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Abstract001

General-purpose Large Language Models002
(LLMs) like GPT-4 have achieved remarkable003
advancements in machine translation (MT) by004
leveraging extensive web content. On the other005
hand, translation-specific LLMs are built by006
pre-training on domain-specific monolingual007
corpora and fine-tuning with human-annotated008
translation data. Despite the superior perfor-009
mance, these methods either demand an un-010
precedented scale of computing and data or011
substantial human editing and annotation ef-012
forts. In this paper, we develop Ladder, a013
novel model-agnostic and cost-effective tool to014
refine the performance of general LLMs for MT.015
Ladder is trained on pseudo-refinement triplets016
which can be easily obtained from existing017
LLMs without additional human cost. During018
training, we propose a hierarchical fine-tuning019
strategy with an easy-to-hard schema, improv-020
ing Ladder’s refining performance progres-021
sively. The trained Ladder can be seamlessly022
integrated with any general-purpose LLMs to023
boost their translation performance. By utiliz-024
ing Gemma-2B/7B as the backbone, Ladder-025
2B can elevate raw translations to the level026
of top-tier open-source models (e.g., refining027
BigTranslate-13B with +6.91 BLEU and +3.52028
COMET for XX→En), and Ladder-7B can fur-029
ther enhance model performance to be on par030
with the state-of-the-art GPT-4. Extensive abla-031
tion and analysis corroborate the effectiveness032
of Ladder in diverse settings. Data and code033
will be released.034

1 Introduction035

General-purpose Large Language Models (LLMs)036

like GPT-4 (Achiam et al., 2023) have exhibited037

strong translation abilities (Hendy et al., 2023;038

Zhu et al., 2023; Jiao et al., 2023b), but achiev-039

ing this performance requires enormous model040

scale, infrastructure, and deployment costs. On041

the other hand, translation-specific LLMs like042

Figure 1: The average translation quality improve-
ments across 8 translation directions on WMT22 test set
(Zh↔En, De↔En, En↔Ru, En↔Cs) using Ladder-2B
or 7B. The metric scores are calculated by COMET-22
(wmt22-comet-da) (Rei et al., 2020).

ALMA (Xu et al., 2023a) and Aya 23 (Aryabumi 043

et al., 2024) have reached top-tier levels through 044

continued pretraining on large monolingual corpora 045

(e.g., 20B tokens from Common Crawl (Su’arez 046

et al., 2019)) and fine-tuning on high-quality trans- 047

lation data (e.g., 10.5M translation examples from 048

Aya Dataset (Singh et al., 2024)), which is also 049

time-consuming and costly. These observations 050

raise a question: can we enhance the MT perfor- 051

mance of existing LLMs in a model-agnostic man- 052

ner, achieving results comparable to translation- 053

specific LLMs or even GPT-4, without incurring 054

the significant costs associated with human anno- 055

tations or extensive training? 056

There are two potential approaches to achieving 057

this goal. The first is the prompt-based method, 058
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which involves developing effective prompting059

