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ABSTRACT

Alignment techniques such as RLHF enable LLMs to generate outputs that align
with human preferences and play an essential role in their effectiveness. However,
their impact often diminishes when applied to smaller language models, likely due
to the limited capacity of these models. Instead of directly applying existing align-
ment techniques to smaller models, we propose to utilize a well-aligned teacher
LLM to guide the alignment process for these models, thereby facilitating the
transfer of the teacher’s knowledge of human preferences to the student model.
To achieve this, we first explore a straightforward approach, Dual-Constrained
Knowledge Distillation (DCKD), that employs knowledge distillation with two
KL-divergence constraints from the aligned teacher to the unaligned student. To
further enhance the contrastive effect, we then propose Advantage-Guided Distil-
lation for Preference Alignment (ADPA), which leverages an advantage function
from the aligned teacher to deliver more nuanced, distribution-level reward sig-
nals for the student’s alignment. Our experimental results demonstrate that these
two approaches appreciably improve the alignment of smaller language models
and narrow the performance gap with their larger counterparts.

1 INTRODUCTION

Large Language Models (LLMs) have been effectively aligned with human preferences to generate
helpful, truthful, and harmless responses through techniques like Reinforcement Learning from Hu-
man Feedback (RLHF) (Kaplan et al., 2020; Ouyang et al., 2022; Askell et al., 2021). However,
deploying such large models in resource-constrained environments can be challenging due to their
heavy computational and memory demands. While smaller language models are more suited for
these scenarios, they often struggle to achieve the same level of alignment as larger LLMs. These
small models may experience an “alignment tax”, where their overall performance across various
tasks declines after RLHF training (Bai et al., 2022). This decline is likely due to their limited ca-
pacity to capture the complexities of diverse tasks and nuanced human feedback, which can result
in overfitting and poor generalization (Kirk et al., 2024; Zhao et al., 2023a). Moreover, traditional
RLHF methods rely on sequence-level rewards that are sparse and coarse-grained (Sun, 2023; Chan
et al., 2024), making optimization more challenging for smaller LLMs.

To enhance the alignment of smaller models with human preferences and achieve an “alignment
bonus”, a promising strategy is to leverage preference-aligned larger models to guide smaller mod-
els through knowledge distillation (KD) (Hinton, 2015). KD enables the student model to learn
from the teacher’s output distributions, which contain nuanced learning signals (Gu et al., 2024), to
effectively transfer knowledge from teacher to student. However, existing KD methods primarily
focus on the pre-training and instruction-tuning stages (Song et al., 2020; Khanuja et al., 2021) and
often overlook the critical phase of preference alignment. This oversight prevents student models
from capturing the teacher’s alignment knowledge with human preferences. Moreover, most KD
techniques emphasize positive signals from the teacher’s outputs on ground-truth responses while
neglecting negative signals from suboptimal outputs, which limits the overall alignment effect. For-
tunately, these issues have recently garnered attention from the community. For instance, DPKD (Li
et al., 2024) and PLaD (Zhang et al., 2024) treat the teacher’s outputs as preferred responses and the
student’s outputs as dispreferred and carry out preference learning to train the student model.
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In this work, we first explore a straightforward approach, Dual-Constrained Knowledge Distillation
(DCKD) for preference alignment, which facilitates knowledge distillation from the aligned teacher
to the unaligned student using preference training data. To integrate both positive and negative
signals, we introduce an additional KL-divergence constraint term for dispreferred responses into
the traditional knowledge distillation objective. This enables the student model to learn the teacher’s
predictive behaviors for both preferred and dispreferred responses. While this method enables direct
transfer of preference knowledge from teacher to student, its effect could be limited by the lack of a
contrastive mechanism to differentiate between preferred and dispreferred responses.
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Figure 1: Results illustrating the “alignment tax”
of small models and the effect of our ADPA
method in relieving this issue. With DPO training,
the larger model (Mistral-7B) shows a notable im-
provement on MT-Bench (+0.56), while smaller
models (Danube3-0.5B and Danube2-1.8B) ex-
hibit only a modest gain (+0.08) or even a decline.
In contrast, ADPA enables the smaller models to
achieve a larger increase on MT-Bench compared
to DPO (+0.24 vs. +0.08 for Danube3-0.5B, and
+0.76 vs. -0.11 for Danube2-1.8B).

To overcome this limitation, we propose an-
other approach that introduces stronger con-
trastive signals by incorporating a fine-grained
preference alignment mechanism into the dis-
tillation process, allowing the teacher model to
guide the student model during RLHF training.
Specifically, we introduce Advantage-Guided
Distillation for Preference Alignment (ADPA)
that utilizes an advantage function derived from
a teacher model trained with Direct Preference
Optimization (DPO) (Rafailov et al., 2024b)
and a pre-DPO reference model. The advan-
tage function delivers distribution-level reward
signals and allows the student model to opti-
mize its policy based on fine-grained prefer-
ences and expected future rewards, which tack-
les the issue of sparse reward signals present in
traditional RLHF. As illustrated in Figure 1, in-
tegrating preference alignment into knowledge
distillation allows smaller models to better cap-
ture human preferences than directly applying
DPO, ultimately reducing the performance gap
between small and large language models.

The major contributions of this work can be
summarized as follows:

• We investigate the alignment challenge for small language models through knowledge distil-
lation from a preference-aligned teacher model to a smaller student model. We present Dual-
Constrained Knowledge Distillation (DCKD) as a straightforward baseline, highlighting its
benefits and limitations for the preference alignment of smaller models.

• We propose Advantage-Guided Distillation for Preference Alignment (ADPA), which uses an
advantage function from a preference-aligned teacher model to provide distribution-level re-
ward signals and expected future rewards for optimizing the student model.

• We conduct extensive experiments to demonstrate the effectiveness of our proposed approaches
and provide valuable insights for future research in the preference alignment of small language
models. Specifically, leveraging preference-aligned larger models to guide the alignment train-
ing of smaller language models holds promise for overcoming their limited capacity.

2 RELATED WORK

Knowledge Distillation Knowledge Distillation (KD) (Hinton, 2015) is a widely used model com-
pression technique in which a smaller student model learns to replicate the behavior of one or more
larger teacher models. In the context of LLMs, KD typically involves reducing the Kullback-Leibler
Divergence (KLD) between the output distributions of the student and the teacher models at each
time step. Recent research has introduced several optimizations aimed at enhancing this process.
For instance, MiniLLM (Gu et al., 2024) employs sequence-level reverse KLD to encourage the
student model to focus on the most significant modes of the teacher’s output distribution. DistiLLM
(Ko et al., 2024), on the other hand, increases the efficiency of the distillation process by using
asymmetric KLD (Skew-KLD) combined with adaptive off-policy methods. Likewise, f-DISTILL
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(Wen et al., 2023) minimizes a symmetric f-divergence to mitigate challenges such as mode collapse,
while Adaptive KL (AKL) (Wu et al., 2024) balances forward and reverse KLD to ensure the stu-
dent model effectively learns across different parts of the distribution. Other approaches, including
Vicuna (Chiang et al., 2023) and MCC-KD (Chen et al., 2023), take advantage of sequences gener-
ated by the teacher model to train the student, thereby enhancing its ability to follow instructions or
perform more complex reasoning tasks, such as Chain-of-Thought (CoT) reasoning.

