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ABSTRACT

While Large Language Models’ coding capabilities have advanced rapidly, cor-
responding evaluation benchmarks on real-world programming setups are yet to
catch up. Building a scalable and interactive testbed for evaluating general-purpose
AI coding agents for real-world code has been challenging, particularly due to
a lack of high-quality test suites available. In this paper, we present Repository
to Environment (R2E), a framework that can turn any GITHUB repository into
a test environment to evaluate the performance of code-generating systems, both
static and interactive. We instantiate our framework to build the first large-scale
benchmark, R2E-Eval, for building realistic environments for AI coding assistants.
Our results demonstrate that even when SOTA models cannot generate correct so-
lutions with advanced prompting techniques, they can effectively use environment
feedback highlighting the need to move from static functional coding to interactive
programming paradigm. We hope that our framework (and instantiated dataset) can
motivate research directions by providing web-scale open-ended coding testbeds.

1 INTRODUCTION

The rapid improvement of LLMS’ performance on code-related tasks has enabled the development of
coding assistants deployed in the real world. However, evaluations on such real-world coding setups
have not kept pace. Prior benchmarks (Chen et al., 2021; Wang et al., 2022b) used for evaluating
coding capabilities of LLMS only consist of short and isolated functional code completion problems.
On the other hand, real-world software engineering requires more complex workflows involving
integrating code with existing (large) codebases, using libraries, interacting with the interpreter,
debugging errors, etc. In this work, to capture this interactive aspect (in contrast with single-shot
code generation), we consider programming agents as AI systems that can similarly use interpreters
and error feedback to improve their own outputs given a specification. As such programming agents
become more powerful, it urges the need to build real-world test environments to evaluate them.

We propose Repository to Environment (R2E), a scalable framework for turning any GITHUB
repository into an environment to evaluate code generation systems on real-world scenarios (Section 3).
We build on a key insight that test suites, if synthesized for real-world code, can act as checks
and orchestrators for execution-guided programming environments. R2E takes a function (from
GITHUB) and constructs a test harness–a scaffold consisting of test cases and a setup that establishes
the operational conditions and dependencies of the function. R2E further refines the docstring and
uses the refined specification along with repository code and test harness as a problem instance for
studying code generation. Figure 1 (left) provides an end-to-end diagram of our approach.

These environments serve two evaluation purposes: First, one can evaluate a code generation system
via the environment in real-world scenarios. Secondly, even for an interactive programming agent, our
environment can provide feedback to the agent using the interpreter (Figure 1 right). Notably, R2E
framework is scalable to build web-scale open-domain coding datasets. Furthermore, R2E requires
minimal human supervision and is extensible in a live manner for contamination-free evaluation.
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Figure 1: An overview of our R2E framework that takes any GITHUB repository and converts
it into a programming agent test environment. Given a repository, we first scan for interesting
functions and collect corresponding in-file and external-file contexts from the repository. Next, we
use our test generation approach to develop high-quality testing harnesses for the function. Our key
insight is decoupling the test outputs from inputs by relying on the ground truth implementation
to get the expected outputs. Next, we perform specification refinement that improves the natural
language docstring, making it amenable for code generation. Our framework yields problem instances
comprising docstrings, test harnesses, and repository context (instantiated in the form of R2E-Eval
benchmark). Our benchmark can be used to evaluate code generation systems, either static ones that
directly generate code or programming agents that interact with the test harness and interpreter to
improve code generation performance.

# torchsig/utils/index.py

from utils.types import SignalCap, SignalDesc

import os

def _parse_sigmf(absolute_file_path: str): 

 ...

def indexer(root) -> ..., SignalCap]]:

"An indexer with classes by folders"

  non_empty_dirs = [d for d in os.listdir(root)...

  ... 

for idx, dir_name in enumerate(non_empty_dirs):

for f in sigmf_files:

for sig_file in _parse_sigmf(...

        ...

# torchsig/utils/types.py

class SignalDesc:

   ...
class SignalCap:

...

Function and In-File Context

class TestIndexerFromFoldersSigmf(unittest.TestCase):
def setUp(self):

    test_dir = TemporaryDirectory()

    class_dirs = ['class_x', 'class_y']
for class_dir in self.class_dirs:

      os.makedirs(test_dir.name+”/”+class_dir))

    self.sigmf_files = {
'class_x': ['file1.sigmf-data', 'file2.sigmf-data'],
...

    for class_name, files in self.sigmf_files.items():
      for file_name in files:

...
with open(data_file_path, 'wb') as data_file:
data_file.write(...)

def test_indexer_from_folders_sigmf(self):
    result = indexer(self.test_dir.name)
    expected = ref_indexer(self.test_dir.name)

    self.assertEqual(len(result), len(expected))

for res, exp in zip(result, expected):
       self.assertEqual(res[1].num_bytes, exp[1].num_bytes)
       self.assertEqual(res[1].byte_offset, exp[1].byte_offset)

R2E Generated Test Harness

Test 

Setup

Equivalence 

Checks

External

File

Context

Figure 2: An example problem (left) in the R2E-Eval benchmark. The problem contains a function
indexer from the Torchsig2 GITHUB repository. TorchSig is an open-source signal processing machine
learning toolkit based on the PyTorch data handling pipeline. The function indexer has dependencies
within its file (_parse_sigmf) and from external files (SignalDesc and SignalCap from the file torchsig

/utils/types.py). On the right is the generated test harness from our R2E framework. It contains
a complex test setup where files expected by the function indexer are created and added to the file
system. Then, the test cases generated perform functional equivalence checks for various granular
properties of the returned output. Particularly, we create equivalence tests which instead of predicting
the output behavior of the program, check it directly against the ground truth program available on
GITHUB – a simpler problem that requires constructing diverse inputs to test the function on.

Using this framework, we construct R2E-Eval (Section 4), the first large-scale benchmark of real-
world coding problems consisting of natural-language docstrings, repository contexts, and test
harnesses. Figure 2 shows an example of a function and corresponding synthesized test harness from
our dataset. Our dataset comprises of 246 tasks extracted from 137 repositories containing 127.2
code tokens, 11.5 tests, and 3.7 dependencies per problem, on average.

Finally, in Section 5, we evaluate current LLMS on real-world scenarios from our benchmark. We find
that compared to HUMANEVAL models perform worse on these problems, highlighting the challenges

2https://github.com/TorchDSP/torchsig
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of real-world programming. Popular techniques like Chain-of-Thought (COT) do not help with
performance. On the other hand, LLM agents that interactively program using the test harness and
execution feedback greatly improve their performance. We also provide insights into model behavior
specific to real-world programs, such as challenges in understanding interfaces to existing functions
and reasoning about complex objects.

Overall, we find that real-world programming is complicated, even for SOTA LLMS (GPT-4),
motivating the use of better workflows that mimic a typical developer’s programming process. This
underscores the need to move from static functional coding to interactive programming, the evaluation
of which our framework enables. Finally, the interactions collected in R2E environments can help
improve various code-related abilities of LLMS.

2 BACKGROUND

Our R2E pipeline is powered by a synergy of program analysis and LLMS. Here, we provide
background on some concepts used in the following sections.

Testing. Testing for functional correctness extends beyond mere input-output pairs, encompassing
the broader dependencies that real-world software relies on. A Test Harness encapsulates this
by combining Test Cases (defining inputs and expected outputs) and a Setup (establishing the
operational conditions and dependencies like configuration files).The complexity of test harnesses,
as illustrated in Figure 2, surpasses the simple input-output examples in previous benchmarks, like
HUMANEVAL (Chen et al., 2021). For instance, in Figure 2, the test harness contains the required
setup of files in a directory (i.e., file system dependency) that the program expects to run successfully.

Code Coverage. The quality of tests is widely measured by its coverage–the fraction of code
elements (e.g., statements or branches) it exercises (Ivanković et al., 2019). For example, a test that
executes all lines of a function is said to have line coverage of 100%. A high coverage is desirable to
ensure a function is tested thoroughly. We use branch coverage to evaluate the quality of our tests as
it offers a more fine-grained measure than line coverage.