strategies to better stimulate LLMs’ translation ca-060

pabilities, such as using in-context translation ex-061

amples, as outlined in works (Agrawal et al., 2023;062

Garcia et al., 2023; Peng et al., 2023; Chen et al.,063

2023; Feng et al., 2024). However, Zhang et al.064

(2023a) indicate that prompting methods overly065

rely on the language model, often under-translate066

the input and generate hallucinations. Additionally,067

Moslem et al. (2023) demonstrate that the same068

prompting strategy can lead to different perfor-069

mance across different models. Furthermore, most070

of these prompting strategies like agent debating071

or self-correction (Liang et al., 2023; Feng et al.,072

2024) cannot be applied to some popular neural ma-073

chine translation models like NLLB (Costa-jussà074

et al., 2022). These limitations make the learning-075

free method non-model-agnostic and unstable.076

Another line of work employs learning-based077

paradigms by fine-tuning LLMs to adapt Quality078

Estimation (QE, Specia et al., 2010) and Automatic079

Post-Editing (APE, Simard et al., 2007) tasks to080

refine raw translations. QE involves automatically081

predicting translation quality, typically using Multi-082

dimensional Quality Metrics (MQM) datasets (Fre-083

itag et al., 2021), where human experts annotate084

error spans and assign quality scores. APE aims to085

address systematic errors of a black-box MT sys-086

tem and tailor the output to the lexicon and style087

required in a specific application domain. APE088

datasets are manually collected from real-world089

post-editing triplets like QT21 (Specia et al., 2017).090

Built on these well-defined tasks and annotated091

datasets, prior works (Zeng et al., 2023; Xu et al.,092

2023b; Alves et al., 2024) have shown the promis-093

ing utility and generalization of the learning-based094

method. Xu et al. (2023b) trained PaLM2 (Anil095

et al., 2023) on MQM datasets to refine transla-096

tions, and Alves et al. (2024) trained TowerInstruct097

on 637k translation examples, integrating APE098

datasets, outperforming all open models and GPT-099

3.5-turbo on APE tasks. However, these works100

heavily rely on human-annotated evaluation data101

and lack extensive validation in model-agnostic102

and multilingual scenarios. Additionally, the over-103

all refinement in translation quality, particularly for104

translation-specific models, remains limited.105

In this paper, we introduce Ladder, a model-106

agnostic and cost-effective tool for multilingual107

translation refinement. Instead of directly fine-108

tuning a translation-target LLM, we train an LLM109

to refine translations using refinement datasets with-110

out human evaluation or post-edits, employing an 111

instruction-following refinement task (Section 2.1). 112

We notice that the reference in existing parallel 113

corpus can serve as a natural refined translation. 114

By sampling a translation for the source sentence 115

from an existing LLM as the intermediate trans- 116

lation, we create a pseudo-refinement translation 117

triplet [source, intermediate translation, reference], 118

allowing us to construct training data without extra 119

labor costs. During training, we split the training 120

triplets into three hierarchies (Easy, Medium, Hard) 121

based on their COMET (Rei et al., 2020) scores and 122

propose a hierarchical fine-tuning strategy to im- 123

prove Ladder’s refining performance step by step. 124

Comprehensive experiments demonstrate that ef- 125

fectiveness of our Ladder across various LLMs on 126

multiple translation tasks. 127

2 Ladder 128

2.1 Problem Formulation and Overview 129

Previous works (Zhang et al., 2023b; Xu et al., 130

2023a) adapt LLMs to translation tasks by fine- 131

tuning on a parallel corpus [source, reference] us- 132

ing direct translation (PD) as shown in Figure 3. 133

In contrast, we define our task as a refinement- 134

target translation (PR) as shown in Figure 3, teach- 135

ing the pre-trained base model to refine the exist- 136

ing translation of LLMs to the reference, rather 137

than translating directly to the reference. Specif- 138

ically, we introduce the concept of intermediate 139

translation, which denotes the translation sampled 140

from existing LLMs. Then we add the intermediate 141

translation to the pair [source, reference] to form 142

a pseudo-refinement triplet [source, intermediate 143

translation, reference], taking the reference as the 144

pseudo-refined translation. The concept of trans- 145

lation refinement rather than direct translation is a 146

key distinction of our work compared to previous 147

translation-specific LLM approaches. 148

Ladder models are created in two steps: 1) Sam- 149

pling; and 2) Hierarchical Fine-tuning (HFT). First, 150

given an existing LLM MS and a parallel corpus 151

C, we use MS to generate intermediate transla- 152

tions i ∼ MS(s,PD) for each source sentence s 153

in the pair (s, r) ∈ C, where r is the reference. 154

We then combine i with (s, r) to create pseudo- 155

refinement triplets (s, i, r), forming our training 156

triplets T . Second, we apply a hierarchical fine- 157

tuning method with an easy-to-hard schema to fine- 158

tune the base model on our instruction-following 159

refinement task with triplet training data to obtain 160
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Figure 2: Obtain Ladder in two steps: a) Sample from an LLM using the parallel corpus to create pseudo-refinement
triplet training data. b) Use a hierarchical fine-tuning method with an easy-to-hard schema to tune the pre-trained
base model and obtain Ladder. Ladder can refine models with significantly higher parameter counts than the
sampling LLM and base model. It can also enhance original translations from various sources to the next level.

Ladder La. When applying La to refine the tar-161

get LLM MT , MT first generates the translation162

itest ∼ MT (stest,PD). La then refines itest into163

the final translation yfinal ∼ La(stest, itest,PR).164

Figure 2 shows the pipeline.165

2.2 Pseudo-refinement Triplet Construction166

Our pseudo-refinement triplet [source, intermedi-167

ate translation, reference] is similar in format to168

APE triplet [source, translation with errors, post-169

edits]. However, the APE annotation procedure170

involves significant human costs for evaluation, er-171

ror marking, and post-editing, focusing on word-172

or phrase-level corrections rather than overall trans-173

lation quality improvement (Specia et al., 2017).174

In contrast, our work uses reference r as the super-175

vised label, focusing on overall quality. Given the176

sampling LLM MS with parameters θS , parallel177

corpus C and prompt PD, the intermediate trans-178

lation i for each pair (s, r) ∈ C can be generated179

auto-regressively as it ∼ pθS (it | s,PD, i<t). Nat-180

urally, the quality of i is inferior to r, so we treat r181

as the refined translation and construct our pseudo-182

refinement triplet training data (s, i, r) ∈ T with-183

out additional human costs.184

2.3 Hierarchical Fine-tuning185

Before fine-tuning, we use COMET (Rei et al.,186

2020) to categorize the pseudo-refinement triplet187

training data T into three levels: Easy, Medium,188

and Hard and propose a hierarchical fine-tuning189

(HFT) strategy to achieve better refinement perfor-190

mance by learning from Easy to Hard examples.191

Easy translations differ significantly from the refer-192

ence, offering the most room for refinement. Hard193

translations are nearly perfect, with minimal differ-194

ences, making them the hardest to refine. Medium195

translations fall between these two poles. Trans-196

lations with COMET scores below µ are classi-197

fied as Easy, scores between µ and ν as Medium,198

Figure 3: Prompts used: [source language] and [target
language] represent the full names of the languages.
[source sentence] is the sentence to be translated. [in-
termediate translation] is the sampled translation. For
Direction Translation, we follow Xu et al. (2023a).

and scores above ν as Hard. We set thresholds µ 199

and ν to 0.75 and 0.85, respectively, and analyze 200

the effects of HFT and its robustness against these 201

thresholds in Section 3.3. 202

We fine-tune the pre-trained base model using 203

instruction tuning (IT), aiming to obtain the model 204

La(θ) on pseudo-refinement triplet training data 205

T = {s(k), i(k), r(k)}Nk=1 by minimizing the fol- 206

lowing objective: 207

L(θ; T ) = −E(s,i,r)∼T [logLa(r | s, i,PR; θ)] (1) 208

We start with Easy examples to help the base model 209

capture detectable differences, then progressively 210

fine-tune with the next level of examples, building 211

on the previous stage. 212

2.4 Translation Refinement 213

When using Ladder La with parameters θLa for 214

refinement, given any target LLM MT capable 215

of translation, we first utilize MT to generate the 216

intermediate translation itest ∼ MT (stest,PD). 217
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Models Zh-En De-En Ru-En Cs-En Avg.

