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Abstract

Discourse parsing suffers from data sparsity,001
especially for dialogues. As a result, we ex-002
plore approaches to build naked discourse struc-003
tures for dialogues, based on attention matri-004
ces from Pre-trained Language Models (PLMs).005
We investigate multiple auxiliary tasks for fine-006
tuning and show that the dialogue-tailored Sen-007
tence Ordering (SO) task performs best. For the008
crucial step of selecting the best attention head009
in PLMs, we propose unsupervised and semi-010
supervised methods. On the Strategic Conver-011
sation (STAC) corpus, we reach F1 scores of012
57.2 for the unsupervised and 59.3 for the semi-013
supervised methods - SOTA for both settings.014
Restricting our evaluation to projective trees,015
scores improve to 63.3 and 68.1, respectively.016

1 Introduction017

Dialogues correspond to an exchange between two018

or more people. As such, they are generally op-019

posed to monologues, typically authored by a sin-020

gle person. Dialogues can generally take place021

in person (e.g. meetings, chit-chats), via calls022

(e.g. customer or medical services), or through023

text, such as in online forums or direct messages.024

Recently, the rise of reliable transcription methods025

and a spike in online communication led to an as-026

tonishing explosion of dialogue data. As a result,027

the need for automatic systems to process dialogues028

has increased dramatically. For example, summa-029

rization of meetings or exchanges with customer030

service agents could be used to enhance collabora-031

tions or analyze customers issues (Li et al., 2019;032

Feng et al., 2021); machine reading comprehension033

in the form of question-answering could improve034

dialogue agents’ performance and help knowledge035

graph construction (He et al., 2021; Li et al., 2021).036

However, simple surface-level features are often-037

times not sufficient to extract valuable information038

from conversations (Qin et al., 2017), rather we039

need to understand the semantic and pragmatic re-040

Figure 1: Excerpt of dependency structures in file s2-
leagueM-game4, STAC. Red links are non-projective.

lationships organizing the dialogue, for example 041

through the use of discourse information. 042

Several discourse frameworks have been pro- 043

posed, underlying a variety of annotation projects. 044

For dialogues, data has been primarily anno- 045

tated within the Segmented Discourse Represen- 046

tation Theory (SDRT) (Asher et al., 2003). Dis- 047

course structures are thereby represented as de- 048

pendency graphs with arcs linking spans of text 049

and additional, semantico-pragmatic relations (e.g. 050

Acknowledgment (Ack), Contrast or Question- 051

Answer Pair (QAP)). Figure 1 shows an example 052

from the STAC corpus (Asher et al., 2016). In this 053

work, we focus on naked structures in SDRT. We 054

are aware that relations are important for down- 055

stream tasks. Nevertheless, deriving the structure 056

is the first crucial and valuable step. 057

Data sparsity has always been an issue for dis- 058

course parsing both in monologues and dialogues: 059

the largest and most commonly used corpus anno- 060

tated under the Rhetorical Structure Theory RST- 061

DT (Carlson et al., 2001) contains 21, 789 dis- 062

course units, against 10, 678 for STAC. Restricted 063

to domain and size, the performance of supervised 064

discourse parsers is still low, especially for dia- 065

logues, with at best 73.8% F1 for the naked struc- 066

ture on STAC (Wang et al., 2021). Several trans- 067

fer learning approaches have thus been proposed, 068

mainly focused on monologues. Previous work 069
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demonstrated that discourse information can be070

