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Abstract—Accurate ground truth estimation in medical screen-
ing programs often relies on coalitions of experts and peer second
opinions. Algorithms that efficiently aggregate noisy annotations
can enhance screening workflows, particularly when data ar-
rive continuously and expert proficiency is initially unknown.
However, existing algorithms do not meet the requirements
for seamless integration into screening pipelines. We therefore
propose an adaptive approach for real-time annotation that
(I) supports on-the-fly labeling of incoming data, (II) operates
without prior knowledge of medical experts or pre-labeled data,
and (IIT) dynamically queries additional experts based on the la-
tent difficulty of each instance. The method incrementally gathers
expert opinions until a confidence threshold is met, providing ac-
curate labels with reduced annotation overhead. We evaluate our
approach on three multi-annotator classification datasets across
different modalities. Results show that our adaptive querying
strategy reduces the number of expert queries by up to 50%
while achieving accuracy comparable to a non-adaptive baseline.
Our code is available at |https://github.com/tbary:

Index Terms—Ground Truth Inference, Computer-in-the-Loop
Diagnosis, Decision Making in Medicine, AI for Medical Diag-
nosis.

I. INTRODUCTION

Estimating ground truths in medical screening programs
involves significant challenges due to heterogeneity in expert
opinions. Such variations in interpretations among healthcare
professionals typically arise from differences in experience,
training, and subjective judgment. This variability hinders
ground truth inference, which in turn can result in inconsistent
diagnoses, unnecessary and costly procedures, or untreated
patients [[1].

Aggregating annotations from multiple experts offers a
way to mitigate these inconsistencies. Approaches inspired by
crowdsourcing aim to integrate noisy or biased expert labels
into more reliable consensus decisions [2]. When combined
with active selection schemes that allocate expert attention
based on data difficulty, these algorithms could substantially
enhance clinical decision-making processes. However, existing
methods do not fully align with current medical practices,
making their deployment into real-time medical workflows
challenging.

In screening programs, practitioners typically face a con-
tinuous stream of cases that require timely annotation deci-
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Fig. 1. Tllustration of the problem setup Given a data point ™, the algorithm
must (A) select Q™ experts {aq} ; from a coalition of size K to annotate

™ (B) infer a coalitional label z" based on the expens estimated labels
{2"} g=1 and (C) update the estimated parameters {9 } r—, and trusts
{r k)} 7 of the experts. In this example, Q™ = 3.

sions. Labeling involves progressively gathering opinions from
multiple experts until sufficient confidence is reached [3].
This process not only supports clinical decisions but also
contributes to peer learning and quality assurance [4]. Given
the limited availability of medical experts, it is essential to
allocate annotation effort efficiently, that is, ensuring that more
difficult or ambiguous cases receive greater attention [5], [6].

Most crowdsourcing-derived algorithms differ from this
paradigm by at least one of three ways. (I) Some assume that
all data are available upfront, making it easier to pre-allocate
annotators to difficult cases. (II) Others require prior knowl-
edge of expert performance, labeled training data, or ground
truth feedback—resources that are unavailable or costly to
obtain in real-time medical settings. (III) Finally, approaches
compatible with streaming data typically focus on selecting a
single annotator, rather than building consensus from multiple
expert inputs.

In this paper, we build on established elements from the
crowdsourcing literature to propose an adaptive, stream-based
method for real-time annotation that addresses a contextual
gap in applying such techniques to medical workflows. The
method (I) supports on-the-fly labeling of incoming data,



(II) operates without prior knowledge of expert capabilities
or pre-labeled data, and (III) dynamically allocates addi-
tional experts based on the latent difficulty of each instance.
It incrementally collects expert opinions until a predefined
confidence level is reached, ensuring a proper distribution of
the annotation resources.

We evaluate this approach on three multi-expert datasets
with known ground truths and distinct data modalities. Results
show that our adaptive querying reduces the number of expert
queries by up to 50% while achieving accuracy comparable to
a non-adaptive baseline.

