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Abstract

Discourse parsing suffers from data sparsity,
especially for dialogues. As a result, we ex-
plore approaches to build naked discourse struc-
tures for dialogues, based on attention matri-
ces from Pre-trained Language Models (PLMs).
We investigate multiple auxiliary tasks for fine-
tuning and show that the dialogue-tailored Sen-
tence Ordering (SO) task performs best. For the
crucial step of selecting the best attention head
in PLMs, we propose unsupervised and semi-
supervised methods. On the Strategic Conver-
sation (STAC) corpus, we reach F; scores of
57.2 for the unsupervised and 59.3 for the semi-
supervised methods - SOTA for both settings.
Restricting our evaluation to projective trees,
scores improve to 63.3 and 68.1, respectively.

1 Introduction

Dialogues correspond to an exchange between two
or more people. As such, they are generally op-
posed to monologues, typically authored by a sin-
gle person. Dialogues can generally take place
in person (e.g. meetings, chit-chats), via calls
(e.g. customer or medical services), or through
text, such as in online forums or direct messages.
Recently, the rise of reliable transcription methods
and a spike in online communication led to an as-
tonishing explosion of dialogue data. As a result,
the need for automatic systems to process dialogues
has increased dramatically. For example, summa-
rization of meetings or exchanges with customer
service agents could be used to enhance collabora-
tions or analyze customers issues (Li et al., 2019;
Feng et al., 2021); machine reading comprehension
in the form of question-answering could improve
dialogue agents’ performance and help knowledge
graph construction (He et al., 2021; Li et al., 2021).

However, simple surface-level features are often-
times not sufficient to extract valuable information
from conversations (Qin et al., 2017), rather we
need to understand the semantic and pragmatic re-

(1) dmm: I can give a sheep or wood

i 0-Elab for a wheat.

AP (2) dmm: Any takers?

OAP 73(3) inca: Sheep would be good.

(4) cheshireCatGrin: Not here.
Ack. ¢Ack.

\(5) dmm: Okay.

Figure 1: Excerpt of dependency structures in file s2-
leagueM-game4, STAC. Red links are non-projective.

lationships organizing the dialogue, for example
through the use of discourse information.

Several discourse frameworks have been pro-
posed, underlying a variety of annotation projects.
For dialogues, data has been primarily anno-
tated within the Segmented Discourse Represen-
tation Theory (SDRT) (Asher et al., 2003). Dis-
course structures are thereby represented as de-
pendency graphs with arcs linking spans of text
and additional, semantico-pragmatic relations (e.g.
Acknowledgment (Ack), Contrast or Question-
Answer Pair (QAP)). Figure 1 shows an example
from the STAC corpus (Asher et al., 2016). In this
work, we focus on naked structures in SDRT. We
are aware that relations are important for down-
stream tasks. Nevertheless, deriving the structure
is the first crucial and valuable step.

Data sparsity has always been an issue for dis-
course parsing both in monologues and dialogues:
the largest and most commonly used corpus anno-
tated under the Rhetorical Structure Theory RST-
DT (Carlson et al., 2001) contains 21, 789 dis-
course units, against 10, 678 for STAC. Restricted
to domain and size, the performance of supervised
discourse parsers is still low, especially for dia-
logues, with at best 73.8% F; for the naked struc-
ture on STAC (Wang et al., 2021). Several trans-
fer learning approaches have thus been proposed,
mainly focused on monologues. Previous work



demonstrated that discourse information can be
extracted from related tasks, like sentiment anal-
ysis (Huber and Carenini, 2020) and summariza-
tion (Xiao et al., 2021), or from pre-trained and
fine-tuned language models (Huber and Carenini,
2022). While a heuristic-based weakly supervised
approach has been recently applied to dialogues
(Badene et al., 2019b), we are the first to propose
semi- and unsupervised strategies, which can effec-
tively uncover discourse information captured in
large pre-trained language models (PLMs).

We take inspiration from previous work (Koto
et al., 2021; Pandia et al., 2021; Huber and Carenini,
2022) showing that document-level discourse infor-
mation can be captured in PLMs like BERT (De-
vlin et al., 2019) and BART (Lewis et al., 2020),
and can be further enhanced by related fine-tuning
tasks. We find, however, that the fine-tuning tasks
proposed in previous work are not performing well,
since they are not designed for dialogues. Dia-
logues are generally less structured, interspersed
with more informal linguistic usage (Sacks et al.,
1978), and have structural particularities (Asher
etal., 2016). Thus, we propose a new task specially
tailored to dialogues: Sentence Ordering (SO), by
extending the original proposal by Barzilay and La-
pata (2008) with several novel shuffling strategies,
enhancing the pair-wise, inter-speech block, and
inter-speaker discourse information in PLMs.

A key issue in using PLMs to extract document-
level discourse information is how to choose the
best attention head. We are the first to tackle this
issue in dialogues by proposing both an unsuper-
vised and a semi-supervised approach. The former
is based on a novel “Dependency Attention Sup-
port” (DAS) metric. This metric calculates the
degree of support for the dependency trees gener-
ated by each head. We select high-DAS head(s).
On the other hand, the semi-supervised approach
picks the heads with the best performance on a
small annotated validation dataset.

Experimental results on the STAC dataset reveal
that our unsupervised and semi-supervised meth-
ods outperform a strong baseline LAST (F; 56.8%,
Sec. 4.2), delivering substantial gains on the com-
plete STAC dataset (F; 59.3%, Sec. 5.2) and show
further improvements on the tree-structured subset
(F1 68.1%, Sec. 6.3).

To summarize, our contributions in this work are:
(1) Detecting the presence of dialogue discourse
information stored in PLMs and fine-tuned models

with our newly proposed sentence ordering task;
(2) Unsupervised and semi-supervised methods for
discourse parsing based on fine-tuned PLMs; (3)
An experimental comparison with the strong LAST
baseline and other approaches, followed by a de-
tailed quantitative and qualitative analysis of the
extracted structures.

2 Related Work

Discourse structures for complete documents have
been mainly annotated within the Segmented Dis-
course Representation Theory (SDRT) (Asher et al.,
2003) or the Rhetorical Structure Theory (RST)
(Mann and Thompson, 1988), with the latter lead-
ing to the largest corpora and many discourse
parsers for monologues, while SDRT is the main
theory for dialogue corpora, i.e. STAC (Asher et al.,
2016) and Molweni (Li et al., 2020). In SDRT, dis-
course structures are dependency graphs with possi-
bly non-projective links (see Figure 1) compared to
constituent tree structures in RST. Early approaches
to discourse parsing on STAC used varied decoding
strategies, such as Maximum Spanning Tree algo-
rithm (Muller et al., 2012; Li et al., 2014; Afantenos
et al., 2012) or Integer Linear Programming (Perret
et al., 2016). Shi and Huang (2019) first proposed
a neural architecture based on hierarchical Gated
Recurrent Unit (GRU) and reported 73.2% F; on
STAC for naked structures. Recently, Wang et al.
(2021) adopted Graph Neural Networks (GNN5s)
and reported marginal improvements (73.8% F).
Data sparsity being the issue, a new trend to-
wards semi- and unsupervised discourse parsing
has emerged, almost exclusively for monologues.
Huber and Carenini (2019, 2020) leveraged sen-
timent information and showed promising results
in cross-domain setting with the silver-standard la-
beled corpus. Xiao et al. (2021) extracted discourse
trees from neural summarizers and confirmed the
existence of discourse information in self-attention
matrices. Another line of work proposed to enlarge
training data with a combination of several pars-
ing models (Jiang et al., 2016; Kobayashi et al.,
2021; Nishida and Matsumoto, 2022). As for
dialogues, transfer learning approaches are rare.
Badene et al. (2019a,b) investigated a weak super-
vision paradigm where expert-composed heuris-
tics, combined to a generative model, are applied
to unseen data. Their method, however, requires
domain-dependent annotation and a relatively large
validation set for rule verification. Another study



by Liu and Chen (2021) focused on cross-domain
transfer using STAC (chats in a game) and Mol-
weni (chats in Ubuntu forum). They applied sim-
ple adaptation strategies (mainly lexical informa-
tion) on a SOTA discourse parser and show im-
provement compared to bare transfer (train on Mol-
weni and test on STAC F; increase from 42.5% to
50.5%). Yet, their model failed to surpass simple
baselines. Very recently, Nishida and Matsumoto
(2022) investigated bootstrapping methods to adapt
BERT-based parsers to out-of-domain data with
some success. In comparison to all this previous
work, to the best of our knowledge, we are the
first to propose a fully unsupervised method and its
extension to a semi-supervised setting.

