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Abstract

Transfomer-based models have significantly ad-001
vanced natural language processing, in particu-002
lar the performance in text classification tasks.003
Nevertheless, these models face challenges in004
processing large files, primarily due to their in-005
put constraints, which are generally restricted006
to hundreds or thousands of tokens. Attempts007
to address this issue in existing models usually008
consist in extracting only a fraction of the es-009
sential information from lengthy inputs, while010
often incurring high computational costs due011
to their complex architectures. In this work,012
we address the challenge of classifying large013
files from the perspective of correlated multiple014
instance learning. We introduce LaFiCMIL, a015
method specifically designed for large file clas-016
sification. LaFiCMIL is optimized for efficient017
operation on a single GPU, making it a versatile018
solution for binary, multi-class, and multi-label019
classification tasks. We conducted extensive ex-020
periments using seven diverse and comprehen-021
sive benchmark datasets to assess LaFiCMIL’s022
effectiveness. By integrating BERT for fea-023
ture extraction, LaFiCMIL demonstrates excep-024
tional performance, setting new benchmarks025
across all datasets. A notable achievement of026
our approach is its ability to scale BERT to027
handle nearly 20 000 tokens while operating028
on a single GPU with 32GB of memory. This029
efficiency, coupled with its state-of-the-art per-030
formance, highlights LaFiCMIL’s potential as031
a groundbreaking approach in the field of large032
file classification.033

1 Introduction034

Text classification is a fundamental task in Nat-035

ural Language Processing (NLP), entailing the036

assignment of suitable label(s) to specific input037

texts (Kowsari et al., 2019; Premasiri et al., 2023).038

This process is crucial across various domains,039

including sentiment analysis (Dang et al., 2020),040

fake news detection (Kumar et al., 2020), and of-041

fensive language identification (Ranasinghe and042

Zampieri, 2020), among others. Recent years have 043

seen the emergence of self-attention-based models 044

like Transformer (Vaswani et al., 2017), GPT (Rad- 045

ford et al., 2018, 2019), and the BERT family (De- 046

vlin et al., 2018; Feng et al., 2020; Sun et al., 2023), 047

which have established state-of-the-art benchmarks 048

in text classification tasks. However, the challenge 049

of processing very long documents remains a sig- 050

nificant obstacle, largely due to the high computa- 051

tional requirements of these models when facing 052

extremely large number of tokens. 053

There are mainly two types of solutions in the lit- 054

erature to address long token sequences: ① extend- 055

ing the input length limit using a sparse attention 056

mechanism, such as Longformer (Beltagy et al., 057

2020), and ② dividing long documents into seg- 058

ments and recurrently processing the Transformer- 059

based segment representations, such as RMT (Bu- 060

latov et al., 2022, 2023). Nevertheless, they either 061

struggle with handling extremely long sequences, 062

as with Longformer, or suffer from information 063

loss across the recurrent processing of segments, 064

as with RMT. 065

In this work, we leverage Multiple Instance 066

Learning (MIL) to tackle the problem of large file 067

classification. MIL deals with a bag of instances 068

for which only a single bag-level label is assigned, 069

while instance-level labels remain unknown. Fur- 070

thermore, the number of instances in each bag is 071

undetermined, necessitating a flexible MIL model 072

capable of accommodating input bags with varying 073

instance counts. Recently, MIL has been success- 074

fully applied to computer vision problems, particu- 075

larly whole slide image classification (Shao et al., 076

2021; Zhang et al., 2022). This inspired us to lever- 077

age MIL to address the large file classification prob- 078

lem. 079

We introduce LaFiCMIL, a simple yet effec- 080

tive Large File Classification approach based on 081

correlated Multiple Instance Learning. On the one 082

hand, as proven in Theorem 1 (cf., Section 3), a 083
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MIL score function for a bag classification task can084