extracted from related tasks, like sentiment anal-071

ysis (Huber and Carenini, 2020) and summariza-072

tion (Xiao et al., 2021), or from pre-trained and073

fine-tuned language models (Huber and Carenini,074

2022). While a heuristic-based weakly supervised075

approach has been recently applied to dialogues076

(Badene et al., 2019b), we are the first to propose077

semi- and unsupervised strategies, which can effec-078

tively uncover discourse information captured in079

large pre-trained language models (PLMs).080

We take inspiration from previous work (Koto081

et al., 2021; Pandia et al., 2021; Huber and Carenini,082

2022) showing that document-level discourse infor-083

mation can be captured in PLMs like BERT (De-084

vlin et al., 2019) and BART (Lewis et al., 2020),085

and can be further enhanced by related fine-tuning086

tasks. We find, however, that the fine-tuning tasks087

proposed in previous work are not performing well,088

since they are not designed for dialogues. Dia-089

logues are generally less structured, interspersed090

with more informal linguistic usage (Sacks et al.,091

1978), and have structural particularities (Asher092

et al., 2016). Thus, we propose a new task specially093

tailored to dialogues: Sentence Ordering (SO), by094

extending the original proposal by Barzilay and La-095

pata (2008) with several novel shuffling strategies,096

enhancing the pair-wise, inter-speech block, and097

inter-speaker discourse information in PLMs.098

A key issue in using PLMs to extract document-099

level discourse information is how to choose the100

best attention head. We are the first to tackle this101

issue in dialogues by proposing both an unsuper-102

vised and a semi-supervised approach. The former103

is based on a novel “Dependency Attention Sup-104

port” (DAS) metric. This metric calculates the105

degree of support for the dependency trees gener-106

ated by each head. We select high-DAS head(s).107

On the other hand, the semi-supervised approach108

picks the heads with the best performance on a109

small annotated validation dataset.110

Experimental results on the STAC dataset reveal111

that our unsupervised and semi-supervised meth-112

ods outperform a strong baseline LAST (F1 56.8%,113

Sec. 4.2), delivering substantial gains on the com-114

plete STAC dataset (F1 59.3%, Sec. 5.2) and show115

further improvements on the tree-structured subset116

(F1 68.1%, Sec. 6.3).117

To summarize, our contributions in this work are:118

(1) Detecting the presence of dialogue discourse119

information stored in PLMs and fine-tuned models120

with our newly proposed sentence ordering task; 121

(2) Unsupervised and semi-supervised methods for 122

discourse parsing based on fine-tuned PLMs; (3) 123

An experimental comparison with the strong LAST 124

baseline and other approaches, followed by a de- 125

tailed quantitative and qualitative analysis of the 126

extracted structures. 127

2 Related Work 128

Discourse structures for complete documents have 129

been mainly annotated within the Segmented Dis- 130

course Representation Theory (SDRT) (Asher et al., 131

2003) or the Rhetorical Structure Theory (RST) 132

(Mann and Thompson, 1988), with the latter lead- 133

ing to the largest corpora and many discourse 134

parsers for monologues, while SDRT is the main 135

theory for dialogue corpora, i.e. STAC (Asher et al., 136

2016) and Molweni (Li et al., 2020). In SDRT, dis- 137

course structures are dependency graphs with possi- 138

bly non-projective links (see Figure 1) compared to 139

constituent tree structures in RST. Early approaches 140

to discourse parsing on STAC used varied decoding 141

strategies, such as Maximum Spanning Tree algo- 142

rithm (Muller et al., 2012; Li et al., 2014; Afantenos 143

et al., 2012) or Integer Linear Programming (Perret 144

et al., 2016). Shi and Huang (2019) first proposed 145

a neural architecture based on hierarchical Gated 146

Recurrent Unit (GRU) and reported 73.2% F1 on 147

STAC for naked structures. Recently, Wang et al. 148

(2021) adopted Graph Neural Networks (GNNs) 149

and reported marginal improvements (73.8% F1). 150

Data sparsity being the issue, a new trend to- 151

wards semi- and unsupervised discourse parsing 152

has emerged, almost exclusively for monologues. 153

Huber and Carenini (2019, 2020) leveraged sen- 154

timent information and showed promising results 155

in cross-domain setting with the silver-standard la- 156

beled corpus. Xiao et al. (2021) extracted discourse 157

trees from neural summarizers and confirmed the 158

existence of discourse information in self-attention 159

matrices. Another line of work proposed to enlarge 160

training data with a combination of several pars- 161

ing models (Jiang et al., 2016; Kobayashi et al., 162

2021; Nishida and Matsumoto, 2022). As for 163

dialogues, transfer learning approaches are rare. 164

Badene et al. (2019a,b) investigated a weak super- 165

vision paradigm where expert-composed heuris- 166

tics, combined to a generative model, are applied 167

to unseen data. Their method, however, requires 168

domain-dependent annotation and a relatively large 169

validation set for rule verification. Another study 170
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by Liu and Chen (2021) focused on cross-domain171

transfer using STAC (chats in a game) and Mol-172

weni (chats in Ubuntu forum). They applied sim-173

ple adaptation strategies (mainly lexical informa-174

tion) on a SOTA discourse parser and show im-175

provement compared to bare transfer (train on Mol-176

weni and test on STAC F1 increase from 42.5% to177

50.5%). Yet, their model failed to surpass simple178

baselines.Very recently, Nishida and Matsumoto179

(2022) investigated bootstrapping methods to adapt180

BERT-based parsers to out-of-domain data with181

some success. In comparison to all this previous182

work, to the best of our knowledge, we are the183

first to propose a fully unsupervised method and its184

extension to a semi-supervised setting.185

As pre-trained language models (PLMs) such as186

BERT (Devlin et al., 2019), BART (Lewis et al.,187

2020) or GPT-2 (Radford et al., 2019) are becom-188

ing dominant in the field, BERTology research189

has gained much attention as an attempt to un-190

derstand what kind of information these models191

capture. Probing tasks, for instance, can provide192

fine-grained analysis, but most of them only focus193

on sentence-level syntactic tasks (Jawahar et al.,194

2019; Hewitt and Manning, 2019; Kim et al., 2019;195

Jiang et al., 2020). As for discourse, by applying196

probing tasks, Zhu et al. (2020) and Koto et al.197

(2021) showed that BERT and BART encoder net-198

works capture more discourse information than199

other models, like GPT-2. Very recently, Huber200

and Carenini (2022) introduced a novel way to en-201

code long documents and explored the effect of202

different fine-tuning tasks on PLMs, confirming203

that pre-trained and fine-tuned PLMs both can cap-204

ture discourse information. Inspired by all these205

studies on monologues, we investigate how latent206

information in PLMs can be leveraged for dialogue207

discourse parsing here.208

3 Method: from Attention to Discourse209

3.1 Problem Formulation and Simplifications210

Given a dialogue with n Elementary Discourse211

Units (EDUs), which are the minimal spans of text212

(mostly clauses, at most a sentence) to be linked213

by discourse relations: D = {e1, e2, e3, ..., en},214

the goal is to extract a Directed Acyclic Graph215

(DAG) connecting the n EDUs that best represents216

its SDRT discourse structure from attention matri-217

ces in PLMs1 (see Figure 2 for an overview of the218

1For more details on extracting discourse information from
attention mechanisms see Liu and Lapata (2018).

Figure 2: Pipeline for discourse structure extraction.

process). In our proposal, we make a few simplifi- 219

cations, partially adopted from previous work. We 220

do not deal with SDRT Complex Discourse Units 221

(CDUs) following Muller et al. (2012); Afantenos 222

et al. (2015) and do not tackle relation type as- 223

signment. Furthermore, similar to Shi and Huang 224

(2019), our solution can only generate discourse 225

trees. Extending our algorithm to non-projective 226

trees (≈ 6% of edges are non-projectives in tree- 227

like examples) and graphs (≈ 5% of nodes with 228

multiple incoming arcs) are left as future work. 229

3.2 Which kinds of PLMs to use? 230

We explore both vanilla and fine-tuned PLMs, as 231

they were both shown to contain discourse informa- 232

tion for monologues (Huber and Carenini, 2022). 233

Pre-Trained Models: We select BART (Lewis 234

et al., 2020), not only because its encoder has been 235

shown to effectively capture discourse information, 236

but also because it dominated other alternatives 237

in preliminary experiments, including DialoGPT 238

(Zhang et al., 2020) and DialogLM (Zhong et al., 239

2022), LMs pre-trained with conversational data2. 240

Fine-Tuning Tasks: We fine-tune BART on three 241

discourse-related tasks: 242

Summarization: we use BART fine-tuned on 243

the popular CNN-DailyMail (CNN-DM) news cor- 244

pus (Nallapati et al., 2016), as well as on the SAM- 245

Sum dialogue corpus (Gliwa et al., 2019). 246

Question-Answering: we use BART fined- 247

tuned on the latest version of the Stanford Question 248

2See Appendix E for additional results with further PLMs.
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Figure 3: Shuffling strategies (left to right: partial,
minimal-pair, block, speaker-turn) on a sequence of
utterances 1 to 6, with A, B, C as the speakers.

