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Abstract

The objective of active level set estimation for a black-box function is to precisely identify
regions where the function values exceed or fall below a specified threshold by iteratively
performing function evaluations to gather more information about the function. This be-
comes particularly important when function evaluations are costly, drastically limiting our
ability to acquire large datasets. A promising way to sample-efficiently model the black-
box function is by incorporating prior knowledge from a related function. However, this
approach risks slowing down the estimation task if the prior knowledge is irrelevant or
misleading. In this paper, we present a novel transfer learning method for active level
set estimation that safely integrates a given prior knowledge while constantly adjusting
it to guarantee a robust performance of a level set estimation algorithm even when the
prior knowledge is irrelevant. We theoretically analyze this algorithm to show that it has
a better level set convergence compared to standard transfer learning approaches that do
not make any adjustment to the prior. Additionally, extensive experiments across multiple
datasets confirm the effectiveness of our method when applied to various different level set
estimation algorithms as well as different transfer learning scenarios.
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1. Introduction

The level set estimation (LSE) problem involves classifying whether x belongs to the su-
perlevel set (i.e. f(x) exceeds a threshold h) or the sublevel set (i.e. f(x) is below h).
LSE arises in many important applications including environmental monitoring (Gotovos
et al. (2013)), computational chemistry (Tran et al. (2021)), and material characterization
(Hozumi et al. (2023)). Two common difficulties of these applications are that the underly-
ing function relating its input variables to the output is unknown, i.e. a black-box function,
and that evaluating such black-box functions requires conducting real-world experiments
that are often very expensive. To model the black-box function for level set classification
in such scenarios, an intuitive approach is to use an active learning method to sequentially
acquire new data points that are highly informative for determining the level set. The focus
of active LSE algorithms is often on finding the locations of those informative data points
at each iteration. This is done by optimizing an acquisition function, which is an indicator
of how useful a data point is in classifying the level sets. The acquisition function is con-
structed using a surrogate model of the black-box function built with the existing function
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evaluations. The black-box function is then evaluated at the next point suggested by the
acquisition function, and this new observation is used to update the surrogate model. The
surrogate model will be used to classify the level set of any point either at every iteration
or when an evaluation budget runs out.

Due to the high cost of function evaluations, leveraging additional relevant information
can significantly reduce the number of evaluations required to achieve the desired estima-
tion accuracy. Such relevant information may come from prior information based on domain
knowledge or data from a related LSE task completed in the past. For instance, in the con-
text of algorithmic assurance (Gopakumar et al. (2018)), where the objective is to identify
scenarios in which the performance of a pretrained machine learning model reaches a certain
threshold, prior information can be sourced from the identified scenarios of a related model.
Other examples include the elicitation of expert knowledge to form a prior function to model
the output of complex computer code by Oakley (2002) or the problem of discovering Higgs
boson when Golchi (2016) suggested the construction of a prior mean function by either
Monte Carlo studies or a polynomial fit to simulated data.

The previous works on using prior information for active LSE are limited. Only Hozumi
et al. (2023) attempted the problem but assumed that data from a related task were avail-
able. There have been plenty of attempts to use prior information in a related problem
known as Bayesian Optimization (BO), where the prior information has been used to accel-
erate the finding of the optimum of a function (Swersky et al. (2013); Shilton et al. (2017);
Wistuba et al. (2015)). However, since the function at hand is black-box, assessing the
relevance of prior information is not always straightforward. At times, it can be misleading
and hinder the LSE task. Though the prior information is believed to be related to f ,
mismatches can occur, either entirely or partially across the input space. For example, in
environmental monitoring, the condition of the whole environment or part of it can change
compared to the previous LSE task. Existing LSE algorithms often employ Gaussian Pro-
cess (GP) (Rasmussen and Williams (2005)) as the surrogate model in which the posterior
mean prediction at x can combine information from existing data points and the prior dis-
tribution. In case of mismatches, the posterior mean that uses prior information will be
less accurate than the one without it.

This inaccuracy in modeling f will weaken the sample efficiency and accuracy of an
LSE algorithm. Firstly, it will be harder for the acquisition function to correctly indicate
how informative a point is in level set classification. One popular criterion for acquisition
functions is to prioritize data points that are near the threshold boundary (Bryan et al.
(2005); Zanette et al. (2019); Gotovos et al. (2013)), and this becomes non-trivial if the
acquisition function fails to tell if the function value at a point is close to h or not due
to inaccurate function estimation. The algorithm then needs to explore more to locate the
targeted points. Another obvious consequence is inaccurate level set classification where the
function is not estimated accurately, lowering the accuracy of the LSE algorithm. The GP
posterior will need more data points to mitigate the impact of inaccurate prior information
in a region, which again hurts the sample efficiency of the algorithm.