be approximated by a series of sub-functions of085

the instances. This inspires us to split a large file086

into smaller chunks and extract their features sepa-087

rately using BERT. On the other hand, we aim to088

guide the model to learn high-level overall features089

from all instances, rather than deriving the final090

bag prediction from instance predictions based on091

a simplistic learned projection matrix. In addition,092

in contrast to the basic version of MIL (Ilse et al.,093

2018), where instances within the same bag ex-094

hibit neither dependency nor ordering among one095

another, we claim that the small chunks from the096

same large file are correlated in some way (e.g., se-097

mantic dependencies in paragraphs). This implies098

that the presence or absence of a positive instance099

in a bag can be influenced by the other instances100

contained within the same bag. As a result, rely-101

ing on our computationally efficient LaFiAttention102

layer, our approach is capable of efficiently extract-103

ing correlations among all chunks as additional104

information to boost classification performance.105

In our evaluation, LaFiCMIL consistently106

achieved new state-of-the-art performance across107

all seven benchmark datasets, especially when108

tested with long documents in the evaluation sets.109

A notable highlight is LaFiCMIL’s performance on110

the full test set of the Paired Book Summary dataset,111

where it demonstrated a significant 4.41 percent-112

age point improvement. This dataset is especially113

challenging as it contains the highest proportion114

of long documents, exceeding 75%. Furthermore,115

LaFiCMIL also distinguished itself by having the116

fastest training process compared to other baseline117

models.118

The contributions of our study are as follows:119

• We introduce, LaFiCMIL, a novel approach120

for large file classification from the perspec-121

tive of correlated multiple instance learning.122

• The training of LaFiCMIL is super efficient,123

which requires only 1.86× training time than124

the original BERT, but is able to handle 39×125

longer sequence on a single GPU.126

• We perform a comprehensive evaluation, il-127

lustrating that LaFiCMIL achieves new state-128

of-the-art performance across all seven bench-129

mark datasets.130

• We share the datasets and source code to131

the community at: https://anonymous.4open.132

science/r/LaFiCMIL-ARR-666P133

2 Related Work 134

2.1 Large File Classification 135

In recent years, significant efforts have been made 136

to alleviate the input limit of Transformer-based 137

models to handle different types of large files. One 138

notable example is Longformer (Beltagy et al., 139

2020), which extends the limit to 4096 tokens us- 140

ing a sparse attention mechanism (Zaheer et al., 141

2020). CogLTX (Ding et al., 2020) chooses to iden- 142

tify key sentences through a trained judge model. 143

Alternatively, ToBERT (Pappagari et al., 2019) and 144

RMT (Bulatov et al., 2022, 2023) segment long 145

documents into fragments and then aggregate or re- 146

currently process their BERT-based representations. 147

Recently, two simple BERT-based methods pro- 148

posed in (Park et al., 2022) achieved state-of-the-art 149

performance on several datasets for long document 150

classification. Specifically, BERT+Random selects 151

random sentences up to 512 tokens to augment the 152

first 512 tokens. BERT+TextRank augments the 153

first 512 tokens with a second set of 512 tokens 154

obtained via TextRank (Mihalcea and Tarau, 2004). 155

They also provide a comprehensive evaluation to 156

compare the relative efficacy of various baselines 157

on diverse datasets, which revealed that no single 158

approach consistently outperforms others across 159

all six benchmark datasets, encompassing different 160

classification tasks such as binary (Kiesel et al., 161

2019), multi-class (Lang, 1995), and multi-label 162

classification (Bamman and Smith, 2013; Chalkidis 163

et al., 2019). 164

One potential reason for the limited performance 165

of existing approaches is that they do not fully 166

leverage the information available in large files, re- 167

sulting in only partial essential information being 168

captured. In this paper, we explore the possibility 169

of utilizing the complete information from large 170

files to improve the performance of various classi- 171

fication tasks. 172

2.2 Multiple Instance Learning 173

Multiple Instance Learning (MIL) has attracted 174

increasing research interests and applications in re- 175

cent years. The application scenarios of MIL span 176

across various domains (Ji et al., 2020; Song et al., 177

2019; Hebbar et al., 2021), but the most prominent 178

one is Medical Imaging and Diagnosis. Particularly, 179

there has been a growing trend towards develop- 180

ing MIL algorithms for medical whole slide image 181

analysis (Kanavati et al., 2020; Xu et al., 2019). 182

These MIL models can generally be categorized 183
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into two groups based on whether the final bag184

predictions are derived directly from instance pre-185

dictions (Feng and Zhou, 2017; Lerousseau et al.,186

2020; Lu et al., 2021a; Sharma et al., 2021) or from187

aggregated instance features (Li et al., 2021; Shao188

et al., 2021; Zhang et al., 2022). For the first group,189

bag predictions are typically achieved through ei-190

ther average pooling or maximum pooling. In con-191

trast, the second group learns a high-level repre-192

sentation of a bag and constructs a classifier on193

top of this bag representation for bag-level predic-194

tions. Although instance-level probability pooling195

is simple and straightforward, empirical evidence196

has demonstrated that it is less effective than its bag197

embedding counterpart (Wang et al., 2018; Shao198

et al., 2021).199

Furthermore, the fundamental assumption of200

Multiple Instance Learning (MIL) postulates that201

instances within a bag are independent of each202

other, a supposition that may not hold true in prac-203

tical applications. Consequently, some researchers204

have endeavored to explore scenarios wherein in-205

stances within a bag exhibit correlations or depen-206

dencies, a concept referred to as Correlated Multi-207

ple Instance Learning (c-MIL) (Zhou et al., 2009;208

Zhang, 2021; Shao et al., 2021). This suggests that209

the presence or absence of a positive instance in a210

bag could be affected by other instances in the same211

bag. Nevertheless, applying c-MIL to solve large212

file classification problems beyond whole slide im-213

age classification remains under-explored.214

3 Technical Preliminaries215

In this section, we describe several essential techni-216

cal preliminaries, which underpin and inform the217

development of LaFiCMIL. We first present a pair218

of theorems that substantiate the foundation of our219

approach, the fundamental principles of Correlated220

Multiple Instance Learning (c-MIL).221

Theorem 1. Suppose S : χ → R is a continu-222

ous set function w.r.t Hausdorff distance1 dH(., .).223

∀ε > 0, for any invertible map P : χ → Rn, ∃224

function σ and g, such that for any set X ∈ χ:225

|S(X)− g(PX∈χ{σ(x) : x ∈ X})| < ε (1)226

The proof of Theorem 1 can be found in (Shao227

et al., 2021). From this theorem, we can conclude228

that a Hausdorff continuous set function S(X)229

can be arbitrarily approximated by a function in the230

form g(PX∈χ{σ(x) : x ∈ X}). This insight can231

1https://en.wikipedia.org/wiki/Hausdorff_distance

be applied to MIL, as the mathematical definition 232

of sets in the theorem is equivalent to that of bags 233

in MIL framework. Consequently, the theorem pro- 234

vides a foundation for approximating bag-level pre- 235

dictions in MIL using instance-level features. 236

Theorem 2. The instances in the bag are repre- 237

sented by random variables θ1, θ2, ..., θn, the infor- 238

mation entropy of the bag under the correlation 239

assumption can be expressed as H(θ1, θ2, ..., θn), 240

and the information entropy of the bag under the 241

i.i.d. (independent and identical distribution) as- 242

sumption can be expressed as
∑n

t=1H(θt), then 243

we have: 244

H(θ1, θ2, ..., θn) =

n∑
t=2

H(θt|θ1, θ2, ..., θt−1) +H(θ1)