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Open
Alpaca-7B 11.80 73.36 24.52 81.37 30.49 80.68 27.31 77.99 23.53 78.35
BigTranslate-13B 14.32 74.63 23.17 81.04 28.05 78.38 34.49 81.99 25.01 79.01
BayLing-13B 20.12 77.72 27.36 83.03 33.95 82.07 33.87 81.64 28.83 81.12
Vicuna-7B-v1.5 19.99 78.97 28.96 83.38 35.06 82.54 34.56 81.71 29.64 81.65
NLLB-3.3B 21.07 76.93 29.55 83.43 40.08 83.95 49.06 85.92 34.94 82.56
ALMA-7B-LoRA 24.00 80.18 29.98 84.16 38.43 84.80 43.96 86.00 34.09 83.79
ALMA-13B-LoRA 25.48 80.21 31.26 84.56 40.26 85.27 45.36 86.47 35.59 84.13

Closed
text-davinci-003 25.00 81.62 30.88 84.79 38.47 84.80 44.52 86.16 34.72 84.34
GPT-4 23.80 82.46 32.46 85.35 40.98 85.87 46.77 87.26 36.00 85.24

Ladder-2B Refinement
Alpaca-7B 22.73

(+10.93)
78.98

(+5.62)
28.53

(+4.01)
83.34

(+1.97)
36.05

(+5.56)
83.34

(+2.66)
37.08

(+9.77)
83.08

(+5.09)
31.10

(+7.57)
82.19

(+3.84)
BigTranslate-13B 22.58

(+8.26)
79.28

(+4.65)
28.48

(+5.31)
83.45

(+2.41)
36.31

(+8.26)
83.22

(+4.84)
40.32

(+5.83)
84.15

(+2.16)
31.92

(+6.91)
82.53

(+3.52)
BayLing-13B 23.84

(+3.72)
79.55

(+1.83)
29.05

(+1.69)
83.64

(+0.61)
36.92

(+2.97)
83.69

(+1.62)
38.85

(+4.98)
83.59

(+1.95)
32.17

(+3.34)
82.61

(+1.49)
Vicuna-7B-v1.5 24.11

(+4.12)
80.05

(+1.08)
29.85

(+0.89)
83.76

(+0.38)
37.72

(+2.66)
83.85

(+1.31)
38.81

(+4.25)
83.60

(+1.89)
32.62

(+2.98)
82.82

(+1.17)
NLLB-3.3B 23.97

(+2.90)
79.34

(+2.41)
29.83

(+0.28)
83.89

(+0.46)
39.02
(-1.06)

84.27
(+0.32)

45.10
(-3.96)

85.30
(-0.62)

34.48
(-0.46)

83.20
(+0.64)

Ladder-7B Refinement
BigTranslate-13B 26.49

(+12.17)
81.08

(+6.45)
31.13

(+7.96)
84.58

(+3.54)
39.22

(+11.17)
85.25

(+6.87)
45.87

(+11.38)
86.43

(+4.44)
35.68

(+10.67)
84.34

(+4.83)
NLLB-3.3B 26.91

(+5.84)
81.25

(+4.32)
32.37

(+2.82)
84.88

(+1.45)
41.97

(+1.89)
85.65

(+1.70)
50.11

(+1.05)
87.09

(+1.17)
37.84

(+2.90)
84.72

(+2.16)
ALMA-7B-LoRA 26.91

(+2.91)
81.39

(+1.21)
31.61

(+1.63)
84.65

(+0.49)
39.42

(+0.99)
85.33

(+0.53)
46.15

(+2.19)
86.63

(+0.63)
36.02

(+1.93)
84.50

(+0.71)
ALMA-13B-LoRA 27.19

(+1.71)
81.23

(+1.02)
31.71

(+0.45)
84.68

(+0.12)
40.00
(-0.26)

85.43
(+0.16)

46.45
(+1.09)

86.59
(+0.12)

36.34
(+0.75)

84.48
(+0.36)

text-davinci-003 27.10
(+2.10)

81.67
(+0.05)

31.61
(+0.73)

84.67
(-0.12)

39.51
(+1.04)

85.52
(+0.72)

46.71
(+2.19)

86.73
(+0.57)

36.23
(+1.52)

84.65
(+0.31)

GPT-4 27.20
(+3.40)

81.86
(-0.60)

32.71
(+0.25)

85.08
(-0.27)

42.17
(+1.19)

85.80
(-0.07)

49.83
(+3.06)

87.25
(-0.01)

37.73
(+1.98)

85.24
(-0.24)

Table 1: Performance of Ladder on WMT22 XX→En test set. The original translation using PD prompt are at
the top. The middle shows the Ladder-2B refined scores, and the bottom shows the Ladder-7B refined scores.
Blue boxes indicate improved Ladder-refined scores, while Red boxes indicate decreased scores.