Program Analysis for Slicing Context. To effectively test repository code, we must grasp the
function’s operational context, which encompasses the functions and global variables it interacts with.
We employ dependency slicing to construct this context, defining a slice Df for function f as the set
of functions F ′ called by f and global variables G′ accessed by f , both directly and indirectly. The
top-left of Figure 2 shows an example of a dependency slice extracted for a function indexer, that
serves as a minimal context necessary to comprehend the function’s behavior. The resulting slice Df

provides the minimal context for understanding f ’s behavior and indicates its connectivity within the
repository, quantified by the slice size |Df |. Details on computing the slice are in the Appendix A.

3 THE R2E FRAMEWORK

GITHUB is a rich data source for realistic code problems, but repositories in the wild can be quite
noisy, hard to run, and poorly maintained. We here propose R2E, an automated framework that
turns any GITHUB repository into a test environment to evaluate the performance of code generation
systems on real-world code.

Section 3.1 details our initial problem curation process. Section 3.2 describes our test harness
synthesis approach. We evaluate the quality of our synthesized tests in Section 3.3. Finally, we
describe how problem specifications can be refined to build a high-quality benchmark in Section 3.4.

3.1 PROBLEM CURATION

3.1.1 REPOSITORY CURATION

We scraped PYTHON repositories on GITHUB created after July’22 that are non-forks, have at least
40 stars, and contain either a toml or setup.py file. This date aligns with the reported cutoff data
for OpenAI models GPT-3.5-TURBO and GPT-4, thus preventing contamination. Each repository
was cloned into a Docker container and built using pip install Repositories with build errors were
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excluded. However, we are still left with uninstalled packages due to incomplete build files on
GITHUB, which we resolve by tuning the docker image with the relevant pre-installed packages.

3.1.2 FUNCTION CURATION

We first extract all functions from the collected repositories to identify functions suitable for natural-
language-driven code generation and functional correctness evaluation. We then filter out functions
lacking docstrings to ensure we have a natural language prompt equivalent. We apply keyword-based
filters to exclude functions associated with GPU and cloud-related tasks since they are not conducive
to standard functional correctness evaluations. Lastly, we estimate the complexity of the functions
using its connectivity (detailed in Section 2). We filter out functions that do not call other components
in the repository.

Through these stages of filtering, we collected candidate 2073 problems from 790 repositories.

3.2 TEST HARNESS GENERATION: A KEY TO ENVIRONMENTS

GITHUB repositories lack high-quality tests necessary for evaluating code generation, thus requiring
automated test harness generation to collect problems scalably.

If generated, these tests can act as checks and orchestrators for execution-guided programming agents.
As checks, they can evaluate the functional correctness of generated code. As orchestrators, they can
run the generated code, capture compiler feedback, enable repair, and more.

To tackle this, R2E synthesizes tests for arbitrary GITHUB code using a novel synergy of program
analysis with LLM prompting. Below, we summarize some of the key design choices of R2E’s test
generation approach.

Harnesses, not I/O pairs. R2E generates test harnesses (Section 2) for each function, which contain
the test cases and the required setup, such as database connections, external files, configurations, etc.,
that makes it possible to run functions in the wild. This is a departure from traditional I/O tests in
benchmarks such as HUMANEVAL (Chen et al., 2021). This is necessary because real-world code
often requires more than simple input arguments to run. They may need several dependencies, such
as access to files, environment variables, and other functions.

Equivalence Tests, not Output Prediction. R2E decouples test outputs from inputs. It instead uses
the original function as a reference implementation to generate expected outputs. This key insight
dramatically simplifies test generation since it removes the need to predict outputs. Consequently,
we generate equivalence tests—they check if the outputs of the original function and the generated
function is equivalent against a given set of inputs.

Sliced Context, not Entire Repositories. Test generation using LLMS has been effective in prior
work like HUMANEVAL+ (Liu et al., 2023b) for simple isolated functions. However, in a repository
setting, prompting with the function alone is insufficient, and providing the entire repository is
expensive. R2E uses a novel dependency slicing based prompt to extract the minimal repository
context required to understand the functionality of the function under test. As described in Section 2,
it finds functions and global variables on which the function directly or indirectly depends.

Execution and Coverage for Quality Control. Finally, recent studies have shown that execution-
based benchmarks can be flawed due to low-quality tests (Liu et al., 2023b). To avoid this, we execute
the generated test harnesses in the docker container built for the repository. Equivalence tests are
run in “self-equivalence” mode, so the function under test and the reference implementation are the
same. Inoperative harnesses due to issues like missing packages are excluded. A test harness is
deemed valid if all tests pass. We further emphasize the quality of test cases by using branch coverage
(Section 2). This check is critical to ensure that the generated tests cover the function’s complete
behavior and can be used for checking functional equivalence.

We encode our design decisions as guidelines to prompt GPT-4-TURBO and use the sliced context to
generate high-quality test harnesses. Figure 2 shows the resulting harnesses that handle complex data
types and unique setups, depending on the function’s requirements. We outline additional guidelines
for test generation in the appendix.
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In-File Out-File

Strategy Val Cov Val Cov
Naïve 41.4% 95.1% 32.1% 93.6%
Full 48.4% 95.1% 39.4% 92.5%
Sliced 50.0% 96.6% 46.3% 95.0%

Table 1: Test generation evaluation results across 3 strategies–Naïve, Full, and Sliced–for prompt
context creation. The results are compared on 2 settings: In-File where the function under test
only depends on the context within its file, and Out-File where it depends on external files in the
repository. The metrics used are Validity (Val) and Coverage (Cov), for which higher is better.

3.3 TEST HARNESS EVALUATION

3.3.1 EXPERIMENT SETUP

We evaluate test harness generation on two fronts. First, measure validity, i.e., does it execute
the original function while passing all tests? Then, we also evaluate the quality using branch
coverage (Section 2) to identify how well the tests cover the function’s behavior–a critical property
for equivalence checking.

We consider three strategies for test generation in a repository context: Naïve, Full, and Sliced.
The Naïve strategy prompt contains the function and no context. The Full strategy provides the
file containing the function and all files it imports (until a 6000 token limit). Finally, the Sliced
strategy implements our proposed dependency slicing to provide the minimal context required for the
function. We compare these strategies in 2 problem settings: (1) In-File: where the function under
test depends only on the context within its file and (2) Out-File: where it depends on external files in
the repository. We generate all tests using the state-of-the-art GPT-4-TURBO model. We elaborate
further details such as prompts in Appendix B.

3.3.2 VALIDITY AND QUALITY RESULTS

Table 1 shows the results of our evaluation.

Focussed context improves coverage. The Naïve strategy performs relatively poorly on validity
(as low as 32%), but the valid test harnesses it generates have high coverage (93.6%). For example,
naïvely generated tests often fail to generate correct input argument types (e.g., schemas or custom
classes) due to the lack of necessary context.

Broader context improves validity. On the other hand, the Full strategy generates more valid tests
(as high as 48.4%) but has lower coverage (92.5%). This indicates that a focused context can be more
effective in covering corner cases in the function, but a broader context is necessary to understand the
function’s dependencies.

Our sliced strategy strikes a good balance between the two and achieves the best results in validity
and coverage. Overall, we observe that R2E’s dependency slicing-based strategy generates ≈ 50%
valid test harnesses with a high ≈ 95% code coverage.

3.3.3 FAILURE MODES

We collected and classified invalid test harnesses, and study their failure modes. We discovered
that 40% of errors were due to ValueErrors and TypeErrors, reflecting improper key, attribute, or
type usage in tests. Additionally, 15% were DataFormatErrors, caused by incorrect data formats or
schemas, highlighting the complexity of testing GITHUB code beyond primitive types.