≤
n∑

t=1

H(θt)

(2)

245

The proof of Theorem 2 can be found in (Shao 246

et al., 2021). This theorem demonstrates that the 247

information entropy of a bag under the correlation 248

assumption is smaller than the information entropy 249

of a bag under the i.i.d. assumption. The lower in- 250

formation entropy in Correlated Multiple Instance 251

Learning (c-MIL) suggests reduced uncertainty and 252

the potential to provide more valuable information 253

for bag classification tasks. In Section 4.1, we in- 254

troduce c-MIL, and in Section 4.2, we derive the 255

efficient LaFiCMIL, which learns and exploits cor- 256

relations among instances to address large file clas- 257

sification problem. 258

In the remainder of this section, we present the 259

necessary preliminaries for our efficient attention 260

layer inspired by the Nyströmformer (Xiong et al., 261

2021), referred to as LaFiAttention in the follow- 262

ing discussion, which performs as a sub-function 263

within our proposed LaFiCMIL. 264

In the original Transformer (Vaswani et al., 265

2017), an input sequence of n tokens of dimensions 266

d, X ∈ Rn×d, is projected using three matrices 267

WQ ∈ Rn×dq , WK ∈ Rn×dk , and WV ∈ Rn×dv , 268

referred as query, key, and value respectively with 269

dk = dq. The outputs Q,K, V are calculated as 270

Q = XWQ, K = XWK , V = XWV (3) 271

Therefore, the self-attention can be written as: 272

D(Q,K, V ) = SV = softmax(
QKT√

dq
)V (4) 273

Then, the softmax matrix S used in self-attention 274

can be written as 275
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S = softmax(
QKT√

dq
) =

[
AS BS

FS CS

]
(5)276

where AS ∈ Rm×m, BS ∈ Rm×(n−m), FS ∈277

R(n−m)×m, CS ∈ R(n−m)×(n−m), and m < n.278

In order to reduce the memory and time com-279

plexity from O(n2) to O(n), LaFiAttention ap-280

proximates S by281

Ŝ = softmax(
QK̃T√

dq
)A+

S softmax(
Q̃KT√

dq
), (6)282

where Q̃ = [q̃1; ...; q̃m] ∈ Rm×dq and K̃ =283

[k̃1; ...; k̃m] ∈ Rm×dq are the selected landmarks284

for inputs Q = [q1; ...; qn] and K = [k1; ...; kn],285

A+
S is the Moore-Penrose inverse2 of AS .286

Lemma 1. For AS ∈ Rm×m, the sequence287

{Zj}j=∞
j=0 generated by (Razavi et al., 2014),288

Zj+1 =
1

4
Zj(13I−ASZj(15I−ASZj(7I−ASZj))) (7)289

converges to Moore-Penrose inverse A+
S in the290

third-order with initial approximation Z0 satisfying291 ∥∥ASA
+
S −ASZ0

∥∥ < 1.292

LaFiAttention approximates A+
S by Z∗ with293

Lemma 1. Following the empirical choice294

from (Xiong et al., 2021), we run 6 iterations in295

order to achieve a good approximation of the pseu-296

doinverse. Then, the softmax matrix S used in self-297

attention is approximated by298

Ŝ = softmax(
QK̃T√

dq
)Z∗softmax(

Q̃KT√
dq

). (8)299

4 Approach300

In this section, we first introduce customized c-301

MIL for large file classification and then provide302

technical details about our LaFiCMIL approach.303

4.1 Correlated Multiple Instance Learning304

Unlike traditional supervised classification, which305

predicts labels for individual instances, Multiple306

Instance Learning (MIL) predicts bag-level labels307

for bags of instances. Typically, individual instance308

labels within each bag exist but inaccessible, and309

the number of instances in different bags may vary.310

In the basic MIL concept (Ilse et al., 2018), in-311

stances in a bag are independent and unordered.312

However, correlations may exist among instances313

2https://en.wikipedia.org/wiki/Moore-Penrose_inverse

within a bag, where the presence or absence of 314

a positive instance can be influenced by other in- 315

stances. In fact, when formulating large file clas- 316

sification as a MIL problem, correlations among 317

instances can be found due to the presence of se- 318

mantic dependencies between paragraphs. Accord- 319

ing to Theorem 2, these correlations can be ex- 320

ploited to reduce uncertainty in prediction. In other 321

words, this relationship can be leveraged as ad- 322

ditional information to boost the performance of 323

long document classification tasks. We provide the 324

mathematical definition of the Correlated Multiple 325

Instance Learning (c-MIL) below. 326

c-MIL Formulation 327

Here, we consider a binary classification task of 328

c-MIL as an example. Given a bag (i.e., a large 329

file) Xi composed of instances (i.e., small chunks) 330

{xi,1, xi,2, ..., xi,n}, for i = 1, ..., N , that exhibit 331

dependency or ordering among each other. The 332

bag-level label is Yi, yet the instance-level labels 333

{yi,1, yi,2, ..., yi,n} are not accessible. Then, a bi- 334

nary classification of c-MIL can be defined as: 335

Yi =

{
0, if

∑
yi,j = 0 yi,j ∈ {0, 1}, j = 1, ..., n

1, otherwise
(9) 336

Ŷi = S(Xi), (10) 337

where S is a scoring function, and Ŷ is the pre- 338

dicted score. N is the total number of bags, and 339

n is the number of instances in the ith bag. The 340

number n generally varies for different bags. 341

4.2 LaFiCMIL 342

According to Theorem 1, we leverage Multi-layer 343

Perceptron (Rumelhart et al., 1986), BERT (Devlin 344

et al., 2018), LaFiAttention Layer and Layer Nor- 345

malization (Ba et al., 2016) as sub-functions to 346

approximate the c-MIL score function S defined 347

in Equation 10. 348

Given a set of bags {X1, ..., XN}, where each 349

bag Xi contains multiple instances {xi,1, ..., xi,n}, 350

a bag label Yi, and a randomly initialized category 351

vector xi,category. The goal is to learn the maps: 352

X → T → γ, where X is the bag space, T is the 353

transformer space and γ is the label space. The map 354

of X → T can be defined as: 355

X0
i =[xi,category; f(xi,1); ...; f(xi,n)]