Given the above issues, it is necessary to control the use of prior information so that it
will not adversely affect the LSE algorithm in regions where it is observed to be irrelevant
to f . However, we would still like to use the prior information in regions with insufficient
data points. This paper proposes a locally adaptive prior that adjusts the prior function
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according to the mismatches between itself and the observed function evaluations. The
adjusted prior becomes similar to the observed function values in the discovered regions
and reverts to its own form in undiscovered regions, allowing a robust transfer of prior
knowledge into an LSE algorithm regardless of any potential unseen mismatch between the
prior knowledge and the actual underlying function. Thus, the prior information is safely
transferred into the surrogate model without letting the observed mismatches affect the
main LSE algorithm.

Our main contributions are:

1. A novel method to safely transfer prior information in active LSE to accelerate the
estimation of level sets for a black-box function.

2. A theoretical analysis of the convergence of our method as well as its efficacy compared
to transfer learning using priors without any adaptations.

3. Extensive empirical evidence showing robust performance of our method on multiple
LSE tasks, on different LSE algorithms, with different levels of mismatches.

2. Related Works

Level Set Estimation
The main difference among LSE algorithms is in the selection of a new data point to evaluate
its function value at each iteration. The selected point needs to reveal as much information
about the level sets of f as possible. A popular direction in active LSE is to select the point
where the surrogate model is the most uncertain in performing level set classification. Bryan
et al. (2005) proposed maximizing the Straddle heuristic 1.96σt(x)−|µt(x)−h| where µt(x)
and σt(x) are the posterior mean and standard deviation of a GP surrogate model for f at
iteration t. This acquisition function prioritizes a point either in the undiscovered region or
near the threshold boundary. ActiveLSE (Gotovos et al. (2013)) generalized the Straddle
heuristic by maximizing the classification ambiguity min{max(Ct(x)− h, h−min(Ct(x)))}
in which Ct(x) is the successive intersection of the confidence intervals of f(x) at each
iteration. Due to the maintenance of Ct(x), ActiveLSE needs to operate on a fixed discrete
number of data points while the Straddle heuristic can work on a continuous domain,
and the two algorithms often share similar empirical performance. C2LSE (Ngo et al.
(2024)) attempted to select points with the smallest classification confidence by maximizing
σt(x)/max(ϵ, |µt(x) − h|) where ϵ > 0 prevents the algorithm from getting stuck at the
boundary and also controls the algorithm’s accuracy.

Another direction of active LSE is related to one-step lookahead mechanism. TruVar
(Bogunovic et al. (2016)) chose a point such that it minimizes the sum of truncated variances
over a set of fixed points that arise from choosing that point. This algorithm also considers
point-wise evaluation costs to favor locations with cheaper evaluations. RMILE (Zanette
et al. (2019)) is another algorithm within this category that is influenced by the expected
improvement algorithm. Its acquisition function calculates the expected change in volume
of the superlevel set if a point x is chosen and also takes into account the uncertainty at
a point to avoid getting stuck. Other approaches for active LSE include hierarchical space
partitioning (Shekhar and Javidi (2019)), information-theoretic acquisition (Nguyen et al.
(2021)), and using experimental design (Mason et al. (2022)).
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Transfer Learning for Level Set Estimation

There are limited works in transfer learning for active LSE. Hozumi et al. (2023) used an
active LSE approach to identify defective areas on silicon ingots for solar cell production
where they utilized measurements on a previous ingot by employing Diff-GP (Shilton et al.
(2017)), which is originally designed for BO to incorporate data from a source task into the
target task by modeling the difference between the two tasks. BO is often seen as related to
active LSE where its goal is to find the optimum of a black-box function, and BO also often
employs a GP as its surrogate model. Existing works in transfer learning for BO include
jointly learned kernel in multi-task setting (Swersky et al. (2013); Poloczek et al. (2016)),
seeing source data as noisy observation of the target task (Shilton et al. (2017); Theckel Joy
et al. (2019)), and search space design (Wistuba et al. (2015); Perrone et al. (2019)). These
works also consider the setting where prior information is from available source data, so
they are not applicable to the setting where prior information is from domain knowledge.

3. Proposed Method

We propose a novel method to integrate prior information into the active LSE process. Our
main idea is to adapt the prior locally based on any observed discrepancies before using it
for the active LSE.

