher order and multivariate
derivatives. Hence, for our PISN architectures, we use automatic differentiation to approximate the
physics-informed loss. Table [3]shows the PDE problem setups for the additional experiments taken
from [17] (used to benchmark MSFL).

Table 5: Comparison of Symbolic differentiable program architecture methods

MSFL Program

(Autograd) PISN Architecture in [[11]]
Wave 3.52e-6 2.41e-7 1.59e-7
Heat 8.84¢e-6 2.99¢-7 2.26e-7
FP-1 5.37e-8 1.09¢-9 2.84e-9
FP-2 4.51e-6 1.14e-7 1.58e-7
FP-3 4.24e-5 7.71e-7 6.96e-7
NS (u) 9.65e-5 1.03e-6 2.05e-6
NS (v) 291e-4 3.72e-6 1.95e-6
NS (P) 1.95e-5 5.01e-6 5.53e-6
Burger’s (u) 9.36e-4 1.76e-4 1.91e-4
Burger’s (v) 5.57e-4 1.77e-4 1.85¢e-4




Table 6: Navier-Stokes: Kovasznay Flow PDE Information

Governing Differential Equations True Analytical solutions

Uy + vy =0 u(z,y) = 1 — e cos(27y)

Uk Uy + 0% Uy = =Py + (Ugw + Uyy)/Re  v(z,y) = NeMsin(2my) /2w
U vy +Ux Uy = —py + (Vaw + Vyy)/Re p(z,y) = (1 —e*7)/2

Experiment Design: SymbolicGPT and Al-Feynman seek to fit mathematical expressions, given
a set of input-output pairs. Since PDEs don’t have labelled data, we use a PINN to generate input-
output pairs over the entire domain. Since the input-output pairs are generated from outputs of
a MLP, they are noisy. We then pass these data points as input to Al-Feynman and pre-trained
SymbolicGPT models to extract the symbolic expression. As an additional benchmark, we also
consider noiseless samples by generating the input-output pairs directly from the ground-truth
analytical expression. Table ] consists the pointwise-mean-L2-error results, wherein NS refers to
2D Navier-Stokes: Kovasznay flow result for Reynolds number Re=475, and Burger’s refers to two-
dimensional coupled viscous Burger’s equation for v = 4.3e — 3. The true analytical solutions for
the PDE:s are referred to from tables 3] [6|and[0] We display the expressions generated by AI-Feynman
and SymbolicGPT, and for 1 Navier-Stokes test-case in Appendix [A.6] We use publicly available
Al-Feynman and SymbolicGPT pretrained-models for conducting the experiments in this section.

Table 5|shows the comparison between differentiable symbolic regression architectures. We note, per-
formance of MSFL architectures improves by 2-3 orders of magnitude when physics-loss is computed
using automatic differentiation as against a Taylor series approximation. Differentiable programmable
architectures refers to [11]], which has a higher representation capacity as # Parameters increase
exponentially with depth. We compare the ratio of mean-errors of PISN with MSFL+Autograd, and
observe that on an average, PISN's are 36.5 times better than MSFL+Autograd, and PISNs superiority
is attributed by it’s significantly better performance in complex examples. Furthermore, the wave
equation has a true solution of sin(z)sin(t), which our PISN cannot exactly represent. Yet, our
PISN architecture has a very low error of 2.41e-7, indicating the possibility to generate excellent
approximations to complex PDEs which have no analytical solutions.

A.4 Additional Results and Training details
A.4.1 Kovasznay Flow (Navier Stokes)

Table[6|represents the differential equations and true analytical solutions of Kovasznay flow (Navier
Stokes). Here, the first equation represents the conservation of mass balance, while the second and
third equations represent momentum transfer equations in X and Y dimension respectively. We
consider a 101x101 equally spaced grid domain to represent the XY plane, where X, Y €[-0.5,1.0]X[-
0.5,1.5]. We consider 2601 collocation points and 320 boundary condition points, with 80 points for
each face of the grid. We consider 10 train-tasks equally spread out across the task parameterization
space, 5 validation tasks to avoid meta-overfit and 5 test tasks for evaluation. We train all experiments
for 125k epochs. Remaining hyperparameter details are mentioned in Table([§]