Preference Alignment Preference alignment aims to align the outputs of LLMs with human pref-
erences and values. This objective is traditionally achieved by Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022), which relies on a reward model (RM) trained on
preference data to guide the optimization of the policy model through methods like proximal policy
optimization (PPO) (Schulman et al., 2017). Recent research has increasingly focused on using con-
trastive learning methods to eliminate the need to construct a reward model (RM) and to simplify the
complexities of reinforcement learning. Notable approaches in this area include Direct Preference
Optimization (DPO) (Rafailov et al., 2024b) and SLic-HF (Zhao et al., 2023b). In addition to these
methods that utilize sequence-level rewards, other studies explore fine-grained rewards to provide
more detailed guidance to the policy model. For example, Yang et al. (2024) define trajectory-wise
rewards as aggregations of individual token-wise rewards learned through standard preference-based
RM training. Similarly, Token-Level Continuous Reward (TLCR) (Yoon et al., 2024) utilizes GPT-4
as a reviser on preference pairs to generate token-level preference labels, which are then used to
train a discriminator capable of assigning rewards at the token level.

Given the high cost of obtaining quality preference labels for training reward models, recent research
has shifted towards leveraging larger and more powerful LLMs to provide feedback on the prefer-
ences of candidate responses. For instance, RLAIF (Lee et al., 2023) utilizes an off-the-shelf LLM to
provide feedback for candidate responses, which are then used to train a reward model for reinforce-
ment learning. Zephyr (Tunstall et al., 2023) and Starling (Zhu et al., 2024) collect responses from
multiple LLMs and rank them using GPT-4 to obtain preference data. While the former employs
this data to train the policy using DPO, the latter uses it to train a reward model for reinforcement
learning. Other approaches, such as DPKD (Li et al., 2024) and PLaD (Zhang et al., 2024) treat
the teacher’s outputs as preferred responses and the student’s outputs as dispreferred responses and
conduct preference learning. RLCD (Yang et al., 2023) constructs positive and negative prompts
to elicit corresponding responses, designating these as preferred and dispreferred, respectively, and
then uses this preference data to train a reward model for reinforcement learning. Reward Model
Distillation (RMD) (Fisch et al., 2024) aligns the reward margin predicted by the policy with that of
a reward model trained on preference data to enhance the robustness of DPO training.

3 METHODOLOGY

In this section, we introduce the proposed Dual-Constrained Knowledge Distillation (DCKD) and
Advantage-Guided Distillation for Preference Alignment (ADPA) approaches in detail. We start
with an overview of the preliminaries of knowledge distillation and preference alignment in LLMs,
followed by a detailed explanation of the DCKD and ADPA methods.

3.1 PRELIMINARIES

Knowledge Distillation Given a dataset of prompt-response pairs (x, y), a teacher LLM πt, and
a smaller student model πs, the goal of knowledge distillation (KD) is to enable the student model
to mimic the predictions of the teacher as effectively as possible. Specifically, there are typical
two loss terms to minimize in the objective function. First, the supervised fine-tuning (SFT) term
computes a negative log-likelihood (NLL) loss for the student model to predict the next token yt
in the response conditioned on the prompt x and the previous response tokens y<t. Second, the
Kullback-Leibler Divergence (KLD) between the output distributions of the teacher and the student
is calculated. These two terms are combined using a weighted sum:

LKD = −
|y|∑
t=1

(log πs(yt | x, y<t) + αDKL (πt(· | x, y<t) || πs(· | x, y<t))) . (1)
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Preference Alignment for LLMs Preference alignment methods such as RLHF (Ouyang et al.,
2022) optimize LLMs to produce outputs that align with human preferences. Given a preference
dataset D containing a set of tripples, each consisting of a prompt x, a preferred response yw, and a
dispreferred response yl, a sequence-level reward model (RM) can be trained as follows:

LRM = E(x,yw,yl)∼D [log σ (RMθ(x, yw)− RMθ(x, yl))] , (2)

where σ is the sigmoid function. After training the RM, classical RLHF methods typically optimize
the SFT-trained LLMs using policy gradient techniques, such as PPO (Schulman et al., 2017). For-
mally, the objective is to maximize the sequence-level reward assigned by the RM while penalizing
deviations from the reference policy using a KLD term, weighted by a coefficient β:

max
θ

Ey∼πθ(·|x)

[
RM(x, y)− β log

πθ(y | x)
πref(y | x)

]
, (3)

where πref denotes the reference policy. Offline RLHF methods like DPO (Rafailov et al., 2024b)
optimize the policy model directly using the Bradley-Terry preference model (Bradley & Terry,
1952) without requiring an external reward model and online Reinforcement Learning (RL) training:

LDPO(πθ, πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
. (4)

3.2 DUAL-CONSTRAINED KNOWLEDGE DISTILLATION

A straightforward approach for transferring preference knowledge from large models to smaller ones
is to perform knowledge distillation with preference data. Specifically, Dual-Constrained Knowl-
edge Distillation (DCKD) begins by fine-tuning the teacher model on preference data through Direct
Preference Optimization (DPO). Then, the distillation process minimizes the divergence between the
output distributions of the teacher and student models for both preferred and dispreferred responses.

Formally, we define a pair of responses as (yw, yl), where yw denotes the preferred response and yl
indicates the dispreferred response. Let πdpo represent the teacher policy trained with DPO. We then
formulate two KL-divergence constraints using yw and yl as:

LKLD-w(πdpo, πθ) = E(x,yw)∼D

|yw|∑
t=1

DKL (πdpo(· | x, yw,1:t−1) ∥πθ(· | x, yw,1:t−1))

 (5)

LKLD-l(πdpo, πθ) = E(x,yl)∼D

 |yl|∑
t=1

DKL (πdpo(· | x, yl,1:t−1) ∥πθ(· | x, yl,1:t−1))

 . (6)

With the supervised fine-tuning (SFT) term, the overall objective of DCKD is formulated as:

LDCKD = LSFT + α (LKLD-w + LKLD-l) (7)

There are two key differences between DCKD and traditional knowledge distillation approaches.
First, DCKD distills knowledge from a teacher model fine-tuned with DPO, which encodes richer
preference information compared to traditional teacher models. Second, instead of minimizing the
KL-divergence solely on preferred responses, DCKD minimizes it for both preferred and dispre-
ferred responses, thus enabling the student model to align more effectively with human preferences.