3.1. Problem Formulation

We now formally define the active LSE problem when prior knowledge is available.

Active level set estimation problem: The goal is to iteratively obtain new data points
of a black-box function f : X → R with compact set X ∈ Rd to improve a classifier which
accurately determines whether any point x ∈ X is in the superlevel set H = {x ∈ X |f(x) >
h} or the sublevel set L = {x ∈ X |f(x) < h} given a threshold h ∈ R.
Using prior knowledge: We assume that the prior knowledge about f is in the form of
up : X → R. This prior knowledge may be available through a domain-specific simulator,
approximate models, or as a result of fitting a machine learning model on the data from a
related setting. Our goal is to leverage up in active LSE for f such that we either need fewer
data points or achieve more accurate classification than starting active LSE from scratch.

3.2. Prior in Gaussian Process

GPs are often used as the surrogate models for f in the problem of active LSE. A GP is
specified by its mean function µ(x) and its kernel k(x,x′). The posterior distribution over
f of a GP given its zero mean prior and noisy observations is as follows:

µt(x) = kt(x)
T (Kt + σ2I)−1Yt (1)

σ2
t (x) = k(x,x)− kt(x)

T (Kt + σ2I)−1kt(x) (2)

where kt(x) = [k(x,xi)]
t
i=1, Kt = [k(xi,xj)]

t
i,j=1, and Yt = f(Xt) + Et are the noisy

observations of f at Xt = [xi]
t
i=1 with observation noises Et = [ηi]

t
i=1, ηi ∼ N (0, σ2).
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Figure 1: Blue: prior function; Orange: posterior mean by vanilla transfer learning; Green:
posterior mean with our method AP-LSE. For the two data points on the left when the
prior is still relevant compared to the observed function values, the posterior mean obtained
with vanilla transfer learning still closely matches the observed values. When the difference
is large as seen on the right, µ̄t starts to deviate from the data points. On the other hand,
the posterior mean obtained with AP-LSE remains better fitted in both situations.

A non-trivial prior function up can be incorporated in the posterior mean distribution
of such Gaussian Processes by seeing it as the prior mean function as follows:

µ̄t(x) = up(x) + kt(x)
T (Kt + σ2I)−1(Yt − up(Xt)) (3)

Directly using up as in Eq.3, which we refer to as vanilla transfer learning for GP, can
help to transfer possibly related knowledge into the posterior mean of the Gaussian Process.
However, it is possible that with the observations of f , one may discover differences between
f and up at certain points in Xt, leading to inaccurate estimation of f due to the bias
introduced by up as seen in Figure 1. As explained in Section 1, mitigating the effect of up
in the posterior mean around these points is necessary for active LSE tasks.

3.3. Locally adaptive prior for active level set estimation

The challenge is in adjusting up around observed mismatching locations but still transferring
prior knowledge into the GP at other locations where we have no data. A simple solution is
to define a region in X that surrounds the observed data points where the prior function up
is not used, and the posterior mean becomes µt as in Eq.1 instead. However, such a region
will disrupt the smoothness of the posterior mean and likely make acquisition optimization
difficult. It is also challenging to properly define the region since there is little information
to determine the effective radius (i.e. how far away from Xt is sufficient).

To address this challenge, we propose Adaptive Prior Level Set Estimation (AP-
LSE) which smoothly adjusts the prior function up by an additive term udt according to the
observed difference between the current observations and the prior function, i.e. Yt−up(Xt),
before the posterior mean is used for computing acquisition value and level set classification.
The adjustment udt is an interpolation of the difference Yt − up(Xt). Specifically, the new
posterior mean with adjusted prior is given as:

µ̃t(x) = up(x) + udt(x) + kt(x)
T (Kt + σ2I)−1(Yt − up(Xt)− udt(Xt)) (4)

where udt = kt(x)
T (Kt+σ2I)−1(Yt−up(Xt)). The value of udt(x) reflects the adjustment

of the prior function according to Yt. When x is close to points in Xt (i.e. this region has
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been sampled), the posterior mean will favor the actual data observations over the prior
knowledge. When x is not close to points in Xt (i.e. there is still a lot of uncertainty in this
region), udt(x) will be closer to 0 which means up(x) + udt(x) becomes similar to up(x).