A4.2 2D Coupled Burger’s Equation

Table 9 represents the governing differential equations and true analytical solutions of 2D-Coupled
Burger’s equation. The two differential equations represent momentum equations in X and Y
directions. For modeling the temporal component, we consider a timestep interval of 0.1 for ¢ € [0, 1].
The solution space is decomposed into 12 components by splitting the grid at X = [0.4,0.8] and
Y = [0.25,0.50,0.75] , whose respective MLP architectures and residual points are mentioned
in Table Remaining training details are identical to that used for Kovasznay flow. Table
represents the mean-L2-error results for the tasks considered in Section [3.2] Tables [13] and [I2]
represent domainwise mean-L2-error and max-L2-error results for v = 4.3e — 3 respectively. All
experiments were conducted on Nvidia P100 GPU with 16 GB GPU Memory and 1.32 GHz GPU
Memory clock, and Pytorch framework was used.



Table 7: Kovasznay Flow: Pointwise-Mean-L2-error viz-a-viz true analytical solution

Hypernetwork Vanilla
Re  Architecture X-velocity Y-velocity Pressure X-velocity Y-velocity Pressure
PINN 1.76e-6 6.95¢e-7 1.15e-6 4.11e-7 2.0le-6 3.02e-7
125 PISN 5.30e-4 7.53e-5 2.00e-5 5.89%e-5 3.92e-6 6.52e-6
PINSN 1.94e-7 6.06e-7 8.10e-7 1.19e-7 1.04e-7 5.13e-7
PINN 1.97e-6 2.52e-7 1.24e-6 1.08e-6 5.90e-7 1.02e-6
375 PISN 3.18e-5 5.21e-6 3.05e-6 4.65e-6 1.15e-6 1.69¢-6
PINSN 1.38e-7 3.18e-8 2.71e-8 3.66e-7 6.84e-8 4.71e-8
PINN 4.34e-6 3.65e-6 1.40e-6 7.72e-6 1.09e-7 4.88e-7
475 PISN 1.79¢-5 1.97e-6 1.75e-6 1.03e-6 3.72e-6 9.01e-6
PINSN 1.54e-8 2.52¢-8 3.90e-8 2.25e-8 8.14e-8 8.66e-9
PINN 6.31e-7 9.20e-8 1.45e-7 7.22e-8 7.93e-8 3.0le-8
725 PISN 2.27e-5 1.46e-6 1.56e-6 7.74e-5 3.92e-6 1.09e-6
PINSN 1.76e-7 1.00e-8 6.93e-8 1.26e-8 3.36e-9 8.41e-9
PINN 4.21e-6 1.97e-7 3.61e-6 2.53e-6 1.09e-7 4.86e-7
975 PISN 1.08e-5 1.18e-6 7.80e-6 9.00e-6 3.22e-6 9.76e-6
PINSN 6.83e-7 1.02e-8 4.22¢-8 6.40e-8 8.34e-8 2.29e-8
Table 8: Kovasznay flow (Navier-Stokes): Hyperparameter details
Optimizer Starting-lIr v Decay schedule Hidden-layers
PINN Adam le~? 0.1 [40k,80k,120k] [20%6]
PISN Adam le=2 0.1  [25k,50k,75k,100k] Section
PINSN Adam le~* 0.1 [40k,80k,120k] [20%6]
Hypernetworks Adam le—* 0.1 [50k,100Kk] [512%2-256%2-128]

Table 9: Two-dimensional coupled Burger’s equation

Governing Differential Equations

True Analytical solutions

Up + UK Uy + U * Uy =V * (Ugg + Uyy)
U+ UK Uy + U * Uy =V (Ugg + Uyy)

u(z,y,t) =3/4 4+ 1/4(1 + exp|(—4x + 4y — t)/32v
v(z,y,t) =3/4—1/4(1 + exp|[(—4x + 4y — t)/32v