As pre-trained language models (PLMs) such as
BERT (Devlin et al., 2019), BART (Lewis et al.,
2020) or GPT-2 (Radford et al., 2019) are becom-
ing dominant in the field, BERTology research
has gained much attention as an attempt to un-
derstand what kind of information these models
capture. Probing tasks, for instance, can provide
fine-grained analysis, but most of them only focus
on sentence-level syntactic tasks (Jawahar et al.,
2019; Hewitt and Manning, 2019; Kim et al., 2019;
Jiang et al., 2020). As for discourse, by applying
probing tasks, Zhu et al. (2020) and Koto et al.
(2021) showed that BERT and BART encoder net-
works capture more discourse information than
other models, like GPT-2. Very recently, Huber
and Carenini (2022) introduced a novel way to en-
code long documents and explored the effect of
different fine-tuning tasks on PLMs, confirming
that pre-trained and fine-tuned PLMs both can cap-
ture discourse information. Inspired by all these
studies on monologues, we investigate how latent
information in PLMs can be leveraged for dialogue
discourse parsing here.

3 Method: from Attention to Discourse

3.1 Problem Formulation and Simplifications

Given a dialogue with n Elementary Discourse
Units (EDUs), which are the minimal spans of text
(mostly clauses, at most a sentence) to be linked
by discourse relations: D = {ej,e9,e€3,...,e,},
the goal is to extract a Directed Acyclic Graph
(DAG) connecting the n EDUs that best represents
its SDRT discourse structure from attention matri-
ces in PLMs!' (see Figure 2 for an overview of the

"For more details on extracting discourse information from
attention mechanisms see Liu and Lapata (2018).
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Figure 2: Pipeline for discourse structure extraction.

process). In our proposal, we make a few simplifi-
cations, partially adopted from previous work. We
do not deal with SDRT Complex Discourse Units
(CDhUs) following Muller et al. (2012); Afantenos
et al. (2015) and do not tackle relation type as-
signment. Furthermore, similar to Shi and Huang
(2019), our solution can only generate discourse
trees. Extending our algorithm to non-projective
trees (~ 6% of edges are non-projectives in tree-
like examples) and graphs (=~ 5% of nodes with
multiple incoming arcs) are left as future work.

3.2 Which kinds of PLMs to use?

We explore both vanilla and fine-tuned PLMs, as
they were both shown to contain discourse informa-
tion for monologues (Huber and Carenini, 2022).

Pre-Trained Models: We select BART (Lewis
et al., 2020), not only because its encoder has been
shown to effectively capture discourse information,
but also because it dominated other alternatives
in preliminary experiments, including DialoGPT
(Zhang et al., 2020) and DialogL.M (Zhong et al.,
2022), LMs pre-trained with conversational data’.

Fine-Tuning Tasks: We fine-tune BART on three
discourse-related tasks:

Summarization: we use BART fine-tuned on
the popular CNN-DailyMail (CNN-DM) news cor-
pus (Nallapati et al., 2016), as well as on the SAM-
Sum dialogue corpus (Gliwa et al., 2019).

Question-Answering: we use BART fined-
tuned on the latest version of the Stanford Question

2See Appendix E for additional results with further PLMs.
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Figure 3: Shuffling strategies (left to right: partial,
minimal-pair, block, speaker-turn) on a sequence of
utterances 1 to 6, with A, B, C as the speakers.

Answering Dataset (SQuAD 2.0) (Rajpurkar et al.,
2018).

Sentence Ordering: we fine-tune BART on the
Sentence Ordering task, reordering a set of shuf-
fled sentences to their original order. Considering
the complexity of dialogues, we additionally define
several shuffling strategies so that the learning is
more gradual and effective. Specifically, as shown
in Figure 3, we explore: (a) partial-shuf: randomly
picking 3 utterances (2 for short dialogues with less
than 4 utterances) in a dialogue and shuffling them
while keeping the context unchanged. (b) minimal-
pair-shuf: shuffling minimal pairs, comprising of
a pair of speech turns from 2 different speakers
with at least 2 utterances. A speech turn represents
the beginning of a new speaker. (c) block-shuf:
shuffling a block containing multiple speech turns.
We divide one dialogue into [2, 5] blocks based
on the number of utterances® and shuffle between
blocks. (d) speaker-turn-shuf: grouping all speech
productions of one speaker together. The sorting
task consists of ordering speech turns from differ-
ent speakers’ production. We evenly combine all
permutations mentioned above to create our mixed-
shuf data set and conduct the SO task as the third
auxiliary task to fine-tune BART.

Choice of Attention Matrix: The BART model
contains three kinds of attention matrices: encoder,
decoder and cross attention. We use the encoder
attention in this work, since it has been shown to
capture most discourse information (Koto et al.,
2021) and outperformed the other alternatives in
preliminary experiments on a validation set.

3Block size is designed to be as twice or 3 times bigger
than “min-pair”, we thus set criteria aiming to have ~ 6 EDUs
per block: |utt.| < 12 : b = 2, |utt.| € [12,22] : b = 3,
|utt.| € [22,33] : b =4, |utt.] >33 :n =5.

3.3 How to derive trees from attention heads?

Given an attention matrix A* € R**¥ where k is
the number of tokens in the input dialogue, we de-
rive the matrix A% € R™* " with n the number
of EDUs, by computing A°¥ (i, j) as the average
of the submatrix of A? corresponding to all the to-
kens of EDUs e; and e;, respectively. As a result,
A4 captures how much EDU e; depends on EDU
e;j and can be used to generate a tree connecting all
EDUs by maximizing their dependency strength.
Concretely, we find a Maximum Spanning Tree in
the fully-connected dependency graph A°™ using
the Eisner algorithm (Eisner, 1996). Conveniently,
since an utterance cannot be anaphorically and
rhetorically dependent on following utterances in
a dialogue, as they are previously unknown (Afan-
tenos et al., 2012), we can further simplify the
inference by applying the following hard constraint
to remove all backward links from the attention
matrix A% a;; = 0,if i > j.

3.4 How to find the best heads?

Xiao et al. (2021) and Huber and Carenini (2022)
showed that discourse information is not evenly
distributed between heads and layers. However,
they do not provide a strategy to select the head(s)
containing most discourse information. Here, we
propose two effective selection methods: fully un-
supervised or semi-supervised.

3.4.1 Unsupervised Best Head(s) Selection

Dependency Attention Support Measure (DAS):
Loosely inspired by the confidence measure in
Nishida and Matsumoto (2022), where the authors
define the confidence of a teacher model based on
predictive probabilities of the decisions made, we
propose a DAS metric measuring the degree of sup-
port for the maximum spanning (dependency) tree
(MST) from the attention matrix. Formally, given
an attention matrix A9 (i.e., A°™ for the dialogue
g) with n EDUs, the MST TY is built by selecting
n — 1 attention links /;; from A9 based on the tree
generation algorithm. Please note that DAS can
be easily adapted for a general graph by removing
the restriction to n — 1 arcs. DAS measures the
strength of all those connections by computing the
average score of all the selected links:

1 n n
DAS(I¥) = — D) Sel(Ad,i,5) (1)
i=1 j=1

with Sel(AY,4,j) = AY

i if [;; € T9, 0 otherwise.



Selection Strategy: With DAS, we can now com-
pute the degree of support from each attention head
h on each single example g for the generated tree
DAS(T})). We therefore propose two strategies
to select attention heads based on the DAS mea-
sure, leveraging either global or local support. The
global support strategy selects the head with high-
est averaged DAS score over all the data examples:

M
Hyiohar = arg max Zl DAS(T}) @
g:

where M is the number of examples. In this way,
we select the head that has a generally good perfor-
mance on the target dataset. The second strategy is
more adaptive to each document, by only focusing
on the local support. It does not select one specific
head for the whole dataset, but instead selects the
head/tree with the highest support for each single
example g, i.e.,

Hg

loca,

| = argmax DAS(T}) (3)

3.4.2 Semi-Supervised Best Head(s) Selection

We also propose best heads selection using a few
annotated examples. In conformity with real-world
situations where labeled data is scarce, we sample
three small subsets with {10, 30,50} data points
(i.e., dialogues) from the validation set. We exam-
ine every attention matrix individually, resulting in
12 layers x 16 heads candidate matrices for each
dialogue. Then, the head with the highest micro-
F; score on the validation set is selected to derive
trees in the test set. We also consider layer-wise
aggregation, with details in Appendix A.