Algorithm 1: Adaptive Prior Level Set Estimation

Input: prior function up, threshold h, budget T .
D0 ← ∅; t← 1;
while t < T do

1. Fit the hyperparameters of kt with GP(up, k(x,x′)) and observations [xi, yi]
t
i=1;

2. Obtain the adjusted prior function: up,t(x) = up(x) + udt(x);
3. Obtain the posterior mean function:
µ̃t(x) = up,t(x) + kt(x)

T (Kt + σ2I)−1(Yt − up,t(Xt));
4. Select next evaluation location xt by optimizing a level set acquisition function
at over X (see examples of at below);

5. Evaluate f at xt: yt = f(xt) + ηi;
6. Dt = Dt−1 ∪ (xt, yt);
7. t = t+ 1

end
Output: predicted level set classification;

Details of AP-LSE are in Algorithm 1. Each iteration first fits kernel hyperparameters
using the current observations of f and uses the fitted kernel to obtain the adjustment
function udt. The posterior mean is computed with the fitted kernel and the adjusted prior
function up,t(x) = up(x) + udt(x). The location of the next observation is obtained by
optimizing an acquisition function at(x). Examples of such acquisition functions include:

• The Straddle heuristic (Bryan et al. (2005)): at(x) = 1.96σt(x)− |µ̃t(x)− h|

• C2LSE (Ngo et al. (2024)): at(x) =
σt(x)

max(ϵ,|µ̃t(x)−h|) with ϵ > 0

• RMILE (Zanette et al. (2019)): at(x) = max(Ey+ |I+| − |Iϵ|, λσt(x)) for ϵ > 0, λ > 0,
with |Iϵ| =

∑
x∈X

1(P (f(x) > h − ϵ) > δ) and |I+| =
∑
x∈X

1(P+(f(x) > h) > δ) where

P+ is calculated based on the GP posterior if we evaluate f(x) and observe value y+.

The algorithm then evaluates f at the selected location xt to obtain the noisy observation
yt, and the new data point (xt, yt) joins the existing ones to form the training data Dt. The
predicted level set classification can be obtained either at the end of each iteration or when
the algorithm terminates by applying classification rules. An example of such rules are:

• Predicted superlevel set Ĥt = {x ∈ X : µ̃t(x)− βσt(x) > h}

• Predicted sublevel set L̂t = {x ∈ X : µ̃t(x) + βσt(x) < h}

• Unclassified set M̂t = {x ∈ X : µ̃t(x)− βσt(x) ≤ h ≤ µ̃t(x) + βσt(x)}
with confidence parameter β.

AP-LSE provides a transfer learning method suitable for most LSE algorithms where
µ̃t helps us mitigate the use of up when we have sufficient knowledge about f while still
allowing the leverage of the prior information when there is no data about f .
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4. Theoretical Analysis

Our goal is to show the effectiveness of using µ̃t over µ̄t for active LSE. The analysis first
shows that by using µ̃t, the GP posterior better fits the training data points. We show
the upper bounds for the generalization errors of µ̃t and µ̄t and finally a better level set
classification confidence using the former.

4.1. Fitting Error

One design goal of AP-LSE is for the posterior mean to favor the observations at points
close to Xt. This section shows that µ̃t is closer to the observed values Yt at the observed
locations compared to µ̄t, which is demonstrated by a better fitting mean squared error.

Proposition 1 Let αt(x) = kt(x)
T (Kt + σ2I)−1, ZN = [zi]

t
i=1 be a vector of constants,

and Hk(X ) be a RKHS corresponding to k(x,x′) on X . The following inequality holds:

t∑
i=1

(zi − αt(xi)Zt)
2 ≤

t∑
i=1

z2i (5)

Proof Theorem 3.4 by Kanagawa et al. (2018) stated that f∗(x) = αt(x)Zt is the solution
of the following regularized least-squares problem:

f̂(x) = argmin
f∈Hk

1

t

t∑
i=1

(f(xi)− yi)
2 +

σ2

t
||f ||2Hk

Therefore, it follows that:

1

t

t∑
i=1

(f∗(xi)− yi)
2 +

σ2

t
||f∗||2Hk

≤ 1

t

t∑
i=1

(g(xi)− yi)
2 +

σ2

t
||g||2Hk

for g(x) = 0. (6)

This means
t∑

i=1
(zi − αt(xi)Zt)

2 + σ2||αt(x)Zt||2Hk
≤

t∑
i=1

z2i , or the inequality holds.

The following result states that AP-LSE fits the training data points better than vanilla
transfer learning.