AssertionErrors (expected and actual outputs don’t match) accounted for a notable 25% of errors,
showing a nuanced aspect of functional correctness in real-world code. Although R2E simplifies this
to equivalence tests, assertions often need more granularity than simply checking for equality. For
example, checking for class attributes, columns in a dataframe, etc., requires a deeper understanding
of code and repository context. Lastly, EnvironmentErrors (21%), like OS and File system errors,
indicate challenges with test environment configuration.
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Dataset Exec? Repo? Auto? LOC #Tests

HUMANEVAL ✓ ✗ ✗ 6.26 6.6
ODEX ✓ ✗ ✗ 3.05 1.9

CROSSCODEEVAL ✗ ✓ ✓ 1.0 -
REPOBENCH ✗ ✓ ✓ 1.0 -
REPOEVAL-FUNC ✓ ✓ ✗ 10.8 -

R2E-Eval ✓ ✓ ✓ 10.5 11.5

Table 2: Comparison of R2E-Eval with other benchmarks.

Feature Value

# Problems (# Repos) 246 (137)
Avg. # lines (# tokens) 10.5 (127.2)
Avg. # tests (coverage) 11.5 (92.2)
Avg. # dependencies 3.7
# Unique APIs 70
# Unique Arg Types 118

Table 3: Statistics for R2E-Eval.

3.4 REFINEMENT OF SPECIFICATIONS

Natural language docstrings in GITHUB repositories might be ambiguous or under-specified to be
used for code generation. Here, we propose an automated approach to refine the natural language
docstring of a given function by asking the model to refine the docstring in a self-instruct-like
fashion (Wang et al., 2022a). Distinctly, however, we provide the model with additional context in
the form of the original docstring, test harness class, argument types, and serialized input-output
arguments available via the test harness. Appendix C consists of more details.

We note that while we cannot evaluate the quality of refined specifications, we perform rigorous
manual evaluations and filter problems with poor or ambiguous specifications.

4 THE R2E-EVAL BENCHMARK

In Section 3, we showed that R2E enables a scalable framework for building execution-based test
environments for programming agents. R2E takes a function from a codebase and converts it into
a tuple I = {D, R, T }, where D is a refined docstring for a function, R is the remainder of the
codebase, and T is the generated test harness.

We instantiate this framework to construct R2E-Eval, the first large-scale dataset of real-world
code generation problems with functional correctness tests. Table 2 compares R2E-Eval against
several popular benchmarks used to evaluate code generation capabilities of LLMS. Prior work like
HUMANEVAL (Chen et al., 2021) and ODEX (Wang et al., 2022b) support execution-based metrics but
for isolated simple problems with no real-world repository setting. Recent work on repository-level
code generation like CROSSCODEEVAL (Ding et al., 2023), REPOBENCH (Liu et al., 2023c), and
REPOEVAL (Zhang et al., 2023d) use repository context, but either forego execution-based evaluation
or depend heavily on human-written tests, which are seldom available at scale on GITHUB. R2E-Eval
is the only executable benchmark that has repository context and is automated, enabling scalability.
Following, we describe the construction of R2E-Eval and analysis.

4.1 BENCHMARK CONSTRUCTION

4.1.1 DATASET QUALITY

We emphasize heavily on the quality of problems in this work. Quality, here, means how well the
function, docstring, and test cases are written. To ensure this, we only consider functions with high
branch coverage. Our final benchmark problems have an average of 11.5 test cases with 92.2%
average branch coverage. An additional round of manual inspection helps us select high-quality
problems. Notably, in the manual inspection, we avoid very long or complex that is hard to specify
precisely using docstrings (like functions with many peculiar corner cases).

4.1.2 DATASET COMPOSITION

We also consider the diversity and interestingness of the problems in the benchmark. We identify
several properties of code that calibrate interestingness, such as # of dependencies, argument types,
lines, libraries used, etc.

Table 3 showcases statistics of our benchmark. Our manual analysis also shows that R2E-Eval
problems are diverse in terms of the domains they cover: pythonic operations (list, str, dict
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manipulations), data manipulation (JSON, files, pandas, numpy), algorithm and protocol implementa-
tions (networkx, statistics), domain-specific problems (programming languages, networks, quantum
computing, formal verification, numerical computing), and more.

We also ensure that the benchmark is diverse in terms of the number of distinct repositories, preventing
bias towards a codebase or domain. Overall this process leads to a curated set of 246 problems from
137 repositories in R2E-Eval.

Each problem instance I can be used to evaluate a code generation system by providing docstring D
to the system and evaluating its response (in the context of the repository R) against the generated
test harness T .

5 R2E: TOWARDS PROGRAMMING AGENTS

We conduct experiments to understand three important problems about LLM performance on real-
world coding.

Q1 How well can current LLMS solve real-world code generation tasks statically? (Sec. 5.1)
Q2 How do programming agent paradigms (like self-repair) perform against static program-

ming? (Sec. 5.2)

Our results show that the SOTA LLM model (GPT-4) can only achieve ∼ 50% performance in
R2E-Eval, despite getting much higher accuracy on benchmarks like HUMANEVAL. Throughout the
analysis, we find that LLMS struggle at understanding interfaces to existing functions and reasoning
about complex objects. Finally, we compare static coding approaches (e.g., COT) with the proposed
interactive programming paradigm, demonstrating significant benefits from the latter.

5.1 STATIC CODE GENERATION

First, we study direct code generation on the R2E-Eval dataset, i.e., using code generation without
interaction. Owing to the test harnesses generation approach, we perform functional correctness
evaluations for the generated code. This contrasts with prior works (Liu et al., 2023c; Ding et al.,
2023) that rely on execution-free exact-match metrics to evaluate code completion in the repository
setting, which can be unreliable and restrict the scope of the evaluation.

We use PASS@1 to evaluate the functional correctness, computed by generating 5 candidate com-
pletions for each problem instance and computing the fraction that passes against the test harness.
We consider a mixture of closed access and open access models for our experiments – GPT-4,
GPT-3.5-TURBO, CODELLAMA-7B, CODELLAMA-13B, and CODELLAMA-34B3. Since GPT-4 and
GPT-3.5-TURBO are instruction-tuned models, we use the chat style prompt for them while using the
code completion prompt from the CODELLAMA models. We elaborate further on our setup, models,
and prompts in Appendix E.

Contamination. GPT-4 and GPT-3.5-TURBO have a cut-off date of 2021 and are therefore not
contaminated on our benchmark since we curate our problems from repositories created after August
2022 (see Section 3.1). Given a problem instance I = {D, R, T } in our benchmark, we need to use
the remaining repository context to generate the code. Since the entire repository context can be very
large, we retrieve content to provide the model (detailed ahead). We first evaluate how current models
perform against our benchmark and then study how the choice of retrieval impacts performance.
Next, we study the effect of using chain-of-thought prompting (COT) (Wei et al., 2022) for improving
model performance on harder tasks.

Model Performance. Figure 3 compares the performance of various models on our benchmark using
the PASS@1 (CL used for brevity in the figure instead of CODELLAMA). We find that the performance
of various models is relatively lower than other benchmarks like HUMANEVAL. This is expected since
our benchmark represents more challenging real-world problems collected from GITHUB, which
require understanding existing context from the repository before generating the code. We find that
GPT-4 performs significantly better than all other models with a PASS@1 close to 50% whereas other
models only achieve PASS@1 in the vicinity of 30%.

3We use the Python variants of the CODELLAMA models.
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Figure 3: Functional correctness (PASS@1) of
various models (GPT and CODELLAMA families)
on our R2E-Eval. Models perform worse on
our benchmark against HUMANEVAL, with GPT-
4 achieving a PASS@1 close to 50%. The trade-
off between dependency context and full context
retrieval settings is discussed in Section 5.1.

Figure 4: Improvement in model performance
through self-repair using test harnesses and in-
terpreter feedback. GPT-4 and GPT-3.5-TURBO

show increased performance after 5 iterations
of feedback, with 33% and 21% improvement
respectively.

Effect of retrieval. We study the effect of function-definition retrieval vs. function-usage retrieval
using dependency slicing (Section 2) on the ground-truth function. Specifically, dependency-only-
context only provides the necessary definitions, while the full context setting adds the remainder of
the file and other files until a 6000 token limit. Figure 3 compares the two settings.