3.3 ADVANTAGE-GUIDED DISTILLATION FOR PREFERENCE ALIGNMENT

While DCKD enables direct transfer of preference knowledge from the teacher to the student, it
may not effectively emphasize the differences between preferred and dispreferred responses. There-
fore, we propose Advantage-Guided Distillation for Preference Alignment (ADPA), which utilizes
an advantage function derived from a teacher model trained with Direct Preference Optimization
(DPO) (Rafailov et al., 2024b) and a pre-DPO reference model. The sign of the advantage function
explicitly distinguishes positive and negative actions at the distribution level, providing stronger
guidance for the student model to distinguish between positive and negative actions and learn fine-
grained preferences. Our experimental results demonstrate that this approach appreciably improves
the alignment of smaller models and reduces the performance gap with larger LLMs.
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Figure 2: Overview of the ADPA approach. The training process involves two teacher models:
a reference teacher πref, fine-tuned on instruction-tuning data, and a DPO teacher πdpo, fine-tuned
using DPO on preference data. The student model is trained by fine-tuning on the instruction-tuning
data and performing advantage-guided distillation using on-policy sampled data.

Deriving the Advantage Function Consider an SFT-trained teacher model πref and a DPO-trained
teacher model πdpo that is initialized from πref. The DPO process aims to maximize the expected
reward of the teacher model based on human preferences. We first define the Q-function that quan-
tifies the benefit of πdpo through preference alignment at each time step. The token generation of
LLMs is modeled as a Markov Decision Process (MDP), where each generation corresponds to an
action (token) at selected from the action set (vocabulary) A, and the current state st comprises
the prompt x along with all previously generated tokens y<t. The trajectory τ = {(st, at)}|τ |t=1
denotes the generation sequence, with |τ | indicating its length and a|τ | = EOS. Traditionally, a
sequence-level reward is produced by DPO at the final time step.

Formally, we define the Q-function as:

Qdpo(st, a) = β

[
t−1∑
i=1

log
πdpo(ai | si)
πref(ai | si)

+ log
πdpo(a | st)
πref(a | st)

]
, (8)

where β is a scaling parameter. Qdpo(st, a) captures the expected cumulative reward starting from
state st and taking action a, using the relative probabilities between πdpo and πref.

The advantage function (A-function) aims to measure the relative preference of each possible action
in A at a given state st and is derived from the Q-function as follows:

Adpo(st, a) = β log
πdpo(a | st)
πref(a | st)

. (9)

Refer to Appendix A for a detailed derivation process of the Q-function and A-function.

A-function provides fine-grained, distribution-level reward signals that capture the relative prefer-
ence of an action a at state st, as determined by the DPO-trained teacher model in comparison to
the reference model. It guides the student model during training by quantifying the preference for
each possible action at every state. This granular feedback enables the student model to align more
closely with human preferences, helping capture subtle nuances and improve overall performance.

ADPA Training Objective In ADPA, we integrate the A-Function into the training objective.
Specifically, we maximize the expectation of A-Function for the student policy model:

maxEa∼πs(·|st)Adpo(st, a) = maxEa∼πs(·|st) log
πdpo(a | st)
πref(a | st)

(10)

The overall ADPA loss function is defined as:

5
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LADPA = E(x,y,ŷ)

Ls(x, y)− γ

|ŷ|∑
t=1

∑
a∈A

πs(a | x, ŷ<t) log
πdpo(a | x, ŷ<t)

πref(a | x, ŷ<t)

 (11)

where LSFT(x, y) is the supervised fine-tuning (SFT) loss, which ensures the student model retains
its ability in the current domain (Hong et al., 2024) and prevent over-optimization (Liu et al., 2024b).
γ is a scaling factor to balance the SFT loss and the advantage-guided distillation loss. ŷ is the
sequence generated by the initial student model for prompt x before the training process. πs is the
student policy model. The overall ADPA pipeline is shown in the Appendix Algorithm 1.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Training Details In our experiments, we evaluate preference alignment using three small language
models: H2O-Danube3-500M (Pfeiffer et al., 2024), H2O-Danube2-1.8B-Base (Singer et al., 2024),
and LLaMA-2-7B. For H2O-Danube3-500M and H2O-Danube2-1.8B-Base, we use Mistral-7B-
V0.1 (Jiang et al., 2023) as the teacher model. For LLaMA-2-7B, we use Llama-2-13B (Touvron
et al., 2023) to serve as the teacher model. We begin by performing Supervised Fine-Tuning (SFT)
on both student and teacher models using an instruction-tuning dataset, training for 3 epochs with a
learning rate of 2e-5 and a batch size of 128. Next, we apply DPO to the fine-tuned teacher to create
the DPO teacher model, using β = 0.05, a reduced learning rate of 5e-7 and the same batch size of
128. During the KD phase, we follow the context distillation method from Bai et al. (2022), pre-
computing the teacher’s logits on the preference dataset and saving the top 50 tokens by probability,
along with the summed probability for the remaining tokens. In the DCKD phase, we experiment
with α in [0.1, 0.2, 0.5, 1, 2, 5] and γ in [0.5, 1, 1.5, 2, 3, 5]. For the ADPA phase, we pre-compute
logPDPO− logPRef for the stored probabilities. Tokens in the DPO teacher’s top 50 but absent from
the reference teacher’s have their log probabilities adjusted by subtracting the lowest probability
from the reference’s top 50. Tokens in the reference’s top 50 but not in the teachers’ are omitted.

Datasets For SFT, we use the Deita-10K-V0 (Liu et al., 2024a) dataset, which contains 10k high-
quality instruction-response pairs. This dataset is utilized to train both the teacher and student mod-
els. For preference alignment, we draw upon two distinct datasets. The first is DPO-MIX-7K 1,
a meticulously curated collection of high-quality pairwise comparison data sourced from existing
datasets. The second dataset is HelpSteer2 (Wang et al., 2024), which is developed to align models
for enhanced helpfulness. In our application of HelpSteer2, we differentiate between positive and
negative samples based on the helpfulness metric and exclude samples with identical scores.

Validation We employ FsfairX-LLaMA3-RM-V0.1 (Dong et al., 2024; Xiong et al., 2024), a high-
performing reward model from Reward Bench (Lambert et al., 2024), to evaluate and determine the
optimal checkpoints during the training process. This reward model generates an average score for
responses produced based on prompts derived from the validation subset of our preference dataset.

Evaluation We assess the models’ performance using two benchmarks: MT-Bench (Zheng et al.,
2023) and AlpacaEval (Li et al., 2023). For MT-Bench, we utilize GPT-4-0125-Preview as the
evaluator, in accordance with recent recommendations 2, to rectify any inaccuracies in the refer-
ence answers originally provided by GPT-4. For AlpacaEval, while the standard protocol involves
comparing responses against GPT-4, this approach can be overly demanding for smaller models, po-
tentially leading to low win rates and high variability when comparing knowledge distillation (KD)
methods. Given that our primary objective is to ascertain whether alternative methods can achieve or
exceed the performance of ADPA, we employ student models trained with ADPA as reference mod-
els, thereby enabling direct performance comparisons. To calculate win rates on the test questions
from AlpacaEval, we adhere to the default setup, utilizing GPT-4-1106-Preview as the evaluator.