Ladder then refines itest into the final translation218

yfinal in an auto-regressive manner: yfinalt ∼219

pθLa
(yfinalt | stest, itest,PR, yfinal<t). Notably,220

Ladder is model-agnostic, meaning MT can be a221

translation model like ALMA (Xu et al., 2023a), or222

a general LLM like Alpaca (Taori et al., 2023).223

3 Experiments224

3.1 Experimental Setup225

Datasets. For training, we choose Vicuna-7B-226

v1.5 (Chiang et al., 2023) as the sampling model.227

Vicuna-7B-v1.5, fine-tuned from LLaMA2 (Tou-228

vron et al., 2023), possesses a certain level of trans-229

lation ability (see Tables 1 and 2). For parallel230

corpus, we collect test datasets from WMT’17 to231

WMT’20, along with Flores-200 (Costa-jussà et al.,232

2022), covering 8 translation directions (En ⇔233

XX) and 5 languages: English (En), German (De),234

Czech (Cs), Chinese (Zh), and Russian (Ru). The235

trained Ladder is evaluated on the same translation 236

directions using data from WMT22 1. Detailed 237

statistics are in Table 5. 238

We evaluate Ladder under two scenarios. 1) We 239

examine the effectiveness of Ladder to refine both 240

translation-specific LLMs, such as BigTranslate 241

(Yang et al., 2023), BayLing (Zhang et al., 2023b), 242

NLLB (Costa-jussà et al., 2022), ALMA (Xu et al., 243

2023a), and general LLMs, such as Alpaca (Taori 244

et al., 2023), Vicuna (Chiang et al., 2023), GPT-3.5- 245

text-davinci-003 2 (Ouyang et al., 2022), GPT-4 3 246

(Achiam et al., 2023). 2) We compare Ladder to 247

SoTA translation refinement or APE methods, i.e., 248

LLMRefine (Xu et al., 2023b) and TowerInstruct 249

(Alves et al., 2024). Details are in Appendix B. 250

Metrics. Following Xu et al. (2023a) and Alves 251

et al. (2024), we use the lexical metric BLEU (Post, 252

1https://github.com/wmt-conference
2GPT-3.5 results are sourced from Xu et al. (2023a).
3GPT-4 results are sourced from Xu et al. (2024).
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Models En-Zh En-De En-Ru En-Cs Avg.

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Open
Alpaca-7B 7.85 51.79 18.22 78.22 14.10 74.87 13.13 73.51 13.33 69.60
Vicuna-7B-v1.5 31.42 82.68 22.65 80.82 19.60 81.07 16.37 77.25 22.51 80.46
BayLing-13B 37.93 84.63 25.62 82.70 12.77 71.01 16.43 78.22 23.19 79.14
BigTranslate-13B 29.89 81.83 22.99 80.54 19.52 81.56 22.68 84.50 23.77 82.11
NLLB-3.3B 32.53 81.57 33.97 86.24 30.11 87.51 36.30 89.90 33.23 86.31
ALMA-7B-LoRA 36.26 85.16 29.43 85.41 26.49 87.05 29.28 89.01 30.37 86.66
ALMA-13B-LoRA 39.87 85.96 31.49 85.62 29.03 87.53 32.47 89.79 33.22 87.23

Closed
text-davinci-003 38.34 85.76 31.85 85.61 27.55 86.74 31.28 88.57 32.26 86.67
GPT-4 42.78 87.19 34.49 87.29 28.67 88.70 33.66 90.81 34.90 88.50

Ladder-2B Refinement
Alpaca-7B 34.66

(+26.81)
83.56

(+31.77)
24.81

(+6.59)
81.55

(+3.33)
21.51

(+7.41)
83.71

(+8.84)
20.62

(+7.49)
82.57

(+9.06)
25.40

(+12.07)
82.85

(+13.25)
Vicuna-7B-v1.5 36.47

(+5.05)
84.62

(+1.94)
25.73

(+3.08)
81.86

(+1.04)
22.59

(+2.99)
83.84

(+2.77)
21.51

(+5.14)
83.19

(+5.94)
26.58

(+4.07)
83.38

(+2.92)
BayLing-13B 38.54

(+0.61)
85.03

(+0.40)
26.71

(+1.09)
82.32
(-0.38)

21.67
(+8.90)

83.22
(+12.21)

21.74
(+5.31)

82.93
(+4.71)

27.17
(+3.98)

83.38
(+4.24)

BigTranslate-13B 37.65
(+7.76)

84.74
(+2.91)

26.82
(+3.83)

82.62
(+2.08)

23.04
(+3.52)

84.03
(+2.47)

24.39
(+1.71)

84.82
(+0.32)

27.98
(+4.21)

84.05
(+1.94)

NLLB-3.3B 39.06
(+6.53)

84.79
(+3.22)

29.97
(-3.97)

83.59
(-2.65)

25.03
(-5.08)

85.19
(-2.32)

28.34
(-7.96)

86.06
(-3.84)

30.60
(-2.63)

84.91
(-1.40)

Ladder-7B Refinement
BigTranslate-13B 42.10

(+12.21)
86.56

(+4.73)
32.00

(+9.01)
85.92

(+5.38)
28.11

(+8.59)
87.38

(+5.82)
30.49

(+7.81)
89.00

(+4.50)
33.18

(+9.41)
87.22

(+5.11)
NLLB-3.3B 43.40

(+10.87)
86.65

(+5.08)
33.33
(-0.64)