+ Epos, X0
i , Epos ∈ R(n+1)×d

(11) 356

357
Ql = Xl−1

i WQ, Kl = Xl−1
i WK , V l = Xl−1

i WV ,

l = 1, ..., L
(12)

358
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Figure 1: The LaFiCMIL framework processes large files for classification. Initially, document chunks are trans-
formed into embedding vectors using BERT. A learnable category vector is then concatenated to these embeddings
to form an augmented bag X0

i with n′ = n + 1 instances. The LaFiAttention layer captures the inter-instance
correlations within X0

i . Operations within this layer, such as matrix multiplication (×) and addition (+), are specified
alongside the variable names and matrix dimensions. Key processes include sMEANS for landmark selections
similar to (Shen et al., 2018), pINV for pseudoinverse approximation, and DConv for depth-wise convolution.
Classification is completed by passing the learned category vector through a fully connected layer.

where function f is approximated by a pre-trained359

BERT model, Epos is the Positional Embedding ,360

and L is the number of MSA block.361

head = LaFiSA(Ql,Kl, V l)

= softmax(
Ql(K̃l)T√

dq
)Z∗lsoftmax(

Q̃l(Kl)T√
dq

)V l,

(13)

362

363
MSA(Ql,Kl, V l) = Concat(head1, ..., headh)WO,

(14)364365
Xl

i = MSA(LN(Xl−1
i )) +Xl−1

i , l = 1, ..., L (15)366

where WO ∈ Rhdv×d, head ∈ R(n+1)×dv ,367

LaFiSA denotes the approximated Self-attention368

layer by Nyström method (Baker, 1977) accord-369

ing to Equation 8, h is the number of head in each370

MSA block, and Layer Normalization(LN) is ap-371

plied before each MSA block.372

The map of T → γ can be simply defined as:373

Yi = MLP (LN((XL
i )

(0))), (16)374

where (XL
i )

(0) represents the learned category vec-375

tor, and MLP means Multi-layer Perceptron (i.e.,376

fully connected layer).377

From the above formulation, we can find that378

the most important part is to efficiently learn the379

Algorithm 1: LaFiCMIL processing flow
Input: A set of bags (i.e., long documents) {X1, ..., XN}, a feature extrac-

tion function f (i.e., BERT), a randomly initialized learnable category
vector xi,category .

Output:
1: for Xi in {X1, ..., XN} do
2: divide the ith bag into instances: {xi,1; ...; xi,n} ← Xi

3: X0
i ← [xi,category; f(xi,1); ...; f(xi,n)]

4: Epos ← Positional_Embedding(Xo
i )

5: Xo
i ← Xo

i + Epos

6: parallelly computing MSA blocks: l = 1, ..., L

7: Ql ← Xl−1
i WQ, Kl ← Xl−1

i WK , V l ← Xl−1
i WV

8: Compute landmarks from input Ql and landmarks
9: from input Kl, Q̃l and K̃l as the matrix form;

10: Compute F̃ ← softmax(
Ql(K̃l)T√

dq
);

11: Compute B̃ ← softmax(
Q̃l(Kl)T√

dq
) ;

12: Compute Ã← softmax(
Q̃l(K̃l)T√

dq
)+;

13: Ŝ ← F̃ × Ã× B̃
14: head← ŜV l

15: MSAl ← Concat(head1, ..., headh)W
o

16: for l in {1, ..., L} do
17: Xl

i ←MSA(LN(Xl−1
i )) + Xl−1

i

18: end for
19: Ŷi ←MLP (LN((XL

i )(0))),

20: end for
21: Final predictions for documents {X1, ..., XN} are {Ŷ1, ..., ŶN}

map from bag space X to Transformer space T. As 380

illustrated in Figure 1, this map is approximated by 381

a series of sub-functions which are approximated 382

by various neural layers. The overall process is pre- 383
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Table 1: Statistics on the datasets. # BERT Tokens indicates the average token number obtained via the BERT
tokenizer. % Long Docs means the proportion of documents exceeding 512 BERT tokens.

Dataset Type # Total # Train # Val # Test # Labels # BERT Tokens % Long Docs

Hyperpartisan binary 645 516 64 65 2 744.18±677.87 53.49
20NewsGroups multi-class 18 846 10 182 1132 7532 20 368.83±783.84 14.71
Book Summary multi-label 12 788 10 230 1279 1279 227 574.31±659.56 38.46
-Paired multi-label 6393 5115 639 639 227 1148.62±933.97 75.54
EURLEX-57K multi-label 57 000 45 000 6000 6000 4271 707.99±538.69 51.3
-Inverted multi-label 57 000 45 000 6000 6000 4271 707.99±538.69 51.3
Devign binary 27 318 21 854 2732 2732 2 615.46±41 917.54 39.76