~—

Table 10: Domain-decomposition hyperparameters for 2D-Burger’s Equation

Domain Number Range of X Rangeof Y #Layers #Neurons #Residual Points
1 [0,0.4] [0,0.25] 6 20 1000
2 [0.4,0.8] [0,0.25] 4 20 600
3 [0.8,1.0] [0,0.25] 2 20 400
4 [0,0.4] [0.25,0.5] 6 20 1000
5 [0.4,0.8] [0.25,0.5] 6 20 1000
6 [0.8,1.0] [0.25,0.5] 2 20 600
7 [0,0.4] [0.5,0.75] 4 20 400
8 [0.4,0.8] [0.5,0.75] 6 20 1000
9 [0.8,1.0] [0.5,0.75] 4 20 600
10 [0,0.4] [0.75,1.0] 2 20 400
11 [0.4,0.8] [0.75,1.0] 6 20 1000
12 [0.8,1.0] [0.75,1.0] 6 20 1000
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Figure 2: Navier-Stokes heat-maps for Reynolds Number=475
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Table 11: 2D Burger’s: pointwise-mean-L2-Error viz-a-viz true solution

Hypernetwork Vanilla
v (le-3) Architecture X-velocity Y-velocity X-velocity Y-velocity
PINN 4.17e-5 9.22e-4 1.14e-5 5.44e-4
2.2 PISN 8.53e-4 3.58e-3 2.59¢-4 8.07e-3
PINSN 1.24e-5 4.97e-5 1.19e-5 2.06e-5
PINN 1.33e-5 1.67e-4 1.48e-5 1.39¢-4
4.3 PISN 2.39e-4 1.08e-4 1.76e-4 1.77e-4
PINSN 3.57e-6 1.94e-5 6.51e-6 3.45¢e-6
PINN 4.58e-5 7.72e-4 4.54e-5 7.52e-4
5.8 PISN 7.79-4 8.16e-3 7.78e-4 8.09¢-3
PINSN 6.46e-6 1.15e-4 5.25e-6 S5.17e-5
PINN 8.81e-5 4.61e-4 8.76e-5 4.31e-4
7.5 PISN 9.91e-4 1.98e-3 1.00e-3 1.88e-3
PINSN 1.14e-5 2.19¢-4 1.33e-5 2.42e-4
PINN 5.45e-4 1.15e-4 5.37e-4 7.50e-5
9.3 PISN 1.92e-3 5.19e-3 1.91e-3 5.16e-3
PINSN 1.49e-5 4.42e-5 8.63e-5 3.36e-5

Table 12: Domainwise-Max-L2-Error for 2D Burger’s at v = 4.3e-3

X-velocity Y-velocity

Domain _ PISN _ PINSN _ PINN __ PISN __ PINSN __ PINN

| 5.66e-4 2.36e-5 6.72¢-4 1.62e4 d4.1de-5 2.26e3
2 2.62e-3 1.69e-5 8.82e-4 2.03e-4 4.12e-5 1.82e-4
3 428e-4 5.58e-5 5.56e-4 1.73e-4 4.26e-5 1.72e-4

4 6.62e-6 7.12¢-8 7.02e-8 5.05e-7 6.07e-8 6.23e-6
5 1.05e-5 1.03e-6 2326 1.3le-5 3.12e-6 1.50e-4

Hyoernetwork 6 1.26e-3  6.76e-5 7.19¢-5 7.74e-4 1.64e-5 6.96e-5
M 7 7.26e-3 3.d1e-5 5.7le-4 3.29e-4 1.08e-5 2.96e-4
8 1.98¢-3 1.12e-5 7.2le4 1.1le-4 1.86e-5 1.32e-4

9 133e-2 1.7le-4 55le-4 125¢-5 3.25e-4 8.77e-5

10 5.03e-4 3.38¢-5 3.16e-4 2.72e-5 5.19e-6 2.42e-5

11 1.37e-3  7.47e-5 7.72e-5 4.11e-5 1.28e-6 2.82e-5
12 8.08¢-3 4.42e-5 39le-d 1.19e2 1.95e-4 2.18e-2