To encourage reproducibility, our code is made available on
GitHub.

II. RELATED WORKS

We identify three key properties required for the integration
of ground truth inference algorithms into real-time labeling
workflows. These are: (I) On-the-fly annotation of data from
a stream, (II) Possibility to cold start the algorithm on new
medical expert groups without requiring external information
(i.e., prior knowledge on practitioners quality, labeled pre-
training data, or ground truth feedback), and (III) Allocation
of more resources to label the most uncertain data.

We categorize previous research algorithms based on their
adherence to these three properties, and summarize this dis-
cussion in Table [l For algorithms that comply with all three
properties, we clarify what other shortcomings they might have
regarding annotations in medical settings. Works that lack all
properties are excluded from our discussion.

A. Algorithms with property (I)

Guan et al. [/] train a model along with multiple inde-
pendent decision heads that each capture the behavior of one
expert. After training, the model simulates the experts by
issuing pseudo-annotations on unseen data and selects one
via weighted majority voting. Keswani et al. [§] jointly learn
a classifier and a deferral system. Once trained, the deferral
system elects committees of human and artificial (i.e., models)
experts to label unseen data.

On top of requiring training data, these two algorithms are
also coalition-specific. This means that, upon the departure
or arrival of an expert from the coalition, the model must be
trained anew.

Abels et al. [9]] follow a contextual multi-armed bandits
approach to identify consistent biases in experts behaviors,
enhancing decisions accuracy. However, this strategy requires
ground truth feedback after each decision, which is not always
available.

B. Algorithms with property (II)

Raykar et al. [10] and Rodrigues et al. [[11]] apply the
Expectation-Maximization (EM) algorithm [22] to multi-
annotated data to jointly estimate ground truth labels, anno-
tator reliabilities, and inference model weights. Rodrigues et
al.outperform Raykar et al.by modeling annotator reliabilities
as latent variables, rather than the ground truths.

TABLE I
PROPERTIES OF THE ALGORITHMS FROM THE RELATED WORKS.
(I) ON-THE-FLY ANNOTATION OF DATA FROM A STREAM,
(IT) POSSIBILITY TO COLD START THE ALGORITHM ON NEW COALITION
WITHOUT REQUIRING EXTERNAL INFORMATION, AND (IIT) ALLOCATION
OF MORE RESOURCES TO LABEL THE MOST UNCERTAIN DATA.
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Later, Rodrigues et al. [12] use Gaussian Processes to infer
ground truths and annotator reliabilities, integrating this into
an active learning framework to select both the next data point
and the most suitable annotator.

Similarly, Yan et al. [|13] train a model in an active learning
setup, retrospectively selecting the best image-annotator pair
by assuming each expert is reliable on a specific data subset.
Once the subset is identified, the expert most suited to it is
queried.

Yu et al. [14] address multi-label datasets (e.g., multiple
pathologies per patient) by clustering annotators and selecting
sample-label-worker triplets based on uncertainty, estimated
information gain, and worker credibility.

C. Algorithms with properties (I) and (II)

Donmez et al. [15] employ interval estimation to identify
trustworthy experts within a coalition for on-the-fly data
annotation. The trust in an expert is determined by the general
agreement between its annotations and the majority decision.

Gimelfarb ef al. [16] presents a Bayesian Model Combina-
tion method for reinforcement learning that adaptively learns
to combine multiple expert reward shaping functions during
training. This approach speeds up convergence and preserves
optimal policies, all without adding runtime complexity.

D. Algorithms with properties (II) and (III)

Welinder et al. [17] propose a two-step algorithm relying
on EM and performed on a growing pool of images. In the
label collection step, images receive labels from both approved
and unknown experts until a confidence or a cost threshold is
reached. In the second step, part of the unknown experts are
approved based on the estimated quality of their labels.

Chen et al. [18] leverage a Markov Decision Process to
select which data in a pool should be annotated next until a
budget is exhausted. Annotated data are put back into the pool
for potential re-annotation by other experts.