sented in Algorithm 1 and can be summarized as384

follows: given a large file, we use a BERT model to385

generate the representations of the divided chunks386

(i.e., instances in the concept of c-MIL). Then, we387

initialize a learnable category vector that follows388

a normal distribution and has the same shape as389

each instance. By considering the category vector390

as an additional instance, we learn the correlation391

between each instance using LaFiAttention layer.392

With the help of the attention mechanism, the cate-393

gory vector exchanges information with each chunk394

and extracts necessary features for large file clas-395

sification. Finally, the category vector is fed into a396

fully connected layer to finalize the classification397

task.398

5 Experiments399

5.1 Experimental Setup400

Datasets. To ensure a fair comparison with base-401

lines, we adopt the same benchmark datasets uti-402

lized in the state-of-the-arts for long document403

classification (Park et al., 2022). We first evaluate404

LaFiCMIL on these six benchmark datasets: ① Hy-405

perpartisan (Kiesel et al., 2019), a compact dataset406

encompassing 645 documents, designed for binary407

classification. ② 20NewsGroups (Lang, 1995),408

comprising 20 balanced categories and 11 846 doc-409

uments.③ CMU Book Summary (Bamman and410

Smith, 2013), tailored for multi-label classification,411

contains 12 788 documents and 227 genre labels.412

④ Paired Book Summary (Park et al., 2022), for-413

mulated by combining pairs of documents from the414

CMU Book Summary dataset, features longer doc-415

uments. ⑤ EURLEX-57K (Chalkidis et al., 2019),416

a substantial multi-label classification dataset con-417

sisting of 57 000 EU legal documents and 4271418

available labels. ⑥ Inverted EURLEX-57K (Park419

et al., 2022), a modified version of EURLEX-57K420

dataset in which the order of sections is inverted,421

ensuring that core information appears towards the422

end of the document. To better assess our method’s 423

capability on handling extremely longer sequences, 424

we also include a C programming language dataset 425

Devign (Zhou et al., 2019) for code defect detec- 426

tion, in which the long documents have extremely 427

more tokens than the other six datasets.Table 1 428

offers detailed insights into the datasets, includ- 429

ing metrics like average, maximum, and minimum 430

token counts, along with the percentage of large 431

documents, among other aspects. For a detailed 432

description of each dataset, please refer to the com- 433

prehensive explanations in the Appendix A.1. 434

Implementation Details. We split a long text 435

document into chunks (i.e., c-MIL instances), and 436

follow the standard BERT input length (i.e., 512 437

tokens) for each chunk. To ensure a fair compari- 438

son, in line with the baseline models in (Park et al., 439

2022) and RMT (Bulatov et al., 2022), we employ 440

an uncased base BERT (Devlin et al., 2018) as the 441

feature extractor. Note that the batch size is set to 442

1 since we treat all instances in each single long 443

document as a mini-batch to efficiently generate 444

the feature vectors in parallel. Therefore, the ac- 445

tual batch size varies depending on the number of 446

instances in the long document. We construct LaFi- 447

Attention layer with eight attention heads. With 448

these settings, 100% of large documents from all 449

six benchmark datasets can be fully processed us- 450

ing a single Tesla V-100 GPU with 32GB of mem- 451

ory on an NVIDIA DGX Station. As a result, the 452

average inference time (0.026s) of each mini-batch 453

is almost the same as BERT (0.022s). During train- 454

ing, the Adam optimizer (Kingma and Ba, 2014) 455

is leveraged. As for the loss function, it varies de- 456

pending on specific classification task. Following 457

the baseline work (Park et al., 2022), we use sig- 458

moid and binary cross entropy for binary and multi- 459

label classification, and softmax and cross entropy 460

loss for multi-class classification. For Hyperparti- 461

san (Kiesel et al., 2019), Book Summary (Bamman 462
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and Smith, 2013) and EURLEX-57K (Chalkidis463

et al., 2019), the learning rate 5e-6 is adopted.464

We find that the learning rate 5e-7 is more suit-465

able for 20NewsGroups (Lang, 1995). We fine-tune466

the model for 20, 40, 60, and 100 epochs on Hy-467

perpartisan, 20NewsGroups, EURLEX-57K, and468

Book Summary, respectively. We provide the ex-469

perimental setup for code defect detection in the470

Appendix A.3.471

Table 2: Performance metrics on only long documents
in test set. The highest score in each column is bolded
and underlined, while the second highest score is only
bolded. The subsequent tables of this task are organized
in a consistent manner.

Model Hyperpartisan 20News EURLEX -Inverted Book -Paired

BERT 88.00 86.09 66.76 62.88 60.56 52.23
-TextRank 85.63 85.55 66.56 64.22 61.76 56.24
-Random 83.50 86.18 67.03 64.31 62.34 56.77
Longformer 93.17 85.50 44.66 47.00 59.66 58.85
ToBERT 86.50 - 61.85 59.50 61.38 58.17
CogLTX 91.91 86.07 61.95 63.00 60.71 55.74
RMT 90.04 83.62 64.16 63.21 60.62 58.27

LaFiCMIL 95.00 87.49 67.28 65.04 65.41 63.03

Table 3: Performance metrics on full test set.