I 2.07¢-4 2.03e-5 66led 1.30c4 3.82e-5 2.63¢3

2 5.11e-3 4.71e-5 7.37e-4 2.15e-4 5.54e-5 5.97e-5

3 487e-4 7.02e-5 4984 1.86e-4 1.36e-5 9.6le-5
4 3.17e-6 8.72e-7 7.52e-6 5.28¢-7 4.65e-8 1.44e-7

5 2.43e-5 4.19e-6 836e-6 3.84e-5 6.3le-6 3.88e-5

Vanilla 6 5.56e-3 5.44e-5 7.47e-5 593e-4 7.86e-5 4.52e-5
7 6.09¢-3 4.42e-5 5.52e-4 3.55¢-4 4.9le-5 3.77e-4
8 4.49e-3  2.73e-5 3.89e-4 196e-4 2.06e-5 1.56e-4
9 397e-2  9.16e-5 5.85e-4 1.93e-2 1.66e-3 4.37e-2

10 5.13e-3  1.16e-5 3.26e-5 3.71e-5 5.57e-6 2.81e-5

11 6.8le-4 7.63e-5 5.17e-5 4.24e-5 4.86e-6 3.6le-5

12 2.26e-4 4.82e-5 386e-4 1592 1.7le-4 2.58¢-3
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Table 13: Domain-wise Mean-L2-Error for 2D Burger’s at v = 4.3e-3

X-velocity Y-velocity
Domain  PISN  PINSN  PINN PISN  PINSN  PINN

1 7.07e-5 3.46e-6 3.06e-6 2.02¢e-4 5.19e-6 2.82¢-4
2 1.86e-4 1.37e-6 1.22e-5 1.45e-3 3.04e-5 1.31e-4
3 3.89¢-5 1.64e-6 1.65¢-6 1.17e-5 3.96e-6 1.57e-5
4 5.44e-7 2.21e-8 3.56e-8 4.12¢-8 1.16e-8 59le-7
5 1.89¢e-6 1.11e-7 1.12e-7 1.25e-6 2.54e-7 1.52e-5
Hvpernetwork 6 1.57e-4  9.02e-6 8.42e-6 9.67e-5 1.67e-5 8.70e-4
yp 7 5.58e-4 2.26e-6 2.82e-5 2.53e-4 8.49e-5 227e-4
8 1.65e-4 9.16e-6 9.11e-6 9.21e-5 1.52¢-5 1.11le-4
9 1.10e-3 4.55e-6 5.84e-5 1.03e-4 2.64e-6 7.21e-6
10 6.29¢-5 3.77e-6 4.04e-6 3.36e-6 6.76e-7 3.02e-5
11 1.05e-4 5.89¢-6 5.80e-6 3.14e-6 6.36e-8 2.19¢-7
12 5.77e-4 2.85e-6 2.98e-5 2.84e-3 7.27e-5 3.12¢-4
1 227e-4 1.65e-6 19le-6 2.18e-4 3.74e-6 1.99¢-4
2 1.89¢-4 1.55e-6 5.16e-5 1.07e-3 3.86e-5 4.49e-4
3 3.94e-5 2.93e-6 4.4le-6 1.52¢-5 2.91e-6 8.84e-6
4 8.15e-7 2.52e-8 3.51e-8 7.75¢-8 1.73e-8 3.9le-7
5 5.21e-6 3.56e-7 6.82e-7 1.24e-6 2.22e-7 1.19e-5
Vanilla 6 1.08¢e-4 7.18e-6 5.32e-6 5.52e-5 1.92e-5 4.74e-5
7 2.39¢e-4 1.85e-6 4.59e-5 3.77e-4 6.75e-5 1.97e-4
8 1.12e-4 7.45¢e-6 5.12e-6 5.19¢-5 1.37e-5 1.39¢-4
9 4.18e-4 2.75e-6 1.87e-5 1.36e-4 3.64e-6 5.12e-6
10 8.94e-5 6.12e-6 9.73e-6 1.04e-5 4.43e-7 3.55e-5
11 329-4 9.15¢-6 7.08e-6 5.24e-6 6.97e-8 2.95e-7
12 3.62e-4 2.37e-6 2.84e-5 1.67e-4 7.46e-5 5.76e-4
Table 14: Telegraph Equations: PDE Information
f(x,0) g(x,0) Range  True Solution
Uz Zﬁfiripgu{g.—i— u Ae? —(A+1)e”  [055]  eAw—(AtDe
Telegraph-2: 14 et —A [0232] A" 4 e