4 Experimental Setup

4.1 Datasets

We use the multi-party dialogue STAC corpus
(Asher et al., 2016), annotated following the SDRT
framework, to evaluate our approach on the dis-
course dependency structure prediction task. In-
cluding 300 strategic conversations of players trad-
ing goods during the board game The Settlers of
Catan, this corpus contains some high-frequency
game-related words such as sheep, clay and wood.

To evaluate a variety of fine-tuned PLMs (see sec
3.2), we use publicly available HuggingFace mod-
els for the summarization and question-answering
tasks. For the newly proposed sentence ordering
(SO) task, we train the BART model on two di-
alogue datasets: (1) the STAC corpus itself (raw

Dataset #Doc #Utt/doc #Tok/doc #Spk/doc Domain
DailyDialog 13,118 13 119 2 Daily
STAC 1,161 11 50 3 Game

Table 1: Key statistics of datasets. Utt = sentences in
DD or EDUs in STAC; Tok = tokens; Spk = speakers.

text) (2) DailyDialog (Li et al., 2017), covering
various topics for English learners (10 categories),
from ordinary life to finance. We select this cor-
pus due to its large size, diversity of topics and
high quality. We summarize the key dataset statis-
tics for STAC and DailyDialog in Table 1. STAC
has a separation of 82%, 9%, 9% for train, vali-
dation, and test sets resp.; DailyDialog 85%, 8%,
8%. We purposely exclude the Molweni corpus (Li
et al., 2020) in this work, due to major quality is-
sues found in preliminary dataset exploration, with
details in Appendix B.

4.2 Baselines and Supervised Dialogue
Discourse Parsers

We compare against the simple yet strong unsu-
pervised LAST baseline (Schegloff, 2007), attach-
ing every EDU to the previous one. Furthermore,
to assess the gap between our approach and su-
pervised dialogue discourse parsers, we compare
with the Deep Sequential model by Shi and Huang
(2019) and the Structure Self-Aware (SSA) model
by Wang et al. (2021).

4.3 Evaluation Metrics

We report the micro-F for discourse parsing and
the Unlabeled Attachment Score (UAS) for the
generated naked dependency structures.

4.4 Implementation Details

We base our work on the transformer HuggingFace
library (Wolf et al., 2020) (see Appendix F) and
follow the text-to-marker framework proposed in
Chowdhury et al. (2021) for the SO fine-tuning
procedure. We use the original separation of train,
validation, and test sets; set the learning rate to
5e — 6; use a batch size of 2 for DailyDialog and
4 for STAC, and train for 7 epochs. All other
hyper-parameters are set following Chowdhury
et al. (2021). We do not do any hyper-parameter
tuning. We omit 5 documents in DailyDialog dur-
ing training since the documents lengths exceed the
token limit. We replace speaker names with mark-
ers (e.g. Sam — “spk1”), following the preprocess-
ing pipeline for dialogue utterances in PLMs.



5 Results
5.1 Results with Unsupervised Head Selection

Results using our novel unsupervised DAS method
on STAC are shown in Table 2 for both the global
(Hg) and local (H;) head selection strategies. These
are compared to: (1) the unsupervised LAST base-
line (at the top), which only predicts local attach-
ments between adjacent EDUs. LAST is consid-
ered a strong baseline in discourse parsing (Muller
et al., 2012), but has the obvious disadvantage
of completely missing long-distance dependencies
which may be critical in downstream tasks. (2)
The supervised Deep Sequential parser by Shi and
Huang (2019) and Structure Self-Aware model by
Wang et al. (2021) (center of the table), trained on
STAC, reaching resp. 71.4%* and 73.8% in Fy.

In the last sub-table we show unsupervised
scores from pre-trained and fine-tuned LMs on
three auxiliary tasks: summarization, question-
answering and sentence ordering (SO) with the
mixed shuffling strategy. We present the global
head (Hg) and local heads (H;) performances se-
lected by the DAS score (see section 3.4.1). The
best possible scores using an oracle head selector
(Hora) are presented for reference.

Comparing the values in the bottom sub-table,
we find that the pre-trained BART model under-
performs LAST, with global head and local
heads achieving similar performance. Notice-
ably, models fine-tuned on the summarization task
(“+CNN”, “+SAMSum”) and question-answering
(“+SQuAD2”) only add marginal improvements
compared to BART. In the last two lines of the sub-
table, we explore our novel sentence ordering fine-
tuned BART models. We find that the BART+SO
approach surpasses LAST when using local heads.
As commonly the case, the intra-domain training
performs best, which is further strengthened in this
case due to the special vocabulary in STAC. Impor-
tantly, our PLM-based unsupervised parser can cap-
ture some long-distance dependencies compared to
LAST (Section 6.2). Additional analysis regarding
the chosen heads is in Section 6.1.

5.2 Results with Semi-Sup. Head Selection

While the unsupervised strategy only delivered min-
imal improvements over the strong LAST base-
line, Table 3 shows that if a few annotated exam-
ples are provided, it is possible to achieve substan-

*We re-train the model, scores are slightly different due to
different train-test splits, as in Wang et al. (2021).

Model

Unsupervised Baseline

LAST 56.8

Supervised Models

Deep-Sequential (2019) 71.4

SSA-GNN (2021) 73.8

Unsupervised PLMs H, H, Hym

BART 56.6 56.4 57.6
+ CNN 56.8 56.7 5H7.1
+ SAMSum 56.7 56.6 57.6
+ SQuAd2 55.9 56.4 57.7
+ SO-DD 56.8 57.1 58.2
+ SO-STAC 56.7 57.2 59.5

Table 2: Micro-F; on STAC for supervised SOTA mod-
els and PLMs. H,: global best head. Hj: local best
heads. Hy,,: oracle head. Best (non-oracle) score in the
374 block in bold.

tial gains. In particular, we report results on the
vanilla BART model, as well as BART model fine-
tuned on DailyDialog (“+SO-DD”) and STAC itself
(“4+SO-STAC”). We execute 10 runs for each semi-
supervised setting ([10, 30, 50]) and report average
scores and the standard deviation.

Train on — BART +SO-DD + SO-STAC
Test with | Fi F,q Fy
LAST BSL 56.8 56.8 56.8
Gold H 57.6 58.2 59.5
Unsup H, 56.6 56.8 56.7
Unsup H; 56.4 57.1 57.2
Semi—sup 10 57.00_012 57.20_012 57-10.026
Semi-sup 30 57.30.005 57.30.013 59.20.009
Semi-sup 50 57.40_004 57.70_005 59.30.007

Table 3: STAC micro-F; scores from BART and fine-
tuned models with unsupervised and semi-supervised
approaches. Subscription is standard deviation.

With oracle attention heads (Gold H in the ta-
ble), all three models achieve superior performance
compared to LAST. Furthermore, using a small
scale validation set (50 examples) to select the best
attention head remarkably improves the F; score
from 56.8% (LAST) to 59.3% (+SO-STAC).

F, improvements across increasingly large
validation-set sizes are consistent, accompanied by
smaller standard deviations, as would be expected.
The semi-supervised results are very encouraging:
with 30 annotated examples, we already reach a
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Figure 4: Heatmaps: DAS score matrices (layers: top
to bottom=12 to 1, heads: left to right=1 to 16) for
BART, BART+SO-DD, BART+SO-STAC. Darker pur-
ple=higher DAS score.

Boxplot: Head-aggregated UAS scores for model
BART (orange), BART+SO-DD (green) and BART+SO-
STAC (red). Light green=head with highest UAS. Yel-
low=head with highest DAS score.

performance close to the oracle result, and with
more examples we can further reduce the gap.