Answering Dataset (SQuAD 2.0) (Rajpurkar et al.,249

2018).250

Sentence Ordering: we fine-tune BART on the251

Sentence Ordering task, reordering a set of shuf-252

fled sentences to their original order. Considering253

the complexity of dialogues, we additionally define254

several shuffling strategies so that the learning is255

more gradual and effective. Specifically, as shown256

in Figure 3, we explore: (a) partial-shuf : randomly257

picking 3 utterances (2 for short dialogues with less258

than 4 utterances) in a dialogue and shuffling them259

while keeping the context unchanged. (b) minimal-260

pair-shuf : shuffling minimal pairs, comprising of261

a pair of speech turns from 2 different speakers262

with at least 2 utterances. A speech turn represents263

the beginning of a new speaker. (c) block-shuf :264

shuffling a block containing multiple speech turns.265

We divide one dialogue into [2, 5] blocks based266

on the number of utterances3 and shuffle between267

blocks. (d) speaker-turn-shuf : grouping all speech268

productions of one speaker together. The sorting269

task consists of ordering speech turns from differ-270

ent speakers’ production. We evenly combine all271

permutations mentioned above to create our mixed-272

shuf data set and conduct the SO task as the third273

auxiliary task to fine-tune BART.274

Choice of Attention Matrix: The BART model275

contains three kinds of attention matrices: encoder,276

decoder and cross attention. We use the encoder277

attention in this work, since it has been shown to278

capture most discourse information (Koto et al.,279

2021) and outperformed the other alternatives in280

preliminary experiments on a validation set.281

3Block size is designed to be as twice or 3 times bigger
than “min-pair”, we thus set criteria aiming to have ≈ 6 EDUs
per block: |utt.| < 12 : b = 2, |utt.| ∈ [12, 22] : b = 3,
|utt.| ∈ [22, 33] : b = 4, |utt.| ≥ 33 : n = 5.

3.3 How to derive trees from attention heads? 282

Given an attention matrix At ∈ Rk×k where k is 283

the number of tokens in the input dialogue, we de- 284

rive the matrix Aedu ∈ Rn×n, with n the number 285

of EDUs, by computing Aedu(i, j) as the average 286

of the submatrix of At corresponding to all the to- 287

kens of EDUs ei and ej , respectively. As a result, 288

Aedu captures how much EDU ei depends on EDU 289

ej and can be used to generate a tree connecting all 290

EDUs by maximizing their dependency strength. 291

Concretely, we find a Maximum Spanning Tree in 292

the fully-connected dependency graph Aedu using 293

the Eisner algorithm (Eisner, 1996). Conveniently, 294

since an utterance cannot be anaphorically and 295

rhetorically dependent on following utterances in 296

a dialogue, as they are previously unknown (Afan- 297

tenos et al., 2012), we can further simplify the 298

inference by applying the following hard constraint 299

to remove all backward links from the attention 300

matrix Aedu: aij = 0, if i > j. 301

3.4 How to find the best heads? 302

Xiao et al. (2021) and Huber and Carenini (2022) 303

showed that discourse information is not evenly 304

distributed between heads and layers. However, 305

they do not provide a strategy to select the head(s) 306

containing most discourse information. Here, we 307

propose two effective selection methods: fully un- 308

supervised or semi-supervised. 309

3.4.1 Unsupervised Best Head(s) Selection 310

Dependency Attention Support Measure (DAS): 311

Loosely inspired by the confidence measure in 312

Nishida and Matsumoto (2022), where the authors 313

define the confidence of a teacher model based on 314

predictive probabilities of the decisions made, we 315

propose a DAS metric measuring the degree of sup- 316

port for the maximum spanning (dependency) tree 317

(MST) from the attention matrix. Formally, given 318

an attention matrix Ag (i.e., Aedu for the dialogue 319

g) with n EDUs, the MST T g is built by selecting 320

n− 1 attention links lij from Ag based on the tree 321

generation algorithm. Please note that DAS can 322

be easily adapted for a general graph by removing 323

the restriction to n − 1 arcs. DAS measures the 324

strength of all those connections by computing the 325

average score of all the selected links: 326

DAS(T g) =
1

n− 1

n∑
i=1

n∑
j=1

Sel(Ag, i, j) (1) 327

with Sel(Ag, i, j) = Ag
ij , if lij ∈ T g, 0 otherwise. 328
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Selection Strategy: With DAS, we can now com-329

pute the degree of support from each attention head330

h on each single example g for the generated tree331

DAS(T g
h ). We therefore propose two strategies332

to select attention heads based on the DAS mea-333

sure, leveraging either global or local support. The334

global support strategy selects the head with high-335

est averaged DAS score over all the data examples:336

337

Hglobal = argmax
h

M∑
g=1

DAS(T g
h ) (2)338

where M is the number of examples. In this way,339

we select the head that has a generally good perfor-340

mance on the target dataset. The second strategy is341

more adaptive to each document, by only focusing342

on the local support. It does not select one specific343

head for the whole dataset, but instead selects the344

head/tree with the highest support for each single345

example g, i.e.,346

Hg
local = argmax

h
DAS(T g

h ) (3)347

3.4.2 Semi-Supervised Best Head(s) Selection348

We also propose best heads selection using a few349

annotated examples. In conformity with real-world350

situations where labeled data is scarce, we sample351

three small subsets with {10, 30, 50} data points352

(i.e., dialogues) from the validation set. We exam-353

ine every attention matrix individually, resulting in354

12 layers × 16 heads candidate matrices for each355

dialogue. Then, the head with the highest micro-356

F1 score on the validation set is selected to derive357

trees in the test set. We also consider layer-wise358

aggregation, with details in Appendix A.359

4 Experimental Setup360

4.1 Datasets361

We use the multi-party dialogue STAC corpus362

(Asher et al., 2016), annotated following the SDRT363

framework, to evaluate our approach on the dis-364

course dependency structure prediction task. In-365

cluding 300 strategic conversations of players trad-366

ing goods during the board game The Settlers of367

Catan, this corpus contains some high-frequency368

game-related words such as sheep, clay and wood.369

To evaluate a variety of fine-tuned PLMs (see sec370

3.2), we use publicly available HuggingFace mod-371

els for the summarization and question-answering372

tasks. For the newly proposed sentence ordering373

(SO) task, we train the BART model on two di-374

alogue datasets: (1) the STAC corpus itself (raw375

Dataset #Doc #Utt/doc #Tok/doc #Spk/doc Domain

DailyDialog 13, 118 13 119 2 Daily
STAC 1, 161 11 50 3 Game

Table 1: Key statistics of datasets. Utt = sentences in
DD or EDUs in STAC; Tok = tokens; Spk = speakers.