The two retrieval methods perform similarly, achieving ±1% of each other’s performance across most
models. On a closer look, we find non-overlapping problems with a Pearson correlation coefficient of
0.48. We find that dependency-only-context vs full-context provides an interesting trade-off. On the
one hand, dependencies provide a more focused view of relevant function implementations to the
model. At the same time, function usage (present in full context) is often reused and enables models
to copy it directly. See Appendix F.2 in the Appendix for a more detailed discussion and examples of
this trade-off. Finally, we believe that R2E-Eval provides a unique opportunity to study this problem
in the future with execution enabled.

Effect of COT. We study better-prompting strategies and look at both zero-shot and two-shot COT
prompts that sketch a plan for the function implementation before generating the code. We study
this for the instruct GPT-3.5-TURBO and GPT-4 models but find that COT like setup does not improve
performance over direct prompt (Table 5 in Appendix).

5.2 SELF-REPAIR AGENT

So far, we described model evaluations on our benchmark using the direct code generation approach.
However, testing harnesses and access to the interpreter allow us to evaluate programming agents that
can interact with the interpreter and get feedback. Specifically, we instantiate a self-repair agent that
uses the test harness

We study that when provided with feedback from (oracle) testing harnesses (present in our benchmark
instances), can LLMS correct their own mistakes? We sample 56 and 48 instances from our
benchmark for GPT-4 and GPT-3.5-TURBO on which the models do not generate a correct solution
(detailed experiment setup in Section E.2 in the Appendix). We consider the incorrect programs
generated by the models as the initial programs and then provide the models with error feedback
using the harness iteratively for 5 iterations. Figure 4 shows the self-repair rate of the models on our
benchmark as a function of the number of iterations.

First note that since we subsample only the failing instances where models do not generate correct
solutions, the 0-th iteration score is 0% for both models. Next, we find that GPT-4 attains a maximum
self-repair rate of 33% while GPT-3.5-TURBO only attains a maximum self-repair rate of 20%. This
highlights that using execution, interpreter, and test cases, programming agents can improve code
generation. Note that while advanced prompting techniques do not improve performance (Table 5),
using an interpreter enables programming agents to achieve strong results.
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6 RELATED WORK

We discuss pertinent works in natural language to code generation space here and defer related work
on program analysis and software testing to the appendix.

Code Generation Benchmarks. Prior works have investigated code generation across various
domains. HUMANEVAL (Chen et al., 2021) and MBPP (Austin et al., 2021) study code generation on
isolated single-function problems. APPS (Hendrycks et al., 2021) and CODE-CONTESTS (Li et al.,
2022) benchmarks are used for evaluating algorithmic code generation capabilities. DS-1000 (Lai
et al., 2023), ARCADE (Yin et al., 2022), NUMPYEVAL (Zhang et al., 2023b), and PANDASEVAL (Jain
et al., 2022) study data science API code generation. More recently, Wang et al. (2022b) proposed
ODEX that evaluates coding on APIS. These works evaluate code generation capabilities in isolated
settings devoid of surrounding context or dependencies. In contrast, R2E coding problems are curated
directly from GITHUB with considerable surrounding code, thus offering more realistic setups!
INTERCODE and WEBARENA provide benchmarks for (domain-specific) interactive programming
and realistic web tasks respectively. In this work, we provide a framework and benchmark for
interactive general-purpose programming. Finally, our benchmark also supports live updates similar
to LIVECODEBENCH

On the other spectrum, prior work has used execution-free metrics like exact-match and BLEU to eval-
uate code generation. CONALA (Yin et al., 2018) curated large dataset from STACKOVERFLOW with
paired natural language and program snippets. REPOEVAL (Zhang et al., 2023a), REPOBENCH (Liu
et al., 2023c), and CROSSCODEEVAL (Ding et al., 2023) study code completion in actual software
engineering setup without surrounding code from in-file and out-file contexts. However, these works
only evaluate short context code generation capabilities without execution or functional correctness.
In contrast, we synthesize function-level test harnesses using our novel test generation approach and
use them for performing function correctness checks on repository code. Recently, Jimenez et al.
(2023) proposed SWEBENCH to evaluate whether LLMS can solve GITHUB issues from popular
repositories. Notably, they use test cases curated from repository pull requests and repository build
processes while our test generation approach can be extended to repositories without tests.

Other code-related tasks. Beyond codegen, tasks like self-repair (Chen et al., 2023; Olausson
et al., 2023; Madaan et al., 2023b; Peng et al., 2023; Zhang et al., 2023c), test generation (Tufano
et al., 2022; Watson et al., 2020), execution (Austin et al., 2021; Liu et al., 2023a; Gu et al., 2024),
and optimization (Madaan et al., 2023a) have been studied. These enable various agentic setups as
CODET (Chen et al., 2022), Key et al. (2022), PARSEL (Zelikman et al., 2023), FUNSEARCH (Romera-
Paredes et al., 2023), REFLEXION (Shinn et al., 2023), LEVER (Ni et al., 2023), CODEPLAN (Bairi
et al., 2023), and ALPHACODIUM (Ridnik et al., 2024). Yao et al. (2022; 2023) also enable building
general purpose agents.

7 DISCUSSION

Limitations. Natural language is inherently ambiguous and docstrings might not specify the corner
cases properly. We tried to mitigate this effect with our specification refinement approach along with
manual filtering. Future work study this ambiguity in more and also look into better interaction mech-
anisms. Next, we use observational equivalence to check whether the model-generated candidates are
correct over a set of inputs. We use branch coverage as a metric for evaluating tests but it is still a
softer check. Future work can apply mutation testing and oversampling to provide further confidence
on generated tests.

Conclusion. We propose R2E, a scalable framework to convert GITHUB repositories to programming
agent test environments. R2E-Eval constructed via this framework can evaluate both static and
interactive code generation systems, offering valuable insights into model behaviors and the need
for better programming workflows. Prior work has applied rejection sampling and reinforcement
learning to improve coding capabilities of LLMS (Singh et al., 2023; Jain et al., 2023; Le et al., 2022).
We believe R2E can enable such attempts for real-world programs.
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A PROGRAM ANALYSIS & TESTING

A.1 CALLGRAPHS

A callgraph (Ryder, 1979) is a directed graph where nodes represent subroutines (functions, methods,
constructors, etc.), and edges denote the calling relationships between them. It is a directed graph
G = (V,E) where V is a set of subroutines (functions, methods, constructors, etc.) and E is a set
of edges representing the calling relationship between these subroutines. If a subroutine u invokes
(i.e., calls) a subroutine v, then there is a directed edge from u to v in the callgraph. For instance, in
Figure 2, the function indexer calls the function _parse_sigmf_capture. This repository abstraction
enables analyzing several properties of repository code.

For instance, we use it to extract the dependencies that a function relies on for its execution—a
valuable property for test generation. In this work, we use the PYCG tool (Salis et al., 2021) to
generate callgraphs for PYTHON repositories.

A.2 DEPENDENCY SLICING

While callgraphs abstract direct interactions between functions, a PYTHON function can interact with
parts of the repository through global variables, too–in the same file and imported from other files.
We can summarize these interactions in a depepdency slice Df for a function f , as the set of all
functions F ′ that f calls, and all global variables G′ that f accesses, both directly and indirectly.

For a function f , we define a mapping called depends which identifies all functions F ′ that f calls,
and all global variables G′ that f accesses.

Then a dependency slice Df is the transitive closure of all functions and global variables that f
depends on, directly or indirectly.

Df =
⋃

(F ′,G′)∈depends∗(f)

(F ′ ∪G′) (1)

Computing this slice is generally an undecidable problem, but we make a few simplifying assumptions
to make it tractable. We begin by utilizing the callgraph to identify the functions that f calls. We then
use bytecode analysis to identify the set of global variables that f accesses. We add these functions
and global variables to the slice and recursively repeat the process for each function in the slice. We
utilize this context for test generation in Section 3.2.
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B TEST GENERATION

Below, we list the prompt used for test harness generation.