6 Analysis

6.1 Effectiveness of DAS

We now take a closer look at the performance degra-
dation of our unsupervised approach based on DAS
in comparison to the upper-bound defined by the
performance of the oracle-picked head. To this
end, Figure 4 shows the DAS score matrices (left)
for three models with the oracle heads and DAS
selected heads highlighted in green and yellow, re-
spectively. It becomes clear that the oracle heads do
not align with the DAS selected heads. Making a
comparison between models, we find that discourse
information is consistently located in deeper layers,
with the oracle heads (light green) consistently sit-
uated in the same head for all three models. How-
ever, while not aligning with the oracle, the top
performing DAS heads (in yellow) are among the
top 10% best heads in all three models, as shown in
the box-plot on the right. Hence, we confirm that
the DAS method is a reasonable approximation to
find discourse intense self-attention heads among
the 12 x 16 attention matrices.

6.2 Document and Arc Lengths

The inherent drawback of the simple, yet effective
LAST baseline is its inability to predict indirect
arcs. To test if our approach can reasonably pre-
dict distant arcs of different length in the depen-
dency trees, we analyze our results in regards to the
arc lengths. Additionally, since longer documents
tend to contain more distant arcs, we also examine
the performance across different document lengths
compared to LAST.

Arc Distance: To examine the discourse pars-
ing performance for data sub-sets with specific arc
lengths, we present the UAS score plotted against
different arc lengths on the left side in Figure 5. Our
analysis thereby shows that direct arcs achieve high
UAS score (> 80%), independent of the model
used. We further observe that the performance
drops considerably for arcs of distance two and on-
wards, with almost all models failing to predict arcs
longer than 6. BART+SO-STAC model correctly
captures an arc of distance 13. Please note that the
presence for long-distance arcs (> 6) is limited,
accounting for less than 5% of all arcs.

We further analyze the precision and recall
scores when separating dependency links into di-
rect (adjacent forward arcs) and indirect (all other
non-adjacent arcs), following Xiao et al. (2021).
For direct arcs, all models perform reasonably good.
The precision is higher (=~ +6%) and recall is lower
than the baseline (100%), indicating that our mod-
els predict less direct arcs but more precisely. For
indirect arcs, the best model is BART+SO-STAC
(20% recall, 44% prec.), closely followed by origi-
nal BART model (details in Appendix C.1).

Document Length: Longer documents tend to
be more difficult to process because of the growing
number of possible discourse parse trees. Hence,
we analyze the UAS performance of documents in
regards to their length, here defined as the number
of EDUs. Results are presented on the right side in
Figure 5, comparing the UAS scores for the three
selected models and LAST for different document
lengths. We split the document length range into
5 even buckets between the shortest (2 EDUs) and
longest (37 EDUs) document, resulting in 60, 25,
16, 4 and 4 examples per bucket.

For documents with less than 23 EDUSs, all fine-
tuned models perform better than LAST, with
BART fine-tuned on STAC reaching the best re-
sult. For documents between 23 and 30 EDUs, the
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Figure 5: Left: UAS and arcs’ distance. x axis: arc
distance. Right: averaged UAS for different length of
document. x axis: #EDUs in a document. y axis: UAS.



#EDUs #Arcs
#Doc Single-in Multi-in  Proj.  N-proj.
(1) Non-Tree 48 706 79 575 170
(2) Tree 61 444 0 348 35
- Proj. tree 48 314 0 266 0

Table 4: STAC test set ground-truth tree and non-tree
statistics. “Single-in” and “multi-in” means EDU with
single or multiple incoming arcs.

PLMs under-perform the LAST baseline, likely
over-predicting distant arcs, while ground-truth dis-
tant arcs only start to appear more frequently in
longer documents, with 30 or more EDUs. As a
result, we see that longer documents (> 23) are
indeed more difficult to predict than short docu-
ments, with even the performance of our best model
(BARTASTAC) strongly decreasing.

6.3 Projective Trees Examination

Given the fact that our method only extracts projec-
tive tree structures, we now conduct an additional
analysis, exclusively examining the subset of STAC
containing projective trees, on which our method
could in theory achieve perfect accuracy.

Table 4 gives key statistics for this subset (“proj.
tree”). For the 48 extracted tree examples, the
document length decreases from an average of 11
to 7 EDUs, however, still contains ~ 40% indi-
rect arcs, keeping the parsing difficulty compara-
ble. Discourse parsing results are presented in Ta-
ble 5. As shown, all three unsupervised models
outperform LAST. The best model is still BART
fine-tuned on STAC, followed by the inter-domain
fine-tuned +SO-DD and BART models. Using the
semi-supervised approach, we see further improve-
ment with the Fy score reaching 68% (+6% than
LAST). Degradation for direct and indirect edges’
precision and recall scores see Appendix C.2.

Following Ferracane et al. (2019), we analyze
key properties of the 48 gold trees compared to
our extracted structures using the semi-supervised
method. To test the stability of the derived trees,
we use three different seeds to generate the shuffled
datasets to fine-tune BART. Table 6 presents the
averaged scores and the standard deviation of the
trees. In essence, while the extracted trees are
generally “thinner” and “taller” than gold trees and
contain slightly less branches, they are well aligned
with gold discourse structures and don’t contain
“vacuous” trees, where all nodes are linked to one
of the first two EDUs.

Train on — BART +SO-DD + SO-STAC
Test with | Fi F, F,
LAST BSL 62.0 62.0 62.0
Gold H 64.8 67.4 68.6
Unsup H, 62.5 62.5 62.1
Unsup H; 62.1 62.9 63.3
Semi—sup 10 54.60_053 59.20_047 61.60.056
Semi-sup 30 60.30,()47 60.30,044 65.604043
Semi-sup 50 64.80_000 66.30_023 68.10.014

Table 5: Micro-F; scores on STAC projective tree subset
with BART and SO fine-tuned BART models.

Avg.branch Avg.height %leaf Norm. arc

GT 1.67 3.96 0.46 0.43
BART 1.20 5.31 0.31 0.34
+SO-DD 1.320,0]4 5-310,]46 0.3204019 0.3704()03
+SO-STAC 1.270.076 5.280.052  0.320011 0.350.015

Table 6: Statistics for ground truth projective trees and
extracted trees from oracle attention heads in BART and
fine-tuned BART models.

Further, qualitative analysis of inferred struc-
tures is presented in Appendix D. Tellingly, on two
STAC examples our model succeeds in predicting
> 82% of projective arcs, some of which span
across 4 EDUs. This is encouraging, providing
anecdotal evidence that our method is suitable to
extract reasonable discourse structures.

7 Conclusion

Since dialogue discourse parsing suffers from ex-
treme data sparsity, we explore approaches to build
naked discourse structures from PLMs attention
matrices. We show sentence ordering to be the best
fine-tuning task and our unsupervised and semi-
supervised methods for selecting the best attention
head outperform a strong baseline, delivering sub-
stantial gains especially on tree structures. Interest-
ingly, discourse is consistently captured in deeper
PLMs layers, and more accurate for shorter links.
In the near future, we intend to explore graph-
like structures from attention matrices, for instance,
by extending treelike structures with additional arcs
of high DAS score and applying linguistically mo-
tivated constraints, as in Perret et al. (2016). We
would also like to expand shuffling strategies for
SO and to explore other auxiliary tasks. We plan to
infer full discourse structures by adding the predic-
tion of rhetorical relation types in the long term.



Limitations

Similarly to previous work, we have focused on
generating only projective tree structures. This not
only covers the large majority of the links (~ 94%),
but it can also provide the backbone for accurately
inferring the remaining non-projective links in fu-
ture work. We focus on the naked structure, as it is
a significant first step and a requirement to further
predict relations for discourse parsing.

We decided to run all our experiments on the
only existing high quality corpus, i.e., STAC. In
essence, we traded-off generalizability for sound-
ness of the results. A second corpus we considered,
Molweni, had to be excluded due to serious quality
issues.

Lastly, since we work with large language mod-
els and investigate every single attention head, com-
putational efficiency is a concern. We used a 4-core
GPU machine with the highest VRAM at 11MiB.
The calculation for one discourse tree on one head
was approximately 0.75 seconds (in STAC the av-
eraged dialogue length is 11 EDUs), which quickly
summed up to 4.5 hours with only 100 data points
for 192 candidate trees in one LM. When dealing
with much longer documents, for example AMI and
conversational section in GUM (in average > 200
utterances/dialogue), our estimation shows that one
dialogue takes up to ~ 2 minutes, which means 6.5
hours for 192 candidate trees. Even though we use
parallel computation, the exhaustive “head” compu-
tation results in a tremendous increase in time and
running storage. One possibility is to investigate
only those “discourse-rich” heads, mainly in the
deeper layers, for future work.