Model Hyperpartisan 20News EURLEX -Inverted Book -Paired

BERT 92.00 84.79 73.09 70.53 58.18 52.24
-TextRank 91.15 84.99 72.87 71.30 58.94 55.99
-Random 89.23 84.65 73.22 71.47 59.36 56.58
Longformer 95.69 83.39 54.53 56.47 56.53 57.76
ToBERT 89.54 85.52 67.57 67.31 58.16 57.08
CogLTX 94.77 84.62 70.13 70.80 58.27 55.91
RMT 94.34 82.87 71.46 70.99 57.30 56.95

LaFiCMIL 96.92 85.07 73.72 72.03 61.34 62.17

Evaluation Metrics. We evaluate the perfor-472

mance of LaFiCMIL using the same metrics as473

those employed in the baseline works (Park et al.,474

2022; Hanif and Maffeis, 2022). We report the ac-475

curacy (%) for both binary and multi-class clas-476

sification. We use micro-F1 (%) for multi-label477

classification, which is based on summing up the478

individual true positives, false positives, and false479

negatives for each category. We report the detection480

accuracy (%) for code defect detection.481

6 Experimental Results482

In this section, we present and analyze the per-483

formance of the proposed LaFiCMIL in long doc-484

ument classification. We first discuss the overall485

performance, followed by an computational effi-486

ciency analysis and an ablation study on the core487

concepts of LaFiCMIL.488

6.1 Overall Performance 489

Our experimental results reveal a phenomenon sim- 490

ilar to (Park et al., 2022) in that no existing ap- 491

proach consistently outperforms the others across 492

all benchmark datasets. However, as shown in Ta- 493

ble 2, our LaFiCMIL establishes new state-of-the- 494

art performance on all benchmark datasets when 495

considering only long documents in the test set. 496

Here, we define a long document as one contain- 497

ing at least two chunks (i.e., exceeding 512 BERT 498

tokens). As shown in Table 3, we also achieve 499

new state-of-the-art performance on five out of 500

six benchmark datasets when considering the full 501

data (i.e., a mix of long and short documents) in 502

the test set. Particularly, we significantly improve 503

the state-of-the-art score from 57.76% to 62.17% 504

on the Paired Book Summary dataset, which con- 505

tains the highest proportion of long documents (i.e., 506

more than 75%). In contrast, we fail to achieve the 507

best performance on 20NewsGroups, as the pro- 508

portion of long documents in this dataset is very 509

small (only 14.71%); thus, our improvement on 510

long documents (as shown in Table 2) cannot dom- 511

inate the overall performance on the entire dataset. 512

This phenomenon is consistent with our motivation 513

that the more large files (containing at least two 514

chunks) present in the dataset, the more correla- 515

tions LaFiCMIL can extract to boost classification 516

performance. 517

Given that 100% of long documents from the six 518

NLP benchmark datasets can be fully processed, 519

we conduct an additional evaluation of LaFiCMIL’s 520

ability to process extremely long sequences, based 521

on the code defect detection dataset Devign. Our 522

findings reveal that LaFiCMIL is capable of han- 523

dling inputs of up to nearly 20 000 tokens when 524

utilizing CodeBERT (Feng et al., 2020) and Vul- 525

BERTa (Hanif and Maffeis, 2022) as feature extrac- 526

tors on a single GPU setup. This capability allows 527

for 99.92% of the code files in the Devign dataset 528

to be processed in their entirety. Concurrently, as 529

demonstrated in Table 4, LaFiCMIL enhances the 530

performance of both CodeBERT and VulBERTa, 531

establishing a new state-of-the-art in accuracy over 532

the evaluated baselines. Please find a detailed anal- 533

ysis on this task in the Appendix A.3. 534

6.2 Computational Efficiency Analysis 535

In this section, we provide a comprehensive anal- 536

ysis of computational efficiency outlined in Ta- 537

ble 5. All models were evaluated on a single GPU 538
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Table 4: Accuracy (%) comparison of different models
on the C programming language dataset for code defect
detection. The highest accuracy score is bolded and
underlined and the base model results are only bolded.

RoBERTa CodeBERT Code2vec PLBART VulBERTa
CodeBERT+
LaFiCMIL

VulBERTa+
LaFiCMIL

61.05 62.08 62.48 63.18 64.27 63.43 64.53

Table 5: Runtime and memory requirements of each
model, relative to BERT, based on experiments on the
Hyperpartisan dataset. Training and inference time were
measured and compared in seconds per epoch. GPU
memory requirement is in GB.

Model Train Time Inference Time GPU Memory
BERT 1.00 1.00 <16
-TextRank 1.96 1.96 16
-Random 1.98 2.00 16
Longformer 12.05 11.92 32
ToBERT 1.19 1.70 32
CogLTX 104.52 12.53 <16
RMT 2.95 2.87 32

LaFiCMIL 1.86 1.18 32

with 32GB of memory using the Hyperpartisan539

dataset. LaFiCMIL performs distinctly in this con-540

text, demonstrating a runtime nearly on par with541

BERT. The balance between high computational542

efficiency and advanced classification capability543

illustrates LaFiCMIL’s exceptional capability to544

efficiently process long documents without signifi-545

cant computational overhead.546

6.3 Ablation Study547

To gain a comprehensive understanding of the effi-548

cacy of each core concept in our approach (namely,549

BERT, LaFiAttention, and c-MIL), we conduct an550

ablation study. This study aims to evaluate the clas-551

sification performance of LaFiCMIL when each552

concept is systematically removed, allowing us to553

evaluate their individual contributions.554

Without a feature extractor, any approach would555

be ineffective. Thus, when BERT is removed, the556

LaFiAttention layer must assume the role of feature557

extractor instead of c-MIL. This would result in the558

disappearance of the c-MIL mechanism, and the559

approach can now only take the first chunk as input,560

Table 6: Concept ablation study on long documents in
test set. "wo" means "LaFiCMIL without".

