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ABSTRACT

Structure-based molecule optimization (SBMO) aims to optimize molecules with
both continuous coordinates and discrete types against protein targets. A promising
direction is to exert gradient guidance on generative models given its remarkable
success in images, but it is challenging to guide discrete data and risks inconsisten-
cies between modalities. To this end, we leverage a continuous and differentiable
space derived through Bayesian inference, presenting Molecule Joint Optimization
(MolJO), the gradient-based SBMO framework that facilitates joint guidance sig-
nals across different modalities while preserving SE(3)-equivariance. We introduce
a novel backward correction strategy that optimizes within a sliding window of
the past histories, allowing for a seamless trade-off between explore-and-exploit
during optimization. Our proposed MolJO achieves state-of-the-art performance
on CrossDocked2020 benchmark (Success Rate 51.3%, Vina Dock -9.05 and SA
0.78), more than 4× improvement in Success Rate compared to the gradient-based
counterpart, and 2× “Me-Better” Ratio as much as 3D baselines. Furthermore, we
extend MolJO to a wide range of optimization settings, including multi-objective
optimization and challenging tasks in drug design such as R-group optimization
and scaffold hopping, further underscoring its versatility and potential.

1 INTRODUCTION

Structure-based drug design (SBDD) plays a critical role in drug discovery by identifying three-
dimensional (3D) molecules that are favorable against protein targets (Isert et al., 2023). While
recent SBDD focuses on the initial identification of potential drug candidates, these compounds must
undergo a series of further modifications for optimized properties, a process that is both complex and
time-consuming (Hughes et al., 2011). Therefore, structure-based molecule optimization (SBMO) has
garnered increasing interest in real-world drug design (Zhou et al., 2024), emphasizing the practical
need of optimizing 3D molecules to meet specific therapeutic criteria.

Concretely, SBMO can be viewed as a more advanced task within the broader scope of general SBDD,
requiring precise control over molecular properties while navigating the chemical space. Specifically,
SBMO addresses two key aspects: (1) SBMO prioritizes targeted molecular property enhancement
according to expert-specified objectives, whereas generative models for SBDD primarily focus on
maximizing data likelihood without special emphasis on property improvement (Luo et al., 2021; Peng
et al., 2022). Therefore these models can only produce outputs similar to their training data, limiting
the ability to improve molecular properties. (2) SBMO is capable of optimizing existing compounds
with 3D structural awareness, addressing a critical gap left by previous molecule optimization
methods with 1D SMILES or 2D graph representations (Bilodeau et al., 2022; Fu et al., 2022), and
allowing for a more nuanced control. The focus on structure makes SBMO particularly suited for key
design tasks, such as R-group optimization and scaffold hopping.

A pioneering work for SBMO is DecompOpt (Zhou et al., 2024), which designs a special 3D
generative model conditioned on fragments, and employs a gradient-free sampling method within
such decomposed fragment space through iterative oracle calls. One of the drawbacks is that it relies
on oracle functions that can be computationally expensive especially in large-scale SBMO tasks,
where running multiple rounds of costly simulations is impractical or even infeasible. Moreover,
DecompOpt’s contribution lies in its novel generative paradigm based on fragment conditions, rather
than exploring optimization within existing models, making it less adaptable to other frameworks.
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Structure-Based Molecule Optimization

(1) Enhance property (2) Optimize existing structure

“Me-Better” Ratio of Improved Molecules

✅

QED: 0.53
SA 0.91
Vina: -5.78

QED: 0.89
SA 0.95
Vina: -7.17

Joint Gradient Guidance over Continuous-Discrete Data

Gradient
Guidance

        

D Backward Correction

discrete

continuous

Figure 1: Overview. A. Structure-based molecule optimization, including (1) guiding molecule design
by expert-specified objectives, (2) optimizing existing compounds in the structure space. B. Study on
the ratio of “me-better” molecules, where all other baselines fall short in the overall improvement. C.
Overall illustration of MolJO, utilizing joint gradient signals over continuous-discrete data, where the
distributions of θ (continuous µ and discrete z) are taken from true guided trajectories. D. Graphical
model of our proposed backward correction strategy, keeping a sliding window of size k.

One generalized solution is gradient guidance, addressing these issues by eliminating the need for
expensive oracle simulations while being flexible enough to be incorporated into strong-performing
generative models in a plug-and-play fashion, as demonstrated in a wide range of challenging
real-world applications including image synthesis (Dhariwal & Nichol, 2021; Epstein et al., 2023).

However, current gradient-based methods have not fully realized their potential in SBMO, for
they have historically suffered from the continuous-discrete challenges: (1) it is non-trivial to
guide discrete variable within probabilistic generative process. More specifically, standard gradient
guidance is designed for continuous variables that follow Gaussian distributions, making them
not directly applicable to molecular data that involve discrete atom types. Methods attempting to
adapt gradient guidance to discrete data often resort to approximating these variables as continuous,
either by adding Gaussian noise (Bao et al., 2022) or by assuming that classifiers follow a Gaussian
distribution (Vignac et al., 2023). Unfortunately, these approximations can lead to suboptimal results,
as they do not accurately reflect the discrete nature (Kong et al., 2023). (2) Gradient guidance might
introduce inconsistencies between modalities. For instance, TAGMol (Dorna et al., 2024) formalizes
guidance exclusively over continuous coordinates, resulting in a disconnect between the discrete
and continuous modalities. This may explain why TAGMol struggles to optimize overall molecular
properties as shown in Figure 1, despite its improvement in Vina affinities. By solely guiding the
continuous coordinates, TAGMol enhances spatial protein-ligand interactions but fails to optimize
e.g. synthesizeability, which depends more on molecular topology, especially discrete atom types.

In this paper, we address the multi-modality challenge for gradient guidance by leveraging a continu-
ous and differential space, representing an aggregation of noisy samples from the data space derived
through Bayesian inference (Graves et al., 2023). We design MolJO (Molecule Joint Optimization), a
general framework that enables gradient-based optimization of continuous and discrete variables in a
structured manner. We introduce a novel sampling strategy called backward correction, enhancing
the alignment of gradients over different steps. By maintaining a sliding window of past history for
optimization, the backward correction strategy enforces explicit dependency on the past, effectively
alleviating the issue of inconsistencies. Moreover, it balances the exploration of molecular space with
the exploitation of better-aligned guidance signals, offering a flexible trade-off.

Our main contributions are summarized as follows:

• We propose MolJO, the joint gradient-based method for SBMO that establishes the guidance
over molecules, offering better controllability and effectively integrating gradient guidance
for continuous-discrete variables within a unified framework.
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• We design a novel backward correction strategy for effective optimization. By keeping a
sliding window and correcting the past given the current optimized version, we achieve better-
aligned gradients and facilitate a flexible trade-off between exploration and exploitation.

• MolJO achieves the best Vina Dock of -9.05, SA of 0.78 and Success Rate of 51.3%, and
“Me-Better” Ratio of improved molecules that is 2× as much as other 3D baselines. We
generalize MolJO to various needs including R-group optimization and scaffold hopping,
highlighting its versatility and potential in practical drug design.

2 RELATED WORK

Pocket-Aware Molecule Generation. Pocket-aware generative models aim to learn a conditional
distribution over the protein-ligand complex data. Initial approaches adopt 1D SMILES or 2D graph
representation (Bjerrum & Threlfall, 2017; Gómez-Bombarelli et al., 2018), and recent research has
shifted its focus towards 3D molecule generation in order to better capture the interatomic interactions.
Early atom-based autoregressive models (Luo et al., 2021; Peng et al., 2022; Liu et al., 2022) enforce
an atom ordering to generate molecules atom-by-atom. Fragment-based methods (Powers et al.,
2022; Zhang et al., 2023; Lin et al., 2023) alleviate the issue of ordering by decomposing molecules
into motifs instead of atom-level generation, but they risk more severe error accumulation and thus
generally require post-processing or multi-stage treatment. Non-autoregressive methods based on
diffusions (Schneuing et al., 2022; Guan et al., 2022; 2023) and BFNs (Qu et al., 2024) target
full-atom generation for enhanced performance and efficiency. However, the needs of optimizing
certain properties and modifying existing compounds are not adequately addressed in the scope of
previous methods, limiting their usefulness in drug design.

Gradient-Based Molecule Optimization. Inspired by classifier guidance for diffusions (Dhariwal
& Nichol, 2021), pioneering approaches are committed to adapting the guidance method to handle the
complicated molecular geometries in the setting of pocket-unaware generation. EEGSDE (Bao et al.,
2022) derives an equivariant framework for continuous diffusion, and MUDM (Han et al., 2023)
further explores time-independent property functions for guidance. As they enforce a continuous
diffusion process for discrete variables, these methods are not applicable in advanced molecular
modeling (Guan et al., 2022; 2023) where discrete data are processed by a discrete diffusion, for it is
unnatural to apply progressive Gaussian noise that drives Categorical data away from the simplex.
DiGress (Vignac et al., 2023) proposes classifier guidance for discrete diffusion of molecular graphs,
yet it additionally assumes that the probability of classifier follows a Gaussian, which is ungrounded
and often a problematic approximation. Based on the continuous-discrete diffusion for SBDD,
TAGMol (Dorna et al., 2024) retains the guidance only for continuous coordinates, because there
lacks a proper way to propagate the gradient over discrete types. The discrete part is affected only
implicitly and belatedly in the generative process, and such imbalanced guidance would probably
result in suboptimal performance for lack of joint optimization.