Uy = U + 2Au; + A%u

A.5 Additional Differential Equations

A.5.1 Telegraph Equations

Telegraph equations [[19] are a sub-derivative of Maxwell equations, used to capture the variations in
current and voltage which vary both spatially and temporally. Telegraph equations are extensively
used in modeling transmission lines of varying frequencies, radio frequency conductors, telephone
lines, and pulses of direct current. Table [I4] contains the information for parameterized PDEs of
Telegraph equation. Table[T4]represents the PDE information of Telegraph Equations. Initial Dirichlet
and Neumann condition is represented using f(x) and g(x) respectively, with u(x,0)=f(x) and %ﬁ’o)
= g(x). The variable A € R! is used to represent the parameterization of the initial conditions, and
PDE (in Telegraph-2) and the range column defines the range of values A can take. The final column
states the true analytical solution of each of the PDE problems, parameterized by A.

Training Schedule and Hyperparameters: The Telegraph equation is 1-Dimensional = € [0, 1]
and varying in time ¢ € [0, 1]. We consider 2601 points as train-collocation points, and sample 40
initial and boundary condition points respectively. Remaining training schedule details are identical
to previous experiments. Tables[I5]and[I6|represents the mean-L2-error and max-L2-error results for
Telegraph Equations. We observe, (Hyper)PINSNs boost the accuracy by 2-3 orders of magnitude
than (Hyper)PISNs and (Hyper)PINNSs.
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Table 15: Telegraph Equations: Pointwise-Mean-L2-Error Results

Hypernetwork Vanilla
Task  PINN PISN  PINSN  PINN PISN  PINSN
0.7 5.22-5 8.23e4 1.95e-6 4.46e-5 7.87e-4 1.78e-6
1.5 2.3le-5 1.39%-4 2.66e-6 2.02e-5 1.38¢-4 2.45e-6
Telegraph-1 2.4 7.06e-5 1.08e-4 6.17e-6 6.16e-5 1.05e-4 5.62e-6
36 1.58e-5 7.76e-4 3.22e-6 1.33e-5 7.37e-4 2.93e-6
47 5.07e-5 5.19¢e-4 3.59e-6 4.40e-5 5.03e-4 3.36e-6
027 4.74e-4  3.70e-4 3.75e-5 3.88e-4 2.63e-4 3.24e-S
0.51 6.09e-4 7.28e-4 4.51e-5 89le-4 347e-4 3.59-5
Telegraph-2  0.88 2.32e-4 6.24e-4 2.96e-5 1.99¢e-4 2.64e-4 2.66e-5
1.25 4.66e-4 4.77e-4 5.85e-6 3.83e-4 4.39e-4 5.42e-6
1.71  1.10e-4 6.47e-4 3.38e-5 9.00e-4 3.79e-4 2.75e-5
Table 16: Telegraph Equations Pointwise-Max-L2-Error Results
Hypernetwork Vanilla
Task  PINN PISN  PINSN  PINN PISN  NS-PINN
0.7  6.12e-4 1.15e-3 3.79e-6 6.69¢-4 8.66e-3  3.64e-6
1.5 1.85e-4 2.09¢-3 5.30e-6 2.02e-4 1.79¢-3  6.41e-5
Telegraph-1 2.4  7.77e-4 1.62e-3 3.19e-5 5.54e-4 1.47e-3 1.29e-5
36 190e-4 1.0le-3 6.86e-6 1.86e-4 9.58e-3  1.04e-5
4.7 5.58e-4 5.71e-3 7.57e-5 4.84e-4 7.55e-3  1.78e-5
027 6.16e-3 3.70e-3 1.68e-4 3.49e-3 2.37e-3  9.49e-5
0.51 8.53e-3 8.74e-3 1.81e-4 8.02¢-3 52le-3  1.51e4
Telegraph-2  0.88 3.48e-3 5.62e-3 1.63e-4 2.79e-3 2.38e-3  1.48e-4
1.25 559-3 5.25e-3 2.01e-5 3.83e-3 3.95¢-3  1.56e-5
1.71  1.43e-3 9.71e-3 1.71e-4 9.90e-3 53le-3  1.93e-4