You are a python programming expert who was hired to write tests for Python functions.
You will be given a python function in a python file and you will write a complete test that
covers the function and all the different corner cases.
You can assume a compiled reference implementation of the function is available, and hence
do not need to predict the expected output of the function.
That is, the test you write will use the reference implementation to generate the expected
output.
Also, assume the function provided is correct and hence the test should focus on the behavior
that is defined by the function ONLY.
Ensure that the tests align with the function’s expected input types, avoiding scenarios that
the function is not designed to handle.
Completely avoid testing with invalid input types or values, testing for error handling, and
checking ‘assertRaises‘.
Set a fixed random seed in tests involving randomness to ensure consistent and reproducible
results when necessary.
Avoid mocking calls to APIs or functions (e.g., builtins.open) when actual implementations
are simple, accessible, and their use does not compromise the test’s isolation or determinism.
Particularly, avoid mocking calls to any file I/O APIs, and instead try to create temporary
files and directories for testing purposes.
You will return the test for that function and NOT return anything except for the test.
Put your fixed test program within code delimiters, for example:

"""python
# YOUR CODE HERE
"""

Write a test using the ‘unittest‘ library for the function ‘function_name‘. Assume the reference
implementation is ‘reference_function_name‘. Both the function and the reference are in the
module ‘fut_module‘. Only return the test code and do NOT return anything else. Enclose
your code within code delimiters, for example:

"""python
# YOUR CODE HERE
"""

Related Work. R2E motivates the use of automated test generation to build reliable and scalable
code-related benchmarks to evaluate LLMS. Automated test generation has been rapidly adopted in
the software engineering community. Several frameworks for test generation have been proposed,
both traditional search-based (Fraser & Arcuri, 2011; 2012; Panichella et al., 2017) and neural. More
recently, LLMS have been explored to help (Lemieux et al., 2023) or complement (Watson et al.,
2020) traditional test generation techniques. Furthermore, research on test generation with LLMS
has not just been limited to generating tests but using them for test-driven development (Chen et al.,
2022; Lahiri et al., 2022).
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C SPECIFICATION REFINEMENT

You are a python programming expert who is refining docstrings in existing programs. You
will be given a python function in a python file with an existing (possibly underspecified)
docstring with corresponding unit tests for the function and optionally some input-output
examples extracted from the unittest in a serialized format. Your goal is to refine the
associated docstring by making it more informative, precise and complete without adding
verbosity or detailed programming logic to the docstring. The docstring should particularly
describe the format and types of the expected inputs and output as well as the behavior of
the function. You will return the function definition, docstring enclosed in markdown code
delimiters. The docstrings must be formatted in the google docstring format and examples
should be added if they clarify the function and look helpful without being very long. Do not
guess outputs for functions but only copy the expected outputs as provided. Finally, do not
throw away existing details from the docstrings and only insert content you are sure about.
Do NOT have repeated content in the docstring and ONLY describe the high-level function
behavior without going into implementation details

### Code Snippet:
{original_code_snippet}
### Unit Tests:
"""python
{test_code}
"""
### Argument Types: {argument_types}
### Output Types: {output_type}
### Examples: {examples_substring}

Refine the docstring for the function function_name. Return only the updated function with
docstring enclosed in markdown and ignore the remaining code. Remember to make the
docstring precise and informative regarding global function behavior (input-output properties)
without being too verbose. Do not specify detailed function logic or very domain-specific
content in the docstring (unless already described in the docstring).

D BENCHMARK

The list of unique input and output data types is provided below. This highlights that problems in our
benchmark are interesting.

{
"__main__.ComplexDataClass", "__main__.ExampleDataClass", "__main__.MockTextDocument", "
__main__.NestedDataClass", "__main__.PickleCoder", "__main__.SimpleDataClass", "ast.
Attribute", "ast.Call", "astroid.nodes.scoped_nodes.scoped_nodes.FunctionDef", "builtins.
bool", "builtins.builtin_function_or_method", "builtins.bytes", "builtins.dict", "
builtins.EOFError", "builtins.float", "builtins.function", "builtins.generator", "
builtins.int", "builtins.list", "builtins.list_reverseiterator", "builtins.method", "
builtins.module", "builtins.NoneType", "builtins.property", "builtins.set", "builtins.
slice", "builtins.str", "builtins.tuple", "builtins.type", "builtins.ValueError", "casadi
.casadi.Function", "cascades._src.handlers.Record", "celpy.celtypes.BoolType", "
collections.defaultdict", "collections.OrderedDict", "dacite.config.Config", "dis.
Instruction", "diskcache.core.Cache", "docile.dataset.bbox.BBox", "dpkt.ethernet.Ethernet
", "dynamicprompts.parser.config.ParserConfig", "fullcontrol.combinations.
gcode_and_visualize.classes.Point", "fullcontrol.geometry.vector.Vector", "fut_module.
_Stats", "fut_module.Compression", "fut_module.Encoding", "fut_module.Graph", "fut_module
.GroupedTensor", "fut_module.Indicator", "fut_module.KGFn", "fut_module.LogSeverity", "
fut_module.LogTensor", "fut_module.NamedList", "fut_module.RangeSlotList", "fut_module.
RequestsCookieJar", "fut_module.return_type_ptiva_linalg_eigh", "fut_module.Sound", "
fut_module.SSH", "fut_module.TextSlotList", "fut_module.WildcardSlotList", "iamspy.iam.
Document", "jaxlib.xla_extension.ArrayImpl", "klongpy.core.KGSym", "kork.ast.FunctionCall
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", "lgssl.evaluation.logistic_regression.LogisticRegression", "libcst._nodes.module.
Module", "mypy.nodes.OpExpr", "networkx.classes.digraph.DiGraph", "networkx.classes.graph
.Graph", "networkx.classes.multigraph.MultiGraph", "numpy._ArrayFunctionDispatcher", "
numpy.bool_", "numpy.float64", "numpy.int64", "numpy.ndarray", "numpy.random.mtrand.
RandomState", "numpyro.distributions.continuous.Normal", "open_rarity.models.collection.
Collection", "open_rarity.models.token.Token", "ormdantic.models.models.Map", "pandas.
core.frame.DataFrame", "pandas.core.series.Series", "pathlib.PosixPath", "pydantic.main.
BaseModel", "pygame.surface.Surface", "pyparsing.core.Forward", "pywhy_graphs.classes.
admg.ADMG", "pywhy_graphs.classes.pag.PAG", "pywhy_graphs.classes.timeseries.digraph.
StationaryTimeSeriesDiGraph", "pywhy_graphs.classes.timeseries.pag.
StationaryTimeSeriesPAG", "rdkit.Chem.rdchem.Mol", "scipy.sparse._csr.csr_matrix", "scipy
.sparse._lil.lil_matrix", "sklearn.linear_model._logistic.LogisticRegression", "sklearn.
neighbors._kde.KernelDensity", "sqlalchemy.sql.sqltypes.DateTime", "sympy.core.add.Add",
"sympy.core.mul.Mul", "sympy.core.numbers.Integer", "sympy.core.numbers.NegativeOne", "
sympy.core.numbers.One", "sympy.core.numbers.Pi", "sympy.core.numbers.Zero", "sympy.
functions.elementary.exponential.log", "sympy.functions.elementary.trigonometric.cos", "
sympy.functions.elementary.trigonometric.sin", "torch.device", "torch.nn.modules.conv.
Conv2d", "torch.nn.modules.linear.Linear", "torch.nn.parameter.Parameter", "torch.Tensor"
, "torchsig.utils.types.SignalCapture", "torchsig.utils.types.SignalData", "tracr.rasp.
rasp.Aggregate", "tracr.rasp.rasp.Map", "tracr.rasp.rasp.SelectorWidth", "typing.
_AnnotatedAlias", "typing._GenericAlias", "typing._UnionGenericAlias", "unittest.mock.
MagicMock", "uuid.UUID", "xarray.core.dataset.Dataset", "z3.z3.BoolRef", "z3.z3.SeqRef"

}

Listing 1: Unique input and output data types in our benchmark. We have over 100 unique data types
arising from over 60 libraries.
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E EXPERIMENTS

We list down the list of models considered for code generation experiments here.