86.34
(+0.10)

29.55
(-0.56)

87.71
(+0.20)

33.74
(-2.56)

89.37
(-0.53)

35.01
(+1.78)

87.52
(+1.21)

ALMA-7B-LoRA 42.17
(+5.91)

86.73
(+1.57)

32.33
(+2.90)

86.20
(+0.79)

28.58
(+2.09)

87.65
(+0.60)

30.90
(+1.62)

89.30
(+0.29)

33.50
(+3.13)

87.47
(+0.81)

ALMA-13B-LoRA 42.72
(+2.85)

86.83
(+0.87)

32.54
(+1.05)

85.93
(+0.31)

29.04
(+0.01)

87.65
(+0.12)

31.70
(-0.77)

89.43
(-0.36)

34.00
(+0.79)

87.46
(+0.24)

text-davinci-003 43.62
(+5.28)

86.75
(+0.99)

32.90
(+1.05)

86.12
(+0.51)

28.58
(+1.03)

87.92
(+1.18)

32.57
(+1.29)

89.25
(+0.68)

34.42
(+2.16)

87.51
(+0.84)

GPT-4 44.35
(+1.57)

87.02
(-0.17)

33.81
(-0.68)

86.55
(-0.74)

29.32
(+0.65)

88.15
(-0.55)

32.65
(-1.01)

89.69
(-1.12)

35.03
(+0.13)

87.85
(-0.65)

Table 2: Results of Ladder on WMT22 En→XX test set. Ladder-2B refines LLMs with higher parameter counts
than itself. Ladder-7B refines all translators except for GPT-4. The color and marker are the same in Table 1.

Models COMET

Zh-En En-Zh De-En En-De

Palm2 74.70 - - 81.80
+LLMRefine 75.90 - - 82.30

BigTranslate-13B 74.63 81.83 81.04 80.54
+TowerInstruct-7B 76.17 85.62 82.03 84.89

+TowerInstruct-13B 77.92 85.91 82.26 85.86
+Ladder-2B 79.28 84.74 83.45 82.62
+Ladder-7B 81.08 86.56 84.58 85.92

Table 3: Comparison with baselines on WMT22 test
set. Palm2 and LLMRefine results are from Xu et al.
(2023b). Bold font and underline indicate the best and
second best performance, respectively.

2018) and the reference-based metric COMET-22253

(Rei et al., 2020) as the main metrics to evalu-254

ate the translation quality. We further employ the255

reference-free QE model COMETKiwi (Rei et al.,256

2022) to evaluate the overall translation quality.257

Backbones. Ladder uses Gemma-2B and Gemma-258

7B4 as the backbones, which are further fine-tuned 259

using LoRA (Hu et al., 2021) with a rank of 16. We 260

update 0.9% of the parameters for the 2B model 261

and 0.6% for the 7B model.5 262

3.2 Main Results 263

Refinement Performance over LLMs. Table 264

1 and 2 show that Ladder can significantly im- 265

prove the overall translation quality for all 8 trans- 266

lation directions across most translation-specific 267

and general-purpose LLMs. Specifically, Ladder- 268

2B improves Alpaca-7B by +12.07 BLEU and 269

+13.25 COMET for En→XX on average, and 270

refines BigTranslate-13B by +6.91 BLEU and 271

+3.52 COMET for XX→En. As for Ladder-7B, 272

it shows improvement over all open-source models 273

on average. Notably, it even enhances 7 out of 8 274

4They utilize a vocabulary size of 256k tokens, ensuring
effective applicability in multilingual scenarios.

5The training details are presented in Appendix C.
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Figure 4: Comparison of original translation quality (x-axis) with Ladder-7B refined quality (y-axis). Each dot is a
WMT22 En-Zh translation. The percentages represent the proportion of each part, attached next to the markers.

Figure 5: Trends in BLEU and COMET during training.
HFT represents our hierarchical fine-tuning from Easy
to Hard examples, while Mixed denotes using mixed
data shuffling without hierarchical fine-tuning. Anti-
HFT refers to reversing the HFT process.

translations for GPT-3.5-text-davinci-003 and im-275

proves +1.05 BLEU score for GPT-4 on average.276

We also find that while Ladder-2B shows inferior277

performance on the strong NLLB-3.3B, our Ladder-278

7B exhibits significant translation refinements on279

average. This aligns with our intuitions that dif-280

ferent base models might exhibit varying levels of281

refinement performance across different LLMs, see282

detailed analysis in Figure 4.283

Comparison with SoTA Baselines. We compare284

Ladder with two SoTA baselines on four translation285

directions from WMT22, as reported in Table 3.286

We can notice that Ladder-7B significantly outper-287

forms all baselines in all four directions. Mean-288

while, Ladder-2B exhibits performance on par with289

the best-performing TowerInstruct-13B baseline.290

We report the performance of LLMRefine on Palm2 291

as it is not available for BigTranslate, which is far 292

inferior to Ladder. 293

Figure 6: Robustness against threshold µ and ν. HFT1:
(µ,ν) = (0.7, 0.8), HFT2: (µ,ν) = (0.75, 0.85), and
HFT3: (µ,ν) = (0.8, 0.9). Mixed denotes mixed training.
ALMA-7B-LoRA is the model to refine.