A.5.2 2D Burger’s: Conservation Equation

The two-dimensional viscous Burger’s equation in it’s conservation form is given by:

Where p(u) = u?/2 and q(u) = u?/2 are the inviscid fluxes, and v represents the Viscosity
coefficient governing the diffusion component of the PDE. It’s analytical solution is given by

Ug + Pz + Gy = V(U + Uyy)

w(x,y,t) = (1 +exp(x +y—t)/2v)" L

The training schedule and hyperparameter specifications are identical to 2D-Coupled-Burger’s
experiment. The viscosity coefficient v ranges between [5e — 3,5¢ — 2]. Table [17| represents
the results for domain-decomposed-hypernetwork and domain-decomposed-vanilla architectures. We
observe that (Hyper) domain-decomposed-PINSNs outperform (Hyper) domain-decomposed-PINNs

and (Hyper) domain-decomposed-PISNs by 1-2 orders of magnitude.

A.6 Mathematical expressions generated in Appendix[A.J]

Mathematical Expression generated by HyperPISN for Kovasznay flow with Re=475:
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Table 17: Domain Decomposed HyperNetwork Results: 2D Burger’s: Conservation Equation

Hypernetwork Vanilla
v Architecture u-Mean u-Max u-Mean u-Max
PINN 3.71e-4 1.52e-3 3.62e-4 1.52e-3
5.30e-3 PISN 5.48e-4 4.71e-3 5.51e-4 4.71e-3
PINSN 3.25e¢-6 3.19¢-5 1.89¢-6 2.67e-5
PINN 3.15e-5 1.15e-3 2.65e-5 1.15e-3
9.40e-3 PISN 1.15e-4 9.81e-2 1.19e-4 9.81e-2
PINSN 5.09¢-5 3.19¢-4 5.68e-5 3.77e¢-4
PINN 2.24e-4  1.59e-3 2.16e-4 1.58e-3
1.10e-2 PISN 2.29e-4 6.51e-3 2.27e-4 6.50e-3
PINSN 3.81e-5 2.16e-4 4.64e-5 3.81e-4
PINN 8.22e-6 6.65e-4 7.22e-6 6.60e-4
2.30e-2 PISN 5.71e-5 9.22e-4 4.71e-5 9.20e-4
PINSN 2.02e-6 1.07e-5 2.96e-6 1.18e-5
PINN 5.51e-5 3.45e-4 4.8le-5 3.38¢e-4
3.70e-2 PISN 4.38e-4 2.29e-3 4.34e-4 2.28e-3
PINSN 8.85¢-6 1.76e-5 4.24e-6 1.65e-5

Table 18: Expressions generated by Al-Feynman and Symbolic-GPT for PDEs in Appendix [A.J]

Al-Feynman: Noiseless sample points

Al-Feynman: PINN-induced sample points

sin(x)sin(t)
sin(x)exp(—t)

x4+t

zexp(t)
(e + Lexp()
0.94tan(0.38¢cos(3.13sin(3.14x)) — 0.47
1

0.5 — 0.5exp(rx) =02
1.449exp(—0.91z + 2.23¢)

3.774c0s(0.527x)

0.9988sin(x)sin(t)
1.0002 * sin(x)exp(—t)
0.9999z + 1.0001¢
1.0001zexp(t)

0.9998(z + 1.00001 )exp(0.9999¢)
0.95tan(0.52c0s(2.98sin(3.14x)) — 0.66)
4.42exp(x)

0.48 — 0.51exp(3.1312x) 7025
1.594exp(—0.95z + log(3.134x)1.478¢)
2.955sin(1.994mx)