Ethical Considerations

We carefully select the dialogue corpora used in
this paper to control for potential biases, hate-
speech and inappropriate language by using hu-
man annotated corpora and professionally curated
resources. Further, we consider the privacy of dia-
logue partners in the selected datasets by replacing
names with generic user tokens.

Since we are investigating the nature of the dis-
course structures captured in large PLMs, our work
can be seen as making these models more transpar-
ent. This will hopefully contribute to avoid unin-
tended negative effects, when the growing number
of NLP applications relying on PLMs are deployed
in practical settings.

In terms of environmental cost, the experiments

described in the paper make use of RTX 2080 Ti
GPUs for tree extraction and A100 GPUs for BART
fine-tuning. We used up to 4 GPUs for the parallel
computation. The experiments on corpus STAC
took up to 1.2 hours for one language model, and
we tested a dozen models. We note that while
our work is based on exhaustive research on all the
attention heads in PLMs to obtain valuable insights,
future work will able to focus more on discourse-
rich heads, which can help to avoid the quadratic
growth of computation time for longer documents.

References

Stergos Afantenos, Nicholas Asher, Farah Benamara,
Anais Cadilhac, Cedric Dégremont, Pascal Denis,
Markus Guhe, Simon Keizer, Alex Lascarides, Oliver
Lemon, et al. 2012. Modelling strategic conversation:
model, annotation design and corpus. In Proceedings
of the 16th Workshop on the Semantics and Pragmat-
ics of Dialogue (Seinedial), Paris.

Stergos Afantenos, Eric Kow, Nicholas Asher, and
Jérémy Perret. 2015. Discourse parsing for multi-
party chat dialogues. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 928-937, Lisbon, Portugal.
Association for Computational Linguistics.

Nicholas Asher, Nicholas Michael Asher, and Alex Las-
carides. 2003. Logics of conversation. Cambridge
University Press.

Nicholas Asher, Julie Hunter, Mathieu Morey, Bena-
mara Farah, and Stergos Afantenos. 2016. Discourse
structure and dialogue acts in multiparty dialogue:
the STAC corpus. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 2721-2727, PortoroZ,
Slovenia. European Language Resources Association
(ELRA).

Sonia Badene, Kate Thompson, Jean-Pierre Lorré, and
Nicholas Asher. 2019a. Data programming for learn-
ing discourse structure. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 640-645, Florence, Italy. Associa-
tion for Computational Linguistics.

Sonia Badene, Kate Thompson, Jean-Pierre Lorré, and
Nicholas Asher. 2019b. Weak supervision for learn-
ing discourse structure. In EMNLP.

Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach. Compu-
tational Linguistics, 34(1):1-34.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurovsky. 2001. Building a discourse-tagged cor-
pus in the framework of Rhetorical Structure Theory.
In Proceedings of the Second SIGdial Workshop on
Discourse and Dialogue.


https://www.pure.ed.ac.uk/ws/files/11999947/lascarides_seinedial3.pdf
https://www.pure.ed.ac.uk/ws/files/11999947/lascarides_seinedial3.pdf
https://www.pure.ed.ac.uk/ws/files/11999947/lascarides_seinedial3.pdf
https://doi.org/10.18653/v1/D15-1109
https://doi.org/10.18653/v1/D15-1109
https://doi.org/10.18653/v1/D15-1109
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://doi.org/10.18653/v1/P19-1061
https://doi.org/10.18653/v1/P19-1061
https://doi.org/10.18653/v1/P19-1061
https://aclanthology.org/D19-1234.pdf
https://aclanthology.org/D19-1234.pdf
https://aclanthology.org/D19-1234.pdf
https://aclanthology.org/J08-1001.pdf
https://aclanthology.org/J08-1001.pdf
https://aclanthology.org/J08-1001.pdf
https://aclanthology.org/W01-1605
https://aclanthology.org/W01-1605
https://aclanthology.org/W01-1605

Somnath Basu Roy Chowdhury, Faeze Brahman, and
Snigdha Chaturvedi. 2021. Is everything in order? a
simple way to order sentences. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10769-10779.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jason Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

Xiachong Feng, Xiaocheng Feng, and Bing Qin.
2021. A survey on dialogue summarization: Re-
cent advances and new frontiers. arXiv preprint
arXiv:2107.03175.

Elisa Ferracane, Greg Durrett, Junyi Jessy Li, and Katrin
Erk. 2019. Evaluating discourse in structured text
representations. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 646—653, Florence, Italy. Association
for Computational Linguistics.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70-79, Hong
Kong, China. Association for Computational Linguis-
tics.

Yuchen He, Zhuosheng Zhang, and Hai Zhao. 2021.
Multi-tasking dialogue comprehension with dis-
course parsing. In Proceedings of the 35th Pacific
Asia Conference on Language, Information and Com-
putation, pages 551-561, Shanghai, China. Associa-
tion for Computational Lingustics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41294138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Patrick Huber and Giuseppe Carenini. 2019. Predicting
discourse structure using distant supervision from
sentiment. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2306-2316, Hong Kong, China. Association for Com-
putational Linguistics.

10

Patrick Huber and Giuseppe Carenini. 2020. MEGA
RST discourse treebanks with structure and nuclear-
ity from scalable distant sentiment supervision. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7442-7457, Online. Association for Computa-
tional Linguistics.

Patrick Huber and Giuseppe Carenini. 2022. Towards
understanding large-scale discourse structures in pre-
trained and fine-tuned language models. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651-3657, Florence, Italy. Association for
Computational Linguistics.

Kailang Jiang, Giuseppe Carenini, and Raymond Ng.
2016. Training data enrichment for infrequent dis-
course relations. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2603-2614, Os-
aka, Japan. The COLING 2016 Organizing Commit-
tee.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423-438.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-goo
Lee. 2019. Are pre-trained language models aware
of phrases? simple but strong baselines for grammar
induction. In International Conference on Learning
Representations.

Naoki Kobayashi, Tsutomu Hirao, Hidetaka Kamigaito,
Manabu Okumura, and Masaaki Nagata. 2021. Im-
proving neural rst parsing model with silver agree-
ment subtrees. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 1600-1612.

Fajri Koto, Jey Han Lau, and Timothy Baldwin. 2021.
Discourse probing of pretrained language models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies,
pages 3849-3864.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.


https://aclanthology.org/2021.emnlp-main.841.pdf
https://aclanthology.org/2021.emnlp-main.841.pdf
https://aclanthology.org/2021.emnlp-main.841.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/pdf/cmp-lg/9706003.pdf
https://arxiv.org/pdf/cmp-lg/9706003.pdf
https://arxiv.org/pdf/cmp-lg/9706003.pdf
https://arxiv.org/pdf/2107.03175.pdf
https://arxiv.org/pdf/2107.03175.pdf
https://arxiv.org/pdf/2107.03175.pdf
https://doi.org/10.18653/v1/P19-1062
https://doi.org/10.18653/v1/P19-1062
https://doi.org/10.18653/v1/P19-1062
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://aclanthology.org/2021.paclic-1.58
https://aclanthology.org/2021.paclic-1.58
https://aclanthology.org/2021.paclic-1.58
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/D19-1235
https://doi.org/10.18653/v1/D19-1235
https://doi.org/10.18653/v1/D19-1235
https://doi.org/10.18653/v1/D19-1235
https://doi.org/10.18653/v1/D19-1235
https://doi.org/10.18653/v1/2020.emnlp-main.603
https://doi.org/10.18653/v1/2020.emnlp-main.603
https://doi.org/10.18653/v1/2020.emnlp-main.603
https://doi.org/10.18653/v1/2020.emnlp-main.603
https://doi.org/10.18653/v1/2020.emnlp-main.603
https://arxiv.org/pdf/2204.04289.pdf
https://arxiv.org/pdf/2204.04289.pdf
https://arxiv.org/pdf/2204.04289.pdf
https://arxiv.org/pdf/2204.04289.pdf
https://arxiv.org/pdf/2204.04289.pdf
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://aclanthology.org/C16-1245
https://aclanthology.org/C16-1245
https://aclanthology.org/C16-1245
https://aclanthology.org/2020.tacl-1.28.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://aclanthology.org/2020.tacl-1.28.pdf
https://arxiv.org/abs/2002.00737
https://arxiv.org/abs/2002.00737
https://arxiv.org/abs/2002.00737
https://arxiv.org/abs/2002.00737
https://arxiv.org/abs/2002.00737
https://aclanthology.org/2021.naacl-main.127.pdf
https://aclanthology.org/2021.naacl-main.127.pdf
https://aclanthology.org/2021.naacl-main.127.pdf
https://aclanthology.org/2021.naacl-main.127.pdf
https://aclanthology.org/2021.naacl-main.127.pdf
https://aclanthology.org/2021.naacl-main.301.pdf
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