4.2 MAIN RESULTS

We compare DCKD, ADPA and ADPA+ with two basic methods, SFT and DPO (Rafailov et al.,
2024b), and sevreal state-of-the-art knowledge distillation and preference alignment baselines, in-

1https://huggingface.co/datasets/argilla/dpo-mix-7k
2https://github.com/lm-sys/FastChat/pull/3158
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Table 1: Overall results of our methods using Daunbe3-0.5B, Daunbe2-1.8B, and LLaMA-2-7B as
the student models. We show the Win Rate (WR) and Length Control Win Rate (LC WR) against
ADPA-trained student models on AlpacaEval (AE), and the average score on MT-Bench.

Model Method
DPO-MIX-7K HelpSteer2

AE WR(%) AE LC WR(%) MT-Bench AE WR(%) AE LC WR(%) MT-Bench

Daunbe3
0.5B

Teacher 85.2 84.8 5.90 93.9 93.2 5.59

Student 34.4 34.7 2.54 38.0 38.3 2.54
SFT 37.1 38.4 2.51 32.4 34.0 2.29
DPO 35.1 35.3 2.62 36.1 36.4 2.52

VanillaKD 37.0 37.5 2.60 36.2 37.0 2.28
SeqKD 39.4 39.3 2.53 41.7 41.6 2.46
ATKD 38.0 38.5 2.64 35.5 36.3 2.50
PLAD 35.1 35.3 2.64 38.0 38.4 2.58
DDPO 37.3 37.4 2.67 37.0 37.3 2.58
DPKD 34.3 34.6 2.66 36.3 36.9 2.51
DCKD 38.9 39.2 2.77 34.2 35.3 2.50
ADPA 50.0 50.0 2.67 50.0 50.0 2.70

ADPA+ 49.0 48.3 2.78 53.2 53.0 2.76

Daunbe2
1.8B

Teacher 61.1 68.8 5.90 82.5 83.7 5.59

Student 28.6 29.1 3.98 39.5 39.9 3.98
SFT 29.1 29.6 3.91 40.4 40.3 4.09
DPO 31.4 30.6 3.87 40.3 40.7 3.87

VanillaKD 28.3 28.6 4.01 46.3 46.9 4.03
SeqKD 32.8 33.4 4.18 42.3 41.9 4.10
ATKD 29.8 30.0 4.10 42.9 42.8 3.93
PLAD 29.1 29.7 4.06 44.4 40.1 3.84
DDPO 31.7 33.6 4.06 39.2 39.6 3.68
DPKD 38.7 40.1 4.42 43.2 43.1 3.97
DCKD 34.2 34.6 4.29 51.1 51.3 4.03
ADPA 50.0 50.0 4.33 50.0 50.0 4.02

ADPA+ 61.0 61.3 4.74 62.7 62.4 4.33

LLaMA-2
7B

Teacher 42.6 50.2 5.74 71.3 74.6 5.43

Student 21.5 22.6 4.34 24.0 24.9 4.34
SFT 21.6 21.8 4.70 35.7 35.9 4.30
DPO 28.7 33.5 4.49 38.6 39.6 4.51

VanillaKD 29.5 28.0 4.75 35.3 35.6 4.60
SeqKD 25.0 27.9 4.74 28.6 29.3 4.47
ATKD 24.1 24.7 4.68 32.0 32.7 4.43
PLaD 21.7 22.8 4.24 28.0 28.6 4.35
DDPO 21.7 23.0 4.67 30.4 31.0 3.78
DPKD 22.3 23.4 4.40 28.7 27.6 3.97
DCKD 32.5 34.5 4.80 39.1 38.3 4.41
ADPA 50.0 50.0 5.29 50.0 50.0 4.40

ADPA+ 60.6 59.6 5.42 60.1 59.1 4.86

cluding KD (Hinton, 2015), SeqKD (Kim & Rush, 2016), ATKD (Zhong et al., 2024b), PLAD
(Zhang et al., 2024), DDPO (Fisch et al., 2024) and DPKD (Li et al., 2024). Here, ADPA+ lever-
ages the DCKD model to initialize the learning process of ADPA, incorporating the ŷ generated by
the DCKD model into training, as shown in the Appendix Algorithm 2. Additionally, for DPKD and
PLAD, we use actual preference data as positive and negative samples, rather than pseudo pairs, to
ensure fairness.

In Table 4.1, we present the comparative results across both preference datasets. Several key obser-
vations emerge from these findings. First, our proposed methods, DCKD and ADPA, consistently
outperform baseline approaches, demonstrating the effectiveness of our dual-constrained distillation
and advantage-guided approaches. For example, on a smaller model like Danube2-1.8B, DCKD and
ADPA achieve 10.8% and 11.9% improvements over DPO in MT-Bench on DPO-MIX-7K, indicat-
ing that the preference-aligned teacher model can more effectively guide the student in aligning its
output with human preferences. Second, when ADPA is used as the reference model for AlpacaE-
val, existing distillation and preference alignment methods achieve a win rate below 50%, validating
the strength of preference-based distillation and emphasizing the value of preference signal-based
distillation. Lastly, initializing ADPA with a student model from DCKD, as in ADPA+, results
in significantly superior performance compared to either method alone. This combination allows
the student model to better capture the teacher’s output distribution while effectively learning nu-
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Table 2: Results of model ablation on DCKD and ADPA with different teacher-student setups on
DPO-MIX-7K dataset.

Method Mistral-7B → Danube3-0.5B Mistral-7B → Danube2-1.8B LLaMA-2-13B → LLaMA-2-7B
AlpacaEval MT-Bench AlpacaEval MT-Bench AlpacaEval MT-Bench

DCKD 50.0 2.77 50.0 4.29 50.0 4.80
- w/o DPO Teacher 48.2 2.55 35.6 3.83 39.1 4.55
- w/o dispreferred response 40.3 2.57 39.9 4.13 37.9 4.71

ADPA 50.0 2.67 50.0 4.33 50.0 5.29
- w/o Ref teacher 31.6 2.36 36.6 4.05 46.2 4.54

anced preference reward signals. This highlights the synergistic benefits of using DCKD for student
initialization, particularly in capturing more granular preference structures during ADPA training.

4.3 MODEL ABLATION

To evaluate the impact of different components in our methods, we conduct ablation experiments
by removing each component from DCKD and ADPA. Specifically, for DCKD, we replace the
DPO teacher with an SFT teacher trained on the preferred responses from the preference dataset.
Additionally, We evaluate the effect of removing the LKLD−l loss by excluding the dispreferred
responses. For ADPA, we remove the reference teacher and minimize the reverse cross-entropy
between the student and the DPO teacher’s output distributions. Table 2 presents the ablation results
on the DPO-MIX-7K dataset.

The results show that removing the DPO teacher in DCKD leads to noticeable performance degrada-
tion, highlighting the importance of the DPO training process. This suggests that the DPO teacher,
by being optimized on human preference data, aligns better with human-like decision-making, and
thus transfers more effective guidance to the student model. The absence of DPO training dimin-
ishes the teacher’s capacity to represent nuanced preferences, resulting in less impactful knowledge
transfer. Additionally, excluding dispreferred responses from DCKD also causes performance drops.
This occurs because dispreferred responses help the student model learn not only which behaviors
are preferred but also what to avoid. This component enables a more comprehensive understanding
of both preferred and dispreferred behaviors, which is crucial for achieving better alignment with
human preferences.