3 PRELIMINARY

3D Protein-Ligand Representation. A protein binding site p = (xP ,vP ) is represented as a point
cloud of NP atoms where atom coordinates xP = {x1

P , . . . ,x
NP

P } ∈ RNP×3 and KP -dimensional
atom features vP = {v1

P , . . . ,v
NP

P } ∈ RNPKP . Similarly, a ligand molecule m = (xM ,vM )

contains NM atoms, where x
(i)
M ∈ R3 is the atomic coordinate and v

(i)
M ∈ RKM the atom type. For

brevity, the subscript for molecules ·M and the pocket condition p are omitted unless necessary.

Bayesian Flow Networks (BFNs). Operating in a non-autoregressive fashion, BFN views the
generative modeling as message exchange between a sender and a receiver. The sender distribution
pS(y | x;α) builds upon the accuracy level α applied to data x and defines the noised y. The varying
noise levels constitute the schedule β(t) =

∫ t

t′=0
α(t′)dt′, similar to that in diffusion models.

A key motivation for BFN is that the transmission ought to be continuous and smooth, therefore it
does not directly operate on the noisy latent y as diffusions, but on the structured Bayesian posterior θ
given noisy latents instead. The receiver holds a prior belief θ0, and updates the belief by aggregating
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noisy observations y, yielding the Bayesian update distribution:

pU (θi | θi−1,x;αi) = E
pS(yi|x;αi)

δ
(
θi − h(θi−1,yi, αi)

)
(1)

where δ(·) is Dirac distribution, and Bayesian update function h is derived through Bayesian inference.
Note that θi can be viewed as the result of mapping given the sender distributions of y0 to yi:

θi = f(y0,y1, . . . ,yi) (2)

Intuitively, BFN aims to predict the clean sample given aggregated θ, i.e. conditioning on all previous
latents. θ is fed into a neural network Φ to estimate the distribution of clean datapoint x̂, i.e. the
output distribution pO(x̂ | Φ(θ, t)). The receiver distribution is obtained by marginalizing out x̂:

pR(yi | θi−1; ti, αi) = E
pO(x̂|Φ(θi−1,ti))

pS(yi | x̂;αi) (3)

The training objective is to minimize the KL-divergence between sender and receiver distributions:

Ln(x) = E∏n
i=1 pU (θi|θi−1,x;αi)

n∑
i=1

DKL(pS(yi | x;αi) ∥ pR(yi | θi−1, ti, αi)). (4)

4 METHOD

In this section, we introduce MolJO that guides the distribution over θ, utilizing aggregated infor-
mation from previous latents. Though different from guided diffusions that operate on noisy latent
y, this guidance aligns with our generative process conditioned on θ. By focusing on θ, we can
effectively steer the clean samples towards desirable direction, ensuring a smooth gradient flow.

Notation. Following Kong et al. (2024) and denoting the guided distribution π as product of experts
(Hinton, 2002) modulated by energy function E that predicts certain property, we have π(θi|θi−1) ∝
pϕ(θi|θi−1)pE(θi), where Φ is the pretrained network for BFN, pE(θi) = exp [−E(θi, ti)] is the
unnormalized Boltzmann distribution corresponding to the time-dependent energy function.

Overview. As illustrated in Figure 1, we introduce MolJO as follows: in Sec. 4.1, we propose the
concept of gradient guidance over the multi-modality molecule space, derive the form of guided
transition kernel π(θi|θi−1) via first-order Taylor expansion, and explain the underlying manipula-
tions of distributions the guidance corresponds to. In Sec. 4.2, we present a generalized advanced
sampling strategy termed backward correction for pϕ, which allows for a flexible trade-off between
explore-and-exploit by maintaining a sliding window of past histories. We empirically demonstrate
our strategy helps optimize consistency across steps, ultimately improving the overall performance.

4.1 EQUIVARIANT GUIDANCE FOR MULTI-MODALITY MOLECULAR DATA

In this section, we derive the detailed guidance over θ for molecule m = (x,v) with N atoms, where
x ∈ RN×3 represent continuous atom coordinates and v ∈ {1, . . . ,K}N for K discrete atom types,
and thus θ := [µ, z] for the continuous and discrete modality, respectively.

Guidance over Multi-Modalities. To steer the sampling process towards near-optimal samples,
we utilize the score ∇θ log pE(θ) as a gradient-based property guidance, for which we have the
following proposition (proof in Appendix C.1), followed by details for each modality.
Proposition 4.1. Suppose µi ∼ N (µϕ, σI) and yi ∼ N (yϕ, σ

′I) in the original generative process
of BFN, then we can approximate the guided transition kernel π(θi|θi−1) by sampling

µ∗
i ∼ N (µϕ + σgµ, σI) (5)

y∗
i ∼ N (yϕ + σ′gy, σ

′I) (6)
where gradient gµ = −∇µE(θ, ti)|θ=θi−1

, gy = −∇yE(θ, ti)|θ=θi−1
, recall θ := [µ, z = f(y)].

The guidance is formalized over both continuous coordinates and discrete types, and differs from
previous guided diffusion for molecules in that (1) it guides the discrete data through Gaussian-
distributed latent y and ensures that the discrete variables are still on the probability simplex without
relying on assumptions (Vignac et al., 2023) or relaxations (Bao et al., 2022; Han et al., 2023), and
(2) alleviates the inconsistencies between modalities (Dorna et al., 2024) by joint gradient signals.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Guiding µ for Continuous x. For continuous coordinates x ∈ RN×3, it is natural to adopt a
Gaussian sender distribution yx ∼ N (x, α−1I). With a prior belief µ0 = 0, we have the Bayesian
update function for posterior µi given noisy yx as in Graves et al. (2023):

h(µi−1,y
x, αi) =

µi−1ρi−1 + yxαi

ρi
(7)

with αi = βi − βi−1, ρi = 1 + βi given the schedule βi = σ
−2i/n
1 − 1 for a positive σ1 and n steps.

Remark 4.2. In the continuous domain, guidance over θ (i.e. µ) is analogous to guided diffusions,
since guiding µ corresponds to guiding noisy latent y using the gradient over it:

µ∗
i = µi + σgµ =

µi−1ρi−1 + (yx + σ ρi

αi
gµ)αi

ρi
=

µi−1ρi−1 + (yx + σgyx)αi

ρi
(8)

where by chain rule gyx = −∇yxE(θ, ti)|θ=θi−1 = gµ
∂h
∂yx = gµ

αi

ρi
. This builds a connection

between the guidance over θ and over latent y for continuous data.

Guiding z for Discrete v. For N -dimensional discrete types v ∈ {1, . . . ,K}N , the noisy latent
represents the counts of each type among K types, where we have yv ∼ N (yv|α′(Kev−1), α′KI),
ev = [ev(1) , . . . , ev(N) ] ∈ RKN , ev(j) = δv(j) ∈ RK with Kronecker delta function δ. This is
mathematically grounded with further explanation in Appendix B.

The aggregated zi as a posterior belief is updated given the prior z0 = 1
K as:

h(zi−1,y
v, α′

i) =
exp(yv)zi−1∑K

k=1 exp(y
v
k)(zi−1)k

(9)

where the redundant α′
i = β′

i − β′
i−1 with β′

i = β′
1(

i
n )

2, given a positive hyperparameter β′
1.

Remark 4.3. In the discrete domain, guiding all latents y amounts to a reweight of the Categorical
distribution for θ (i.e. z), changing the probability of each class in accordance with the gradient. Take
an extreme case to illustrate, where gyv is filled with one-hot vectors δd:

(z∗i )k =
exp(yv

k)(zi−1)k∑K
k′=1 exp(y

v
k′)(zi−1)k′ + [exp(σ′)− 1] exp(yv

d)(zi−1)d
= (zi)k

1

1 + C
< (zi)k (10)

for all k ̸= d, where C = [exp(σ′) − 1] exp(yv
d)(zi−1)d/[

∑K
k′=1 exp(y

v
k′)] > 0 as the variance

σ′ > 0. It is obvious that the guidance lowers the probability for all classes but the favored d,
redistributing the mass for discrete data in a more structured way than diffusion counterparts.

Equivariance. Our proposed guided sampling that utilizes joint gradient signals is still equivariant
as shown in the proposition below, with proof in Appendix C.2.

Proposition 4.4. The guided sampling process preserves SE(3)-equivariance when Φ is SE(3)-
equivariant, if the energy function E(θ,p, t) is also parameterized with an SE(3)-equivariant neural
network, and the complex is shifted to the space where the protein’s Center of Mass (CoM) is zero.

4.2 GUIDED BAYESIAN UPDATE WITH BACKWARD CORRECTION

Here we propose a general backward correction sampling strategy inspired from the optimization
perspective, and analyze its effect on aligning the gradients. Recall that from Eq. 1 we can aggregate
θi based on latents from the previous step:

pϕ(θi | θi−1) = E
pO(x̂i|Φ(θi−1,ti))

pU (θi | θi−1, x̂i;αi) (11)

Backward correction aims at “correcting the past to further optimize”. Since we obtain an optimized
θ∗
i from the guided kernel π(θi|θi−1), there will be an optimized version of x̂∗

i = x̂i+1 for the next
step. By backward correcting the Bayesian update distribution pU given the optimized x̂∗, we are
able to reinforce the current best possible parameter θ, instead of building on the suboptimal history.