E. Algorithm with properties (1) and (III)

Nguyen et al. [[19] introduce CLARA, a system combining a
Bayesian model with predictions from several machine learn-
ing models for more efficient multi-expert labeling. Tested
on tasks aimed at flagging guideline-violating content, this
approach requires substantial training data with known ground
truth for accurate predictions.



F. Algorithms with properties (I), (Il), and (II)

Abraham et al. [[20]] group experts into crowds with common
response distributions, using a multi-armed bandit algorithm to
sample annotations until a stopping criterion is met. Though
it satisfies all three properties, this approach is impractical
for medical applications, as it requires large, homogeneous
medical expert groups, which are rare in this field.

In a subsequent work, Abraham et al. [21] propose an
algorithm that selects experts based on task difficulty. The
paper offers two weighting approaches, depending on whether
prior information about the experts’ skills is available. When
experts’ skills are partially known, their decisions are weighted
accordingly. Because knowledge about the experts is required
in advance, this approach does not satisfy property (II). For
coalitions with unknown skill levels, a majority vote is used.
This latter approach could however be enhanced, as crowd-
sourcing studies show that unweighted votes are less accurate
than weighted ones [9], [10], [17], [18].

In summary, existing approaches do not meet the demands
of real-time medical annotation, where prior knowledge is
scarce and difficult cases require more attention. Addressing
all three aspects—stream-based labeling, cold-start capability,
and adaptive expert allocation—is therefore essential for
building practical annotation systems in clinical settings.

III. PROBLEM STATEMENT

Let X = {2"}]_, denote a stream of N data points, where
each z" has a unique hidden true label 2™, and let Sx =
{ak) i, be a coalition of K experts. The algorithm has, for
each 2", to query Q" € [1, K] experts {aq}qQ:n1 C S and
collect {2};}?:1, their estimated labels for 2™. The algorithm
must then aggregate the obtained labels into a coalitional label
27 so that & SN 1:n_.n is maximized, where 1 is the
indicator function. The problem is illustrated in Fig.

Each expert a) can be characterized by é(k) =
{t), 5(k)}> where t() is the number of times the expert
was queried, and S(k) is the estimated number successful
answers they provided. These parameters determine a trust
value 7). Although richer experts models (e.g., confusion
matrices) could be used, these would increase with the number
of classes and therefore require much more samples for precise
expert evaluation [23].

We define the labeling cost as C := % ZnN:1 Q", that is,
the average number of expert queries per data point, assuming
unit cost per query. We resorted to this simplification because
modeling uneven or varying expert costs is difficult without
making unverifiable assumptions. It is however possible to add
query cost as a third expert parameter. Since each data point
must be labeled at least once, we have that C' > 1. We do not
impose a per-expert query limit, so the cost may be unevenly
distributed among experts.

"Note that (k) indexes experts in the coalition, while g reflects the order
in which the algorithm queries them.

IV. ALGORITHM

This section introduces the adaptive algorithm developed
in this work. It is designed as a backbone that incorpo-
rates three abstract functions, which allow for customized
implementations tailored to specific task requirements. Our
particular implementation of these functions is detailed later
in the section.

A. Backbone

To handle data points that exhibit varying, a priori un-
known, levels of difficulty, our algorithm assesses whether ad-
ditional expert opinions are needed by assigning a confidence
level ¢ € [0,1] to the current coalitional label 2. Further
expert input is requested only when the confidence in the
decision remains low; that is, if ¢! does not meet a predefined
threshold 7. This threshold enables the user to adjust the trade-
off between labeling accuracy and cost. Lowering 7 favors cost
savings but may reduce accuracy, whereas increasing it raises
both the cost and accuracy of the labels.

Our algorithm (Algorithm [T)) proceeds as follows: for each
data point 2™, a first abstract function A calculates the trust
levels {r(y}f_, of experts in the coalition Sk and orders
them. The two highest-ranked experts, a; and ag, are queried
to annotate z”, resulting in labels 27 and 27, respectively.
The second function, B, infers a coalitional label Z}' and a
confidence measure c based on the experts’ responses z™ =
{21, 28} and trusts v = {rq,r2}.