In the case of ADPA, removing the reference teacher results in significant performance losses. For
example, in Danube3-0.5B, the MT-Bench score drops from 2.67 to 2.36, and the AlpacaEval win
rate falls from 50.0% to 31.6%. This demonstrates that the reference teacher provides critical com-
parative feedback, allowing the Advantage Function to capture relative improvements in preference
alignment. Without it, the student model lacks a robust baseline, weakening the reward signal and
leading to diminished performance.

4.4 ANALYSIS AND DISCUSSION

Impact of Different Levels of Reward. In our ADPA approach, we leverage a distribution-level
reward signal to facilitate fine-grained preference learning. To demonstrate that ADPA provides a
more stable and efficient training process, we distill a Danube2-1.8B model from the Mistral-7B
model on DPO-MIX-7K dataset, and conduct a comprehensive comparison with traditional PPO-
based methods which rely on token-level and sequence-level rewards. The details of sequence-level
reward and token-level reward are provided in the Appendix B.

Table 3: Comparison of ADPA (distribution-level reward)
with other levels of reward methods optimized by PPO.

Method Reference WR LC WR
DPPO (Seq-Level) ADPA 27.7 28.5
DPPO (Token-Level) ADPA 40.0 39.3
ADPA (Distribution-Level) ADPA 50.0 50.0

Using FsFairX as the evaluator, we
tested the outputs of the trained stu-
dent model on the DPO-MIX-7K
validation set. As shown in Fig-
ure 3, ADPA significantly improves
the stability of the training process
compared to both token-level and
sequence-level reward PPO meth-
ods. ADPA offers a detailed, distribution-level preference reward signal rather than assigning re-
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Figure 3: Comparison between ADPA and PPO based methods on test set over epochs. The x-axis
represents the training epochs, and the y-axis represents the average score evaluated by the RM.

wards at the token or sequence level. Moreover, it employs an offline optimization process, which
is more stable and efficient than the time-consuming and resource-intensive online RL training. Ta-
ble 3 further presents the win rate of various approaches on AlpacaEval. ADPA clearly outperforms
both PPO-based methods by significant margins. It achieves the highest win rate of 50.0% against it-
self, while the token-level and sequence-level reward PPO methods reach 40.0% and 27.7% win rate
respectively. These results demonstrate that ADPA provides more stable training compared to PPO-
based approaches, which rely on token-level or sequence-level rewards. By using the Advantage
Function as a distribution-level reward, ADPA enables the student model to align more effectively
with human preferences, resulting in better performance and faster convergence.

Sample Complexity Analysis. To evaluate the efficiency of ADPA, we analyze the sample complex-
ity of identifying the optimal action a∗t for a given state st under Advantage Function (distribution-
level), token-level, and sequence-level rewards, as illustrated in Figure 4.4. For Advantage Function,
finding the optimal action a∗t at state st requires only evaluating the current sample, leading to a sam-
ple complexity of O(1). In contrast, for token-level reward, the student model must explore each
action a′t ∈ A, transition to the next state f(st, a

′
t), and obtain the corresponding reward. This

results in a sample complexity of O(|A|), as it requires evaluating all actions in the vocabulary.
For sequence-level reward, the model must compute rewards over all possible future sequences,
requiring |A|T−t samples, where T is the total length of the responses. This results in an expo-
nential sample complexity of O(|A|T−t). The lower sample complexity of ADPA contributes to
more stable training by minimizing variance and reducing computational demands. This enhanced
stability allows the student model to learn more efficiently from the teacher’s preference signals,
leading to superior overall performance compared to methods that depend on PPO optimization us-
ing token-level or sequence-level rewards. As a result, ADPA not only accelerates convergence but
also achieves better alignment with human preferences.
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Figure 4: An illustration of our efficient ADPA with distribution-level reward signal, compares with
token-level, and sequence-level rewards. Left: With a distribution-level reward, the student model
directly selects the optimal action ai based on A(· | st), as indicated by the dotted line, meaning no
need for exploring other actions or states. Middle: For token-level rewards, the model takes actions
(i.e., a0, . . . , a|A|−1), transitions to subsequent states (i.e., s0t+1, . . . , s

|A|−1
t+1 ), and receives reward

signals (i.e., r0, . . . , r|A|−1) before determining the optimal action. Right: With sequence-level
rewards, the model must reach EOS before obtaining any reward signal, requiring exploration of all
actions and states until then to identify the optimal action.
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Impact of α and γ. We further investigate the effects of varying the hyperparameters α in DCKD,
and γ in ADPA on the student model’s preference alignment. We report the results of distilling
Mistral-7B to Danube2-1.8B on DPO-MIX-7K dataset in Figure 5. The evaluation was conducted
on the validation set using the Fsfairx reward model, which provided average scores for the responses
generated by the student model. To further analyze the student model’s ability to learn preference
information, we employed the Reward Accuracy metric as defined by (Meng et al., 2024). This
metric assesses the probability that the student model assigns a higher average log-probability to
preferred responses compared to dispreferred ones in the preference dataset, effectively capturing
the model’s capability to distinguish between positive and negative samples.
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Figure 5: Variation of the average score by the RM on validation set and the reward accuracy on
preference data with α in DCKD (Left) and γ in ADPA (Right)

It can be seen from the left figure that as the value of α increases, the reward accuracy initially rises
and then declines, though the changes are not particularly significant when α ̸= 0. The highest
average score on the FsFairX validation set is observed at α = 0.2, indicating optimal performance
at this value. However, the differences in average scores for other non-zero α values are relatively
minor, suggesting that the model’s preference alignment is fairly robust to variations in α.

From the right figure, we observe that as γ increases, both reward accuracy and the FsFairX average
score consistently improve, suggesting that the student model becomes more adept at distinguishing
between preferred and dispreferred responses. However, when γ exceeds a value of 3, the model
becomes over-optimized with respect to the distillation objective, leading to a decline in both reward
accuracy and the FsFairX score. This indicates that an excessively large γ causes the student model
to overemphasize the Advantage Function signals, reducing its ability to generalize. Thus, while
γ = 1.5 achieves the optimal balance, larger values (e.g., γ > 3) degrade performance by causing
overfitting to advantage function.

Additional Analysis. We’ve conducted further experiments to understand the impact of different
distillation objectives based on Q-function in Appendix C. The impact of source of state in ADPA
is shown in Appendix D. Several case studies are provided in Appendix G.