5
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Algorithm 1 Gradient Guided Sampling of MolJO with Backward Correction

Require: network Φ(θ, t,p), noise schedules [β(t), β′(t)], number of sample steps n, back correc-
tion steps k, number of atom types K, energy function E(θ,p, t), guidance scale s

1: Initialize belief θ := [µ, z]← [0, 1
K ] ▷ Continuous aggregations for different modalities

2: for i = 1 to n do
3: [t, t−k]← [ i−1

n ,max(0, i−k−1
n )] ▷ Discrete timesteps in [0, 1)

4: [x̂, êv]← Φ(θ, t,p) ▷ Network predicts clean data
5: [gµ,gy]← [−∇µE(θ,p, t),−∇yE(θ,p, t)] ▷ Gradient guidance
6: [ρ, ρ−k,∆β,∆β′]← [1 + β(t), 1 + β(t−k), β(t)− β(t−k), β

′(t)− β′(t−k)]
7: Retrieve µ−k, z−k from the past ▷ Backward correction starting point
8: Sample µ ∼ N ([

ρ(∆βx̂+µ−kρ−k)+s∆βgµ

ρ2 , ∆β
ρ2 I) ▷ Guidance for continuous x

9: Sample y ∼ N (∆β′(t)(Kêv − 1+ sKgy),∆β′(t)KI) ▷ Guidance for discrete v

10: Update z← exp(y)z−k∑K
i=1 exp(yi)(z−k)i

▷ Aggregate latents for discrete data
11: end for
12: [x̂, êv]← Φ(θ, 1,p) ▷ Network predicts final output
13: v̂← argmax(êv) ▷ Final discrete output from p.m.f.
14: return [x̂, v̂]

By utilizing the property of additive accuracy once pU follows certain form as described by Graves
et al. (2023), the one-step backward correction can be derived as follows:

pϕ(θi | θi−1,θi−2) = E
pO(x̂i|Φ(θi−1,ti))

E
pU (θi−1|θi−2,x̂i

↓
originally x̂i−1 ∼ pO(x̂i−1|Φ(θi−2, ti−1))

;αi−1)

pU (θi | θi−1, x̂i;αi)

= E
pO(x̂i|Φ(θi−1,ti))

pU (θi | θi−2, x̂i;αi−1 + αi) (12)

and we arrive at the k − 1 step corrected estimation of pϕ:

pϕ(θn|θn−1,θn−k) = E
pO(x̂n|Φ(θn−1,tn))

pU (θn|θn−k, x̂n;

n∑
i=n−k+1

αi) (13)

Plugging Eq. 7 and 9 together with the sender distributions defined above into the right hand side
according to Eq. 1, yields the form of the backward corrected Bayesian update

pU (µn|µn−k, x̂n) = N
(∆βx̂n + µn−kρn−k

ρn
,
∆β

ρ2n
I
)

(14)

pU (zn|zn−k, v̂n) = E
y∼N (y|∆β′(Kev̂n−1),∆β′KI)

δ
(
zn −

exp(y)zn−k∑K
i=1 exp(yi)(zn−k)i

)
(15)

where m̂ = [x̂, v̂] is drawn from the output distribution pO(m̂ | Φ(θi−1, ti−1,p)) given pocket p,
∆β = βn − βn−k and ∆β′ = β′

n − β′
n−k are obtained from corresponding schedules.
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Figure 2: Gradient similarity, where k de-
notes backward correction window size.
For 1 < k < 200, the similarity before
timestep k is omitted for it overlaps with
k = 200, i.e. covering all the past.

The concept of sliding window unifies different sampling
strategies proposed by Graves et al. (2023) (k=1) and Qu
et al. (2024) (k=n). To understand its effect, we visualize
the cosine similarity of gradients at each step w.r.t. the
previous step in Figure 2. By changing the size k of
sliding window, it succeeds in balancing sample quality
(explore) and optimization efficiency (exploit), where it
first focuses on exploring the molecular space with rapidly
changing structures and gradients, and then exploits better-
aligned guidance signals over gradually refined structures,
achieving the best success rate as later shown.

In practice, we employ the gradient scale s as a tem-
perature parameter, which is equivalent to adopting
psE(θ, t) ∝ exp [−sE(θ, t)]. The general sampling pro-
cedure is summarized in Algorithm 1.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We conduct two sets of experiments for structure-based molecule optimization (SBMO), although the
constrained setting seems within the scope of unconstrained one, it is biologically meaningful and
more practical in rational drug design, and further showcases the flexibility of our method.

Task. For a molecule m ∈ M whereM denotes the set of molecules, there are oracles ai(m) :
M→ R for property i, each with a desired threshold δi ∈ R. MolJO is capable of different levels
of controllability: (1) unconstrained optimization, where we identify a set of molecules such that
{m ∈M | ai(m) ≥ δi,∀i}, i.e. the goal is to optimize a number of objectives. (2) constrained
optimization, where we aim to find a set of molecules that contain specific substructures s such that
{m ∈M | ai(m) ≥ δi, s ⊂m,∀i}.

Dataset. Following previous SBDD works (Luo et al., 2021; Peng et al., 2022; Guan et al., 2022),
we utilize CrossDocked2020 (Francoeur et al., 2020) to train and test our model, and adopt the same
processing that filters out poses with RMSD > 1Å and clusters proteins based on 30% sequence
identity, yielding 100,000 training poses and 100 test proteins.

Baselines. We divide all baselines into the following: (1) Generative models (Gen.), including AR
(Luo et al., 2021), GraphBP (Liu et al., 2022), Pocket2Mol (Peng et al., 2022), FLAG (Zhang et al.,
2023), DiffSBDD (Schneuing et al., 2022), TargetDiff (Guan et al., 2022), DecompDiff (Guan et al.,
2023), IPDiff (Huang et al., 2024) and MolCRAFT (Qu et al., 2024), (2) Oracle-based optimization
(Oracle Opt.) that rely on docking simulation in each round, such as AutoGrow4 (Spiegel & Durrant,
2020), RGA (Fu et al., 2022), and DecompOpt (Zhou et al., 2024), (3) Gradient-guided (Grad. Opt.)
TAGMol (Dorna et al., 2024). Detailed descriptions of baselines are left in Appendix F.

Metrics. We employ the commonly used metrics as follows: (1) Affinity metrics calculated by
Autodock Vina (Eberhardt et al., 2021), in which Vina Score calculates the raw energy of the given
molecular pose residing in the pocket, Vina Min conducts a quick local energy minimization and
scores the minimized pose, and Vina Dock performs a relatively longer search for optimal pose
to calculate the lowest energy. Success Rate measures the percentage of generated molecules that
pass certain criteria (Vina Dock < -8.18, QED > 0.25, SA > 0.59) following Long et al. (2022) and
Guan et al. (2022). (2) Molecular properties, including drug-likeness (QED) and synthesizability
score (SA). (3) Metrics for sample distribution, such as diversity (Div). A more comprehensive set of
metrics are detailed in Appendix F.

5.2 UNCONSTRAINED OPTIMIZATION

In this section, we demonstrate the ability of our framework to improve molecular properties in both
single and multi-objective optimization. We sample 100 molecules for each protein and evaluate
MolJO in optimizing binding affinity and molecular properties. For additional evaluation of molecular
conformation besides optimization performance, please see Appendix G.

MolJO effectively enhances molecular property w.r.t. generative models. The optimized
distribution greatly improves upon the original generated distribution, as shown in the distribution
shift in Figure 3 for single objective optimization, and Table 1 (row 14 vs. row 9).

MolJO outperforms gradient-based method with 4× higher Success Rate. As shown in Table 1,
our model achieves state-of-the-art in affinity-related metrics while being highly drug-like, with the
best Success Rate of 51.3%, a fourthfold improvement over TAGMol (row 14 vs. row 13).

MolJO has more potential than oracle-based baselines if equipped with oracles. RGA (Fu
et al., 2022) and DecompOpt (Zhou et al., 2024) show satisfactory Success Rate, enjoying the
advantage of oracle-based screening at some expense of diversity, while AutoGrow4 (Spiegel &
Durrant, 2020) falls short in QED, yielding a suboptimal Success Rate. Given the same concentration
use of Z-score (Zhou et al., 2024), we report a variant of MolJO with top-of-N , selecting a tenth
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Table 1: Summary of different properties of reference molecules and generated molecules by our
model and other baselines, where G+O denotes equipping our method with top-of-N in oracle
simulations. (↑) / (↓) denotes a larger / smaller number is better. Top 2 results are highlighted with
bold text and underlined text.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑) Div (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Avg. Avg. Rate (↑)

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 0.48 0.73 - 25.0%

Gen.