text) (2) DailyDialog (Li et al., 2017), covering 376

various topics for English learners (10 categories), 377

from ordinary life to finance. We select this cor- 378

pus due to its large size, diversity of topics and 379

high quality. We summarize the key dataset statis- 380

tics for STAC and DailyDialog in Table 1. STAC 381

has a separation of 82%, 9%, 9% for train, vali- 382

dation, and test sets resp.; DailyDialog 85%, 8%, 383

8%. We purposely exclude the Molweni corpus (Li 384

et al., 2020) in this work, due to major quality is- 385

sues found in preliminary dataset exploration, with 386

details in Appendix B. 387

4.2 Baselines and Supervised Dialogue 388

Discourse Parsers 389

We compare against the simple yet strong unsu- 390

pervised LAST baseline (Schegloff, 2007), attach- 391

ing every EDU to the previous one. Furthermore, 392

to assess the gap between our approach and su- 393

pervised dialogue discourse parsers, we compare 394

with the Deep Sequential model by Shi and Huang 395

(2019) and the Structure Self-Aware (SSA) model 396

by Wang et al. (2021). 397

4.3 Evaluation Metrics 398

We report the micro-F1 for discourse parsing and 399

the Unlabeled Attachment Score (UAS) for the 400

generated naked dependency structures. 401

4.4 Implementation Details 402

We base our work on the transformer HuggingFace 403

library (Wolf et al., 2020) (see Appendix F) and 404

follow the text-to-marker framework proposed in 405

Chowdhury et al. (2021) for the SO fine-tuning 406

procedure. We use the original separation of train, 407

validation, and test sets; set the learning rate to 408

5e− 6; use a batch size of 2 for DailyDialog and 409

4 for STAC, and train for 7 epochs. All other 410

hyper-parameters are set following Chowdhury 411

et al. (2021). We do not do any hyper-parameter 412

tuning. We omit 5 documents in DailyDialog dur- 413

ing training since the documents lengths exceed the 414

token limit. We replace speaker names with mark- 415

ers (e.g. Sam → “spk1”), following the preprocess- 416

ing pipeline for dialogue utterances in PLMs. 417
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5 Results418

5.1 Results with Unsupervised Head Selection419

Results using our novel unsupervised DAS method420

on STAC are shown in Table 2 for both the global421

(Hg) and local (Hl) head selection strategies. These422

are compared to: (1) the unsupervised LAST base-423

line (at the top), which only predicts local attach-424

ments between adjacent EDUs. LAST is consid-425

ered a strong baseline in discourse parsing (Muller426

et al., 2012), but has the obvious disadvantage427

of completely missing long-distance dependencies428

which may be critical in downstream tasks. (2)429

The supervised Deep Sequential parser by Shi and430

Huang (2019) and Structure Self-Aware model by431

Wang et al. (2021) (center of the table), trained on432

STAC, reaching resp. 71.4%4 and 73.8% in F1.433

In the last sub-table we show unsupervised434

scores from pre-trained and fine-tuned LMs on435

three auxiliary tasks: summarization, question-436

answering and sentence ordering (SO) with the437

mixed shuffling strategy. We present the global438

head (Hg) and local heads (Hl) performances se-439

lected by the DAS score (see section 3.4.1). The440

best possible scores using an oracle head selector441

(Hora) are presented for reference.442

Comparing the values in the bottom sub-table,443

we find that the pre-trained BART model under-444

performs LAST, with global head and local445

heads achieving similar performance. Notice-446

ably, models fine-tuned on the summarization task447

(“+CNN”, “+SAMSum”) and question-answering448

(“+SQuAD2”) only add marginal improvements449

compared to BART. In the last two lines of the sub-450

table, we explore our novel sentence ordering fine-451

tuned BART models. We find that the BART+SO452

approach surpasses LAST when using local heads.453

As commonly the case, the intra-domain training454

performs best, which is further strengthened in this455

case due to the special vocabulary in STAC. Impor-456

tantly, our PLM-based unsupervised parser can cap-457

ture some long-distance dependencies compared to458

LAST (Section 6.2). Additional analysis regarding459

the chosen heads is in Section 6.1.460

5.2 Results with Semi-Sup. Head Selection461

While the unsupervised strategy only delivered min-462

imal improvements over the strong LAST base-463

line, Table 3 shows that if a few annotated exam-464

ples are provided, it is possible to achieve substan-465

4We re-train the model, scores are slightly different due to
different train-test splits, as in Wang et al. (2021).

Model

Unsupervised Baseline
LAST 56.8

Supervised Models
Deep-Sequential (2019) 71.4
SSA-GNN (2021) 73.8

Unsupervised PLMs Hg Hl Hora
BART 56.6 56.4 57.6

+ CNN 56.8 56.7 57.1
+ SAMSum 56.7 56.6 57.6
+ SQuAd2 55.9 56.4 57.7
+ SO-DD 56.8 57.1 58.2
+ SO-STAC 56.7 57.2 59.5

Table 2: Micro-F1 on STAC for supervised SOTA mod-
els and PLMs. Hg: global best head. Hl: local best
heads. Hora: oracle head. Best (non-oracle) score in the
3rd block in bold.

tial gains. In particular, we report results on the 466

vanilla BART model, as well as BART model fine- 467

tuned on DailyDialog (“+SO-DD”) and STAC itself 468

(“+SO-STAC”). We execute 10 runs for each semi- 469

supervised setting ([10, 30, 50]) and report average 470

scores and the standard deviation. 471

Train on → BART + SO-DD + SO-STAC
Test with ↓ F1 F1 F1

LAST BSL 56.8 56.8 56.8

Gold H 57.6 58.2 59.5

Unsup Hg 56.6 56.8 56.7
Unsup Hl 56.4 57.1 57.2

Semi-sup 10 57.00.012 57.20.012 57.10.026
Semi-sup 30 57.30.005 57.30.013 59.20.009
Semi-sup 50 57.40.004 57.70.005 59.30.007

Table 3: STAC micro-F1 scores from BART and fine-
tuned models with unsupervised and semi-supervised
approaches. Subscription is standard deviation.