If cI exceeds T, the algorithm deems the confidence in the
label sufficient and submits it as the final output. Otherwise, as
long as the threshold remains unmet and unqueried experts are
available, the algorithm queries the highest-ranked unqueried
expert a4. It then recalculates 2] and ¢} by calling B on the
updated sets of queried labels 2" < 2" U {Z]'} and trusts
r" 1" U {r,}.

In a final step, the third function, C, updates the parameters
0 = {é(k)}szl for all experts in the coalition based on ¢, a
record of the experts’ past labeling decisions from step 1 to n.

B. Implementation of Abstract Functions

As previously mentioned, our backbone includes three ab-
stract functions A, B, and C. The following subsections detail
the implementations used in this work.

1) Expert Ranking and Trust Computation: The function
A both ranks the experts and calculates their trusts {rq}2 ;.
Trust 7, is an estimate of the expert’s accuracy, derived
through Bayesian inference. Specifically, it is computed as the
mean of a Beta (s, + 1, t; — sq + 1) distribution, which is
the posterior distribution of a uniform Beta prior updated with
t, Bernoulli trials. The uniform prior reflects the lack of prior
knowledge on expert reliability, which is tied to property (II)
from Section

Expert ranking is accomplished through a Multi-Armed
Bandit (MAB) framework, where each expert is treated as an
arm that can yield either a reward of 0 (estimated incorrect
answer) or 1 (estimated correct answer). MAB algorithms
typically involve a trade-off between exploration (querying



Algorithm 1 Adaptive multi-expert labels inference

Require: Sk, a coalition of K experts; X, a stream of N
data points; 7 € [0, 1], a confidence threshold; 0, a prior
on the experts parameters; and A, B3, C, three functions to
insert to the backbone.

1: Initialize the set of coalitional labels: Z* — 0

2: Initialize the experts annotations history: ¢ < ()

3: forn=1,...,N do

£ (aghSs {rghs)) « A(0, Sk )

5: Draw next data point 2™ from X

6: Obtain estimated label 27 from expert a; on x™
7: z" +— {37}

8: " {r}

9: cl <0

10: g+ 1

11: while ¢} < 7 and ¢ < K do

12: g q+1

13: Obtain estimated label z;" from expert a, on z"
14: z" 2" U{Z]}}

15: r" 1" U {r,}

16: (27, ) < B(r",2")

17: end while

18: Append 27 to Z,
19: Append 2" to ¢
200 6+ C(¢)

21: end for

22: return Z*,é

less-tested experts to discover their reliability) and exploitation
(prioritizing experts with a high estimated r).

Three selection algorithms with different exploration-
exploitation tradeoffs are proposed for ranking experts:

1) Awake Upper Estimated Reward (AUER) [24]: This
method ranks experts according to an upper bound on
their trust estimate, which tightens as they are queried
more frequently. This method provides a structured
exploration mechanism, with experts being prioritized
if their trust is uncertain or high.

2) Greedy Sampling: This approach ranks experts purely
based on their estimated trust r,, with the exception
of unqueried experts, which are prioritized. Although
this method may underperform in single-query MAB
scenarios due to limited exploration, our problem setting
inherently allows multiple experts to be selected per
step, which can help compensate for reduced explo-
ration.

3) Random Sampling: This explore-only strategy ran-
domly ranks the experts, ensuring that each expert is
equally likely to be queried. While less efficient, this
approach can be useful in settings where equal data
annotation is needed across experts of varying skill
levels. This situation typically arise in mixed groups of
medical students and professional clinicians, who exploit
diagnosis as a platform for continuing medical education

through implicit peer-reviewing processes [4], or in
cases where the workload must be evenly distributed.
2) Coalitional Label Inference: The function B computes
a coalitional label 2’ for a given data point at step n based on
the estimated labels z™ provided by the ¢ experts consulted so
far, along with their respective trust scores r”. The function
also yields a confidence score ¢ that this label is correct.
Assuming independent experts and independent errors
across data points for each expert, the probability of any given
label z being the true label z™ conditioned on the observed
expert labels 2™, is proportional to:

q
Pz =2018") o[ [[P(2 = 2")Lamsn + P(3] # 2")Lapan] .