1⃝ AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 0.51 0.63 0.70 6.9%
2⃝ GraphBP - - - - -4.80 -4.70 0.43 0.49 0.79 0.1%
3⃝ Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 0.57 0.76 0.69 24.4%
4⃝ FLAG 45.85 36.52 9.71 -2.43 -4.84 -5.56 0.61 0.63 0.70 1.8%
5⃝ DiffSBDD -1.44 -4.91 -4.52 -5.84 -7.14 -7.30 0.47 0.58 0.73 7.9%
6⃝ TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 0.48 0.58 0.72 10.5%
7⃝ DecompDiff -5.19 -5.27 -6.03 -6.00 -7.03 -7.16 0.51 0.66 0.73 14.9%
8⃝ IPDiff -6.41 -7.01 -7.45 -7.48 -8.57 -8.51 0.52 0.59 0.74 16.5%
9⃝MolCRAFT -6.55 -6.95 -7.21 -7.14 -7.67 -7.82 0.50 0.67 0.70 26.8%

10⃝ AutoGrow4 - - - - -8.99 -9.00 0.46 0.76 0.47 14.3%
Oracle 11⃝ RGA - - - - -8.01 -8.17 0.57 0.71 0.41 46.2%
Opt. 12⃝ DecompOpt -5.75 -5.97 -6.58 -6.70 -7.63 -8.02 0.56 0.73 0.63 39.4%

Grad. 13⃝ TAGMol -7.02 -7.77 -7.95 -8.07 -8.59 -8.69 0.55 0.56 0.69 11.1%
Opt. 14⃝MolJO -7.52 -8.02 -8.33 -8.34 -9.05 -9.13 0.56 0.78 0.66 51.3%

G + O 15⃝MolJO† (N=10) -8.54 -8.81 -9.48 -9.09 -10.50 -10.14 0.67 0.79 0.61 70.3%

Ref Gen Opt
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Figure 3: Distribution shift from test set (Ref), backbone
without guidance (Gen) to guided MolJO (Opt).

Table 2: Properties of molecules with a
larger average size, where Vina stands for
Vina Dock Avg., SR for Success Rate. Top-1
results are highlighted with bold text.

Methods Vina QED SA SR Size

Reference -7.45 0.48 0.73 25.0% 22.8

DecompDiff -8.39 0.45 0.61 24.5% 29.4
DecompOpt -9.01 0.48 0.65 52.5% 32.9
MolCRAFT -9.25 0.46 0.62 36.6% 29.4
MolJO -10.53 0.50 0.72 64.2% 30.0

of top scoring molecules and showing that it is more effective than oracle-based methods once in a
similar setting. Moreover, the higher diversity of DecompOpt and MolJO suggests the superiority of
3D structure-aware generative models over 2D optimization baselines (row 15 vs. row 10-12).

MolJO is 2× as effective in proposing “me-better” candidates. For gradient-based method
TAGMol (Dorna et al., 2024), although it produces seemingly promising high affinity binders,
they come at the expense of sacrificed molecular properties like QED and SA, demonstrating the
suboptimal control of coordinate-only guidance signals. Notably, the ratio of all-better samples is
below 17% for all other baselines, and MolJO is twice as effective (39.8%) in generating feasible
drug candidates that pass this criteria, as shown in Figure 1.

MolJO excels even in optimizing large OOD molecules. Note that for fair comparison, we
restrict the size of generated molecules by reference molecules so that both generative models and
optimization methods navigate the similar chemical space, as we observe a clear correlation between
properties and sizes in Figure 6. For model variants capable of exploring larger number of atoms,
we report the results in Table 2 with sizes, where MolJO consistently outperforms other baselines,
demonstrating its robustness. A detailed discussion can be found in Appendix E.

5.3 CONSTRAINED OPTIMIZATION

Constrained optimization seeks to optimize the input reference molecules for enhanced properties
while retaining specific structures. We generalize our framework with such structural control and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Constrained optimization results, where Redesign means R-group optimization with frag-
ments of the same size redesigned, Growing means fragment growing into larger size, Hopping means
scaffold hopping. (↑) / (↓) indicates a larger / smaller number is better. Top-1 highlighted in bold.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑) Connected Success
Avg. Med. Avg. Med. Avg. Med. Avg. Avg. Avg. (↑) Rate (↑)

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 0.48 0.73 100% 25.0%

Redesign

TargetDiff -6.14 -6.21 -6.79 -6.58 -7.70 -7.61 0.50 0.64 85.5% 18.9%
TAGMol -6.60 -6.66 -7.10 -6.80 -7.63 -7.76 0.53 0.62 87.0% 19.2%
MolCRAFT -6.63 -6.70 -7.12 -6.91 -7.79 -7.72 0.49 0.67 96.7% 22.7%
MolJO -7.13 -7.28 -7.62 -7.39 -8.16 -8.20 0.57 0.68 95.1% 29.0%

Growing

TargetDiff -6.73 -7.29 -7.60 -7.67 -8.89 -8.79 0.39 0.52 71.6% 11.2%
TAGMol -7.30 -7.70 -8.08 -7.81 -8.92 -8.78 0.47 0.53 78.7% 11.8%
MolCRAFT -6.96 -7.47 -7.86 -7.73 -8.80 -8.65 0.44 0.59 91.7% 19.9%
MolJO -8.08 -8.35 -8.79 -8.58 -9.21 -9.45 0.53 0.62 93.2% 32.7%

Hopping

TargetDiff -5.72 -5.78 -6.00 -5.83 -6.31 -6.66 0.39 0.65 63.3% 6.2%
TAGMol -6.17 -6.10 -6.46 -6.07 -7.19 -6.80 0.44 0.62 68.7% 6.9%
MolCRAFT -6.31 -6.17 -6.58 -6.40 -7.25 -7.15 0.42 0.67 89.9% 14.6%
MolJO -6.86 -6.50 -7.13 -6.70 -7.67 -7.58 0.46 0.68 90.5% 23.6%

2PC8
R-group design results

Vina Score -8.98, QED 0.84, SA 0.75Vina Score -5.45, QED 0.34, SA 0.66

1A2G

2E24

Vina Score -5.33, QED 0.68, SA 0.94Vina Score -4.40, QED 0.58, SA 0.83

Vina Score -5.39, QED 0.41, SA 0.62 Vina Score -5.98, QED 0.60, SA 0.74

Reference Reference Scaffold hopping results

Vina Score -11.28, QED 0.64, SA 0.68Vina Score -9.93, QED 0.54, SA 0.58

2AZY

   

Figure 4: Visualization of the binding modes of the reference molecule (carbons in green) and the
optimized molecule (in cyan) within the protein pocket (PDB ID: 2PC8, 2AZY, 1A2G, 2E24). The
molecules and key residues (in blue) are shown in stick, while the protein’s main chain is drawn in
cartoon (in gray). Dashed lines of various colors indicate different types of non-bonding interactions.
Left: R-group optimization results. Right: scaffold hopping results.

show its potential for pharmaceutical use cases including R-group optimization and scaffold hopping,
achieved by infilling. Details of this task are in Appendix D.2.

MolJO captures the complex environment of infilling. Table 3 shows that our method generates
valid connected molecules and captures the complicated chemical environment with better molecular
properties than all baselines, showcasing its potential for lead optimization. As for diffusion baselines,
they generate fewer valid connected molecules especially in the challenging case with scaffold
hopping, with diffusion baselines lower than 70% validity, and proves to be less effective in proposing
feasible candidates, with Success Rate < 20%.

Optimized molecules form more key interactions for binding. The visualization for constrained
optimization is shown in Figure 4. It can be seen that the optimized molecules establish more key
interactions with the protein pockets, thus binding more tightly to the active sites. For example, the
optimized molecule for 2PC8 retains the key interaction formed by its scaffold, with R-group grown
deeper inside the pocket, forming another two π-π stackings.

5.4 ABLATION STUDIES

We conduct ablation studies to thoroughly validate our design. More details are left in Appendix F.2.
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Figure 5: Ablation studies of joint optimization over atom types and coordinates, where w/o type
means the gradient is disabled for types, w/o coord disables the gradient for coordinates.

Joint guidance is consistently better than single-modality guidance. To validate our choice of
joint guidance over different modalities, we ablate the gradient for coordinates or types. As shown
in Figure 5, utilizing gradients to guide both data modalities is consistently better than applying
single-modality gradient only. For affinities, optimizing coordinates is effective in improving the
spatial interactions, while for drug-like properties, guidance over atom types plays a crucial role. This
underscores the significance of deriving appropriate guidance form jointly, and again supports our
finding that a single coordinate guidance as in TAGMol is insufficient and yields suboptimal results.

Backward correction boosts both the unguided sampling and the effect of guidance. We denote
sampling θi according to Eq. 11 Vanilla for sampling only one y ∼ pS in Eq. 1, Vanilla MC for
a Monte Carlo estimate that integrates over multiple y, and sampling proposed by MolCRAFT is
denoted Full B.C. as it corresponds to setting k = n = 200 in Eq. 13, and for B.C. we set k = 130
as backward correction steps. Table 4 shows that our method of keeping a history and selectively
correcting the past not only improves the original unguided sampling, but also yields better results
with guidance. Note that for vanilla case, the gradient guidance does not work as much probably due
to the suboptimal history, while correcting a sufficient number of past steps boosts the optimization.