With oracle attention heads (Gold H in the ta- 472

ble), all three models achieve superior performance 473

compared to LAST. Furthermore, using a small 474

scale validation set (50 examples) to select the best 475

attention head remarkably improves the F1 score 476

from 56.8% (LAST) to 59.3% (+SO-STAC). 477

F1 improvements across increasingly large 478

validation-set sizes are consistent, accompanied by 479

smaller standard deviations, as would be expected. 480

The semi-supervised results are very encouraging: 481

with 30 annotated examples, we already reach a 482
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Figure 4: Heatmaps: DAS score matrices (layers: top
to bottom=12 to 1, heads: left to right=1 to 16) for
BART, BART+SO-DD, BART+SO-STAC. Darker pur-
ple=higher DAS score.
Boxplot: Head-aggregated UAS scores for model
BART (orange), BART+SO-DD (green) and BART+SO-
STAC (red). Light green=head with highest UAS. Yel-
low=head with highest DAS score.

performance close to the oracle result, and with483

more examples we can further reduce the gap.484

6 Analysis485

6.1 Effectiveness of DAS486

We now take a closer look at the performance degra-487

dation of our unsupervised approach based on DAS488

in comparison to the upper-bound defined by the489

performance of the oracle-picked head. To this490

end, Figure 4 shows the DAS score matrices (left)491

for three models with the oracle heads and DAS492

selected heads highlighted in green and yellow, re-493

spectively. It becomes clear that the oracle heads do494

not align with the DAS selected heads. Making a495

comparison between models, we find that discourse496

information is consistently located in deeper layers,497

with the oracle heads (light green) consistently sit-498

uated in the same head for all three models. How-499

ever, while not aligning with the oracle, the top500

performing DAS heads (in yellow) are among the501

top 10% best heads in all three models, as shown in502

the box-plot on the right. Hence, we confirm that503

the DAS method is a reasonable approximation to504

find discourse intense self-attention heads among505

the 12× 16 attention matrices.506

6.2 Document and Arc Lengths507

The inherent drawback of the simple, yet effective508

LAST baseline is its inability to predict indirect509

arcs. To test if our approach can reasonably pre-510

dict distant arcs of different length in the depen-511

dency trees, we analyze our results in regards to the512

arc lengths. Additionally, since longer documents513

tend to contain more distant arcs, we also examine514

the performance across different document lengths515

compared to LAST.516

Arc Distance: To examine the discourse pars- 517

ing performance for data sub-sets with specific arc 518

lengths, we present the UAS score plotted against 519

different arc lengths on the left side in Figure 5. Our 520

analysis thereby shows that direct arcs achieve high 521

UAS score (> 80%), independent of the model 522

used. We further observe that the performance 523

drops considerably for arcs of distance two and on- 524

wards, with almost all models failing to predict arcs 525

longer than 6. BART+SO-STAC model correctly 526

captures an arc of distance 13. Please note that the 527

presence for long-distance arcs (≥ 6) is limited, 528

accounting for less than 5% of all arcs. 529

We further analyze the precision and recall 530

scores when separating dependency links into di- 531

rect (adjacent forward arcs) and indirect (all other 532

non-adjacent arcs), following Xiao et al. (2021). 533

For direct arcs, all models perform reasonably good. 534

The precision is higher (≈+6%) and recall is lower 535

than the baseline (100%), indicating that our mod- 536

els predict less direct arcs but more precisely. For 537

indirect arcs, the best model is BART+SO-STAC 538

(20% recall, 44% prec.), closely followed by origi- 539

nal BART model (details in Appendix C.1). 540

Document Length: Longer documents tend to 541

be more difficult to process because of the growing 542

number of possible discourse parse trees. Hence, 543

we analyze the UAS performance of documents in 544

regards to their length, here defined as the number 545

of EDUs. Results are presented on the right side in 546

Figure 5, comparing the UAS scores for the three 547

selected models and LAST for different document 548

lengths. We split the document length range into 549

5 even buckets between the shortest (2 EDUs) and 550

longest (37 EDUs) document, resulting in 60, 25, 551

16, 4 and 4 examples per bucket. 552

For documents with less than 23 EDUs, all fine- 553

tuned models perform better than LAST, with 554

BART fine-tuned on STAC reaching the best re- 555

sult. For documents between 23 and 30 EDUs, the 556

Figure 5: Left: UAS and arcs’ distance. x axis: arc
distance. Right: averaged UAS for different length of
document. x axis: #EDUs in a document. y axis: UAS.
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#EDUs #Arcs

#Doc Single-in Multi-in Proj. N-proj.

(1) Non-Tree 48 706 79 575 170
(2) Tree 61 444 0 348 35

- Proj. tree 48 314 0 266 0

Table 4: STAC test set ground-truth tree and non-tree
statistics. “Single-in” and “multi-in” means EDU with
single or multiple incoming arcs.

PLMs under-perform the LAST baseline, likely557

over-predicting distant arcs, while ground-truth dis-558

tant arcs only start to appear more frequently in559

longer documents, with 30 or more EDUs. As a560

result, we see that longer documents (≥ 23) are561

indeed more difficult to predict than short docu-562

ments, with even the performance of our best model563

(BART+STAC) strongly decreasing.564

6.3 Projective Trees Examination565

Given the fact that our method only extracts projec-566

tive tree structures, we now conduct an additional567

analysis, exclusively examining the subset of STAC568

containing projective trees, on which our method569

could in theory achieve perfect accuracy.570

Table 4 gives key statistics for this subset (“proj.571

tree”). For the 48 extracted tree examples, the572

document length decreases from an average of 11573

to 7 EDUs, however, still contains ≈ 40% indi-574

rect arcs, keeping the parsing difficulty compara-575

ble. Discourse parsing results are presented in Ta-576

ble 5. As shown, all three unsupervised models577

outperform LAST. The best model is still BART578

fine-tuned on STAC, followed by the inter-domain579

fine-tuned +SO-DD and BART models. Using the580

semi-supervised approach, we see further improve-581

ment with the F1 score reaching 68% (+6% than582

LAST). Degradation for direct and indirect edges’583

precision and recall scores see Appendix C.2.584

Following Ferracane et al. (2019), we analyze585

key properties of the 48 gold trees compared to586

our extracted structures using the semi-supervised587

method. To test the stability of the derived trees,588

we use three different seeds to generate the shuffled589

datasets to fine-tune BART. Table 6 presents the590

averaged scores and the standard deviation of the591

trees. In essence, while the extracted trees are592

generally “thinner” and “taller” than gold trees and593

contain slightly less branches, they are well aligned594

with gold discourse structures and don’t contain595

“vacuous” trees, where all nodes are linked to one596

of the first two EDUs.597

Train on → BART + SO-DD + SO-STAC
Test with ↓ F1 F1 F1

LAST BSL 62.0 62.0 62.0

Gold H 64.8 67.4 68.6

Unsup Hg 62.5 62.5 62.1
Unsup Hl 62.1 62.9 63.3

Semi-sup 10 54.60.058 59.20.047 61.60.056
Semi-sup 30 60.30.047 60.30.044 65.60.043
Semi-sup 50 64.80.000 66.30.023 68.10.014

Table 5: Micro-F1 scores on STAC projective tree subset
with BART and SO fine-tuned BART models.