3.3 Ablation and Analysis 294

Analysis of HFT. As depicted in Figure 5 6, our 295

HFT exhibits stable improvements and the best per- 296

formance regarding BLEU and COMET in all ten 297

checkpoints, while the traditional mixed training 298

strategy fluctuates with inferior performance. We 299

also conduct another "Anti-HFT" experiment by 300

6We examine the effectiveness of HFT with the Gemma-
7B on the development set (see Appendix A), automatically
saving 10 checkpoints to calculate metric scores.
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Figure 7: Weak-to-strong potential. We fine-tune Gemma-7B using different references as the labels to refine the
development set. Origin denotes ALMA-7B-LoRA translation. Blue represents using ALMA-7B-LoRA as the weak
reference to fine-tune Ladder. Red represents using the gold label as the reference.

Figure 8: Self-translation and Self-refinement. Ladder-2B represents performing direct translation with prompt PD,
demonstrating translation capabilities comparable to 7B and 13B LLM-based translators. Iter1 denotes Ladder-2B
refining its original translation. Iter2 denotes Ladder-2B refining the translation from Iter1.

Ladder Pipeline WMT22 En-Zh

Sampling Model Base Model Refine Model BLEU COMET COMETKiwi

Gemma-2B-it Gemma-2B
Gemma-2B-it 35.46 84.41 79.55
Gemma-7B-it 35.86 84.60 79.58

Vicuna-7B-v1.5 LLaMA-2-7B
Vicuna-7B-v1.5 34.31 84.12 79.41
Vicuna-13B-v1.5 36.19 84.74 79.86

Baseline

Gemma-2B-it 21.07 78.67 73.70
Gemma-7B-it 30.55 81.50 76.98
Vicuna-7B-v1.5 31.42 82.68 77.86
Vicuna-13B-v1.5 35.14 83.38 78.67

Table 4: Ablation of different sampling and backbones.
Evaluate Gemma and LLaMA suite models on En-Zh.

reverting the order of the corpus employed during301

HFT, i.e., the Ladder is trained following a hard-302

to-easy schema. Results in Figure 5 shows that303

"Anti-HFT" initially achieves its best performance304

and then gradually declines.305

We further scrutinize the model performance306

during HFT to verify its effectiveness. We report307

two metrics, the average improvement ∆ and its308

standard deviation σ of the above three strategies309

during the training process, while larger ∆ and310

smaller σ indicate better and more stable refine-311

ment improvements. The results are in Figure 9.312

We notice that HFT results in a gradual increase313

of ∆ and a decrease of σ. However, "Anti-HFT"314

shows the opposite trend, and the mixed training315

fluctuates in both ∆ and σ. The increasing σ in316

"Anti-HFT" suggests that learning on Easy triplets 317

might affect the stability of refinements. These re- 318

sults align with our hypothesis that refining Hard 319

samples requires fewer adjustments, while Easy 320

samples, which exhibit substantial deviations from 321

the reference, demand more corrections and can 322

cause significant fluctuations if utilized for fine- 323

tuning in the final stage. See samples in Table 6 324

and 7 for intuitive understandings. Our findings 325

suggest that the way triplet data is partitioned and 326

ordered for HFT can impact model performance 327

for instruction-following refinement, while more 328

robust fine-tuning strategies are of high necessity 329

in future work. 330

We also investigate the sensitivity of the thresh- 331

old µ and ν used for splitting hierarchies and con- 332

duct HFT with three different thresholds on En-Zh 333

training set, as shown in Figure 6. The results in- 334

dicate that HFT consistently outperforms mixed 335

training, with similar performance across different 336

thresholds. 337

Refinements Degrade as the Original LLM Be- 338

comes Stronger. We analyze the quality score 339

changes between the original translations and the 340

Ladder-refined versions as shown in Figure 4. We 341

observe that Ladder consistently improves a higher 342
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proportion of translations than it degrades, even343