Model Hyperpartisan 20News EURLEX -Inverted Book -Paired

wo BERT 85.00 53.92 60.54 54.14 50.11 46.61
wo LaFiAttn 87.50 84.97 66.82 64.89 62.50 60.13
wo c-MIL 88.00 86.09 66.76 62.88 60.56 52.23

LaFiCMIL 95.00 87.22 67.28 65.04 65.41 63.03

transforming it into a basic attention-based classi- 561

fier. As might be expected, the absence of the BERT 562

concept leads to the worst performance across all 563

datasets among the three variants, as shown in the 564

first row of Table 6. If excluding the LaFiAttention 565

concept, c-MIL devolves into a standard MIL, for 566

which we employ the widely accepted Attention- 567

MIL (Ilse et al., 2018). The results of this setting 568

are presented in the second row of Table 6. Given 569

that this variant can still process all chunks of a 570

lengthy document, it performs best among all three 571

variants on the four datasets with the largest num- 572

ber and longest length of documents. When the 573

c-MIL concept is removed, the LaFiAttention layer 574

will also be absent as it executes c-MIL which is 575

no longer needed, leaving only BERT. Due to its 576

restriction to process only the first chunk as input, 577

this variant fails to achieve the best results on the 578

four datasets with a preponderance of long docu- 579

ments. Finally, upon comparing the three variants 580

with the full LaFiCMIL, shown in the fourth row 581

of Table 6, it becomes evident that the exclusion 582

of any concept significantly weakens performances 583

across all datasets. 584

Furthermore, we observe some interesting re- 585

sults regarding chunk positional embedding. Basi- 586

cally, its effectiveness depends on different datasets. 587

We perform an ablation study on chunk positional 588

embedding, which is provided in the Appendix A.2. 589

7 Conclusion 590

We propose LaFiCMIL, a large file classification 591

approach based on correlated multiple instance 592

learning. Our method treats large document chunks 593

as c-MIL instances, enabling feature extraction 594

for classification from correlated chunks without 595

substantial information loss. Experimental results 596

demonstrate that our approach significantly outper- 597

forms the state-of-the-art baselines across multiple 598

benchmark datasets in terms of both efficiency and 599

accuracy. Our work provides a new perspective for 600

addressing the large document classification prob- 601

lem. 602

8 Limitations 603

While LaFiCMIL has demonstrated remarkable 604

results in three different types of long document 605

classification tasks (i.e., binary, multi-class, and 606

multi-label classification), its applicability to other 607

tasks involving lengthy sequences remains to be 608

explored. Methodological enhancements may be 609
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needed to broaden its capabilities, and comprehen-610

sive experimentation is essential for validation. Ad-611

ditionally, while our method has proven effective612

with BERT family models as feature extractors,613

its efficacy with larger-scale models, particularly614

Large Language Models (LLMs), in processing615

extremely long input sequences merits further ex-616

ploration. However, these aspects fall beyond the617

scope of this current study. We intend to investigate618

these areas in our future research endeavors.619
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A Appendix819

A.1 Details of Benchmark Datasets820

We provide the detailed descriptions of seven821

benchmark datasets below.822

Following the latest state-of-the-art (Park et al.,823

2022), we evaluate LaFiCMIL on six benchmark824

datasets. Hyperpartisan (Kiesel et al., 2019) is a825

small dataset (containing only 645 documents) de-826

signed for binary classification task where each827

document is labeled as hyperpartisan or not828

hyperpartisan. There are 53.49% of long doc-829

uments in Hyperpartisan, i.e., exceeding 512 to-830

kens. The 20NewsGroups (Lang, 1995) contains831

20 well-balanced categories and 11 846 documents,832

which have been widely used over the past 20 years833

for multi-class classification task. Only less than834

15% of the documents exceed 512 tokens.835

The other 4 datasets are created for the most836

difficult multi-label classification task. The multi-837

label classification task aims at predicting multi-838

ple labels for a given document, which is differ-839

ent from multi-class classification that selects only840

one label from multiple possible categories. CMU841

Book Summary (Bamman and Smith, 2013) con-842

tains book summaries extracted from Wikipedia843

with corresponding meta-data from Freebase such844

as the book genre. After preprocessing, there are845

12 788 documents and 227 genre labels such as846

"Fiction" and "Children’s literature". The propor-847

tion of long documents that exceed 512 tokens848

is about 39%. Coming from EU legal documents,849

EURLEX-57K (Chalkidis et al., 2019) is a quite850

large dataset that contains 57 000 documents, with851

more than 51% of them exceed 512 tokens. In total,852

there are 4271 labels available, some of which do853

not appear in the training set often or at all, making854

it a very challenging dataset.855

The main purpose of long document classifica-856

tion is to explore more useful information beyond857

the first 512 tokens. Therefore, in the latest state-858

of-the-art (Park et al., 2022), the CMU Book Sum-859

mary and EURLEX-57K are modified to obtain860

two additional datasets to further evaluate the abil-861

ity of these models to not fully rely on information862

from the first 512 tokens. Paired Book Summary863

is created by combining pairs of documents from864

CMU Book Summary to obtain a new dataset con-865

taining longer documents. With this setup, over866

75% of documents in the Paired Book Summary867

dataset have more than 512 tokens. Regarding the868

EURLEX-57K, documents inside are usually legal869

texts with several sections, and the first two sec- 870

tions (i.e., header, recitals) normally carry the most 871

relevant information for classification (Chalkidis 872

et al., 2019). The order of the sections are inverted 873

to ensure that the core information appears at the 874

end of the document in (Park et al., 2022). The 875

inverted EURLEX-57K has the same proportion of 876

the long documents as the original EURLEX-57K 877

dataset. 878

We evaluate the code defect detection task using 879

the Devign dataset (Zhou et al., 2019) that includes 880

27 318 manually-labeled functions collected for C 881

programming language.The dataset was created by 882

collecting security-related commits and extracting 883

vulnerable and non-vulnerable functions from the 884

labeled commits. Since this dataset did not have 885

an official dataset split, the code understanding 886

benchmark CodeXCLUE (Lu et al., 2021b) ran- 887

domly shuffles the dataset and splits it into 80% 888

for training, 10% for validation, and 10% for test, 889

which is adopted by latest state-of-the-arts (Hanif 890

and Maffeis, 2022). The task is formulated as a 891

binary classification to predict whether a function 892

is defective/vulnerable. 893

Table 7: Ablation study on long document classification
to investigate the effectiveness of positional embedding.
"PE" indicates Positional Embedding.