Model ID Link
codellama/CodeLlama-34b-Python-hf CodeLlama-34b-Python-hf
codellama/CodeLlama-13b-Python-hf CodeLlama-13b-Python-hf
codellama/CodeLlama-7b-Python-hf CodeLlama-7b-Python-hf
gpt-3.5-turbo-1106-16k OpenAI
gpt-4-1106 OpenAI

Table 4: List of models

E.1 CODE GENERATION

To compute PASS@1, we generate 5 completions for each problem instance using each model. We
use nucleus sampling with p = 0.95 and T = 0.2. Below we list the prompts used (inspired from
(Olausson et al., 2023))

You are a Python programming expert who is going to generate a Python function in a file
using the function docstring. You will use the existing context of relevant files provided for
implementation and ONLY return the completed function. Enclose the completed function in
markdown code delimiters and do NOT return anything else.

### Code Snippet
{code_snippet}

Complete the function {function_name}. Only return the completed function enclosed in
markdown code delimiters
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E.2 SELF REPAIR

We use GPT-4 and GPT-3.5-TURBO models for the self-repair task. We find problems from R2E
where models fail to any generate correct completion and we can extract the failing scenario (since
some of the tests are dynamic, it is not always possible to extract the failing scenario). Additionally,
since our GPT-4 has a context length of 8k, we additionaly filter very long problems from the repair
dataset We then use the failing scenario as the prompt for the self-repair task.

You are a Python programming expert who is going to generate a Python function in a file
using the function docstring. You will use the existing context of relevant files provided for
implementation and ONLY return the completed function. Enclose the completed function in
markdown code delimiters and do NOT return anything else.

### Code Snippet:
{code_snippet}
### Inputs:
{captured_inputs}
### Expected Output:
{captured_output}
### Error Trace:
{output}
### Instruction
You will first reason using a concise (at most 2-3 sentences) textual ex-
planation of what is wrong with the function. After you have pointed out
what is wrong with the code, you will then generate a fixed version of
the program. You will ONLY return the completed function. Follow the
following format which presents the reason for the failure followed by the
repaired program enclosed in backticks.
### Reasoning
{function_name} is failing because of ...
### Repaired Function
"""python
def function_name(...): ...
"""
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F CODE GENERATION RESULTS

F.1 MODEL BEHAVIOUR & FAILURE ANALYSIS

Performance with problem-complexity. We measure the complexity of a problem instance using
(1) the number of tokens in the ground-truth implementation, (2) the number of dependencies used
by the ground-truth implementation 4. We find that both these measures are (inversely) correlated
with the PASS@1 of the models. In Figures ?? and 7, we plot the PASS@1 of the models against the
number of dependencies and the number of tokens used in the ground-truth implementation showing
a downward trend.

Single File vs Multi-File Context. We compare how models perform on problems that require only
a single file to be generated against problems that require multiple files to be generated. Model
performance is significantly better on single-file problems than multi-file problems (Figure 8). This
suggests that a.) models struggle with multi-file contexts compared to single-file contexts and b.)
problems in the multi-file category are more complex than single-file problems in our benchmark,
also observed in practice.

Do not understand the interface to provided functions. We find that when provided with complex
functions in the context, LLMS do not understand the right input-output behavior of such functions
and pass in wrong inputs or expect wrong outputs. Thus, even strong LLMS like GPT-4 make
mistakes when provided with complex functions in the context. See Listings 8 for reference. This
motivates that if provided access to execution context, programming agents can understand such
interfaces and perform better.

Repeat vs Reuse Code. Abstractions are an integral part of writing good code. LLMS, however,
tend to duplicate code instead of using existing context. Specifically, when provided with some
existing function in the context, models re-implement the same functionality instead of directly using
it. Listings 2 and 3 provide examples. This aligns with findings on how copilot affects code quality
(Blog.).

4counted using the number of unique functions or global variables used in the function body.
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‘‘‘
## paco/evaluation/utils/paco_query_utils.py
import torch

def _product_attr(vision, text, alter):
"""
Args:

vision: N x D
text: M x D
alter: N x M, to replace results in some cases, see details in Returns

Returns: N x M.
For (n, m) element, set J_m = {j : text[m, j] == 1}.
- if |J_m| > 0, it equals to (prod_{j in J_m} vision[n, j])**(1/|J_m|)
- if |J_m| == 0, it equals to alter[n, m]

"""
vision = vision.unsqueeze(1)
text = text.unsqueeze(0)
num_attr = text.sum(-1)
queried_attr = vision * text
queried_attr = queried_attr.masked_fill(text == 0, 1)
queried_attr = torch.float_power(queried_attr.prod(dim=2), 1 / torch.max(num_attr, torch.
ones_like(num_attr))).float()
no_attr_queries = num_attr.squeeze(0) == 0
queried_attr[:, no_attr_queries] = alter[:, no_attr_queries]
return queried_attr

def obj_with_attributes(input_embeddings, query_embeddings, n_obj, n_part, n_attr):
"""Compute the similarity between object embeddings and query embeddings based on
attributes.

This function calculates the similarity score between each pair of object and query
embeddings.
...

Args:
...

Returns:
...

Example:
>>> ..."""

‘‘‘
## CodeLLaMa-34B-Python completion

obj_type = type(obj)
if obj_type is property:

obj = obj.fget
if not hasattr(obj, ’__module__’) or not hasattr(obj, ’__qualname__’):

return None
module = inspect.getmodule(obj)
if module is None:

return None
if not hasattr(module, ’__file__’):

return None
if obj_type is type:

obj_source = obj.__qualname__

elif obj_type is types.ModuleType:
obj_source = obj.__name__

else:
obj_source = f’{obj.__module__}.{obj.__qualname__}’

return f’File "{module.__file__}", line {inspect.getsourcelines(obj)[1]}’.replace(’\\’, ’/
’)

Listing 2: CODELLAMA-34B repeats the code from .
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‘‘‘
def standardize_and_get_inchi(mol: Mol, options: str=’’, log_level=None, warnings_as_errors=

False) -> str:
"""Return InChI after standardising molecule and inferring stereo from coordinates."""
mol = deepcopy(mol)
mol = assert_sanity(mol)
mol = remove_isotopic_info(mol)
has_pose = mol.GetNumConformers() > 0
if has_pose:

RemoveStereochemistry(mol)
mol = RemoveHs(mol)
try:

mol = neutralize_atoms(mol)
except AtomValenceException:

logger.warning(’Failed to neutralize molecule. Using uncharger. InChI check might fail
.’)

mol = Uncharger().uncharge(mol)
mol = add_stereo_hydrogens(mol)
if has_pose:

AssignStereochemistryFrom3D(mol, replaceExistingTags=True)
with CaptureLogger():

inchi = MolToInchi(mol, options=options, logLevel=log_level, treatWarningAsError=
warnings_as_errors)
return inchi

...

def check_identity(mol_pred: Mol, mol_true: Mol, inchi_options: str=’’) -> dict[str, Any]:
"""Check if two molecules are identical in terms of their InChI representation.