for GPT-4. The trend in the proportion of im-344

proved translations aligns with the average score345

improvement trend. Specifically, as the model’s346

translation capability increases, the proportion of347

improvements decreases, and the average improve-348

ment score also decreases. Our findings suggest349

that stronger translations have fewer and more com-350

plex errors that are harder to refine, consistent with351

our assumption in Section 2.3.352

Ablation Study of Different Sampling and Back-353

bones. As shown in Table 4, Ladder trained using354

different sampling and backbones consistently im-355

proves translation quality across instruction-tuning356

models of various sizes, demonstrating the effec-357

tiveness of our instruction-following refinement358

strategy. Notably, Gemma-2B (Vicuna-7B) with359

Ladder even surpasses Gemma-7B (Vicuna-13B),360

highlighting the potential to enhance the capabili-361

ties of smaller models to next level.362

Instruction-following Refinement Enables363

Weak-to-Strong Generalization. Typically, the364

capabilities after fine-tuning are upper-bounded by365

the supervised label, i.e., the reference in our task.366

Here, we explore using ALMA-7B-LoRA sampled367

translation as the weak reference and Vicuna-7B368

sampled translation as the intermediate translation369

to create pseudo-refinement training triplets370

[source, intermediate translation, weak reference].371

Figure 7 and 10 show that Ladder trained under this372

weak supervision can refine translations from the373

weak label annotator ALMA-7B-LoRA, surpassing374

it in both BLEU and COMET scores. Remarkably,375

it even outperforms gold label supervision in376

three translation directions. This demonstrates the377

potential of our instruction-following refinement378

method to exceed the current limits of supervision.379

Ladder Can Act as a Good Translator and Exe-380

cute Self-refinement. We evaluate the translation381

capability of Ladder and explore its self-refinement382

potential. Figure 8 shows that Ladder-2B can also383

execute the direct translation task and can improve384

its own initial translations across 8 translation direc-385

tions, with increased COMET scores. However, the386

refinement effect becomes less pronounced with387

each iteration. More metrics are in Appendix D.388

4 Related Work389

Automatic Post-Edition and Refinement APE390

aims to cope with systematic errors of an MT391

system and adapt the output to the lexicon/style392

requested in a specific application domain. Cor- 393

reia and Martins (2019) proposed a BERT-based 394

method for APE using transfer learning. Other 395

studies (Negri et al., 2018; Vu and Haffari, 2018; 396

Chatterjee, 2019; Shterionov et al., 2020; Voita 397

et al., 2019; Góis et al., 2020; Chollampatt et al., 398

2020; do Carmo et al., 2020) investigated dataset 399

construction, model architectures, and context inte- 400

gration to improve post-edited translations. 401

With the development of LLMs, learning-based 402

approaches have trained LLMs for refining trans- 403

lations to improve the overall translation segment 404

quality (Xu et al., 2023b; Alves et al., 2024; Koneru 405

et al., 2023). Recent works (Chen et al., 2023; 406

Raunak et al., 2023; Feng et al., 2024) have also 407

explored using powerful LLMs, such as ChatGPT, 408

to refine translations through prompting strategies 409

like in-context learning and self-correction. 410

LLMs for Machine Translation LLM-based 411

machine translation falls into two main categories. 412

The first focuses on strategies like prompt design, 413

in-context example selection, and evaluation in var- 414

ious contexts such as low-resource, document-level, 415

and multilingual translation (Vilar et al., 2022; 416

Zhang et al., 2023a; Peng et al., 2023; Wang et al., 417

2023; Liang et al., 2023; He et al., 2024a). The 418

second category focuses on training translation- 419

specific LLMs. Prior studies (Zeng et al., 2023; 420

Jiao et al., 2023a; Kudugunta et al., 2024; Zan 421

et al., 2024; Li et al., 2024; Guo et al., 2024; He 422

et al., 2024b; Wu et al., 2024; Xu et al., 2024) have 423

explored aspects such as dataset construction, train- 424

ing paradigms, and exploring different contexts to 425

achieve better translation performance. 426

5 Conclusion 427

In this paper, we introduce Ladder, a model- 428

agnostic and cost-effective tool for multilingual 429

translation refinement that bridges the gap between 430

off-the-shelf models and top-tier translation mod- 431

els. We sample translations from existing mod- 432

els to create pseudo-refinement training triplets 433

without human annotations, which makes train- 434

ing cost-efficient. The proposed hierarchical fine- 435

tuning strategy improves Ladder’s refining per- 436

formance step by step, following an easy-to-hard 437

schema. Our exploration of training paradigms 438

demonstrates good performance in effectiveness 439

and robustness, as well as promising results in 440

weak-to-strong generalization and self-refinement, 441

providing valuable insights to the MT area. 442
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Limitations443

Although Ladder has shown promising results in444

bridging the gap between the translation perfor-445

mance of different models, it has some limitations.446

We have validated Ladder’s support for sentence-447

level translations, but document-level support still448

needs exploration. Expanding Ladder’s usage to449

support more languages, especially low-resource450

languages, is also crucial for future work. Addition-451

ally, deploying this approach to larger models (e.g.,452

70B) or smaller models (e.g., less than 1B) is worth453

exploring in future research. Leveraging the prin-454

ciples of Ladder to explore instruction-following455

refinement in more generation tasks is also an in-456

teresting direction for future work.457
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used ALMA-7B-LoRA to generate intermediate768