Jiaqi Li, Ming Liu, Min-Yen Kan, Zihao Zheng, Zekun
Wang, Wengqiang Lei, Ting Liu, and Bing Qin. 2020.
Molweni: A challenge multiparty dialogues-based
machine reading comprehension dataset with dis-
course structure. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2642-2652, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Jiaqi Li, Ming Liu, Zihao Zheng, Heng Zhang, Bing
Qin, Min-Yen Kan, and Ting Liu. 2021. Dadgraph:
A discourse-aware dialogue graph neural network for
multiparty dialogue machine reading comprehension.
arXiv preprint arXiv:2104.12377.

Manling Li, Lingyu Zhang, Heng Ji, and Richard J.
Radke. 2019. Keep meeting summaries on topic:
Abstractive multi-modal meeting summarization. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2190-
2196, Florence, Italy. Association for Computational
Linguistics.

Sujian Li, Liang Wang, Ziqiang Cao, and Wenjie Li.
2014. Text-level discourse dependency parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 25-35, Baltimore, Maryland.
Association for Computational Linguistics.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Zigiang
Cao, and Shuzi Niu. 2017. DailyDialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 986-995, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Yang Liu and Mirella Lapata. 2018. Learning structured
text representations. Transactions of the Association
for Computational Linguistics, 6:63-75.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhengyuan Liu and Nancy Chen. 2021. Improving
multi-party dialogue discourse parsing via domain
integration. In Proceedings of the 2nd Workshop on
Computational Approaches to Discourse, pages 122—
127, Punta Cana, Dominican Republic and Online.
Association for Computational Linguistics.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The Ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. In Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 285-294, Prague, Czech Repub-
lic. Association for Computational Linguistics.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-interdisciplinary Jour-
nal for the Study of Discourse, 8(3):243-281.

11

Philippe Muller, Stergos Afantenos, Pascal Denis, and
Nicholas Asher. 2012. Constrained decoding for text-
level discourse parsing. In Proceedings of COLING
2012, pages 1883-1900, Mumbiai, India. The COL-
ING 2012 Organizing Committee.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280-290, Berlin, Germany.
Association for Computational Linguistics.

Noriki Nishida and Yuji Matsumoto. 2022. Out-of-
domain discourse dependency parsing via bootstrap-
ping: An empirical analysis on its effectiveness and
limitation. Transactions of the Association for Com-
putational Linguistics, 10:127-144.

Lalchand Pandia, Yan Cong, and Allyson Ettinger. 2021.
Pragmatic competence of pre-trained language mod-
els through the lens of discourse connectives. In Pro-
ceedings of the 25th Conference on Computational
Natural Language Learning, pages 367-379.

Jérémy Perret, Stergos Afantenos, Nicholas Asher, and
Mathieu Morey. 2016. Integer linear programming
for discourse parsing. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 99-109, San Diego,
California. Association for Computational Linguis-
tics.

Kechen Qin, Lu Wang, and Joseph Kim. 2017. Joint
modeling of content and discourse relations in dia-
logues. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 974-984, Vancouver,
Canada. Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784—789,
Melbourne, Australia. Association for Computational
Linguistics.

Harvey Sacks, Emanuel A Schegloff, and Gail Jefferson.
1978. A simplest systematics for the organization
of turn taking for conversation. In Studies in the
organization of conversational interaction, pages 7—
55. Elsevier.

Emanuel A Schegloff. 2007. Sequence organization
in interaction: A primer in conversation analysis I,
volume 1. Cambridge university press.


https://doi.org/10.18653/v1/2020.coling-main.238
https://doi.org/10.18653/v1/2020.coling-main.238
https://doi.org/10.18653/v1/2020.coling-main.238
https://doi.org/10.18653/v1/2020.coling-main.238
https://doi.org/10.18653/v1/2020.coling-main.238
https://ieeexplore.ieee.org/document/9533364
https://ieeexplore.ieee.org/document/9533364
https://ieeexplore.ieee.org/document/9533364
https://ieeexplore.ieee.org/document/9533364
https://ieeexplore.ieee.org/document/9533364
https://doi.org/10.18653/v1/P19-1210
https://doi.org/10.18653/v1/P19-1210
https://doi.org/10.18653/v1/P19-1210
https://doi.org/10.3115/v1/P14-1003
https://aclanthology.org/I17-1099
https://aclanthology.org/I17-1099
https://aclanthology.org/I17-1099
https://doi.org/10.1162/tacl_a_00005
https://doi.org/10.1162/tacl_a_00005
https://doi.org/10.1162/tacl_a_00005
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.codi-main.11
https://doi.org/10.18653/v1/2021.codi-main.11
https://doi.org/10.18653/v1/2021.codi-main.11
https://doi.org/10.18653/v1/2021.codi-main.11
https://doi.org/10.18653/v1/2021.codi-main.11
https://doi.org/10.18653/v1/W15-4640
https://doi.org/10.18653/v1/W15-4640
https://doi.org/10.18653/v1/W15-4640
https://doi.org/10.18653/v1/W15-4640
https://doi.org/10.18653/v1/W15-4640
https://aclanthology.org/C12-1115
https://aclanthology.org/C12-1115
https://aclanthology.org/C12-1115
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00451/109472
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00451/109472
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00451/109472
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00451/109472
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00451/109472
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00451/109472
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00451/109472
https://aclanthology.org/2021.conll-1.29.pdf
https://aclanthology.org/2021.conll-1.29.pdf
https://aclanthology.org/2021.conll-1.29.pdf
https://doi.org/10.18653/v1/N16-1013
https://doi.org/10.18653/v1/N16-1013
https://doi.org/10.18653/v1/N16-1013
https://doi.org/10.18653/v1/P17-1090
https://doi.org/10.18653/v1/P17-1090
https://doi.org/10.18653/v1/P17-1090
https://doi.org/10.18653/v1/P17-1090
https://doi.org/10.18653/v1/P17-1090
http://www.persagen.com/files/misc/radford2019language.pdf
http://www.persagen.com/files/misc/radford2019language.pdf
http://www.persagen.com/files/misc/radford2019language.pdf
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://pure.mpg.de/rest/items/item_2376846_3/component/file_2376845/content
https://pure.mpg.de/rest/items/item_2376846_3/component/file_2376845/content
https://pure.mpg.de/rest/items/item_2376846_3/component/file_2376845/content

Zhouxing Shi and Minlie Huang. 2019. A deep se-
quential model for discourse parsing on multi-party
dialogues. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 7007-7014.

Ante Wang, Linfeng Song, Hui Jiang, Shaopeng Lai,
Junfeng Yao, Min Zhang, and Jinsong Su. 2021. A
structure self-aware model for discourse parsing on
multi-party dialogues. In Proceedings of the Thirti-
eth International Conference on International Joint
Conferences on Artificial Intelligence.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Wen Xiao, Patrick Huber, and Giuseppe Carenini. 2021.
Predicting discourse trees from transformer-based
neural summarizers. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4139—4152, Online.
Association for Computational Linguistics.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. DIALOGPT : Large-scale
generative pre-training for conversational response
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 270-278, Online. As-
sociation for Computational Linguistics.

Ming Zhong, Yang Liu, Yichong Xu, Chenguang Zhu,
and Michael Zeng. 2022. Dialoglm: Pre-trained
model for long dialogue understanding and summa-
rization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 11765—
11773.

Zining Zhu, Chuer Pan, Mohamed Abdalla, and Frank
Rudzicz. 2020. Examining the rhetorical capacities
of neural language models. In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 16-32,
Online. Association for Computational Linguistics.