Symbolic-GPT: Noiseless sample points

Symbolic-GPT: PINN-induced sample points

—0.0006l0g(2.449t)° + 1.708
—0.002910g(1.954t)3 + 1.709

0.143z/(1.7122 + 0.320) + 1.796
—0.002910g(1.9547t)3 4+ 1.7095

—0.0006l0g(2.449¢)® + 1.7085
0.007y — 0.075l0g(2016.68y + 926.36) + 1.827

0.139z — 0.0005y — 0.011l0g(1.27y) + 1.757
0.13992 — 0.0112l0g(1.3568y) + 1.757

—0.002910g(1.9547y)3 + 1.709

0.1399z + 0.000410g(0.773y)* + 1.749

—0.0072l0g(3.884t)* + 2.248
0.0052l0g(15.31t)? + 4.241
0.174x/(5.56x + 0.6415)
—0.0115l0g(2.041¢)" — 3.317
—0.0006l0g(2.449t)° + 1.7085
—0.124l0g(125.41y + 2.26) + 1.54
6.65z + 4.41
0.1725x — 0.1256l0g(4.714y) — 6.1042
—0.0048log(5.174y)>
0.1581z + 0.0071log(2.544y)* + 3.314

20



X-velocity is given by:

l; = 0.006x — 2.985y — 0.066

l; = —0.061x + 0.845y + 0.399

l3 =0.017x — 0.876y — 0.614

ly = —0.0032 — 0.713y — 0.501

ls = —0.1222 + 0.055y — 2.458

le = —0.003z + 1.258y — 0.174

hi1 = 0.022x — 0.685y + 0.047sin(ly) — 0.22exp(ly) — 0.182(l5 + 14) + 1.366151s + 0.634
hig = 0.217x — 0.166y — 1.319sin(ly) — 0.496exp(ly) + 0.489(l3 + 14) 4+ 0.01975l6 + 0.051
his = 0.064x + 0.144y — 0.815sin(ly) + 0.194exp(ly) — 0.704(l3 + 14) + 0.721l5ls — 0.011
hia = —0.532z — 0.325y — 0.506sin(l1) — 0.507exp(l2) — 0.653(l3 + 14) + 0.2141516 + 0.134
his = —0.192 + 1.113y — 2.744sin(ly) — 0.401exp(lz) — 0.681(l5 + I4) 4+ 0.467151s — 0.913
hig = 0.001x + 0.462y — 1.720sin(ly) — 0.418exp(ly) — 1.157(l5 + 14) + 0.37615ls — 0.084

w= —0.063z — 0.115y + 1.113sin(h11) + 0.5exp(h12) — 0.365(h13 + h1s) + 0.67hy5h1e — 0.331
(12)

Y-velocity is given by:

l1 =0.027z — 0.078y — 0.008

Il = —0.035z — 0.076y + 0.488

ls = 0.3892 — 0.407y — 0.592

ly = —0.182 + 0.267y + 0.225

ls = —0.048z + 2.071y + 0.218

lg = —0.04x — 1.114y + 0.639

hi11 = 0.0172 — 0.073y + 0.208sin(l1) — 0.088exp(lz) — 0.198(I3 + 14) + 0.87215ls — 0.079

hia = 0.192x — 0.215y + 0.158sin(ly) — 0.332exp(ly) — 0.21(l3 + I4) — 0.757l5ls + 0.067

his = —0.0362 — 0.001y + 0.295sin(l1) + 0.141exp(l2) + 0.098(l5 + 14) — 0.009151s + 0.126

his = —0.122z — 0.11y — 0.043sin(l1) — 0.19exp(l2) + 0.109(l3 + I4) + 0.1371515 + 0.063

his = —0.0752 + 0.257y + 0.128sin(l1) + 0.197exp(lz) + 0.018(l5 + 14) + 0.7691515 + 0.226

hig = 0.148x + 0.167y — 0.138sin(l1) + 0.106exp(la) — 0.319(13 + I4) 4+ 0.764151s + 0.062

v=23e 3z + 0.102y + 02452n(h11) + OlGel’p(}ng) + 3674(h13 + h14) —0.23h15h15 — 0.024
(13)