Theorem 2 Let Dt = [xi, yi]
t
i=1 be the observations of f . The fitting error of µ̃t(x) is upper

bounded by that of µ̄t(x), which is bounded by the difference between up and f . That is:

t∑
i=1

(µ̃t(xi)− yi)
2 ≤

t∑
i=1

(µ̄t(xi)− yi)
2 ≤

t∑
i=1

(up(xi)− yi)
2 (7)

Proof We have that:

µ̃t(xi)− yi = up(xi) + udt(xi) + αt(xi)(Yt − up(Xt)− udt(Xt))− yi

= up(xi) + αt(xi)(Yt − up(Xt))− yi + αt(xi)(Yt − up(Xt)− αt(Xt)(Yt − up(Xt)))

= µ̄t(xi)− yi + αt(xi)(Yt − µ̄t(Xt))

= u(xi)− αt(xi)u(Xt),
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for 1 ≤ i ≤ t with u(x) = µ̄t(x)− y, y being the observation of f at x. Using Proposition 1,
we can establish the left inequality in (7) as follows:

t∑
i=1

(u(xi)− αt(xi)u(Xt))
2 ≤

t∑
i=1

u(xi)
2 =

t∑
i=1

(µ̄t(xi)− yi)
2

Let g(x) = up(x)− y. We then have

u(xi) = up(xi)− y + αt(xi)(Yt − up(Xt)) = g(x)− αt(x)g(Xt) (8)

Using Proposition 1, we can establish the right inequality in (7):

t∑
i=1

u(xi)
2 =

t∑
i=1

(g(xi)− αt(x)g(Xt))
2 ≤

t∑
i=1

g(xi)
2

Both inequalities in (7) hold as a result.

4.2. Generalization Error

In addition to the fitting error at observed locations, it is more important that a model
generalizes well at other locations. Here we give bounds to the generalization errors of µ̃t

and µ̄t. Let us denote ēt(x) = µ̄t−1(x)− f(x) and ẽt(x) = µ̃t−1(x)− f(x).

Lemma 3 Let ρt = sup
x∈X

inf
xi∈Xt

∥x− xi∥2. Let y be the observation of f at x. Assume that:

1. f ∈ Hk(X ),

2. Hk(X ) is isomorphic to the Sobolev space Hτ (X ) for some τ = n+ r, with n ∈ N, n >
d/2 and 0 < r < 1,

3. up, f ∈ Hτ (X ),

4. The Gaussian Process uses radial basis function (RBF) kernel.

Then there exist a constant C independent of f , up, and t, we have for 0 ≤ ξ ≤ τ :

∥ēt∥Hξ(X ) ≤ Cρτ−ξ
t ∥up − f∥Hτ (X ) + ∥αtEt∥Hξ(X ), (9)

and ∥ẽt∥Hξ(X ) ≤ Cρτ−ξ
t ∥ēt∥Hτ (X ) + ∥αtEt∥Hξ(X ), (10)

Proof We have that:

∥µ̄t−1 − f∥Hξ(X ) = ∥up − f − αt(up(Xt)−Yt)∥Hξ(X )

≤ ∥up − f − αt(up(Xt)− f(Xt))∥Hξ(X ) + ∥αtEt∥Hξ(X ) (11)

Given the assumptions, we have the following using Lemma 4.1 in Narcowich et al. (2006):

∥up − f − αt(up(Xt)− f(Xt))∥Hξ(X ) ≤ Cρτ−ξ
t ∥up − f∥Hτ (X ) (12)

Combining Ineq.12 with Ineq.11 establishes Ineq.9. Ineq.10 can be established similarly.
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The first assumption is a general one on f being from the native space Hk(X ), similar to
Srinivas et al. (2010). The second and third assumptions mean that both the prior function
up and the true underlying function f have similar smoothness τ in the Sobolev space
Hτ (X ) which is equal to the native space Hk(X ). The last assumption limits the following
theoretical results to only LSE algorithms that employ an RBF kernel for the GP, but our
experiments show AP-LSE is still effective with other kernels.

Lemma 4 When applied to an LSE algorithm that eventually evaluates every point in an
arbitrarily dense finite grid, the generalization errors of both vanilla transfer learning and
AP-LSE converge to zero, that is

lim
t→∞
|ēt(x)| = 0 and lim

t→∞
|ẽt(x)| = 0. (13)

In addition, let r̄ and r̃ be the convergence rates for the upper bounds of {∥ēt∥Hξ(X )}∞t=1 and
{∥ẽt∥Hξ(X )}∞t=1 in Lemma 3 respectively. Then r̄ < r̃.