i=1
(1)

Since the trust r; in each expert a; estimates the expert’s
accuracy, the probability P(£]' = z™) is approximated by 7;,
assuming the expert has consistent true positive rate across
all classes. Additionally, if we assume that an incorrect label
choice is uniformly random across other classes, we estimate:

q

~ ~n 1-— T

P(z = 2""|2") H [ri]lz:gg + | Logzn|, (2
i=1

Z| -1
where Z is the set of possible classes.

To compute the likelihood of z being the true label z7
we normalize the right hand side of across all potential
labels in Z. The coalitional label Z is the one with the
highest likelihood, and the associated confidence c is the
corresponding likelihood, given by:

: [T [ridemss + ity 1
c, = max . 3

zEZ q 1—r:
2zez iz [’"iﬂz’zéﬁ TE-T ﬂz/;és«:f}

3) Inference on the Experts’ Parameters: The function C,
which estimates the experts’ parameters § = {tw)s s(k)}szl
from the history of their submitted labels ¢, is implemented
via the Expectation-Maximization (EM) algorithm [22]]. This
approach is widely applied in the literature for ground truth,
and allows to effectively downweight biased or inconsistent
annotators [10], [[11]], [[17]. Since label decisions must be made
in real-time, EM is used solely to retrospectively estimate the
experts’ parameters. For the same reasons as with function A4,
we employ a uniform Beta prior.

V. EXPERIMENTAL SETTINGS

This section details the benchmarking process of our algo-
rithm, employing three distinct multi-annotator datasets.

A. Datasets

We conduct our experiments on one artificial dataset and
two publicly available datasets annotated by human respon-
dents. These datasets widely differ in data modality, experts
number and abstention rates, and class imbalance, as shown
in Table [



TABLE 11
OVERVIEW OF THE DATASETS USED IN THE STUDY. FROM LEFT TO RIGHT, THE COLUMNS REPRESENT THE DATASET NAMES, NUMBER OF EXPERTS,
TOTAL NUMBER OF SAMPLES, NUMBER OF ANSWERS PER DATA POINT, NUMBER OF CLASSES, MODALITY OF z"*, ACCURACY BASED ON MAJORITY VOTE,
AVERAGE ACCURACY OF EXPERTS, PROPORTION OF ABSTENTIONS, CLASS IMBALANCE RATIO, AND WHETHER THE EXPERTS ARE ARTIFICIAL OR NOT.

Dataset K N #answers | Z|  Data Modality Accuracy Average Share of Imbalance  Artificial
/data (Majority Vote) Expert Abstentions Ratio Experts
Accuracy
Glioma Classification (GC) 6 34406 6 5 Images 0.7465 0.6947 0.0000 71.82 Yes
Weather Sentiment (WS) 110 291 [13, 20] 4 Text 0.8729 0.7140 0.8264 1.61 No
Music Genre (MG) 44 700 [1, 7] 10 Time Series 0.7014 0.7328 0.9044 1.15 No

1) Glioma Classification (GC): This dataset is artificially
annotated by six deep neural networks emulating medical
experts. It contains histopathological images of brain tumors
from the Digital Brain Tumor Atlas [25]. To emulate the
varying expertise of medical practitioners, we select models
pre-trained on general and specialized datasets. These models
classified 34406 digitized histopathological patches into one
of five classes of adult glioma.

2) Weather Sentiment (WS): This dataset was gathered
using the Amazon Mechanical Turk (AMTﬂ an online crowd-
sourcing platform. It contains 291 weather-related tweets di-
vided into 4 classes, each labeled by 13 to 20 out of 110 avail-
able experts [26], which reflects staffing levels in most hospital
departments. The activity of the experts vary significantly; the
most active expert contributed 272 annotations and the least
active provided just 1 annotation. The experts accuracy also
varies, with a share of the workers even performing worse than
random.