This function compares the InChI strings of two molecules after standardizing them and
optionally applying InChI generation options. ...
Args:
...
Returns:

...
Example:

>>> ..."""
‘‘‘

## CodeLLaMa-13B-Python completion

mol_pred = deepcopy(mol_pred)
mol_true = deepcopy(mol_true)
mol_pred = assert_sanity(mol_pred)
mol_true = assert_sanity(mol_true)
mol_pred = remove_isotopic_info(mol_pred)
mol_true = remove_isotopic_info(mol_true)
has_pose_pred = mol_pred.GetNumConformers() > 0
has_pose_true = mol_true.GetNumConformers() > 0
if has_pose_pred:

RemoveStereochemistry(mol_pred)
if has_pose_true:

RemoveStereochemistry(mol_true)
mol_pred = RemoveHs(mol_pred)
mol_true = RemoveHs(mol_true)
try:

mol_pred = neutralize_atoms(mol_pred)
except AtomValenceException:

logger.warning(’Failed to neutralize molecule. Using uncharger. InChI check might fail
.’)

mol_pred = Uncharger().uncharge(mol_pred)
try:

mol_true = neutralize_atoms(mol_true)
except AtomValenceException:
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logger.warning(’Failed to neutralize molecule. Using uncharger. InChI check might fail
.’)

mol_true = Uncharger().uncharge(mol_true)
mol_pred = add_stereo_hydrogens(mol_pred)
mol_true = add_stereo_hydrogens(mol_true)
if has_pose_pred:

AssignStereochemistryFrom3D(mol_pred, replaceExistingTags=True)
if has_pose_true:

AssignStereochemistryFrom3D(mol_true, replaceExistingTags=True)
inchi_pred = standardize_and_get_inchi(mol_pred, options=inchi_options)
inchi_true = standardize_and_get_inchi(mol_true, options=inchi_options)
results = _compare_inchis(inchi_true, inchi_pred)
results[’inchi_crystal_valid’] = _is_valid_inchi(inchi_true)
results[’inchi_docked_valid’] = _is_valid_inchi(inchi_pred)
results[’inchi_crystal’] = inchi_true
results[’inchi_docked’] = inchi_pred
return {’results’: results}

Listing 3: Models struggle to understande the interface functions provided in context a.
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F.2 DEPENDENCY VS USAGE TRADEOFF

The first example demonstrates dependency context vs full context for get_2d_sincos_pos_embed

function. In the dependency context, only two functions which the oracle ground truth functions calls
are provided and the task is to stitch them together. This becomes simpler in the full context case
where how to call those functions is also provided (via other functions).

import torch

def get_2d_sincos_pos_embed_from_grid(embed_dim: int, grid: torch.Tensor) -> torch.Tensor:
"""Get 2D sine-cosine positional embedding from grid.
Args:

embed_dim: embedding dimension.
grid: positions

Returns:
(torch.Tensor): [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim]

"""
assert embed_dim % 2 == 0
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
emb = torch.cat([emb_h, emb_w], dim=1)
return emb

def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor) -> torch.Tensor:
"""Get 1D sine-cosine positional embedding.
Args:

embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)

Returns:
(torch.Tensor): tensor of shape (M, D)"""

assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.float)
omega /= embed_dim / 2.0
omega = 1.0 / 10000 ** omega
pos = pos.reshape(-1)
out = torch.einsum(’m,d->md’, pos, omega)
emb_sin = torch.sin(out)
emb_cos = torch.cos(out)
emb = torch.cat([emb_sin, emb_cos], dim=1)
return emb

def get_2d_sincos_pos_embed(embed_dim: int, grid_size: int, cls_token: bool=False) -> torch.
Tensor:
"""Generates a 2D sine-cosine positional embedding tensor.

This function creates a positional embedding for a 2D grid using sine and cosine functions
.
The embedding can optionally include a leading zero vector to represent a classification (
CLS) token.

Args:
embed_dim (int): The dimensionality of the embedding for each position.
grid_size (int): The height and width of the square grid for which embeddings are

generated.
cls_token (bool): If True, the output tensor will include an additional first row with

zeros
to represent a CLS token. Defaults to False.

Returns:
torch.Tensor: A tensor of shape (grid_size * grid_size, embed_dim) without a CLS token

, or
(1 + grid_size * grid_size, embed_dim) with a CLS token. The tensor

contains
the positional embeddings for the grid and is of type ‘torch.float32‘.

"""
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grid = torch.stack(torch.meshgrid(torch.arange(grid_size), torch.arange(grid_size)), dim
=-1)
grid = grid.reshape(-1, 2).float()
emb = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:

cls_emb = torch.zeros(1, embed_dim)
emb = torch.cat([cls_emb, emb], dim=0)

return emb

Listing 4: GPT4 code generation with a dependency only prompt. The model needs to understand the
provided functions and stitch the solution together since no example usage of the required functions
is provided
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from typing import Tuple
import torch

def get_3d_sincos_pos_embed(embed_dim: int, tube_shape: Tuple[int, int, int], stride, offset,
kernel_size, cls_token: bool=False) -> torch.Tensor:
"""Get 3D sine-cosine positional embedding.
Args:

tube_shape: (t_size,
...."""

...
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)
...

def get_2d_sincos_pos_embed(embed_dim: int, grid_size: int, cls_token: bool=False) -> torch.
Tensor:
"""Get 2D sine-cosine positional embedding.
Args:

grid_size: int of the grid height and width
cls_token: bool, whether to contain CLS token

Returns:
(torch.Tensor): [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim]

"""
...
pos_embed = ...

def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor) -> torch.Tensor:
"""Get 1D sine-cosine positional embedding.
Args:

embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)

Returns:
(torch.Tensor): tensor of shape (M, D)

"""
assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.float)
...
return emb

def get_2d_sincos_pos_embed(embed_dim: int, grid_size: int, cls_token: bool=False) -> torch.
Tensor:
"""Generates a 2D sine-cosine positional embedding tensor.

This function creates a positional embedding for a 2D grid using sine and cosine functions
.
The embedding can optionally include a leading zero vector to represent a classification (
CLS) token.

Args:
embed_dim (int): The dimensionality of the embedding for each position.
grid_size (int): The height and width of the square grid for which embeddings are

generated.
cls_token (bool): If True, the output tensor will include an additional first row with

zeros
to represent a CLS token. Defaults to False.

Returns:
torch.Tensor: A tensor of shape (grid_size * grid_size, embed_dim) without a CLS token

, or
(1 + grid_size * grid_size, embed_dim) with a CLS token. The tensor

contains
the positional embeddings for the grid and is of type ‘torch.float32‘.

"""
assert embed_dim % 2 == 0
grid = torch.arange(grid_size, dtype=torch.float)
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grid = torch.meshgrid(grid, grid, indexing=’ij’)
grid = torch.stack(grid, dim=0)
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
return pos_embed

Listing 5: The full context for this example provides example usage of the required functions making
it an easier problem.
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class Image(BaseImage):

def qvec2rotmat(self):
return qvec2rotmat(self.qvec)

def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character=’<’):
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence, data)

def read_images_binary(path_to_model_file):
"""Read camera images and their properties from a binary file. This function parses a
binary file containing the properties of images used in 3D reconstruction
and returns a dictionary of Image namedtuples, each containing the properties of an image.

Args:
path_to_model_file (str): The path to the binary model file to be read.

Returns:
dict: A dictionary where keys are image IDs (int) and values are Image namedtuples.

Each Image namedtuple has the following fields:
- id (int): The unique identifier of the image.
- qvec (numpy.ndarray): A 4-element array representing the quaternion vector.
- tvec (numpy.ndarray): A 3-element array representing the translation vector.
- camera_id (int): The identifier of the camera used to capture the image.
- name (str): The name of the image file.
- xys (numpy.ndarray): An Nx2 array of [x, y] coordinates of 2D points in the

image.
- point3D_ids (numpy.ndarray): An N-element array of identifiers of

corresponding 3D points"""

## GPT-4 Completion

with open(path_to_model_file, ’rb’) as fid:
num_reg_images = read_next_bytes(fid, 4, ’I’)[0]
images = {}
for _ in range(num_reg_images):

image_id = read_next_bytes(fid, 4, ’I’)[0]
qvec = np.array(read_next_bytes(fid, 4 * 4, ’dddd’))
tvec = np.array(read_next_bytes(fid, 3 * 4, ’fff’))
camera_id = read_next_bytes(fid, 4, ’I’)[0]
image_name = read_next_bytes(fid, 1, ’c’)[0]
num_points2D = read_next_bytes(fid, 4, ’I’)[0]
xys = np.array(read_next_bytes(fid, num_points2D * 2 * 4, ’ff’ * num_points2D))
point3D_ids = np.array(read_next_bytes(fid, num_points2D * 4, ’I’ * num_points2D))
images[image_id] = Image(id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id,

name=image_name, xys=xys, point3D_ids=point3D_ids)
return images

Listing 6: The dependency context for the read images binary function only provides read next bytes
in context and is challenging
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# xrloc/map/read_write_model.py

def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character=’<’):
...

def write_next_bytes(fid, data, format_char_sequence, endian_character=’<’):
...