Table 4: Performances of no backward correction (Vanilla & Vanilla MC), fully corrected strategy
(Full B.C.) and backward correction strategy (B.C.). Positive numbers in green show the relative
improvement under guidance, while non-positive numbers in black indicate no performance gain.

Sampling Strategy Vina Score (↓) Vina Min (↓) QED (↑) SA (↑)
Avg. Med. Avg. Med. Avg. Avg.

w/o Guide

Vanilla (k=1) -5.23 -5.81 -6.30 -6.17 0.46 0.62
Vanilla MC (k=1) -6.25 -6.70 -7.01 -7.05 0.51 0.61
Full B.C. (k=200) -6.22 -6.94 -7.14 -7.13 0.49 0.68
B.C. (k=130) -6.50 -7.00 -7.03 -7.14 0.49 0.69

w/ Guide

Vanilla (k=1) -5.47 (+4.6%) -5.89 (+1.4%) -6.29 (-0.2%) -6.31 (+2.3%) 0.46 (+0.0%) 0.62 (+0.0%)
Vanilla MC (k=1) -6.62 (+5.9%) -7.27 (+8.5%) -7.74 (+10.4%) -7.79 (+10.5%) 0.55 (+7.8%) 0.65 (+6.6%)
Full B.C. (k=200) -7.42 (+19.3%) -7.98 (+15.0%) -8.25 (+15.5%) -8.24 (+15.6%) 0.54 (+10.2%) 0.76 (+11.8%)
B.C. (k=130) -7.52 (+15.7%) -8.06 (+15.1%) -8.34 (+18.6%) -8.40 (+17.6%) 0.56 (+14.3%) 0.77 (+11.6%)

6 CONCLUSION

We present MolJO, the joint gradient-based SE(3)-equivariant framework to solve the structure-
based molecule optimization problems, which only requires training energy functions as a proxy to
predict molecular property, instead of expensive oracle simulations. The general framework further
equips gradient-based optimization method with backward correction strategy, offering a flexible
trade-off between exploration and exploitation. Experiments show that MolJO is able to improve the
binding affinity of molecules by establishing more key interactions and enhance drug-likeness and
synthesizability, achieving state-of-the-art performance when benchmarked on CrossDocked2020
(Success Rate 51.3%, Vina Dock -9.05 and SA 0.78), together with 4× improvement compared to
gradient-based counterpart and 2× “Me-Better” Ratio as much as other 3D baselines.
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This work is aimed at facilitating structure-based molecule optimziation (SBMO) for drug discovery
pipeline. The positive societal impacts include effective design of viable drug candidates. While
there is a minimal risk of misuse for generating harmful substances, such risks are mitigated by the
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and implementation in Appendix D.
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A OVERVIEW OF BAYESIAN FLOW NETWORKS

In this section, we provide a further explanation of Bayesian Flow Networks (BFNs) that are designed
to model the generation of data through a process of message exchange between a “sender” and a
“receiver” (Graves et al., 2023). The fundamental elements include the sender distribution for the
sender, and input distribution, output distribution, receiver distribution for the receiver.

This process is framed within the context of Bayesian inference, where the sender distribution is
a factorized distribution pS(y|m, αt) that introduces noise to each dimension of the data m and
sends it to the receiver, which observes the y and has access to the noisy channel with accuracy α
at timestep t, and compares it with its own receiver distribution pR(y|θ,p; t) based on its current
belief of the parameters θ, the timestep and any conditional input such as protein pocket p.

The generative process for the receiver begins with a prior distribution (referred to as input distribution
pI(m|θ) =

∏N
d=1 pI(m

(d)|θ(d)) that is also factorized for N -dimensional data) that defines its initial
belief about the data. For continuous data, the prior can be chosen as a Gaussian (Song et al., 2024;
Qu et al., 2024), or other distribution such as von Mises distribution (Anonymous, 2024), while
for discrete data, the prior is modeled as a uniform categorical distribution. Then, the receiver
uses its belief θ with the help of neural network to model the inter-dependency among dimensions
and compute the output distribution pO(m̂|θ,p; t), which represents its estimate of the possible
reconstructions of original data m, and is used to construct the receiver distribution (Eq. 3).

The Bayesian update function in Eq. 1 defines how the prior belief θ0 is updated to the conjugate
posterior θt. Ideally, the update requires aggregating all possible noisy latents y from the sender
distribution pS , while during the actual generative process, there is only receiver distribution pR,
leaving an exposure bias, and different approximations determine different forms of mapping f to the
posterior (Eq. 2), showcasing the flexibility in the design space of BFN.

Through the iterative communication between sender and receiver, the receiver progressively updates
its belief of the underlying parameters, and training is achieved by minimizing the divergence between
the sender and receiver distributions (Eq. 4). This is analogous to the way Bayesian inference works
in parameter estimation: as more noisy data y is observed, the receiver’s posterior belief about the
data m becomes increasingly accurate, which implies the reconstruction would be made easier.

B SENDER DISTRIBUTION FOR DISCRETE DATA

The continuous parameter z for discrete types v is updated by observed noisy yv. Here we briefly
introduce how to configure the sender so that yv follows a Gaussian as well. For detailed derivation,
we refer the readers to Graves et al. (2023).

While true discrete data can be viewed as a sharp one-hot distribution, it can be further relaxed by
a factor ω ∈ [0, 1] into a Categorical distribution, with the probability p(k(d)|v(d);ω) = 1−ω

K +
ωδk(d)v(d) for k from 1 to K along the d-th dimension, where δ is the Kronecker delta function.

Instead of focusing on the density or sampling once from it, note that the counts c of observing each
class in m independent draws follow a multinomial distribution, namely c ∼ Multi(m, p). Dropping
the superscripts, Graves et al. (2023) derives the following conclusions:

Proposition B.1. When the number of experiments m is large enough, the frequency approximates
its density for class indexed at k, i.e. limm→∞

ck
m = p(k|v;ω), following the law of large numbers.

Furthermore, by the central limit theorem, it follows that c−mp√
mp(1−p)

∼ N (0, I) when m→∞.

Proposition B.2. Denoting yk = (ck − m
K ) ln ξ with ξ = 1 + ωK

1−ω , and pS(yk|v;α) =

limω→0 p(yk|v;ω) with α = mω2, it holds from the change of variables that pS(yk|v;α) =
N (α(Kδkv − 1), αK).

Thus it naturally follows that such noisy yv ∼ N (yv|α(Kev − 1), αKI).
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C PROOFS

C.1 PROOF OF GUIDED BAYESIAN UPDATE DISTRIBUTION

Lemma. If a random vector X has probability density f(x) ∝ N (x|µ,Σ)ec
Tx, where c is a constant

vector with the same dimension as X, then X ∼ N (µ+Σc,Σ).

Proof. We obtain the proof by completing the square as shown below.

log f(x) =C − 1

2
(x− µ)TΣ−1(x− µ) + cTx

=C ′ − 1

2
(x− µ−Σc)TΣ−1(x− µ−Σc) (16)

where C and C ′ are constant scalars.

Proposition (4.1). Assuming µi ∼ N (µϕ, σ) and yi ∼ N (yϕ, σ
′) in the original generative process

of BFN, we can approximately sample µi,yi from the guided transition kernel π(θi|θi−1) according
to Eq. 5 and 6.

Proof. Under the definition of π, with the parameters θi = (µi, zi) redefined as (µi,yi), we have

π(µi,yi|θi−1) ∝ pϕ(µi,yi|θi−1)pE(µi,yi) (17)

where we have omitted some parentheses and protein pocket condition p for brevity.

Eq. 14 and 15 guarantee that µi ∼ N (µϕ, σ), yi ∼ N (yϕ, σ
′). Plugging pE(µi,yi) ∝ e−E(µi,yi,ti)

into Eq. 17, we get

π(µi,yi|θi−1) ∝ N (µϕ, σ)N (yi|yϕ, σ
′) e−E(µi,yi,ti) (18)

With ti fixed, perform a first-order Taylor expansion to E(µ,y, ti) at (µi−1,yi−1):

E(µi,yi, ti) ≈ E(µi−1,yi−1, ti)− gT
µ(µi − µi−1)− gT

y (yi − yi−1) (19)

where gradient gµ = −∇µE(θ, ti)|θ=θi−1
, gy = −∇yE(θ, ti)|θ=θi−1

. Substitute it into Eq. 18:

π(µi,yi|θi−1)
apx
∝ N (µi|µϕ, σ)N (yi|yϕ, σ

′)eg
T
µµi+gT

yyi (20)

Eq. 20 together with the lemma above leads to Proposition 4.1.

C.2 PROOF OF EQUIVARIANCE

Proposition (4.4). The guided sampling process preserves SE(3)-equivariance when Φ is SE(3)-
equivariant, if the energy function E(θ,p, t) is also parameterized with an SE(3)-equivariant neural
network, and the complex is shifted to the space where the protein’s Center of Mass (CoM) is zero.

Proof. Following Schneuing et al. (2022), once the complex is moved so that the pocket is centered
at the origin (i.e. zero CoM), translation equivariance becomes irrelevant and only O(3)-equivariance
needs to be satisfied.

For any orthogonal matrix R ∈ R3×3 such that R⊤R = I, it is easy to see that the prior µ0 = 0 is
O(3)-invariant. Given that x̂ ∼ pO(x̂ | Φ(θ,p, t)) and the equivariance of Φ, it suffices to prove the
invariant likelihood for the transition kernel to complete the proof.