Dataset
Only Long Docs Full Docs

With PE Without PE With PE Without PE

Hyperpartisan 95.00 95.00 96.92 96.92
20News Groups 87.49 87.22 84.81 85.07
EURLEX 67.14 67.28 73.43 73.72
Inverted EURLEX 64.52 65.04 71.81 72.03
Book Summary 65.41 64.14 61.34 60.44
Paired Summary 61.04 63.03 60.66 62.17

A.2 Additional Ablation Study 894

Given an intriguing phenomenon we observed re- 895

lated to chunk positional embedding, we con- 896

ducted an additional ablation study to investigate its 897

effectiveness. Basically, its effectiveness depends 898

on different datasets. 899

In our implementation, we adopt learn- 900

able linear positional embedding in all exper- 901

iments. We present the results of experiments 902

with/without chunk positional embedding 903

on long document classification task in Table 7. 904

First and foremost, it is worth emphasizing that 905

LaFiCMIL can achieve state-of-the-art results with 906

or without chunk positional embedding on most 907

datasets. In this section, we discuss under what cir- 908

11



cumstances the chunk positional embedding can be909

beneficial for prediction.910

As shown in Table 7, when considering only911

long documents in the test set, we find that po-912

sitional embedding has no effect on Hyperparti-913

san, while it yields gains for 20NewsGroups and914

Book Summary. Regarding the very small dataset915

Hyperpartisan, with only 65 samples in the test916

set, it is difficult to cover enough variety of cases917

for evaluation. Therefore, it is not surprising that918

the chunk positional embedding does not lead to919

further improvement on this small test set. In the920

20NewsGroups dataset, which is collected from921

news articles, paragraphs exhibit semantic ordering922

relationships. Similarly, the contents of documents923

in the Book Summary dataset also have ordering924

dependencies. As a result, in the case of these two925

datasets, chunk positional embedding can effec-926

tively exploit the ordering information, leading to927

an improvement in classification performance.928

However, the Paired Summary dataset is cre-929

ated by hard combining two documents selected930

from the Book Summary, which weakens the ef-931

fectiveness of positional embedding since there is932

no sequential relationship between chunks from933

two different books. The samples in EURLEX-57K934

and Inverted EURLEX-57K datasets are legal docu-935

ments, usually consisting of several sections. These936

sections have no strict sequential relationship be-937

tween them since generally jumping to read differ-938

ent sections does not affect the understanding of939

the legal provisions. Therefore, chunk positional940

embedding fails to bring performance gains on both941

of these two datasets.942

We can also observe a similar pattern when eval-943

uating on the full test set, except for the 20News-944

Groups dataset. This is due to the fact that more945

than 85% of the samples in this dataset are short946

documents containing only a single chunk, which947

makes the chunk positional embedding provide948

noise rather than relevant information, which may949

mislead the model during fine-tuning.950

A.3 Code Defect Detection951

In this section, we present the empirical study and a952

detailed analysis for the code defect detection task.953

Empirical Setup954

We adopt two BERT-like models pre-trained on pro-955

gramming languages as our baselines, i.e., Code-956

BERT (Feng et al., 2020) and VulBERTa (Hanif957

and Maffeis, 2022). Following the implementation958

of CodeBERT in the CodeXGLUE benchmark (Lu 959

et al., 2021b), the length of each chunk is set to 400 960

tokens. LaFiCMIL can process up to 48 chunks 961

(i.e., 19.2K tokens in total) on a single GPU at 962

a time. Consequently, more than 99.92% (com- 963

pared to 60.26% in CodeBERT) of code files in 964

the dataset can be adequately processed without 965

truncation to provide comprehensive information 966

for accurate predictions. The latest state-of-the-art 967

VulBERTa proposed a custom tokenizer for the C 968

language, which is pre-trained with an input length 969

of 512 tokens and then fine-tuned on the code de- 970

fect detection task with a length of 1024 tokens. In 971

LaFiCMIL, we set the chunk length to 512 tokens 972

and employ the same tokenizer. For both Code- 973

BERT and VulBERTa, we fine-tune them on the 974

code defect detection task for 10 epochs using the 975

AdamW optimizer (Loshchilov and Hutter, 2017) 976

and a learning rate of 5e-6. 977

Detailed Experimental Analysis 978

From Table 4, we find that code defect detection 979

is a challenging task on which most existing state- 980

of-the-art models struggle to achieve even a single 981

percentage point improvement over previous mod- 982

els. Nonetheless, our LaFiCMIL helps CodeBERT 983

gain 1.35 percentage points, representing a signif- 984

icant improvement. The gain can be attributed to 985

the fact that LaFiCMIL can extract information 986

from the 40% large code files (i.e., exceeding 400 987

tokens), which is partially missing in CodeBERT. 988

Although the latest state-of-the-art VulBERTa ex- 989

tends the input limit to 1024 tokens, covering 90% 990

of full code files in the dataset, our LaFiCMIL still 991

brings a gain of 0.25 percentage points to it, thanks 992

to the information extracted from the other 10% of 993

large files. 994
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