12


https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.33017007
https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.33017007
https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.33017007
https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.33017007
https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.33017007
https://www.ijcai.org/proceedings/2021/0543.pdf
https://www.ijcai.org/proceedings/2021/0543.pdf
https://www.ijcai.org/proceedings/2021/0543.pdf
https://www.ijcai.org/proceedings/2021/0543.pdf
https://www.ijcai.org/proceedings/2021/0543.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.326
https://doi.org/10.18653/v1/2021.naacl-main.326
https://doi.org/10.18653/v1/2021.naacl-main.326
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://arxiv.org/pdf/2109.02492.pdf
https://arxiv.org/pdf/2109.02492.pdf
https://arxiv.org/pdf/2109.02492.pdf
https://arxiv.org/pdf/2109.02492.pdf
https://arxiv.org/pdf/2109.02492.pdf
https://doi.org/10.18653/v1/2020.blackboxnlp-1.3
https://doi.org/10.18653/v1/2020.blackboxnlp-1.3
https://doi.org/10.18653/v1/2020.blackboxnlp-1.3

A Semi-sup. Layer-Wise Results

We consider both layer-wise attention matrices -
averaging 16 attention heads for every layer which
gives 12 candidate layers -, and head-wise atten-
tion matrices - taking each attention matrix individ-
ually which results in 192 candidate matrices. Here
we show results completed with layer-wise matri-
ces for the whole test set and treelike examples in
Table 7 and Table 8.

B Molweni Corpus Quality Investigation

Molweni (Li et al., 2020) is a corpus derived from
Ubuntu Chat Corpus (Lowe et al., 2015). It con-
tains 10, 000 short dialogues between 8 to 15 utter-
ances, annotated in SDRT framework.

Considering the complexity of Ubuntu chat logs
(multiple speakers, entangled discussion with vari-
ous topics), we first conduct an examination of the
corpus. Disappointingly, we found heavy repetition
within sequential documents and inconsistency in
discourse annotation among the same utterances.
We thus decide not to include it in this work.

Train on — BART +SO-DD + SO-STAC
Test with | Fy Fy Fi
Gold H 57.6 58.2 59.5
Semi-sup-lO 1L 55.80_003 55.70_010 55.60,0()9
Semi-sup-30 1L 55.8p006  56.50.004 56.30.004
Semi—sup—50 1L 56.20,002 56.40,007 56.40_0()1
Semi-sup-lO 1H 57.00,012 57.20,012 57'10.026
Semi-sup-30 1H 57.30,()()5 57.30,013 59.20,009
Semi-sup-50 1H 57.40'004 57.70'005 59.30‘007

Table 7: Micro-F; scores on STAC test set with BART
and fine-tuned models. H = “head”, L = “layer”. Best
semi-supervised score is in bold. Subscription is std.
deviation.

Train on — BART +SO-DD + SO-STAC
Test with | Fq Fq Fq
Gold H 64.8 67.4 68.6
Semi-sup-10 1L 59.4p0p8  60.60.029 58.30.018
Semi-sup-BO 1L 62.10'002 61.80,012 59.80'009
Semi-sup-50 1L 62.10_000 62.3()‘003 59~90.006
Semi—sup—lO 1H 54.6()_053 59.2()_047 61.60,()56
Semi-sup-30 1H 60.30.047  60.30.044 65.60.043
Semi-sup-50 1H 64.80'000 66.30'023 68.10.014

Table 8: Micro-F; scores on STAC projective tree subset
with BART and SO fine-tuned BART models.
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Clus Doc #Theor #Err #Theor  #Err
ID ID =arc arc =rel rel
1 {1,2,3} 18 2 16 2
2 {7,8,9} 18 0 18 7
3 {10, 11, 12, 13, 14} 80 4 76 25
105 500 4787 284 4503 606
- 100% 5.9% 100% 13.5%

Table 9: Quantitative resume of link and relation incon-
sistency in Molweni test set. “Theor =arc”: number
of arcs between the same utterances, a priori should
be linked in the same way; “Theor =rel”: number of
relations between the linked utterances.

Clusters: Among 500 dialogues in discourse aug-
mented test set, we found 105 “clusters”. One clus-
ter groups all the documents with only one or two
different utterances. For instance, document id 10
and 11 are in the same cluster since only the sec-
ond utterance is different (Figure 10). A similar
situation is attested in the documents {1, 2, 3}, {7,
8,91, {19, 20, 21}, to name a few.

Annotation Inconsistency: A closer examina-
tion of the annotation in similar examples reveals
inconsistency for both discourse links and rhetori-
cal relations. Precisely, we investigate every docu-
ment pair (two documents in the same cluster) in
all 105 clusters in the test set. A visualization of
inconsistency for documents 10 and 11 is shown in
Figure 10: apart from EDUjy, we expect the same
links and relations among other EDUs. However,
we observe one link inconsistency (in red) and two
relation inconsistencies (in blue). In total, we find
6% of link errors (#Err arc) within the same EDUs
and 14% of relation errors (#Err rel) in the test
set>. The scores are shown in Table 9.

The Ubuntu Chat Corpus contains long dia-
logues with entangled discussion. A pre-processing
had been made to generate shorter dialogues.
While these slightly different short dialogues could
be interesting for other dialogue studies in the field.
Our focus on the discourse structure request more
various data points and most importantly, the co-
herent discourse annotation.

C Precision and Recall Scores for Direct
and Indirect Arcs in STAC

C.1 STAC Test Set

We show the precision and recall of direct and in-
direct arcs for the test set in Figure 6. Each color

SFor validation and train sets we find similar error rates.
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Figure 6: Comparison of recall (left) and precision
(right) of indirect (top) and direct (bottom) links in
LAST baseline and SO fine-tuned models on STAC.
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Figure 7: Recall and precision metrics in whole test set
(darker color) vs. projective tree subset (brighter color),
with BART model.

represents one model, with blue represents LAST.

C.2 STAC Projective Tree Set

To compare the performance of the whole test
set and tree-structured subset, we now present
the recall and precision scores of BART (Fig. 7),
BART+SO-DD (Fig. 8), and BART+SO-STAC
(Fig. 9) separately.

D Qualitative Analysis in STAC

We show a few concrete tree examples: 3 well
predicted (Figure 11, 12, 13), 3 badly predicted
(Figure 14, 15, 16), and 2 random examples (Fig-
ure 17, 18). Some patterns observed from badly
predicted structures: (1) chain-style prediction: as
shown in Figure 15 and 18 where only adjacent
EDUs are linked together; (2) inaccurate indirect
arc prediction: especially for long documents such
as the one in Figure 16.
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Figure 8: Recall and precision metrics in whole test set
(darker color) vs. projective tree subset (brighter color),
with BART+SO-DD model.
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Figure 9: Recall and precision metrics in whole test set
(darker color) vs. projective tree subset (brighter color),
with model BART+SO-STAC.



Model Unsup Semi-sup
Hora Hg H, Semil0 Semi30 Semi50

BART 57.6 | 56.6 56.4 57.00012 57.30005 57-40.004
+ SO-DD 58.2 | 56.8 57.1 57.20012 5730013 57.70.005
+SO-STAC 59.5 | 56.7 57.2 57.1p06 59.200009 59.30.007

RoBERTa 57.4 | 56.8 56.8 55.6040]3 56.80_0()2 M0,00S
DialoGPT 56.2 | 42.7 36.2 52.904043 55. 10_017 @0,000
DialogLED 57.2 | 56.8 56.7 54.604026 54.70_06] M0,0]Q
+SO-DD  57.7| 564 56.6 55.000s 56.10024 57-30000
+SO-STAC 584 | 56.8 57.1 57.70001 58.20005 57-70.001

Table 10: Micro-F; on STAC with other PLMs. Best
score (except Hyr,) in each row is underlined.

E Results with other PLMs

We test with RoBERTa (Liu et al., 2019), Di-
aloGPT (Zhang et al., 2020), and DialogLED (Di-
alogLM with Longformer) (Zhong et al., 2022)
to see how different language models encode dis-
course information. As shown in Table 10, the most
discourse-rich head in RoBERTa slightly under-
perform BART (—0.2%), so does the DialogLED
(—0.4%) and DialoGPT (—1.4%). Sentence order-
ing fine-tuned DialogLED model outperforms the
original one, proving that our proposed SO task
can help encoding the discourse information.

F Huggingface Models

Table 11 shows the models and the sources we
obtained from Huggingface library (Wolf et al.,
2020).