Given the parameterization of pretrained energy function E(θ,p, t) is SE(3)-equivariant, then the
gradient gµ(θ) = −∇µE(θ,p, ti) is also equivariant according to Bao et al. (2022).

Without loss of generality, we consider the guided transition density for i ≤ k, which simplifies to

π(µi | µi−1,yi−1,p)

= N (µi | γiΦ(µi−1,yi−1,p) + γi(1− γi)gµ(µi−1,yi−1,p, ti−1), γi(1− γi)I)
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where γi
def
:= β(ti)

1+β(ti)
.

Then we can prove that it is O(3)-invariant:

π(Rµi |Rµi−1,yi−1,Rp)

= N (Rµi | γiΦ(Rµi−1,yi−1,Rp) + γi(1− γi)gµ(Rµi−1,yi−1,Rp, ti−1), γi(1− γi)I)

= N (Rµi | γiΦ(Rµi−1,yi−1,Rp) + γi(1− γi)Rgµ(µi−1,yi−1,p, ti−1), γi(1− γi)I)

(equivariance of gµ)
= N (Rµi | γiRΦ(µi−1,yi−1,p) + γi(1− γi)Rgµ(µi−1,yi−1,p, ti−1), γi(1− γi)I)

(equivariance of Φ)
= N (µi | γiΦ(µi−1,yi−1,p) + γi(1− γi)gµ(µi−1,yi−1,p, ti−1), γi(1− γi)I)

(equivariance of isotropic Gaussian)
= π(µi | µi−1,yi−1,p)

It also applies to cases where i > k, for we can recurrently view the starting point of backward
corrected history µi−k as the new O(3)-invariant prior µ0 and iteratively make the above derivation.

D IMPLEMENTATION DETAILS

D.1 MODEL DETAILS

Backbone. Our BFN backbone follows that of MolCRAFT (Qu et al., 2024), and we conduct
optimization during sampling on the pretrained checkpoint without finetuning.

Training Property Regressors. In order for a differentiable oracle function, we additionally
train the energy function based on the molecules and their properties (Vina Score, QED, SA) in
CrossDocked dataset (Francoeur et al., 2020) by minimizing the squared loss for property c over the
data distribution pdata:

L = Epdata
|E(θ,p, t)− c|2 (21)

The input parameters to all energy functions belong to the parameter space defined by β1 = 1.5
for atom types, σ1 = 0.03 for atom coordinates, n = 1000 discrete steps. The energy network is
parameterized with the same model architecture as TargetDiff (Guan et al., 2022), i.e. kNN graphs
with k = 32, N = 9 layers with d = 128 hidden dimension, 16-headed attention, and the same
featurization, i.e. protein atoms (H, C, N, O, S, Se) and ligand atoms (C, N, O, F, P, S, Cl). For
training, Adam optimizer is adopted with learning rate 0.005, batch size is set to 8. The training takes
less than 8 hours on a single RTX 3090 and converges within 5 epochs.

Sampling. To sample via guided Bayesian flow, we set the sample steps to 200, and the guidance
scale to 50. For the combination different objectives, we merely take an average of different gradients.

D.2 TASK DETAILS

R-group optimization. Cases of lead optimization involve retaining the scaffold while redesigning
the remaining R-groups, usually when the scaffold forms desirable interactions with the protein
and anchors the binding mode, and the remaining parts need further modifications to secure this
pattern and enhance binding affinity. Following Polykovskiy et al. (2020), we employ RDKit for
fragmentization and atom annotation with R-group or Bemis-Murcko scaffold.

Scaffold hopping. Different from R-group design, scaffold hopping means to redesign the scaffold
for a given molecule while keeping its core functional groups, for example to overcome the patent
protection for a known drug molecule while retaining pharmaceutical activity. This is a technically
more challenging task for generative models, for the missing parts they need to fulfill are generally
larger than those in R-group design, and the hopping is usually subject to more chemical constraints.
We construct scaffold hopping as a dual problem to R-group optimization with Bemis-Murcko
scaffolding annotation, although it does not need to be so.
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Figure 6: Distribution of molecular properties (QED, SA, Vina Score) over the number of atoms for
CrossDocked2020. For each size, the mean and error bars are shown in the boxplot.

Table 5: Molecular properties under different sizes, where Ref Size denotes 23 atoms on average, and
Large Size around 30 atoms. Top 2 results are highlighted with bold text and underlined text.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑) Div (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Avg. Avg. Rate (↑)

DecompDiff -5.19 -5.27 -6.03 -6.00 -7.03 -7.16 0.51 0.66 0.73 14.9%
Ref DecompOpt -5.75 -5.97 -6.58 -6.70 -7.63 -8.02 0.56 0.73 0.63 39.4%
Size MolCRAFT -6.59 -7.04 -7.27 -7.26 -7.92 -8.01 0.50 0.69 0.72 26.0%

MolJO -7.52 -8.02 -8.33 -8.34 -9.05 -9.13 0.56 0.78 0.66 51.3%

DecompDiff -5.67 -6.04 -7.04 -7.09 -8.39 -8.43 0.45 0.61 0.68 24.5%
Large DecompOpt -5.87 -6.81 -7.35 -7.72 -8.98 -9.01 0.48 0.65 0.60 52.5%
Size MolCRAFT -6.61 -8.14 -8.14 -8.42 -9.25 -9.20 0.46 0.62 0.61 36.6%

MolJO -7.93 -9.26 -9.47 -9.73 -10.53 -10.48 0.50 0.72 0.57 64.2%

E EFFECT OF MOLECULAR SIZE ON PROPERTIES

The size of molecules are found with a notable impact over molecular properties including Vina
affinities (Qu et al., 2024). We quantify the relationship and plot the distribution of molecular
properties w.r.t. the number of atoms with the Pearson correlation coefficient in Figure 6. It is not
surprising to see a non-negligible correlation between properties and molecular sizes, since the size of
molecules typically constrain its possibility over the chemical space. To ensure a fair comparison, we
stick to the molecular space with similar size to the reference. For further comparison among different
model variants, we report the molecular properties under different sizes in Table 5. Results show
that our method consistently achieves the highest success rate, demonstrating its robust optimization
ability even in an Out-of-Distribution (OOD) scenario.

F FULL OPTIMIZATION RESULTS

Baselines. We provide a detailed description of all baselines here:

• AR (Luo et al., 2021) uses MCMC sampling to reconstruct a molecule atom-by-atom given
voxel-wise densities.

• GraphBP (Liu et al., 2022) is an autoregressive atom-based model that uses normalizing
flow and encodes the context to preserve 3D geometric equivariance.
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• Pocket2Mol (Peng et al., 2022) generates one atom with bond at a time via an E(3)-
equivariant network. It predicts frontier atoms to expand, alleviating the efficiency problem
in sampling.

• FLAG (Zhang et al., 2023) is a fragment-based model that assembles the generated frag-
ments via predicted coordinates and torsion angles.

• DiffSBDD (Schneuing et al., 2022) constructs an equivariant continuous diffusion for full-
atom generation given pocket information, and applies Gaussian noise to both continuous
atom coordinates and discrete atom types.

• TargetDiff (Guan et al., 2022) adopts a continuous-discrete diffusion approach that treats
each modality via corresponding diffusion process, achieving better performance than
continuous diffusion such as DiffSBDD.

• DecompDiff (Guan et al., 2023) decomposes the molecules into contact arms and linking
scaffolds, and utilizes such chemical priors in the diffusion process.

• IPDiff (Huang et al., 2024) pretrains an affinity predictor, and utilizes this predictor to
extract features that augments the conditioning of diffusion generative process.

• MolCRAFT (Qu et al., 2024) employs Bayesian Flow Network for molecular design with
an advanced sampling strategy, showing notable improvement upon diffusion counterparts.

• AutoGrow4 (Spiegel & Durrant, 2020) is an evolutionary algorithm that uses genetic
algorithm to optimize 1D SMILES, with additional docking simulation. Starting from the
initial seed molecule, AutoGrow4 iteratively conducts mutations and crossovers, then makes
oracle calls for docking feedback, and keeps the top-scoring molecules in the end.

• RGA (Fu et al., 2022) is built on top of AutoGrow4, and utilizes a pocket-aware RL-trained
policy to suppress its random walking behavior in traversing the molecular space.

• DecompOpt (Zhou et al., 2024) trains a conditional generative model on decomposed
fragments besides binding pocket, following the style of DecompDiff. The optimization is
done by iteratively re-sampling in the 3D diffusion latent space given the top K arms ranked
by oracle functions as updated fragment condition input.

• TAGMol (Dorna et al., 2024) exerts gradient-based property guidance over the pretrained
TargetDiff backbone, and the gradient is enabled only in the continuous diffusion process
for coordinates.

Metrics. Besides the common evaluation metrics such as binding affinities calculated by Autodock
Vina (Eberhardt et al., 2021) and QED, SA by RDKit, we elaborate other metrics as follows:

• Diversity measures the diversity of generated molecules for each binding site. Following
SBDD convention (Luo et al., 2021), it is based on Tanimoto similarity over Morgan
fingerprints, and averaged on 100 test proteins.