translations, totaling 800 development triplets.769

B Baseline Models770

Translation Models771

• BigTranslate (Yang et al., 2023) extends772

LLaMA to over 100 translation directions.773

• BayLing (Zhang et al., 2023b) is an774

instruction-following large language model775

equipped with advanced language alignment.776

• NLLB (Costa-jussà et al., 2022) is a transla-777

tion model with encoder-decoder architecture.778

• ALMA (Xu et al., 2023a) is a many-to-many779

LLM-based translation model. It represents780

the top level of open-source translators.781

Non-translation Models782

• Alpaca (Taori et al., 2023) is a LLaMA Model783

fine-tuned on 52K instruction-following data.784

• Vicuna-v1.5 (Chiang et al., 2023) is fine-tuned785

from LLaMA2 with supervised instruction786

fine-tuning. The training data is around 125K787

conversations collected from ShareGPT 7.788

• text-davinci-003 is a GPT-3.5 model with789

175B parameters (Ouyang et al., 2022).790

• GPT-4 (Achiam et al., 2023) is the latest and791

the most powerful version of GPT-series. We792

use OpenAI API gpt-4-1106-preview.793

SoTA APE Models794

• LLMRefine (Xu et al., 2023b) is a PaLM2 (Bi-795

son) fine-tuned LLM to refine LLM’s output796

with fine-grained actionable feedback itera-797

tively.798

• TowerInstruct (Alves et al., 2024) is an effec-799

tive translation post editor. It is fine-tuned800

on high-quality parallel translation data total-801

ing 637k examples. The APE-related tasks802

include MQM evaluation data (WMT20 to803

WMT22) annotated with multidimensional804

quality metrics (Freitag et al., 2021), account-805

ing for 20.9%. Translation data with post-806

edits from QT21 (Specia et al., 2017) and Ape-807

Quest 8 are used for general translation and808

7https://sharegpt.com
8https://apequest.wordpress.com/

automatic post-editing, making up 3.1% and 809

3.3% of the data, respectively. TowerInstruct 810

outperforms open models and GPT-3.5-turbo 811

on APE. 812

C Training Details 813

We fine-tune our model using LoRA with a rank of 814

16 and a learning rate of 1e-4. All models are fine- 815

tuned for 1 epoch with a batch size of 16, imposing 816

a maximum text length of 512. We adopt deepspeed 817

(Rasley et al., 2020) to accelerate our training. 818

D Self-translation and Self-refinement 819

For Section 3.3, we supplement the BLEU and 820

COMETKiwi of Ladder-2B (see Figure 11 and 12) 821

and all metrics of Ladder-7B (see Figure 13, 14 822

and 15). 823

12
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Figure 9: Comparison of original translation quality (x-axis) with refined quality (y-axis) in different fine-tuning
stages. Each dot is a WMT22 De-En translation in our development set. We select the checkpoint at 2, 6, and 10
from Figure 5 (which we refer to as Stage 1, Stage 2 and Stage 3 here). ∆ denotes the average improvement. σ
refers to the standard deviation of ∆. The percentages represent the proportion of each part, attached next to the
markers.

Language
Parallel Data

Train Development Test (from English) Test (to English)

Chinese (Zh) 15406 1002 2037 1875
German (De 14211 1002 2037 1984
Russia (Ru) 15000 1002 2037 2016
Czech (Cs) 12076 1002 2037 1448

Table 5: The statistics for the parallel data we used.
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Figure 10: Weak-to-strong BLEU scores. We fine-tune Gemma-7B using different references as the label to refine
the development set. Origin denotes ALMA-7B-LoRA translation. Blue represents using ALMA-7B-LoRA as
references. Red represents using the gold as references.

Figure 11: BLEU scores for Self-translation and Self-refinement. Iter1 denotes Ladder-2B refines its original
translation. Iter2 denotes Ladder-2B refines the Ladder-2B edited translation in Iter1.

Figure 12: COMETKiwi scores for Self-translation and Self-refinement. Iter1 denotes Ladder-2B refines its original
translation. Iter2 denotes Ladder-2B refines the Ladder-2B edited translation in Iter1.

Figure 13: BLEU scores for Self-translation and Self-refinement with Ladder-7B. Self-Refinement denotes Ladder-
7B refines its original translation.

14



Figure 14: COMET scores for Self-translation and Self-refinement with Ladder-7B. Self-Refinement denotes
Ladder-7B refines its original translation.

Figure 15: COMETKiwi scores for Self-translation and Self-refinement with Ladder-7B. Self-Refinement denotes
Ladder-7B post-edits its original translation.

Anti-HFT Case COMET

German Source
So jedenfalls macht die grandiose F1-Saison
wesentlich weniger Spaß als es mit einem
vernünftigen Sender möglich wäre.

-

English Reference
At any rate, it really makes the grand F1 season
considerably less fun as would be the case with a
reasonable broadcaster.

-

Intermediate Translation So, in any case, the grandiose F1 season is much less
fun than it would be with a reasonable broadcaster.

-

Anti-HFT Stage1 (Hard) So, at any rate, the grandiose F1 season is much less
fun than it would be with a reasonable broadcaster.

87.55

Anti-HFT Stage2
(Hard+Medium)

So, at least, the grandiose F1 season is much less fun
than it would be with a reasonable broadcaster.

83.32

Anti-HFT Stage3
(Hard+Medium+Easy)

So the great F1 season is much less fun than it would
be with a decent broadcaster.

81.57

HFT Cases COMET

German Source Es ist schade, dass wir den Flow nicht mitnehmen
konnten.

-

English Reference It is a shame that we were not able to get into the
flow.

-

Intermediate Translation It is a shame that we couldn’t take the flow with us. -
HFT Stage1 (Easy) It’s a shame we couldn’t keep the momentum going. 79.54
HFT Stage2 (Easy+Medium) It’s a shame that we couldn’t take the flow with us. 81.18
HFT Stage3
(Easy+Medium+Hard) It’s a shame that we couldn’t keep the flow going. 84.10

Table 6: Case study. Stage corresponds to Figure 9.
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COMET:69.73
Chinese Source 但八年前濒临倒闭，不得不接受救助从那时开始便放弃了那样的追求。

Intermediate Translation But eight years ago, it was on the verge of bankruptcy and had to accept help.
From that time on, I gave up such pursuits.

English Reference It has retreated from them since it nearly collapsed eight years ago and had to be bailed out.
COMET:83.37

English Source Representatives of junior doctors have called on their union to authorise fresh industrial action
in their dispute about a new contract.

Intermediate Translation 低级医生代表呼吁他们的工会授权新的工业行动，因为他们对新合同的争议仍未得到解决。
Chinese Reference 初级医生代表号召联盟批准其针对新合同纠纷采取新的劳工行动。

COMET:91.84
German Source Ich hätte mich gefreut, wenn Mesut Özil weiter für Deutschland gespielt hätte.
Intermediate Translation I would have been delighted if Mesut Özil had continued to play for Germany.
English Reference I would be happy if Mesut Özil continued to play for Germany.

Table 7: Cases of triples with different COMET scores.
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