def write_images_binary(images, path_to_model_file):
"""
see: src/base/map.cc

void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)

"""
with open(path_to_model_file, ’wb’) as fid:

write_next_bytes(fid, len(images), ’Q’)
for _, img in images.items():

write_next_bytes(fid, img.id, ’i’)
write_next_bytes(fid, img.qvec.tolist(), ’dddd’)
write_next_bytes(fid, img.tvec.tolist(), ’ddd’)
write_next_bytes(fid, img.camera_id, ’i’)
for char in img.name:

write_next_bytes(fid, char.encode(’utf-8’), ’c’)
write_next_bytes(fid, b’\\x00’, ’c’)
write_next_bytes(fid, len(img.point3D_ids), ’Q’)
for xy, p3d_id in zip(img.xys, img.point3D_ids):

write_next_bytes(fid, [*xy, p3d_id], ’ddq’)

def read_points3d_binary(path_to_model_file):
...

def write_points3d_binary(points3D, path_to_model_file):
"""
see: src/base/map.cc

void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)

"""
with open(path_to_model_file, ’wb’) as fid:

write_next_bytes(fid, len(points3D), ’Q’)
for _, pt in points3D.items():

write_next_bytes(fid, pt.id, ’Q’)
write_next_bytes(fid, pt.xyz.tolist(), ’ddd’)
write_next_bytes(fid, pt.rgb.tolist(), ’BBB’)
write_next_bytes(fid, pt.error, ’d’)
track_length = pt.image_ids.shape[0]
write_next_bytes(fid, track_length, ’Q’)
for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs):

write_next_bytes(fid, [image_id, point2D_id], ’ii’)

def read_point3d_feature_binary(path_to_feature_file):
"""Read 3D point features.

Args:
path_to_feature_file (str): Path to point feature file

Returns:
dict{int:np.array(dim)}: 3D point feature dict

"""
point3d_features = {}
with open(path_to_feature_file, ’rb’) as file:

num_points3d = struct.unpack(’<Q’, file.read(8))[0]
dim_feature = struct.unpack(’<Q’, file.read(8))[0]
for i in range(num_points3d):

point3d_id = struct.unpack(’<Q’, file.read(8))[0]
feature_num = struct.unpack(’<I’, file.read(4))[0]
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fmat = ’<{0}f’.format(dim_feature)
descriptor = np.array(struct.unpack(fmat, file.read(4 * dim_feature)))
point3d_features[point3d_id] = descriptor

return point3d_features

def read_images_binary(path_to_model_file):
"""
Read camera images and their properties from a binary file.

This function parses a binary file containing the properties of images used in 3D
reconstruction
and returns a dictionary of Image namedtuples, each containing the properties of an image.

Args:
path_to_model_file (str): The path to the binary model file to be read.

Returns:
dict: A dictionary where keys are image IDs (int) and values are Image namedtuples.

Each Image namedtuple has the following fields:
- id (int): The unique identifier of the image.
- qvec (numpy.ndarray): A 4-element array representing the quaternion vector.
- tvec (numpy.ndarray): A 3-element array representing the translation vector.
- camera_id (int): The identifier of the camera used to capture the image.
- name (str): The name of the image file.
- xys (numpy.ndarray): An Nx2 array of [x, y] coordinates of 2D points in the

image.
- point3D_ids (numpy.ndarray): An N-element array of identifiers of 3D points

corresponding to the 2D points.
"""

## GPT-4 Completion

images = {}
with open(path_to_model_file, ’rb’) as fid:

num_reg_images = read_next_bytes(fid, 8, ’Q’)[0]
for _ in range(num_reg_images):

reg_image_id = read_next_bytes(fid, 4, ’i’)[0]
qvec = np.array(read_next_bytes(fid, 8 * 4, ’dddd’))
tvec = np.array(read_next_bytes(fid, 8 * 3, ’ddd’))
camera_id = read_next_bytes(fid, 4, ’i’)[0]
image_name = ’’
while True:

char = read_next_bytes(fid, 1, ’c’)[0]
if char == b’\x00’:

break
image_name += char.decode(’utf-8’)

num_points2D = read_next_bytes(fid, 8, ’Q’)[0]
xys = np.zeros((num_points2D, 2), dtype=np.float32)
point3D_ids = np.zeros(num_points2D, dtype=np.int64)
for i in range(num_points2D):

xys[i] = read_next_bytes(fid, 8 * 2, ’dd’)
point3D_ids[i] = read_next_bytes(fid, 8, ’Q’)[0]

images[reg_image_id] = Image(id=reg_image_id, qvec=qvec, tvec=tvec, camera_id=
camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids)
return images

Listing 7: The full context for the read images binary function provides various functions in context
implementing similar functionality in write binary images

30



Published as a conference paper at ICLR 2024

import torch

def _product_attr(vision, text, alter):
"""
Args:

vision: N x D
text: M x D
alter: N x M, to replace results in some cases, see details in Returns

Returns: N x M.
For (n, m) element, set J_m = {j : text[m, j] == 1}.
- if |J_m| > 0, it equals to (prod_{j in J_m} vision[n, j])**(1/|J_m|)
- if |J_m| == 0, it equals to alter[n, m]

"""
vision = vision.unsqueeze(1)
text = text.unsqueeze(0)
num_attr = text.sum(-1)
queried_attr = vision * text
queried_attr = queried_attr.masked_fill(text == 0, 1)
queried_attr = torch.float_power(queried_attr.prod(dim=2), 1 / torch.max(num_attr, torch.
ones_like(num_attr))).float()
no_attr_queries = num_attr.squeeze(0) == 0
queried_attr[:, no_attr_queries] = alter[:, no_attr_queries]
return queried_attr

def obj_with_attributes(input_embeddings, query_embeddings, n_obj, n_part, n_attr):
"""Compute the similarity between object embeddings and query embeddings based on
attributes.

This function calculates the similarity score between each pair of object and query
embeddings.
The score is computed as the square root of the product of the object score and the
geometric
mean of the queried attributes, if any attributes are queried. If no attributes are
queried,
the object score is returned as is.
...
"""
vision = input_embeddings[:, :n_obj]
text = query_embeddings[:, n_obj:n_obj + n_attr]
alter = input_embeddings[:, n_obj + n_attr:]
queried_attr = _product_attr(vision, text, alter)
obj_score = (input_embeddings[:, :n_obj] * query_embeddings[:, :n_obj]).sum(dim=1, keepdim
=True)
scores = torch.sqrt(obj_score * queried_attr)
return scores

Error
Traceback (most recent call last):
File "<string>", line 17, in test_obj_with_attributes
File "/capture_args.py", line 107, in wrapper
output = func(*args, **kwargs)

^^^^^^^^^^^^^^^^^^^^^
File "/tmp/tmptgi66m5s/paco_query_utils.py", line 62, in obj_with_attributes
queried_attr = _product_attr(vision, text, alter)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/tmp/tmptgi66m5s/paco_query_utils.py", line 22, in _product_attr
queried_attr = vision * text

~~~~~~~^~~~~~
RuntimeError: The size of tensor a (5) must match the size of tensor b (2) at non-singleton

dimension 2

Listing 8: GPT-4 failing to understand the _product_attr helper function used in its completion of
obj_with_attributes.
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Figure 5: Varying number of dependencies Figure 6: Varying number of context tokens

Figure 7: Varying number of ground truth tokens Figure 8: Varying File usage

Length of retrieval. We compare how the performance of the models is impacted by the length (#
tokens) of the retrieval context. Since we perform dependency-only-context retrieval, we only have
the context required to understand the necessary functions for solving the problem instance. We find
that the performance is not strongly correlated with the length of the retrieval context (Figure 6). This
suggests that the choice of the retrieved context is a bigger factor than the length.

COT on R2E-Eval. We use 0-shot and 2-shot COT to evaluate more enhanced code generation
approaches. The following table describes performance.

Base COT-0-shot COT-2-shot

GPT-3.5-TURBO 48.9 45.8 -
GPT-4 33.2 33 28.8

Table 5: Effect of COT on code generation on a subset of our R2E-Eval benchmark
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