5 CONCLUSION

In this paper, we address the challenge of aligning small language models with human preferences
by leveraging knowledge distillation guided by larger, well-aligned teacher models. We first intro-
duced DCKD, a straightforward method that employs KD with two KL-divergence constraints to
transfer alignment knowledge from teacher to student. Acknowledging the limitations of DCKD
in highlighting the differences between preferred and dispreferred responses, we proposed ADPA,
which utilizes an advantage function derived from a teacher model trained with DPO, providing fine-
grained, distribution-level reward signals that enhance the student’s alignment with human prefer-
ences. Our extensive experiments demonstrate that both DCKD and ADPA improve the alignment of
smaller language models. Additionally, ADPA+, which combines DCKD and ADPA, significantly
improves the alignment of smaller language models, effectively narrowing the performance gap with
larger models. This work highlights the potential of leveraging larger, preference-aligned models to
guide the preference alignment of smaller models, offering a promising direction for developing
effective preference-aligned language models in resource-constrained environments. Future work
may explore further enhancements to the distillation process and investigate the applicability of the
proposed methods to a broader range of tasks and model sizes.
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SUMMARY OF THE APPENDIX

This appendix contains additional experimental results and discussions of Advantage-Guided Dis-
tillation for Preference Alignment in Small Language Models, organized as follows:

• Appendix A presents the Derivation of the Q-function and Advantage Function.
• Appendix B describes more Details of the Sequence- and Token-Level Reward.
• Appendix C presents Variants of KD Objective based on Q-function.
• Appendix D provides Impact of the Source of State in ADPA.
• Appendix E gives more Details of Training Configurations.
• Appendix F adds more discussions of Limitations and Future Work.
• Appendix G includes several Case Studies.

Algorithm 1 ADPA Training Pipeline
Require: Student model πs, teacher model πdpo, instruction-tuning dataset DIT, preference dataset
Dpref

Ensure: Trained student model πs

1: Fine-tune πdpo and πs onDIT to obtain supervised fine-tuned (SFT) models for both teacher and
student, named Ref teacher πref and SFT student model π

′

s.
2: Fine-tune πref on Dpref using DPO to obtain πdpo (DPO teacher model).
3: Create new dataset D̂ = {}
4: for prompt x in Dpref do
5: Generate outputs from the SFT student model π

′

s for the given prompt x to obtain ŷ.
6: D̂ ← D̂ + {(x, yw, ŷ)}
7: end for
8: Optimize the SFT student model π

′

s on (x, yw, ŷ) in D̂ using the ADPA loss.
9: Return the trained student model π

′′

s .

Algorithm 2 ADPA+ Training Pipeline
Require: Student model πs, Teacher model πdpo, Instruction-Tuning datasetDIT, Preference dataset
Dpref

Ensure: Trained student model πs

1: Fine-tune πdpo and πs onDIT to obtain supervised fine-tuned (SFT) models for both teacher and
student, named Ref teacher πref and SFT student model π

′

s.
2: Fine-tune πref on Dpref using DPO to obtain πdpo (DPO teacher model).
3: Fine-tune π

′

s on Dpref by DCKD algorithm, with the guidence of πdpo, to obtain πstu-DCKD.
4: Create new dataset D̂ = {}
5: for prompt x in Dpref do
6: Generate outputs from DCKD student model πstu-DCKD for the given prompt x to obtain ŷ.
7: D̂ ← D̂ + {(x, yw, ŷ)}
8: end for
9: Optimize the DCKD student model πstu-DCKD on (x, yw, ŷ) in D̂ using the ADPA loss, to obtain

the π
′′

s .
10: Return the trained student model π

′′

s .
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A DERIVATIONS OF Q-FUNCTION AND ADVANTAGE FUNCTION

We model the generation of LLM as a Markov Decision Process (MDP), where each token genera-
tion corresponds to an action, and the current state consists of the prompt and all previously gener-
ated tokensst = (x, y<t). Let the trajectory τ = {(st, at)}|τ |t=1 represent the generation sequence,
where |τ | is the length of the trajectory and a|τ | = EOS. The sequence-level reward provided by the
reward model (RM) is applied in the final step. Therefore, the reward function is defined as:

r(st) =

{
0, if at ̸= EOS
RM(τ), if at = EOS

(12)

In this MDP framework, considering the DPO-trained model πdpo and the reference model πref prior
to DPO training, the Q-function for state st and action a can be expressed as following:

Qdpo(st, a) = β

[
t−1∑
i=1

log
πdpo(ai | si)
πref(ai | si)

+ log
πdpo(a | st)
πref(a | st)

]
, (13)

Proof. According to our MDP framework, the future returns of the reference policy πref at the cur-
rent timestep are determined by the Bellman equation, a fundamental concept in reinforcement
learning that relates the value of a state-action pair to the immediate reward and the expected value
of the next state.

The Bellman equation for the Q-function Qref(st, at) is given by:

Qref(st, at) = r(st, at) + γVref(st+1), (14)

where:

• r(st, at) is the immediate reward received after taking action at in state st.

• γ is the discount factor, which balances immediate and future rewards. In the context of LLM
RLHF, γ always typically set as 1, to consider the full future reward without discounting.

• Vref(st+1) is the value of the next state st+1, representing the expected cumulative reward
from that state onward under policy πref.

• st+1 = f(st, at) is the next state, resulting from taking action at in state st. In language
generation, this corresponds to appending the token at to the sequence st.

In our specific setting:

• The immediate reward r(st, at) is zero at every timestep except when the end-of-sequence
(EOS) token is generated.

• When the EOS token is generated, the immediate reward is provided by the reward model
RM(τ), which evaluates the entire generated sequence τ .

Therefore, we can express the Bellman equation for Qref(st, at) as:

Qref(st, at) =

{
0 + γVref(st+1) = Vref(st+1), if at ̸= EOS,
RM(τ) + γVref(st+1), if at = EOS.

(15)

Since there are no future rewards after generating the EOS token (the sequence ends), Vref(st+1) = 0
when at = EOS. Additionally, because γ = 1, the equation simplifies to:

Qref(st, at) =

{
Vref(st+1), if at ̸= EOS,
RM(τ), if at = EOS.

(16)
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To further our derivation, we first define the value function Vref(st) for the reference policy πref.
This function represents the expected cumulative reward starting from state st when actions are
selected according to πref:

Vref(st) = Ea∼πref(·|st) [Qref(st, a)] . (17)

Next, we consider the DPO-trained policy πdpo. This policy can be associated with a sequence-
level reward model, which assigns rewards based on the divergence from the reference policy over
an entire trajectory τ :

RMdpo(τ) = β

|τ |∑
t=1

log
πdpo(at | st)
πref(at | st)

. (18)

Here, β is a scaling parameter introduced in the DPO algorithm. The partition function Z(s1) that
normalizes the reward model is omitted in optimization since it does not affect the gradients with
respect to the policy parameters.3

By substituting the reward model RMdpo(τ) into the Bellman equation, we can express the Q-
function for the DPO-trained policy:

Qdpo(st, at) = Vdpo(st+1) = Eτ ′

β |τ ′|∑
i=1

log
πdpo(ai | si)
πref(ai | si)

 , (19)

where st+1 = f(st, at) is the state resulting from taking action at in state st, typically corresponding
to appending the token at in text generation tasks.

In this expression, the trajectory τ ′ includes:

1. Initial Segment: The sequence of states and actions before time t, denoted as (si, ai) for
i = 1 to t− 1.

2. Current State and Action: The pair (st, at).

3. Future Segment: The sequence of states and actions from st+1 onward, generated by
following the reference policy πref until the end of the sequence (EOS) is reached.