Avg.branch Avg.height %leaf Norm. arc

GT 1.67 3.96 0.46 0.43

BART 1.20 5.31 0.31 0.34
+SO-DD 1.320.014 5.310.146 0.320.019 0.370.003
+SO-STAC 1.270.076 5.280.052 0.320.011 0.350.015

Table 6: Statistics for ground truth projective trees and
extracted trees from oracle attention heads in BART and
fine-tuned BART models.

Further, qualitative analysis of inferred struc- 598

tures is presented in Appendix D. Tellingly, on two 599

STAC examples our model succeeds in predicting 600

> 82% of projective arcs, some of which span 601

across 4 EDUs. This is encouraging, providing 602

anecdotal evidence that our method is suitable to 603

extract reasonable discourse structures. 604

7 Conclusion 605

Since dialogue discourse parsing suffers from ex- 606

treme data sparsity, we explore approaches to build 607

naked discourse structures from PLMs attention 608

matrices. We show sentence ordering to be the best 609

fine-tuning task and our unsupervised and semi- 610

supervised methods for selecting the best attention 611

head outperform a strong baseline, delivering sub- 612

stantial gains especially on tree structures. Interest- 613

ingly, discourse is consistently captured in deeper 614

PLMs layers, and more accurate for shorter links. 615

In the near future, we intend to explore graph- 616

like structures from attention matrices, for instance, 617

by extending treelike structures with additional arcs 618

of high DAS score and applying linguistically mo- 619

tivated constraints, as in Perret et al. (2016). We 620

would also like to expand shuffling strategies for 621

SO and to explore other auxiliary tasks. We plan to 622

infer full discourse structures by adding the predic- 623

tion of rhetorical relation types in the long term. 624

8



Limitations625

Similarly to previous work, we have focused on626

generating only projective tree structures. This not627

only covers the large majority of the links (≈ 94%),628

but it can also provide the backbone for accurately629

inferring the remaining non-projective links in fu-630

ture work. We focus on the naked structure, as it is631

a significant first step and a requirement to further632

predict relations for discourse parsing.633

We decided to run all our experiments on the634

only existing high quality corpus, i.e., STAC. In635

essence, we traded-off generalizability for sound-636

ness of the results. A second corpus we considered,637

Molweni, had to be excluded due to serious quality638

issues.639

Lastly, since we work with large language mod-640

els and investigate every single attention head, com-641

putational efficiency is a concern. We used a 4-core642

GPU machine with the highest VRAM at 11MiB.643

The calculation for one discourse tree on one head644

was approximately 0.75 seconds (in STAC the av-645

eraged dialogue length is 11 EDUs), which quickly646

summed up to 4.5 hours with only 100 data points647

for 192 candidate trees in one LM. When dealing648

with much longer documents, for example AMI and649

conversational section in GUM (in average > 200650

utterances/dialogue), our estimation shows that one651

dialogue takes up to ≈ 2 minutes, which means 6.5652

hours for 192 candidate trees. Even though we use653

parallel computation, the exhaustive “head” compu-654

tation results in a tremendous increase in time and655

running storage. One possibility is to investigate656

only those “discourse-rich” heads, mainly in the657

deeper layers, for future work.658

Ethical Considerations659

We carefully select the dialogue corpora used in660

this paper to control for potential biases, hate-661

speech and inappropriate language by using hu-662

man annotated corpora and professionally curated663

resources. Further, we consider the privacy of dia-664

logue partners in the selected datasets by replacing665

names with generic user tokens.666

Since we are investigating the nature of the dis-667

course structures captured in large PLMs, our work668

can be seen as making these models more transpar-669

ent. This will hopefully contribute to avoid unin-670

tended negative effects, when the growing number671

of NLP applications relying on PLMs are deployed672

in practical settings.673

In terms of environmental cost, the experiments674

described in the paper make use of RTX 2080 Ti 675

GPUs for tree extraction and A100 GPUs for BART 676

fine-tuning. We used up to 4 GPUs for the parallel 677

computation. The experiments on corpus STAC 678

took up to 1.2 hours for one language model, and 679

we tested a dozen models. We note that while 680

our work is based on exhaustive research on all the 681

attention heads in PLMs to obtain valuable insights, 682

future work will able to focus more on discourse- 683

rich heads, which can help to avoid the quadratic 684

growth of computation time for longer documents. 685
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A Semi-sup. Layer-Wise Results1004

We consider both layer-wise attention matrices -1005

averaging 16 attention heads for every layer which1006

gives 12 candidate layers -, and head-wise atten-1007

tion matrices - taking each attention matrix individ-1008

ually which results in 192 candidate matrices. Here1009

we show results completed with layer-wise matri-1010

ces for the whole test set and treelike examples in1011

Table 7 and Table 8.1012

B Molweni Corpus Quality Investigation1013

Molweni (Li et al., 2020) is a corpus derived from1014

Ubuntu Chat Corpus (Lowe et al., 2015). It con-1015

tains 10, 000 short dialogues between 8 to 15 utter-1016

ances, annotated in SDRT framework.1017

Considering the complexity of Ubuntu chat logs1018

(multiple speakers, entangled discussion with vari-1019

ous topics), we first conduct an examination of the1020

corpus. Disappointingly, we found heavy repetition1021

within sequential documents and inconsistency in1022

discourse annotation among the same utterances.1023

We thus decide not to include it in this work.1024

Train on → BART + SO-DD + SO-STAC
Test with ↓ F1 F1 F1

Gold H 57.6 58.2 59.5

Semi-sup-10 1L 55.80.008 55.70.010 55.60.009
Semi-sup-30 1L 55.80.006 56.50.004 56.30.004
Semi-sup-50 1L 56.20.002 56.40.007 56.40.001
Semi-sup-10 1H 57.00.012 57.20.012 57.10.026
Semi-sup-30 1H 57.30.005 57.30.013 59.20.009
Semi-sup-50 1H 57.40.004 57.70.005 59.30.007

Table 7: Micro-F1 scores on STAC test set with BART
and fine-tuned models. H = “head”, L = “layer”. Best
semi-supervised score is in bold. Subscription is std.
deviation.