Pressure is given by:

I1 = —0.177z + 0.766y + 1.469

ly = —0.037x 4 0.018y + 0.588

I3 = 0.032 4 0.296y + 0.623

Iy = 0.458z — 0.142y — 0.492

ls = 0.115x — 0.249y + 0.623

lg = 0.726x — 0.402y + 0.043

hi1 = —0.227z — 0.328y + 0.317sin(l1) — 0.301exp(l2) + 0.176(l3 + 14) + 0.341l5l — 0.192

his = —0.2492 — 0.272y — 0.403sin(l1) + 0.041ezp(ls) — 0.308(5 + Ly) + 0.1221515 — 0.308

his = —0.32 + 0.115y + 0.079sin(ly) + 0.45exp(ly) + 0.229(I5 + Ly) + 0.464l5l5 — 0.151

hig = —0.267z + 0.127y + 0.152sin(l1) + 0.267exp(ls) — 0.308(l3 + I4) + 0.38415l5 — 0.185

his = 0243z — 0.327y — 0.199sin(l1) + 0.325exp(l) + 0.222(13 + 1) — 00881516 + 0.215

hig = —0.0072 — 0.477y + 0.257sin(ly ) + 0.347exp(ls) — 0.09(l5 + Ls) — 0.213l5l6 — 0.005

p = 0.017z — 0.045y — 0.22sin(h11) — 0.22exp(h12) + 0.102(h1s + hia) + 0.163h15h16 — 0.181
(14)

A.7 TImpact of L-BFGS Optimizer and increasing the depth of Symbolic Network

We used Adam Optimizer for our experiments in the main section. L-BFGS is a low memory version
of Broyden—Fletcher—Goldfarb—Shanno algorithm, which is popularly used in PINN-based problems
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due to better convergence guarantees. In this section, we investigate the effects of applying L-BFGS
optimizer on top of Adam Optimizer on one example each of Kovasznay flow and two-dimensional
coupled viscous Burger’s equation.

Table 19: Pointwise-Max-L2-error on Kovasznay flow (Navier-Stokes) with Re=125

Model X-velocity ~ Y-velocity Pressure
PINN 7.74e-7 1.17e-7 7.48e-8
PISN-Depth-2 5.51e-5 7.72e-6 3.46e-6
PISN-Depth-3 2.94e-6 3.53e-7 3.04e-7
PISN-Depth-4 1.54e-6 3.48e-7 3.01e-7
PINSN-Depth-2 6.38e-7 1.08e-8 5.34e-8
PINSN-Depth-3 5.51e-7 7.96e-8 4.45¢e-8
PINSN-Depth-4  5.29e-7 9.48e-7 3.95e-8

Table 20: Pointwise-Max-L2-error on two-dimensional Burger’s equation with v=2.2e-3

Model X-velocity  Y-velocity
PINN 5.87e-5 1.27e-5
PISN-Depth-2 1.07e-3 5.59%e-4
PISN-Depth-3 4.54e-4 3.53e-4
PISN-Depth-4 4.38e-4 3.48e-4
PINSN-Depth-2 5.34e-5 1.19e-5
PINSN-Depth-3 8.46e-6 3.95e-6
PINSN-Depth-4  8.29e-6 4.42¢-6

From Tables [19] and we observe, applying L-BFGS on top of Adam optimizer improves the
accuracy of PINNs by 1-2 orders of magnitude, whereas it improves the accuracy of PISNs and
PINSNs by 1 order of magnitude. Additionally, for all output variables of interest in both the examples,
we observe the accuracy of PISN improves by an order when the depth of the symbolic network is
increased from 2 to 3, whereas there is no substantial improvement on further increasing the depth to
4. This observation further extends to PINSNs, with PINSN of Depth 3 being an order of magnitude
better than PINSN of Depth 2. On an average, the best performing PINSNs are 4.71 and 4.98 times
better than best-performing PINNs on Kovasznay flow (Navier Stokes) and two-dimensional Burger’s
equation respectively.
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