By considering these components, the expected cumulative reward accounts for the immediate di-
vergence from the reference policy at time t and the expected future divergence when following
πref afterward. This formulation helps in understanding how the DPO-trained policy evaluates the
benefit of taking action at in state st in terms of preference alignment.

In language generation tasks using LLMs, we can reasonably assume that both the reference policy
πref and the DPO-trained policy πdpo assign a probability of 1 to generating the end-of-sequence
(EOS) token at the final state s|τ |:

πref(a = EOS | s|τ |) = πdpo(a = EOS | s|τ |) = 1.

This means that once the model reaches the end of the sequence, it will produce the EOS token with
certainty.

Additionally, the EOS token generated at step |τ | does not contribute to the overall reward provided
by the reward model (RM), as the reward depends on the sequence generated up to that point.

Base Case (t = |τ |):
At the final time step t = |τ |, the Q-function can be expressed as:

Qdpo(s|τ |, a) = RM(τ) = β

|τ |∑
i=1

log
πdpo(ai | si)
πref(ai | si)

.

3The partition function Z(s1) normalizes the reward function provided by the DPO-trained model. In
practice, it can be omitted during optimization without influencing the outcome (Zhong et al., 2024a; Rafailov
et al., 2024a).
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Since the EOS token does not affect the reward and both policies generate it with probability 1, the
term involving the EOS token (i = |τ |) contributes nothing to the sum (as log 1 = 0). Therefore, we
can simplify the expression:

Qdpo(s|τ |, a) = β

|τ |−1∑
i=1

log
πdpo(ai | si)
πref(ai | si)

.

This matches the proposed expression for the Q-function at t = |τ |.
Inductive Step:

Assuming that Eq. (13) is established when t = k, we can prove that it is true when t = k − 1:

Qdpo(sk−1, a)

= Vdpo(f(sk−1, a))

= Ea′∼πref(·|f(sk−1,a)) [Qdpo(f(sk−1, a), a
′)]

= Ea′∼πref(·|f(sk−1,a))

[
k−2∑
t=1

β log
πdpo(at | st)
πref(at | st)

+ β log
πdpo(a | sk−1)

πref(a | sk−1)
+ β log

πdpo(a
′ | f(sk−1, a))

πref(a′ | f(sk−1, a))

]

= β

k−2∑
t=1

log
πdpo(at|st)
πref(at|st)

+ log
πdpo(a|sk−1)

πref(a|sk−1)
+ β logEa′∼πref(·|f(sk−1,a))

πdpo(a
′|f(sk−1, a))

πref(a′|f(sk−1, a))

= β

k−2∑
t=1

log
πdpo(at|st)
πref(at|st)

+ log
πdpo(a|sk−1)

πref(a|sk−1)

(20)

Therefore, Eq. (13) is established when 1 ≤ t ≤ |τ |. The value function V (s) can be formulated as:

Vdpo(si) = Qdpo(si−2, ai−1) = β

i−1∑
t=1

log
πdpo(at|st)
πref(at|st)

(21)

The advantage function can be formulated as:

Adpo(si, a) = Qdpo(si, a)− Vdpo(si) = β log
πdpo(a|si)
πref(a|si)

(22)

B DETAILS OF THE SEQUENCE- AND TOKEN-LEVEL REWARD

We provide more details of the sequence-level and token-level rewards in this section. Specifically,
the sequence-level reward given by the DPO teacher is defined as:

RM(x, y) = βT log
πdpo(y | x)
πref(y | x)

(23)

Here βT is the beta parameter in the training process of the DPO teacher. The reward is assigned to
the last position in the sequence, while all positions are regulated by a KLD penalty. The reward for
each token at time step t is given as follows:

rsequence-level(x, yt) =

{
0− β log πs(yt|x,y<t)

πref(yt|x,y<t)
, if yt ̸= EOS

RM(x, y)− β log πs(yt|x,y<t)
πref(yt|x,y<t)

, if yt = EOS
(24)

For the token-level reward, each token in the sequence receives an individual reward from the DPO
teacher and Ref teacher:

RM({x, y<t}, yt) = βT log
πdpo(yt | x, y<t)

πref(yt | x, y<t)
(25)
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In this experiment, we use the token-level difference in the output log probability between the DPO
teacher and the Ref teacher as the token-level reward (Zhong et al., 2024a). The reward for each
token at time step t is:

rtoken-level(x, yt) = RM({x, y<t}, yt)− β log
πs(yt | x, y<t)

πref(yt | x, y<t)
(26)

We use the token-level and sequence-level rewards, defined above, to optimize the student model
using PPO, named Distilled PPO (DPPO). In order to be fair when comparing ADPA and DPPO
with different levels of reward, and to enhance the stability of the online RL process, we add LSFT
with a weight of 1 into the overall loss function.

C VARIANTS OF KD OBJECTIVE BASED ON Q-FUNCTION

In this section, we explore alternative approaches to utilizing the Q-function derived from the DPO-
trained teacher and reference models in the KD process. Our goal is to investigate whether different
formulations of the KD objective based on the Q-function can enhance the student’s preference
alignment performance compared to our proposed ADPA method.

Specifically, we use argmax or softmax operation on Qdpo(· | s) to obtain policies4, and then distill
it to student by minimizing the KLD or Cross Entropy (CE) loss between the student policy and the
policies deduced by Advantage Function (Rusu et al., 2015; Czarnecki et al., 2019).

Using argmax on Qdpo(· | s) and then distilling allows the student model to focus on mimicking the
Advantage Function’s most confident decisions.

LA-argmax = E(x,y,ŷ)

LSFT(x, y) +
γ

|ŷ|

|ŷ|∑
i=1

CE
(
1{argmaxa Adpo(st,·)}, πs(· | st

) (27)

Using softmax on Qdpo(· | s) and then distilling allows the student model to learn from the Advan-
tage Function’s full policy distribution, capturing nuances in decision-making that go beyond simply
selecting the highest Q-value action.

LA-softmax = E(x,y,ŷ)

LSFT(x, y) +
γ

|ŷ|

|ŷ|∑
i=1

DKL (softmax(Adpo(st, ·)) || πs(· | st))

 (28)

We conducted experiments using these variants and compared them with the ADPA method. The
results are presented in Table 4. The experimental results indicate that our proposed ADPA method
outperforms both Q-argmax KD and Q-softmax KD.

Table 4: Comparison with Q-argmax KD and Q-softmax KD. We show the Win Rate (WR) and
Length Control Win Rate (LC WR) against ADPA on AlpacaEval.