Train on → BART + SO-DD + SO-STAC
Test with ↓ F1 F1 F1

Gold H 64.8 67.4 68.6

Semi-sup-10 1L 59.40.028 60.60.029 58.30.018
Semi-sup-30 1L 62.10.002 61.80.012 59.80.009
Semi-sup-50 1L 62.10.000 62.30.003 59.90.006
Semi-sup-10 1H 54.60.058 59.20.047 61.60.056
Semi-sup-30 1H 60.30.047 60.30.044 65.60.043
Semi-sup-50 1H 64.80.000 66.30.023 68.10.014

Table 8: Micro-F1 scores on STAC projective tree subset
with BART and SO fine-tuned BART models.

Clus Doc #Theor #Err #Theor #Err
ID ID =arc arc =rel rel

1 {1, 2, 3} 18 2 16 2
2 {7, 8, 9} 18 0 18 7
3 {10, 11, 12, 13, 14} 80 4 76 25
...

105 500 4787 284 4503 606
- - 100% 5.9% 100% 13.5%

Table 9: Quantitative resume of link and relation incon-
sistency in Molweni test set. “Theor =arc”: number
of arcs between the same utterances, a priori should
be linked in the same way; “Theor =rel”: number of
relations between the linked utterances.

Clusters: Among 500 dialogues in discourse aug- 1025

mented test set, we found 105 “clusters”. One clus- 1026

ter groups all the documents with only one or two 1027

different utterances. For instance, document id 10 1028

and 11 are in the same cluster since only the sec- 1029

ond utterance is different (Figure 10). A similar 1030

situation is attested in the documents {1, 2, 3}, {7, 1031

8, 9}, {19, 20, 21}, to name a few. 1032

Annotation Inconsistency: A closer examina- 1033

tion of the annotation in similar examples reveals 1034

inconsistency for both discourse links and rhetori- 1035

cal relations. Precisely, we investigate every docu- 1036

ment pair (two documents in the same cluster) in 1037

all 105 clusters in the test set. A visualization of 1038

inconsistency for documents 10 and 11 is shown in 1039

Figure 10: apart from EDU2, we expect the same 1040

links and relations among other EDUs. However, 1041

we observe one link inconsistency (in red) and two 1042

relation inconsistencies (in blue). In total, we find 1043

6% of link errors (#Err arc) within the same EDUs 1044

and 14% of relation errors (#Err rel) in the test 1045

set5. The scores are shown in Table 9. 1046

The Ubuntu Chat Corpus contains long dia- 1047

logues with entangled discussion. A pre-processing 1048

had been made to generate shorter dialogues. 1049

While these slightly different short dialogues could 1050

be interesting for other dialogue studies in the field. 1051

Our focus on the discourse structure request more 1052

various data points and most importantly, the co- 1053

herent discourse annotation. 1054

C Precision and Recall Scores for Direct 1055

and Indirect Arcs in STAC 1056

C.1 STAC Test Set 1057

We show the precision and recall of direct and in- 1058

direct arcs for the test set in Figure 6. Each color 1059

5For validation and train sets we find similar error rates.
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Figure 6: Comparison of recall (left) and precision
(right) of indirect (top) and direct (bottom) links in
LAST baseline and SO fine-tuned models on STAC.

Figure 7: Recall and precision metrics in whole test set
(darker color) vs. projective tree subset (brighter color),
with BART model.

represents one model, with blue represents LAST.1060

C.2 STAC Projective Tree Set1061

To compare the performance of the whole test1062

set and tree-structured subset, we now present1063

the recall and precision scores of BART (Fig. 7),1064

BART+SO-DD (Fig. 8), and BART+SO-STAC1065

(Fig. 9) separately.1066

D Qualitative Analysis in STAC1067

We show a few concrete tree examples: 3 well1068

predicted (Figure 11, 12, 13), 3 badly predicted1069

(Figure 14, 15, 16), and 2 random examples (Fig-1070

ure 17, 18). Some patterns observed from badly1071

predicted structures: (1) chain-style prediction: as1072

shown in Figure 15 and 18 where only adjacent1073

EDUs are linked together; (2) inaccurate indirect1074

arc prediction: especially for long documents such1075

as the one in Figure 16.1076

Figure 8: Recall and precision metrics in whole test set
(darker color) vs. projective tree subset (brighter color),
with BART+SO-DD model.

Figure 9: Recall and precision metrics in whole test set
(darker color) vs. projective tree subset (brighter color),
with model BART+SO-STAC.
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Model Unsup Semi-sup
Hora Hg Hl Semi10 Semi30 Semi50

BART 57.6 56.6 56.4 57.00.012 57.30.005 57.40.004
+ SO-DD 58.2 56.8 57.1 57.20.012 57.30.013 57.70.005
+ SO-STAC 59.5 56.7 57.2 57.10.026 59.20.009 59.30.007

RoBERTa 57.4 56.8 56.8 55.60.013 56.80.002 56.90.003
DialoGPT 56.2 42.7 36.2 52.90.043 55.10.017 56.20.000
DialogLED 57.2 56.8 56.7 54.60.026 54.70.061 56.60.019

+ SO-DD 57.7 56.4 56.6 55.00.028 56.10.024 57.30.009
+ SO-STAC 58.4 56.8 57.1 57.70.001 58.20.005 57.70.001

Table 10: Micro-F1 on STAC with other PLMs. Best
score (except Hora) in each row is underlined.

E Results with other PLMs1077

We test with RoBERTa (Liu et al., 2019), Di-1078

aloGPT (Zhang et al., 2020), and DialogLED (Di-1079

alogLM with Longformer) (Zhong et al., 2022)1080

to see how different language models encode dis-1081

course information. As shown in Table 10, the most1082

discourse-rich head in RoBERTa slightly under-1083

perform BART (−0.2%), so does the DialogLED1084

(−0.4%) and DialoGPT (−1.4%). Sentence order-1085

ing fine-tuned DialogLED model outperforms the1086

original one, proving that our proposed SO task1087

can help encoding the discourse information.1088

F Huggingface Models1089

Table 11 shows the models and the sources we1090

obtained from Huggingface library (Wolf et al.,1091

2020).1092

Model

BART-large
https://huggingface.co/facebook/bart-large
BART-large-cnn
https://huggingface.co/facebook/bart-large-cnn
BART-large-samsum
https://huggingface.co/linydub/bart-large-samsum
BART-large-finetuned-squad2
https://huggingface.co/phiyodr/bart-large-finetuned-squad2
RoBERTa-large
https://huggingface.co/roberta-large
DialoGPT-small
https://huggingface.co/microsoft/DialoGPT-small
DialogLED-large-5120
https://huggingface.co/MingZhong/DialogLED-large-5120