• Connected Ratio is the ratio of complete molecules among all generated molecules, i.e. with
only one connected component.

• Lipinski enumerates Lipinski rule of five (Lipinski et al., 1997) and checks how many
rules are satisfied. These rules are typically seen as empirical reference that helps to predict
whether the molecule is likely to be orally bioavailable.

• Key Interaction, i.e. key non-covalent interactions formed between molecules and protein
binding sites as an in-depth measure for binding modes, including π interactions, hydro-
gen bonds (donor and acceptor), salt bridges and hydrophobic interactions calculated by
Schrödinger Glide (Halgren et al., 2004).

• Strain Energy measures the internal energy of generated poses, serving as an indicator of
pose quality as proposed by Harris et al. (2023).

• Steric Clash calculates the number of clashes between generated ligand and protein surface,
where clashing means the distance of ligand and protein atoms are within a certain threshold.
This reveals the stability of complex to some extend, yet it does not strictly mean violation
of physical constraint since the protein is not that rigid and might also go through spatial
rearrangement upon binding, as noted by Harris et al. (2023).
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• Redocking RMSD reports the percentage of molecules with an RMSD between generated
and Vina redocked poses lie within the range of 2Å, which suggests the binding mode
remains consistent after redocking.

F.1 MOLECULE OPTIMIZATION

Overall Distributions. We additionally report the property distributions for Vina Score, SA, and
QED in Figure 15, 13, 14, respectively, demonstrating the efficacy of our proposed method in
optimizing a number of objectives for “me-better” drug candidates.

Affinity Analysis. We present the tail distribution of Vina affinities in Table 6, demonstrating that
our method not only excels in optimizing overall performance as shown in Figure 3, but also enhances
the quality of the best possible binders.

To better understand the enhanced binding affinites, we further analyze the distribution of non-
covalent interactions that are known to play an important role in stabilizing protein-ligand complexes.
Figure 7 demonstrates that the improved affinity results are achieved by forming a greater number of
hydrophobic interactions, more hydrogen bond acceptors as well as π interactions.
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Figure 7: Non-covalent interaction distributions of reference and optimized molecules.

Table 6: Tail distribution of Vina affinities.

Vina Score 5% Vina Min 5% Vina Dock 5%

Reference -9.98 -9.93 -10.62

AR -10.05 -10.33 -10.56
Pocket2Mol -10.47 -11.77 -12.36
TargetDiff -11.10 -11.57 -11.89
DecompDiff -10.04 -10.96 -11.77
IPDiff -12.98 -13.40 -13.63
MolCRAFT -12.14 -12.34 -12.58
DecompOpt -10.78 -11.70 -12.73
TAGMol -13.15 -13.50 -13.67
MolJO -13.59 -13.90 -14.18

Combination of Objectives. In Table 7, we report the results for an exhausted combination of
different objectives under the unconstrained setting, where 1000 molecules are sampled in total.
It can be seen that combining two objectives yields nearly the best optimized performances for
each objective, with the choice of Affinity + SA even displaying improvement in QED. However,
from the QED + SA setting, we observe a negative impact on binding affinity. It is possible that
too high a requirement of QED and SA further constrains the chemical space for drug candidates,
limiting the types of potential interactions with protein surfaces. When it comes to all objectives,
MolJO achieves balanced optimization results, i.e. satisfactory QED and SA comparable to single
objective optimization or the combination of two, and enhanced affinities compared with the results
without affinity optimization, though slightly inferior to the best possible affinity optimization results.
This might stem from QED + SA problems described above, suggesting a careful handling of these
two objectives. In this regard, we simply choose Affinity + SA objectives in all our main experiments
for a clear demonstration of our optimization ability.

For a better understanding of the correlation between objectives, we plot the pairwise relationships
for the molecules in the training set in Figure 8, and calculate the Spearman’s rank coefficient of
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correlation ρ. The Spearman ρ is 0.41 between SA and QED, and it is reasonable to see such a
positive correlation between SA and QED, since these are both indicators of drug-likeness with
certain focus and thus alternative to some extent. This aligns with our findings that adopting the
Affinity + SA objectives can also benefit QED, and justifies our choice of optimization objectives in
this sense. Moreover, although there is also a slightly positive correlation between Vina Score and
SA (ρ = 0.33), meaning that it is nontrivial to simultaneously optimize both properties, our method
succeeds in finding the best balanced combination of properties, demonstrating the superiority of
joint optimziation compared with TAGMol.

Table 7: Combinations of different objectives. Top-2 results are highlighted in bold and underlined,
respectively.

Objective Vina Score (↓) Vina Min (↓) QED (↑) SA (↑) Connected (↑)Avg. Med. Avg. Med.

Affinity -7.74 -7.96 -8.21 -8.19 0.52 0.68 0.87
QED -6.84 -7.32 -7.54 -7.65 0.66 0.70 0.99
SA -6.25 -7.24 -7.48 -7.65 0.57 0.78 0.97
QED+SA -6.55 -7.23 -7.38 -7.52 0.65 0.74 0.99
Affinity+QED -7.46 -8.04 -8.18 -8.20 0.64 0.67 0.98
Affinity+SA -7.08 -7.88 -8.05 -8.21 0.57 0.75 0.97
All -7.09 -7.47 -7.79 -7.76 0.62 0.73 0.98

F.2 ABLATION STUDIES

Table 8: Ablation studies of joint optimization for atom types and coordinates, where w/o type means
the gradient is disabled for types. Top 2 results are highlighted with bold and underlined text.

Objective Methods Vina Score (↓) Vina Min (↓) QED (↑) SA (↑)Avg. Med. Avg. Med.

Affinity
Ours -7.74 -7.96 -8.21 -8.19 0.52 0.68
w/o type -7.13 -7.58 -7.82 -7.80 0.50 0.66
w/o coord -6.61 -7.23 -7.42 -7.53 0.52 0.71

QED
Ours -6.84 -7.32 -7.54 -7.65 0.66 0.70
w/o type -6.41 -7.03 -7.20 -7.26 0.52 0.67
w/o coord -6.50 -7.20 -7.44 -7.42 0.65 0.70

SA
Ours -6.25 -7.24 -7.48 -7.65 0.57 0.78
w/o type -6.29 -6.85 -7.07 -7.09 0.51 0.70
w/o coord -6.71 -7.22 -7.60 -7.60 0.57 0.77

Effect of Joint Guidance. Table 8 shows the effectiveness of joint guidance over coordinates or
types. Utilizing gradients to guide both data modalities is consistently better than applying single
gradient only, since the energy landscape of a molecular system is a function of both the atom coordi-
nates and the types. Lack of direct control over either modality can lead to suboptimal performance
due to not efficiently exploring the chemical space where certain atomic types naturally pair with
specific spatial arrangements. Specifically, it can be seen that for affinities, the optimization is closely
related to coordinates, while for drug-like properties, simply propagating gradients over coordinates
displays no improvement at all. This validates our choice of finding appropriate guidance form jointly,
and a single coordinate guidance would be insufficient for generating desirable molecules.

Effect of Backward Correction. We conduct ablation studies regarding the proposed backward
correction strategy. w/o Correction denotes sampling θi according to Eq. 11. Figure 9 shows
that increasing the steps k in Eq. 13 that have been corrected backward boosts the optimization
performance once sufficient past steps are corrected for optimization.

It can be inferred that sampling pϕ(θi|θi−1,θi−k) up until θn results in a chain of parameters
{θTi}

⌊n/k⌋
i=0 , where Ti = ik + (n mod k), and θi ∼ pϕ(θi, |θi−1,θ0) when i ≤ (n mod k).
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Figure 8: Pairwise correlation of different properties. On the diagonal are histograms showing single
property distributions on CrossDocked2020.
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Smaller number k of corrected steps moves the starting point θT0
closer to θ0 and sees more updates

along the chain. We observe that when k is too small, the sampling process tends to suffer from error
accumulation instead of error correction due to stochasticity. Once k is larger than 50, the process is
better balanced in exploiting the shortcut (i.e. interval k) and exploring the stochasticity to reduce
approximation errors via a few updates (i.e. ⌊n/k⌋). The final k is set to 130.
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Figure 9: Ablation study of backward correction. Correction Step on the x-axis means the length of
history k, and w/o Correction means vanilla update (k = 1) with a Monte-Carlo estimate of y.

Effect of Scales. We conduct a grid search of guidance scales, and report the full results of ablation
studies on different guiding scales within the range {0.1, 1, 10, 20, 50, 100} for different objectives
(Affinity, QED, SA) in Table 9, where 10 molecules are sampled for each of the 100 test proteins.

For binding affinity, the optimization performance steadily improves with increasing scales, but the
ratio of complete molecules significantly decreases when the scale is greater than 50.

For QED and SA, MolJO achieves best results when the scale is around 20 and 50.

In order to maintain the comparability with molecules without guidance, we stick to the scale range
where the connected ratio remains acceptable, and therefore set the guidance scale to 50 for all our
experiments.

Table 9: Full ablation studies on different guiding scales for different objectives. Top-1 values are
highlighted in bold.

Objective Scale Vina Score (↓) Vina Min (↓) QED (↑) SA (↑) Connected (↑)Avg. Med. Avg. Med.