Method Reference WR (%) LC WR (%)
Q-argmax KD ADPA 41.8 42.1
Q-softmax KD ADPA 28.2 28.7
ADPA ADPA 50.0 50.0

D IMPACT OF THE SOURCE OF STATE s IN ADPA

In the optimization objective of ADPA 10, the state st can be sourced not only from the student
model’s own sampling but also from other sources. We conducted additional experiments on DPO-
MIX-7K dataset for Danube3-0.5B to compare the effects of different sources of st with the standard

4Adding constants to the inputs of softmax and argmax does not affect the results. For simplicity, we apply
these operations to the Advantage Function in Eq. (9).
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Table 5: Comparison of different sources of st in Eq. (10). We show the Win Rate (WR) and Length
Control Win Rate (LC WR) against ADPA on AlpacaEval.

Method Reference WR (%) LC WR (%)
st from preferred responses ADPA 30.6 34.2
st from dispreferred responses ADPA 49.1 48.8
st from teacher sampling text ADPA 30.5 30.6
st from student sampling text (default in ADPA) ADPA 50.0 50.0

ADPA approach: (1) using the preferred responses from the preference dataset as samples for st, (2)
using dispreferred responses from the preference dataset, and (3) using text generated by the teacher
model as the source for st.

Table 5 presents a comparison of ADPA when using different sources for state st. The default
ADPA setting, which uses state st sampled from the student’s own generated text, achieves the
highest performance. This result underscores the importance of aligning the training process with
the inference conditions. When the student model generates its own samples ŷ, it creates a training
environment that closely mirrors the actual conditions encountered during inference, leading to more
effective learning and better overall performance.

E DETAILS OF TRAINING CONFIGURATIONS

In our experiments, we train the teacher LLMs (Mistral-7B and LLaMA-2-13B) and LLaMA-2-7B
students on a single node with 8x80GB NVIDIA A800 GPUs. For student models with other sizes
(0.5B and 1.8B), we train them on a single node with 4x24GB NVIDIA RTX 3090 GPUs. All
experiments are optimized using the AdamW (Loshchilov & Hutter, 2019) optimizer with β1 = 0.9
and β2 = 0.999. We use a weight decay of 0.0 and gradient clipping of 1.0. A cosine learning rate
schedule is employed, with a maximum learning rate of The optimal learning rate obtained through
search (often 1.0e-5) and a warmup ratio of 0.1. Our training framework is implemented based on
the HuggingFace Transformers (Wolf et al., 2020) and alignment-handbook (Tunstall et al., 2024).

F LIMITATIONS AND FUTURE WORK

Limitations While our proposed methods, DCKD and ADPA, demonstrate significant improve-
ments in aligning smaller language models with human preferences, several limitations warrant
consideration:

• Dependence on Teacher Models: The effectiveness of our approaches relies heavily on the
availability of well-aligned teacher models. If such teacher models are not accessible or are
misaligned, the performance gains of the student models may be limited.

• Computational Overhead: Computing the Advantage Function in ADPA requires access to
the output probabilities of both the DPO-trained teacher and the reference model at each token
generation step. This process introduces additional computational overhead, especially for
models with large vocabularies or when processing long sequences.

• Generalization Across Domains: Our experiments are primarily conducted on specific
datasets and domains. The generalizability of our methods to a broader range of tasks, lan-
guages, and more diverse datasets remains to be thoroughly investigated.

Future Work Building upon our findings, several avenues for future research are identified:

• Enhancing Teacher Model Alignment: Investigate strategies for improving the alignment of
teacher models when well-aligned teachers are not readily available. This could involve devel-
oping more effective alignment techniques for large models or utilizing ensemble methods.

• Reducing Computational Complexity: Explore techniques to minimize the computational
overhead associated with computing the Advantage Function. Potential solutions include ap-
proximation methods, efficient sampling strategies, or leveraging parallel computation.
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• Cross-Domain Generalization: Evaluate the effectiveness of the proposed methods across
a wider array of tasks, languages, and domains to assess their robustness and adaptability in
different settings.

G CASE STUDIES

We provide some cases generated by the models distilled by different methods based on the
Danube2-1.8B model family in Table 6. The prompts are sampled from the DPO-MIX-7K dataset.
We find that ADPA+ generates more accurate responses compared with the baselines.
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Table 6: Instruction-following cases from the validation set of DPO-MIX-7K. ADPA+ can better
follow the instructions and generate more accurate responses. Without the guidance of the Advan-
tage Function, the distilled models generate redundant sentences (Case #1).

Case #1

Instruction The task is to read a passage and convert numbers in their text forms into
digit forms. The text numbers can be used to represent Quantity, Dates
and Time, Addresses or Positions.\nOne example is below.\nQ: Jacob ate
three burgers today.\nA: Jacob ate 3 burgers today.\nRationale: The num-
ber in text form three is converted into the number in digit form 3.\nQ: If
Oswald left the Depository Building at twelve:thirty three p.m.,\nA:

SFT w/o KD If Oswald left the Depository Building at 12:33 p.m.\nRationale: The
number in text form 12:33 p.m. is converted into the number in digit form
1233.

DPO If Oswald left the Depository Building at 12:33 p.m.,\n\nTo solve this
task, I will follow these steps:\n\n1. Identify the text numbers in the
given passage.\n2. Convert each text number into its corresponding
digit form.\n3. Combine the digit forms to represent the numbers in the
text.\n\nHere’s the step-by-step process:\n\n1. Identify the text num-
bers in the given passage:\n\n* Jacob ate three burgers today.\n* If
Oswald left the Depository Building at twelve:thirty three p.m.,\n\n2.
Convert each text number into its corresponding digit form:\n\n* Jacob
ate 3 burgers today. (3 in decimal)\n* If Oswald left the Depository
Building at twelve:thirty three p.m., (12 in decimal, 30 in decimal, 33
in decimal)\n\n3. Combine the digit forms to represent the numbers in
the text:\n\n* Jacob ate 3 burgers today. (3 in decimal)\n* If Oswald
left the Depository Building at twelve:thirty three p.m., (12 in decimal, 30
in decimal, 33 in decimal)\n\nSo, the final answer is:\n\n* Jacob ate 3
burgers today.\n* If Oswald left the Depository Building at twelve:thirty
three p.m.,

DCKD If Oswald left the Depository Building at 12:33 p.m.\n\nIn this example,
the text number 1̈2:33ı̈s converted into the digit form 1̈233.̈

ADPA If Oswald left the Depository Building at 12:33 p.m.

ADPA+ If Oswald left the Depository Building at 12:33 p.m.

ADPA
w/o Ref teacher If Oswald left the Depository Building at 12:33 p.m.\nRationale: The

number in text form 12:33 p.m. is converted into the number in digit form
1233.

Case #2

Instruction The ancient city of Carthage, founded by Phoenician settlers, was located
in what present-day North African country?\n

PLAD The ancient city of Carthage, founded by Phoenician settlers, was located
in what present-day North African country?\n\nAnswer: Tunisia.

DCKD The ancient city of Carthage, founded by Phoenician settlers, was lo-
cated in what present-day North African country?\n\nThe ancient city
of Carthage was located in present-day Tunisia.

ADPA+ The ancient city of Carthage, founded by Phoenician settlers, was located
in present-day Tunisia.

ADPA
w/o Ref teacher The ancient city of Carthage, founded by Phoenician settlers, was located

in what present-day North African country?
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