Proof Examples of LSE algorithms that eventually evaluates every point in an arbitrarily
dense finite grid include C2LSE and RMILE (as shown in the proof of Theorem 6 by Ngo
et al. (2024) and Lemma 4 by Zanette et al. (2019), respectively). This means that Xt → X
as t→∞ for a continuous domain X , or equivalently lim

t→∞
ρt = 0. The first consequence is

that lim
t→∞

Cρτ−ξ
t ∥up − f∥Hτ (Xρ,t) = 0.

Secondly, Chowdhury and Gopalan (2017) showed that:

|αt(x)Et| ≤ σ−1/2σt−1(x)

√
ET

t Kt(Kt + σ2I)−1Et

If Xt → X as t → ∞, we have lim
t→∞
|σt(x)| = 0, so lim

t→∞
|αt(x)Et| = 0 and eventually,

lim
t→∞
∥αtEt∥Hξ(X ) = 0. As a result, we have that lim

t→∞
∥µ̄t− f∥Hξ(Xρ,t) = 0, and consequently,

lim
t→∞
|ēt(x)| = 0. The convergence of AP-LSE’s error can be established similarly.

Regarding convergence rates, we have that:

r̄ = lim
t→∞

Cρτ−ξ
t+1 ∥up − f∥Hτ (X ) + ∥αt+1Et+1∥Hξ(X )

Cρτ−ξ
t ∥up − f∥Hτ (X ) + ∥αtEt∥Hξ(X )

, (14)

and r̃ = lim
t→∞

Cρτ−ξ
t+1 ∥ēt+1∥Hτ (X ) + ∥αt+1Et+1∥Hξ(X )

Cρτ−ξ
t ∥ēt∥Hτ (X ) + ∥αtEt∥Hξ(X )

(15)

In Eq.14, it can be seen that only the convergences of ρt and ∥αtEt∥Hξ(X ) contribute to r̄
while ∥up − f∥Hτ (X ) remains fixed. Compared to Eq.14, Eq.15 replaces ∥up − f∥Hτ (X ) with
∥ēt+1∥Hτ (X ) which converges to 0. Therefore, we can conclude that r̄ < r̃.

4.3. Level Set Classification

Theorem 5 Given a continuous LSE problem, assume that C2LSE with confidence param-
eter β reaches an ϵ-accurate solution at iteration T for any point x ∈ X with probabilities
δ̄ using vanilla transfer learning. Then C2LSE using AP-LSE also reaches an ϵ-accurate
solution at the same iteration for any point x ∈ X with probabilities δ̃ where δ̃ > δ̄.
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Proof According to Theorem 9 by Ngo et al. (2024), C2LSE with vanilla transfer learning
reaches an ϵ-accurate solution for any point x ∈ X with probability δ̄ if:

T ≥ 8βγT
ϵ2log(1 + σ−2)

(16)

assuming Pr(|ēt(x)| ≤ βσt−1(x)) = δ̄,∀x ∈ X , ∀t ≥ 1 where ϵ > 0, and γT is the maximum
information gain about f over the set of all possible T noisy observations DT .

Lemma 4 indicates that the upper bound of {∥ẽt∥Hξ(X )}N
+

i=1 converges to 0 faster than

the upper bound of {∥ēt∥Hξ(X )}N
+

i=1. This implies that for each x, there exist ∆x > 0 such
that |ēt(x)| = |ẽt(x)|+∆x. We then have that:

Pr(|ẽt(x)| ≤ βσt−1(x)) = Pr(|ēt(x)| −∆x ≤ βσt−1(x))

< Pr(|ēt(x)| ≤ βσt−1(x)) = δ̄,∀x ∈ X , ∀t ≥ 1 (17)

Assuming Pr(|ẽt(x)| ≤ βσt−1(x)) = δ̃,∀x ∈ X ,∀t ≥ 1, we then have δ̄ < δ̃. The remaining
steps to obtain the corresponding convergence rate and level set classification accuracy are
similar to both vanilla transfer learning and AP-LSE and are independent of δ̃ and δ̄. As
such, C2LSE using AP-LSE also reaches an ϵ-accurate solution at the same iteration for
any point x ∈ X with probabilities δ̃.

Theorem 5 indirectly shows a better sample efficiency for AP-LSE. It proves that by using
AP-LSE, the probability that a point is classified correctly will be higher than by using
vanilla transfer learning at the same iteration. Therefore, over the whole input space X ,
more points will be classified correctly by using AP-LSE with the same evaluation bud-
get. This is equivalent to AP-LSE achieving the same classification accuracy with vanilla
transfer learning while using a lower evaluation budget. While the result is only proven
for C2LSE, our experiments in the following section show that AP-LSE also improves the
sample efficiency for other LSE algorithms.