3) Music Genre (MG): This dataset contains 700 thirty-
second music segments classified into 10 genres and
annotated by 44 AMT workers, with varying, sometimes
adversarial accuracies. Each segment received between 1 and
7 annotations [|11]]. The activity level of experts in this dataset
also varies widely, ranging from 2 to 368 annotations.

In the WS and MG datasets, not all samples are labeled by
all experts (see Share of Abstentions in Table [[I). When an
expert provides no annotation, the task is rerouted to the next
available expert at no additional cost, simulating unavailability.
In practical settings, such abstentions can be triggered by
simple gatekeeping rules (e.g., fixed time windows to accept
and complete tasks), assuming timely responses.

B. Benchmarked Algorithms

To evaluate the impact of experts allocation based on case
difficulty, we compare our algorithm against a baseline that
lacks this property. This baseline mirrors our adaptive algo-
rithm, except it selects a fixed number of experts Q" = Q) Vn,
regardless of the computed confidence score c.

In Section we introduced three methods for selecting
the next expert to annotate a data point: AUER, Greedy, and
Random. This leads to three variants of both the adaptive and
baseline algorithms, resulting in a total of six algorithms for
comparison.

Zhttps://www.mturk.com/

C. Evaluation of Algorithms Performances

We use bootstrapping to generate 100 streams from the
datasets. For the WS and MG dataset, each stream consists of
two-thirds of the data, randomly sampled and ordered. This
yields streams of 194 and 466 samples, respectively. Due to
the larger volume of the GC dataset, we randomly sample and
order 500 points (1.45% of all images) for each iteration.

Each stream is processed by the three variants of the
baseline and adaptive algorithms. For the baseline algorithms,
we evaluate values of ()—the number of experts queried per
sample—from 1 to the maximum number of available experts.
For the adaptive algorithms, we evaluate confidence thresholds
in {0.1,0.2,...,0.9}U{1—-10""}12 ,. An additional 7 value of
1.1 is included to evaluate the algorithm’s performance when
the confidence goal is unattainable. For a given value of 7, the
whole stream of data was processed in 33.1£3.8s, 11.2+2.1 s,
and 47.941.5 s for the GC, WS, and MG datasets respectively,
which is negligible compared to the annotation times of the
experts.

VI. RESULTS AND DISCUSSION

This section presents the evaluation of our adaptive algo-
rithm, comparing its performance to the non-adaptive baseline,
followed by a discussion on the study’s limitations.

A. Performance Comparison

Figure [2] shows the trade-off between accuracy and the
number of queried experts Q™. Each point corresponds to a
threshold value defined in Section For adaptive algo-
rithms, higher confidence thresholds 7 increase Q™ and tend
to improve accuracy. However, querying more experts may
introduce noise from less reliable annotators, slightly reducing
performance at high Q".

Overall, adapting the number of queries to the latent diffi-
culty of data points yields comparable accuracy at a signifi-
cantly lower annotation cost. This gain is especially notable
when Q" is neither close to 1 nor K, as the algorithm has
more room to choose the number of experts. For instance, on
the WS dataset, achieving 0.88 accuracy requires 12 experts
with the non-adaptive method, but only 6 on average with the
adaptive one.

For the GC dataset, Greedy expert sampling performs best.
As discussed in Section this is due to multiple expert
querying per round, which enables passive exploration despite
the strategy being exploit-driven.
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Fig. 2. Comparison of the accuracies of the adaptive and baseline algorithms across different expert sampling strategies for the (1) Glioma Classification,
(2) Weather Sentiment, and (3) Music Genre datasets, based on the number of queried experts. Points on the curves represent average performance for a given
threshold over 100 bootstrap repetitions. The 7 and () scales values are indicated in Section E The shaded areas represent the 95% confidence intervals.