Table 11: Huggingface models and URLs.
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Figure 10: Similar documents in the same cluster. Circled EDUs are different. In red: inconsistent discourse arcs; in
blue: inconsistent rhetorical relation.
test id 10:
[e1] matthew99857: so do i need additional hardware to fix it ?
[e2] vocx: ca n’t you disable the raid from the bios ? check your motherboard manual .
[e3] ikonia: just use the disk as an individual disk
[e4] sugi: vocxi : oh i am sorry . i misunderstood you . thank i will try it now
[e5] vocx: you need to word better your answers , seems like nobody in getting you today .
[e6] sugi: vocx : iso 9660 cd-rom filesystem data udf filesystem data ( unknown version , id ’nsr01 ’)
[e7] ikonia: looks like that should work as a loop back file system
[e8] sugi: -mount -o loop but instead of .iso .mdf ? or the .mds file ?
[e9] ikonia: try it , linux see ’s it as a “ image ” so it may work
[e10] sugi: vocx : wow it worked , i feel retard for nto
test id: 11
[e1] matthew99857: so do i need additional hardware to fix it ?
[e2] ikonia: no you need to stop using raid
[e3] ikonia: just use the disk as an individual disk
[e4] sugi: vocxi : oh i am sorry . i misunderstood you . thank i will try it now
[e5] vocx: you need to word better your answers , seems like nobody in getting you today .
[e6] sugi: vocx : iso 9660 cd-rom filesystem data udf filesystem data ( unknown version , id ’nsr01 ’)
[e7] ikonia: looks like that should work as a loop back file system
[e8] sugi: -mount -o loop but instead of .iso .mdf ? or the .mds file ?
[e9] ikonia: try it , linux see ’s it as a “ image ” so it may work
[e10] sugi: vocx : wow it worked , i feel retard for nto

Figure 11: Well predicted example: pilot02-4. #EDUs: 11. UAS: 90%. In red: FP arcs; in blue: FN arcs.
[e1] Cat: anyone would give me clay? [e2] Thomas: none here [e3] william: no [e4] Cat: I have one wood to
exchange [e5] Cat: any takers? [e6] william: no [e7] Cat: for sheep, wheat or clary [e8] Thomas: can I buy a sheep
for two ore? [e9] william: have none [e10] Thomas: kk [e11] Cat: no sheep
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Figure 12: Well predicted example: pilot02-18. #EDUs: 19. UAS: 88.9%. In red: FP arcs; in blue: FN arcs.
[e1] william: hi markus. [e2] william: how many people are we waiting for? [e3] Thomas: think it’s 1 more
[e4] william: ok [e5] Markus: yes, one more [e6] Markus: seems there’s a hickup logging into the game ...
[e7] Thomas: that’s ok, I not on a schedule [e8] Thomas: *I’m [e9] Markus: I guess you two had no problems
joining the game? [e10] william: nope [e11] Markus: Ah great! [e12] Markus: So, one of you can now start the game.
[e13] Markus: Have fun! [e14] william: the arrow is pointing at me [e15] william: but i cant press roll [e16] william:
oh sorry [e17] Thomas: u can place a settlement [e18] Thomas: first [e19] Thomas: u roll later

Figure 13: Well predicted example: s1-league3-game3. #EDUs: 7. UAS: 83.3%. In red: FP arcs; in blue: FN arcs.
[e1] Gaeilgeoir: ? [e2] yiin: build road [e3] inca: think we’re meant to negotiate trades in the chat before offering
[e4] yiin: oop [e5] yiin: ok then [e6] inca: part of the guys’ experiment [e7] yiin: oh i see

Figure 14: Badly predicted example: s2-leagueM-game4. #EDUs: 5. UAS: 20%. In red: FP arcs; in blue: FN arcs.
[e1] dmm: i can give a sheep or wood for a wheat. [e2] dmm: any takers? [e3] inca: sheep would be good.
[e4] CheshireCatGrin: Not here. [e5] dmm: okay.

Figure 15: Badly predicted example: s1-league3-game3. #EDUs: 5. UAS: 25%. In red: FP arcs; in blue: FN arcs.
[e1] nareik15: anyone have ore. [e2] nareik15: I have some wood to trade. [e3] yiin: no sorry. [e4] inca: nope, sorry.
[e5] Gaeilgeoir: no, sorry.
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Figure 16: Badly predicted example: s1-league4-game2. #EDUs: 21. UAS: 30%. In red: FP arcs; in blue: FN arcs.
[e1] Shawnus: need wheat [e2] Shawnus: want..clay? [e3] ztime: you odo? [e4] ztime: yer.. [e5] ztime: I need clay..
[e6] ztime: can give wheat [e7] Shawnus: k [e8] Shawnus: this might be where i lose my road card a? [e9] ztime:
er.. [e10] ztime: I think the trade is wrong? [e11] ztime: did you want wheat? [e12] Shawnus: yes [e13] Shawnus:
for clay [e14] ztime: it said you wanted clay... [e15] somdechn: We all want wheat man [e16] somdechn: and clay...
[e17] ztime: ok [e18] ztime: thanks.. [e19] Shawnus: haha [e20] Shawnus: thanks [e21] somdechn: That happens in
the real game as well.

Figure 17: Random example: s2-league4-game2. #EDUs: 14. UAS: 53.9%. In red: FP arcs; in blue: FN arcs.
[e1] ztime: 7!!!! [e2] somdechn: Yeah right... [e3] ztime: what... is this a fix? [e4] Shawnus: hahaha [e5] ztime: ok
anyone want wheat? [e6] Shawnus: nope [e7] Shawnus: just someone to roll 9’s.. [e8] somdechn: Yes [e9] somdechn:
I can give you wood. [e10] ztime: was that yes to a trade somdech? [e11] ztime: OK.. cool.. for 1 wheat?
[e12] somdechn: and an ore.. :) [e13] ztime: err.. don’t have ore.. [e14] ztime: thanks..

Figure 18: Random example: s1-league3-game3. #EDUs: 11. UAS: 50%. In red: FP arcs; in blue: FN arcs.
[e1] nareik15: anyone have wood to trade. I have sheep [e1] yiin: no [e1] Gaeilgeoir: Sorry, [e1] Gaeilgeoir: I need
wood too [e1] Gaeilgeoir: I have wheat [e1] Gaeilgeoir: if you want [e1] inca: do you have wheat kieran? [e1] inca:
if so [e1] inca: i can trade wood [e1] nareik15: sorry, [e1] nareik15: plenty of sheep though :)
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