5. Numerical Experiments

5.1. Experiment Setup

We will study the performance of AP-LSE on transfer learning for multiple LSE tasks by
using it in combination with existing LSE algorithms, namely STR (the Straddle heuristic
by Bryan et al. (2005)), RMILE (Zanette et al. (2019)), and C2LSE (Ngo et al. (2024)).
STR is similar in spirit to the GP-UCB algorithm (Srinivas et al. (2010)), while C2LSE
is a confidence-based method for continuous LSE problems. RMILE is another approach
for LSE influenced by the expected improvement algorithm (Brochu et al. (2010)) and
operates on discrete domains. These three algorithms comprise a comprehensive test for
the effectiveness of transfer learning across different styles of LSE algorithms.

We compare AP-LSE with running LSE from scratch and vanilla transfer learning to
demonstrate the sample efficiency of each method across each LSE algorithm. For a fair
comparison, we start all methods without initialized data points so that the classification
performance of all three methods starts similarly. Though our setting does not consider
the availability of previous observations of a related LSE task (i.e. source data), we include
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Diff-GP, which utilizes such data, to compare between directly using the source data like
Diff-GP and using a surrogate model fitted on source data like AP-LSE. Diff-GP first models
the difference between the target function’s observations and the posterior mean fitted on
the source data and uses that difference to adjust the source data before incorporating them
into the posterior GP for the target function.

We report the average F1-score among 30 runs in each experiment. This is calculated
based on the true level set labels of a fixed finite grid for each problem. Hyperparameters
are selected based on the recommended values in the original works. We use a Matérn
kernel with hyperparameters fitted by maximum likelihood in the section.
Synthetic Functions
We use the following synthetic functions:

• Bird: f(x1, x2) = sin(x1)e
(1+κ−cos(x2))2 + cos(x2)e

(1−sin(x1))2 + (x1 − x2)
2

• Multi-circle 3D (MC3D): f(x1, x2, x3) = e(sin(x1+κ))2×(sin(x2+κ))2×(sin(x3+κ))2

• Mishra03: f(x1, x2) =
√
|cos(

√
x21 + x22 + κ)|+ 0.01(x1 + x2)

The goal for each function is to find its superlevel or sublevel set given a function evaluation
budget T . We discretize their input space into a uniform grid to evaluate the quality of
level set classification. The parameter κ in these functions is to differentiate the prior and
the target functions. The prior function is obtained by first setting κ = 0 and evaluating
the function at T random locations. We fit a GP on these observations and use its posterior
mean as the prior function for AP-LSE and vanilla transfer learning. Diff-GP directly uses
these observations as its source data to simulate a similar amount of prior information
between Diff-GP and the transfer learning methods (i.e. AP-LSE and vanilla transfer
learning). The target function is obtained by using a different value for κ. The observation
noise level is set at 0.1 for all functions. Details about each function are as follows:

Input space Goal Evaluation grid Budget T Target κ

Bird x ∈ [−6, 6]2 f(x) < 4 100×100 150 0.4

MC3D x ∈ [0, 6]3 f(x) > 1.6 20×20×20 400 0.3

Mishra03 x ∈ [−5, 5]2 f(x) < 0.7 100×100 250 0.4

Table 1: Details about synthetic functions

Real-world Data
We also evaluate transfer learning performance on three real-world LSE tasks. Each task
includes a source dataset and a target dataset. Their details are as follows:

• Defective (Defective Area Identification (Hozumi et al. (2023))): From an active LSE
perspective, the defective areas on a material surface can be estimated using only a
small number of informative measurements instead of measuring all grid points which
can be both slow and costly. We use the dataset provided by Hozumi et al. (2023)
about red-zone identification for solar cell ingots in which the red-zone is the defective
area with low carrier lifetime values. The dataset includes carrier lifetime values for
two ingots (one chosen as the source dataset and the other as the target dataset),



Ngo Nguyen Gupta

both in the form of a 161×121 uniform grid where the value is recorded for each grid
point. The target is to find the sublevel set that has carrier lifetime values under 80.

• Network (Network Latency): Inspired by Gotovos et al. (2013), we create a network
latency dataset that measures the round-trip time around the world. We ping 223
servers on Dec 12th, 2023 (source dataset) and 225 servers on Dec 13th, 2023 (target
dataset) to record their round-trip times. The input space includes each server’s
longitude and latitude coordinates. The target is to find the sublevel set that has
round-trip times under 200ms indicating good internet quality.