TABLE III
GINI COEFFICIENT ON THE DISTRIBUTION OF EXPERT QUERIES ON THE
THREE DATASETS. STANDARD DEVIATIONS ARE AFTER THE = SIGNS.

T AUER Greedy Random

(a) Glioma Classification

0.4 0.0904 + 0.0515 0.6619 £ 0.0020 0.0332 £+ 0.0107

0.8  0.1339 + 0.0290 0.6141 £ 0.0400 0.0311 £ 0.0115
(b) Weather Sentiment

04 0.1973 £+ 0.0116  0.7356 + 0.0125 0.6057 + 0.0169

0.8 0.2210 4+ 0.0103  0.7472 £ 0.0107  0.5999 + 0.0162

(c) Music Genre
0.4 0.5618 4+ 0.0090 0.7798 + 0.0235  0.7258 + 0.0093
0.8 0.5738 4+ 0.0080 0.7691 £ 0.0154  0.7178 £ 0.0075

B. Expert Workload Distribution

Table reports the average Gini coefficient of the query
distribution at the end of each dataset stream, reflecting
workload disparity among experts (0: uniform load, 1: highly
unequal). As expected, Greedy sampling yields the highest
inequality across datasets. Interestingly, Random sampling
also shows imbalance in WS and MG due to uneven expert
availability, as uniform querying maintains abstention dispar-
ities over time. In contrast, AUER achieves better balance in
these settings, as its exploratory behavior increases the chance
of querying rarely available experts when they do appear.

C. Experts Allocation through Time

An analysis of how the average number of queried experts
evolves with the number of annotated data points highlights
the adaptive nature of our algorithm. As shown in Fig. [3]
the algorithm initially queries many experts when coalition
parameters are still uncertain. As it accumulates information,

the number of queried experts quickly drops and stabilizes,
demonstrating efficient adaptation to the coalition. This early
phase of intense querying offers a practical window to tune
the confidence threshold 7. By starting with a high value
to promote trust calibration, the user can observe when the
system reaches a steady state, and then iteratively adjust 7, e.g.,
via binary search, to meet desired tradeoffs between annotation
cost and accuracy.

D. Limitations and Future Directions

While our results demonstrate the effectiveness of adaptive
expert querying for classification tasks, which are common
in medical Al workflows, future work will extend our mod-
ular framework to structured prediction and ordinal tasks.
For example, pixel-wise aggregation and Dice-based expert
ranking could support segmentation, while EM updates could
be adjusted to reflect ordinal distances.

Due to the lack of large-scale clinician-annotated datasets
with ground truth, we evaluated our method across three
diverse datasets (synthetic and real, with varying expert avail-
ability and class imbalance). Despite this constraint, we ob-
served consistent convergence behavior (Figs. [2] B), supporting
our framework’s generalizability from label-only input. Future
work will however focus on clinical validation.

Finally, while expert reliability was modeled as static due
to the short sampling period of available datasets, our design
accommodates evolving expertise via simple modifications to
C (e.g., sliding windows or exponential decay).

Overall, the flexibility of our framework and its modular
backbone set a solid premise to explore these extensions in
future works.

VII. CONCLUSION

In this paper, we introduced an adaptive ground truth
inference algorithm designed to integrate medical screening
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Fig. 3. Average number of queried experts through time for the adaptive
algorithm with AUER expert sampling over 100 bootstrap repetitions. Similar
curves are observed with the Greedy and Random expert samplings. The
shaded areas represent the 95% confidence intervals.

pipelines by aligning with medical practices. This algorithm
is capable of jointly (I) providing on-the-fly annotations for
unseen data points, (I) deploying on a coalition of unknown
experts without requiring external information, and (III) al-
locating more experts resources to data points that are more
difficult to label. Our experiments have demonstrated that this
third property significantly reduces cost for a similar accuracy
target compared to algorithms that distribute experts resources
evenly across all data points.

By offering an algorithm integrating modular abstract func-
tions, we aim to stimulate further research in the field of
medical ground truth inference.
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