Model

BART-large

https://huggingface.co/facebook/bart-large
BART-large-cnn
https://huggingface.co/facebook/bart-large-cnn
BART-large-samsum
https://huggingface.co/linydub/bart-large-samsum
BART-large-finetuned-squad2
https://huggingface.co/phiyodr/bart-large-finetuned-squad2
RoBERTa-large

https://huggingface.co/roberta-large

DialoGPT-small
https://huggingface.co/microsoft/DialoGPT-small
DialogLED-large-5120
https://huggingface.co/MingZhong/DialogLED-large-5120

Table 11: Huggingface models and URLs.
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Comment Comment Clari-Q

Figure 10: Similar documents in the same cluster. Circled EDUs are different. In red: inconsistent discourse arcs; in
blue: inconsistent rhetorical relation.

test id 10:

[e1] matthew99857: so do i need additional hardware to fix it ?

[e2] vocx: ca n’t you disable the raid from the bios ? check your motherboard manual .

[es] ikonia: just use the disk as an individual disk

[e4] sugi: vocxi : oh i am sorry . i misunderstood you . thank i will try it now

[e5] vocx: you need to word better your answers , seems like nobody in getting you today .

[es] sugi: vocx : is0 9660 cd-rom filesystem data udf filesystem data ( unknown version , id 'nsrO1 *)
[e7] ikonia: looks like that should work as a loop back file system

[es] sugi: -mount -0 loop but instead of .iso .mdf ? or the .mds file ?

[eg] ikonia: try it , linux see ’s it as a ““ image ” so it may work

[e10] sugi: vocx : wow it worked , i feel retard for nto

testid: 11

[e1] matthew99857: so do i need additional hardware to fix it ?

[e2] ikonia: no you need to stop using raid

[es] ikonia: just use the disk as an individual disk

[e4] sugi: vocxi : oh i am sorry . i misunderstood you . thank i will try it now

[e5] vocx: you need to word better your answers , seems like nobody in getting you today .

[es] sugi: vocx : is0 9660 cd-rom filesystem data udf filesystem data ( unknown version , id 'nsrO1 )
[e7] ikonia: looks like that should work as a loop back file system

[es] sugi: -mount -0 loop but instead of .iso .mdf ? or the .mds file ?

[eg] ikonia: try it , linux see ’s it as a ““ image ” so it may work

[e10] sugi: vocx : wow it worked , i feel retard for nto

Prediction qm ey —>» €5 —» €5 er——>» g ——» €9 ——» €10 el
Ground truth elwzzﬁqk €4 —» €5 —P» €5 er eg ——» €9 ——» €10 €11

Figure 11: Well predicted example: pilot02-4. #EDUs: 11. UAS: 90%. In red: FP arcs; in blue: FN arcs.

[e1] Cat: anyone would give me clay? [ez] Thomas: none here [e3] william: no [e4] Cat: T have one wood to
exchange [e5] Cat: any takers? [eg] william: no [e7] Cat: for sheep, wheat or clary [eg] Thomas: can I buy a sheep
for two ore? [eg] william: have none [e1o] Thomas: kk [e11] Cat: no sheep
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~7 A ~—
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Figure 12: Well predicted example: pilot02-18. #EDUs: 19. UAS: 88.9%. In red: FP arcs; in blue: FN arcs.

[e1] william: hi markus. [es] william: how many people are we waiting for? [e3] Thomas: think it’s 1 more
[e4] william: ok [e5] Markus: yes, one more [eg] Markus: seems there’s a hickup logging into the game ...
[e7] Thomas: that’s ok, I not on a schedule [eg] Thomas: *I'm [eg] Markus: I guess you two had no problems
joining the game? [e1¢] william: nope [e11] Markus: Ah great! [e12] Markus: So, one of you can now start the game.
[e13] Markus: Have fun! [e14] william: the arrow is pointing at me [e;5] william: but i cant press roll [e;g] william:
oh sorry [e17] Thomas: u can place a settlement [e;g] Thomas: first [e19] Thomas: u roll later

Prediction € —» €3 ——>» €3 ——» €4 —» €5 eg —» €7
Ground truth € —» €3 —>» €3 —>» €4 €5 eg —» €7

Figure 13: Well predicted example: s/-league3-game3. #EDUs: 7. UAS: 83.3%. In red: FP arcs; in blue: FN arcs.
[e1] Gaeilgeoir: ? [ez] yiin: build road [es] inca: think we’re meant to negotiate trades in the chat before offering
[e4] yiin: oop [e5] yiin: ok then [eg] inca: part of the guys’ experiment [e7] yiin: oh i see

.

Prediction e —>» €3 —» €3 —» €4 es

Ground truth €] —>» €2 €3 €4 es

Figure 14: Badly predicted example: s2-leagueM-game4. #EDUs: 5. UAS: 20%. In red: FP arcs; in blue: FN arcs.
[e1] dmm: i can give a sheep or wood for a wheat. [es] dmm: any takers? [es] inca: sheep would be good.
[e4] CheshireCatGrin: Not here. [e5] dmm: okay.

Prediction €g —» €3 ——>» €3 ——» €4 ——» €5

Ground truth €] —>» €2 €3 €4 es

Figure 15: Badly predicted example: si-league3-game3. #EDUs: 5. UAS: 25%. In red: FP arcs; in blue: FN arcs.
[e1] nareik15: anyone have ore. [es] nareik15: T have some wood to trade. [e3] yiin: no sorry. [e4] inca: nope, sorry.
[e5] Gaeilgeoir: no, sorry.
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Figure 16: Badly predicted example: si-league4-game2. #EDUs: 21. UAS: 30%. In red: FP arcs; in blue: FN arcs.
[e1] Shawnus: need wheat [ez] Shawnus: want..clay? [e3] ztime: you odo? [e4] ztime: yer.. [e5] ztime: I need clay..
[es] ztime: can give wheat [e7] Shawnus: k [eg] Shawnus: this might be where i lose my road card a? [eg] ztime:
er.. [e1p] ztime: I think the trade is wrong? [e11] ztime: did you want wheat? [e12] Shawnus: yes [e13] Shawnus:
for clay [e14] ztime: it said you wanted clay... [e15] somdechn: We all want wheat man [e16] somdechn: and clay...

[e17] ztime: ok [eqg] ztime: thanks.. [e19] Shawnus: haha [ego] Shawnus: thanks [es1] somdechn: That happens in
the real game as well.

_— ™ _—
Prediction €1 —>» €2 €3 —>» €4 —» €5 —» €4 €7—» €3 —» €9 —» €10 —>»€11—»€12—»€13—»C14

Ground truth €1 —» €2 €3 €4 €5 —>»€¢ €7 €8 —>» €9 €10 €11>»€12—>»€13—>»€14

Figure 17: Random example: s2-league4-game2. #EDUs: 14. UAS: 53.9%. In red: FP arcs; in blue: FN arcs.
[e1] ztime: 7!!!! [e3] somdechn: Yeah right... [e3] ztime: what... is this a fix? [e4] Shawnus: hahaha [es] ztime: ok
anyone want wheat? [eg] Shawnus: nope [e7] Shawnus: just someone to roll 9’s.. [eg] somdechn: Yes [eg] somdechn:
I can give you wood. [e1g] ztime: was that yes to a trade somdech? [eq;] ztime: OK.. cool.. for 1 wheat?
[e12] somdechn: and an ore.. :) [e13] ztime: err.. don’t have ore.. [e14] ztime: thanks..

Prediction €1 —» €3—» €3 —»p €4 —» €5 —» €5 —»E7—»E3 —» €9 —» €10 €11

Ground truth €1 —» €9 €3 —>»€4 €5 €6 €7 —>»€3 —»C9 €10 €11

Figure 18: Random example: sI-league3-game3. #EDUs: 11. UAS: 50%. In red: FP arcs; in blue: FN arcs.

[e1] nareik15: anyone have wood to trade. I have sheep [e1] yiin: no [e;] Gaeilgeoir: Sorry, [e1] Gaeilgeoir: I need
wood too [e1] Gaeilgeoir: T have wheat [e1] Gaeilgeoir: if you want [e;] inca: do you have wheat kieran? [e1] inca:
if so [e1] inca: i can trade wood [e;] nareik15: sorry, [e1] nareik15: plenty of sheep though :)
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