• AA (Algorithmic Assurance): This task attempts to find scenarios in which a machine
learning model’s performance is at least above a certain threshold. Specifically, we
train a convolutional neural network on MNIST and find its accuracy on different
transformation scenarios for the test set. The input space includes continuous values
of the transformations applied (i.e. rotation, scaling, and shear), and the output is the
classification error on the transformed test set. Details about this task can be found
in the work of Ngo et al. (2024). We construct the source dataset by training on
75% of MNIST images and the target dataset by training on all images. Each dataset
includes a grid of 47,916 data points as 36×11×11×11 uniform grid. The target is to
find the sublevel set that has classification error on the test set of MNIST under 4%.

Similar to the synthetic functions, a number of random data points from the source dataset,
which is equal to the evaluation budget (50 for Defective, 250 for Network, and 300 for AA),
are used to obtain a posterior mean serving as the prior function for AP-LSE and vanilla
transfer learning and are used directly as source data for Diff-GP. The target function is
obtained by selecting a random subset of data points in the target dataset (2% for Defective
and AA, and 100% for Network) and then fitting a GP posterior with which the posterior
mean becomes the target function.

5.2. Main Results

Figure 2 shows that AP-LSE consistently achieves better classification performances for all
three functions regardless of the LSE algorithms employed. The performance gaps become
smaller in the later iterations, which is expected when the transferred knowledge’s effect
decreases with more data observed. Similar patterns are observed in Figure 3 with better
performances for AP-LSE compared to the other two transfer learning methods. For both
synthetic functions and real-world problems, AP-LSE demonstrates superior classification
accuracy from the beginning compared to vanilla transfer learning. This matches the goal
of active LSE where high classification accuracy using few data points is desirable.

AP-LSE outperforms Diff-GP on all datasets in the long term, which indicates using an
adaptive surrogate model as prior for active LSE is more effective than directly involving
source data like Diff-GP even though Diff-GP takes into account the difference between the
source task and the target task. We attribute this performance difference to the struggle
of Diff-GP to capture the source-target difference. As noted by the authors of Diff-GP, its
performance depends on the simplicity of learning this difference and the proximity of the
source data to the target evaluation locations, so it struggles when the difference is too
complex to model (as demonstrated in the next section). Our method does not have those
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Figure 2: Transfer learning for active LSE on synthetic functions

Figure 3: Transfer learning for active LSE on real-world problems
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dependencies. We do not use source data and seamlessly incorporate the observed difference
into our posterior rather than modeling it separately. As such, AP-LSE is not affected by
the difficulty in modeling the difference between the prior and the target function.

5.3. Varying Prior Level Set Similarity

The main design goal of AP-LSE is to have robust classification performance for an LSE
algorithm regardless of the prior’s relevance to the target function. We now evaluates the
methods on different levels of level set similarity between the prior and the target function
measured by the percentage of grid points with the same level set label between the prior
and the target function. We perform this experiment on Mishra03 where the prior function
remains as described in Section 5.1 (κ = 0), and the target function varies by varying κ.

κ 0.2 0.4 0.6 0.8 1.0

Level set similarity 88% 77% 67% 56% 47%

Straddle

Scratch 243 229 205 158 173
Vanilla 88 160 217 215 207
DiffGP 59 NA NA NA NA
AP-LSE 24 84 150 168 173

C2LSE

Scratch 298 246 255 183 177
Vanilla 78 189 250 212 198
DiffGP 56 NA NA NA NA
AP-LSE 20 85 154 170 165

Table 2: #Iterations to reach 80% F1-score on Mishra03 with different similarity levels.
NA means the algorithm cannot reach the target F1-score within the evaluation budget.

Table 2 shows the average number of iterations needed to reach 80% F1-score on
Mishra03. On mostly all similarity levels, AP-LSE requires significantly fewer iterations
than other methods, even at lower similarity. Diff-GP only works well when the difference
is small as expected. It is also noteworthy that AP-LSE may not have an advantage over
running from scratch if the prior function is largely different from the target function.

6. Conclusion

We proposed AP-LSE, a transfer learning method for active LSE that robustly incorporates
the prior function such that an LSE algorithm can utilize the prior information while still
being safeguarded from discrepancies between the prior and the target black-box function.
AP-LSE locally adjusts the prior function according to the observed discrepancies to provide
more accurate function estimation in level set classification. A detailed theoretical analysis
shows that our method is effective in improving function estimation and consequently, in
improving level set classification by increasing the classification confidence for the same
accuracy. Our empirical results confirm the superior performance of AP-LSE compared to
vanilla transfer learning on various active LSE tasks using different LSE algorithms.
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