Affinity

0.1 -6.28 -6.98 -7.17 -7.25 0.50 0.70 0.96
1 -6.24 -7.01 -7.27 -7.29 0.50 0.69 0.96
10 -6.69 -7.46 -7.46 -7.67 0.51 0.70 0.97
20 -7.03 -7.87 -7.84 -8.08 0.51 0.70 0.98
50 -7.64 -8.38 -8.39 -8.64 0.53 0.68 0.90

100 -9.33 -9.55 -9.87 -9.85 0.55 0.63 0.55

QED

0.1 -6.03 -6.92 -7.10 -7.19 0.51 0.70 0.97
1 -6.24 -7.09 -7.31 -7.31 0.56 0.71 0.96
10 -6.12 -7.07 -7.29 -7.41 0.66 0.71 0.98
20 -6.33 -7.23 -7.34 -7.64 0.66 0.69 0.98
50 -6.84 -7.32 -7.54 -7.65 0.66 0.70 0.99

100 -6.25 -6.83 -7.02 -7.10 0.62 0.60 0.95

SA

0.1 -6.30 -7.11 -7.19 -7.29 0.50 0.70 0.96
1 -6.17 -7.16 -7.36 -7.37 0.52 0.73 0.97
10 -5.87 -7.23 -7.39 -7.72 0.57 0.78 0.98
20 -6.14 -7.24 -7.49 -7.72 0.56 0.79 0.98
50 -6.38 -7.29 -7.86 -7.77 0.54 0.79 0.99

100 -6.08 -7.36 -7.51 -7.85 0.54 0.78 0.98

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

G EVALUATION OF MOLECULAR CONFORMATION

PoseCheck Analysis. To measure the quality of generated ligand poses, we further employ
PoseCheck Harris et al. (2023) to calculate the Strain Energy (Energy) of molecular conforma-
tions and Steric Clashes (Clash) w.r.t. the protein atoms in Figure 10 and 11, respectively.

Our proposed MolJO not only significantly outperforms the other optimization baselines in both
Energy and Clash, but also shows competitive results with strong-performing generative models,
in which Pocket2Mol achieves lower strain energy via generating structures with fewer rotatable
bonds as noted by Harris et al. (2023), and fragment-based model FLAG directly incorporates rigid
fragments in its generation. As for clashes, we achieve the best results in non-autoregressive methods.

Notably, IPDiff ranks the least in Strain Energy and displays severely strained structures despite its
strong performance in binding affinities. This arguably suggests that directing utlizing pretrained
binding affinity predictor as feature extractor might result in spurious correlated features, even
harming the molecule generation.

RMSD Distribution. We report the ratio of redocking RMSD below 2Å between generated poses
and Vina docked poses to reveal the agreement of binding mode. Due to issues of poses generate
by Autodock, not all pose pairs are available for calculating symmetry-corrected RMSD, where
we report the non-corrected RMSD instead to make sure that all samples are faithfully evaluated.
As shown in Figure 12, the optimization methods all display a tendency towards generating a few
outliers, which might be attributed to the somewhat out-of-distribution (OOD) nature of optimization
that seeks to shift the original distribution. Among all, DecompOpt generates the most severe outliers
with RMSD as high as 160.7 Å, and its unsatifactory performance is also suggested by the lowest
ratio of RMSD < 2Å (24.3%), while for gradient-based TAGMol and our method, it only has a
negligible impact and the ratio is generally more favorable.

Overall Conformation Quality and Validity. The overall results in Table 10 show that our
gradient-based method actually improves upon the conformation stability of backbone in terms of
energy and clash, demonstrating its ability to faithfully model the chemical environment of protein-
ligand complexes, while DecompOpt generates heavily strained structures similar to DecompDiff,
and TAGMol ends up with even worse energy than its backbone TargetDiff. Moreover, from the
perspective of validity reflected by Connected Ratio, the optimization efficiency of RGA and
DecompOpt is relatively low as suggested by the ratio of successfully optimized molecules.

Ring Size. For a comprehensive understanding of the effect of property guidance, we additionally
report the distribution of ring sizes in Table 11, showing that the gradient-based property guidance
generally favors more rings, but our result still lies within a reasonable range, and even improves
upon the ratio of 4-membered rings.

Table 10: Summary of conformation stability results. Energy, Clash are calculated by PoseCheck.
Connected is the ratio of successfully generated valid and connected molecules.

Energy Med. (↓) Clash Avg. (↓) RMSD < 2Å (↑) Connected (↑)1

Reference 114 5.46 34.0% 100%

AR 608 4.18 36.5% 93.5%
Pocket2Mol 186 6.22 31.3% 96.3%
FLAG 396 40.83 8.2% 97.1%
TargetDiff 1208 10.67 31.0% 90.4%
DecompDiff 983 14.23 25.1% 72.0%
IPDiff 5861 10.31 17.9% 90.1%
MolCRAFT 196 6.91 42.4% 96.7%
RGA - - - 52.2%
DecompOpt 861 16.6 24.3% 2.64%
TAGMol 2058 7.41 37.2% 92.0%
MolJO 163 6.72 43.5% 97.3%
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Figure 10: Cummulative density function (CDF) for strain energy distributions of generated molecules
and reference molecules.
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Figure 11: Box plot for clash distributions of generated molecules and reference molecules.
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Figure 12: Boxplot for RMSD distributions of generated molecules and reference molecules.

H INFERENCE TIME

We report the time cost in Table 12 for optimization baselines in the table below, which is calculated
as the time for sampling a batch of 5 molecules on a single NVIDIA RTX 3090 GPU, averaged over
10 randomly selected test proteins.

I MORE RELATED WORKS

Molecule Optimization As an alternative to target-aware generative modeling of 3D molecules,
the optimization methods are goal-directed, obtain desired ligands usually by searching in the drug-
like chemical space guided by property signals (Bilodeau et al., 2022; Du et al., 2024). General
optimization algorithms were originally designed for ligand-based drug design (LBDD) and optimize

1Connected ratio of DecompOpt and RGA is calculated based on the optimization results of all rounds
provided by the authors. For each of the N rounds, a total of k molecules ought to be generated, thus we divide
the total number of optimized molecules for n pockets by N × k × n.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Reference
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SA

AR Pocket2Mol FLAG TargetDiff DecompDiff IPDiff MolCRAFT DecompOpt TAGMol Ours
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 13: Violin plot for SA distributions of generated molecules and reference molecules.
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Figure 14: Violin plot for QED distributions of generated molecules and reference molecules.
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Figure 15: Violin plot for Vina Score distributions of generated molecules and reference molecules.
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Figure 16: Violin plot for Vina Min distributions of generated molecules and reference molecules.
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Figure 17: Violin plot for Vina Dock distributions of generated molecules and reference molecules.

Table 11: Proportion (%) of different ring sizes in reference and generated ring structured molecules,
where 3-Ring denotes three-membered rings and the like.

#Rings Avg. 3-Ring 4-Ring 5-Ring 6-Ring

Reference 2.8 4.0 0.0 49.0 84.0
Train 3.0 3.8 0.6 56.1 90.9

AR 3.2 50.8 0.8 35.8 71.9
Pocket2Mol 3.0 0.3 0.1 38.0 88.6
FLAG 2.1 3.1 0.0 39.9 84.7
TargetDiff 3.1 0.0 7.3 57.0 76.1
DecompDiff 3.4 9.0 11.4 64.0 83.3
IPDiff 3.4 0.0 6.4 51.0 83.7
MolCRAFT 3.0 0.0 0.6 47.0 85.1

DecompOpt 3.7 6.8 11.8 61.4 89.8
TAGMol 4.0 0.0 8.5 62.5 82.6
MolJO (Aff) 3.6 0.0 0.4 46.7 92.5
MolJO (QED) 3.7 0.0 0.5 58.0 96.1
MolJO (SA) 3.8 0.0 0.2 37.0 97.8
MolJO (Aff+SA) 3.9 0.0 0.1 37.0 98.1
MolJO (All) 3.6 0.0 0.3 44.4 97.6

Table 12: Inference time cost of optimization baselines.

Model Ours TAGMol DecompOpt RGA AutoGrow4

Time (s) 146 ± 11 667 ± 69 11714 ± 1115 458 ± 43 2586 ± 360
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common molecule-specific properties such as LogP and QED (Olivecrona et al., 2017; Jin et al.,
2018; Nigam et al., 2020; Spiegel & Durrant, 2020; Xie et al., 2021; Bengio et al., 2021), but could
be extended to structure-based drug design (SBDD) given docking oracles. However, since most
early attempts did not take protein structures into consideration thus were essentially not target-aware,
it means that they need to be separately trained on the fly for each protein target when applied to
pocket-specific scenarios. RGA (Fu et al., 2022) explicitly models the protein pocket in the design
process, overcoming the transferability problem of previous methods.

J LIMITATION

Limitation of this work lies in that MolJO adopts no more than three objectives (Affinity, QED, SA)
in the optimization process, while there are more objectives that are biologically meaningful such
as ADMET. Future directions include extending the general framework to accommodate a wider
range of objectives, and even beyond the scope of structure-based molecule optimization (SBMO),
for MolJO is a general gradient-based optimation method for continuous and discrete variables, and
can be tailored to a great many read-world applications.
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