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ABSTRACT

Knowledge editing emerges as a crucial technique for efficiently correcting in-
correct or outdated knowledge in large language models (LLMs). Existing edit-
ing methods for unimodal LLM rely on a rigid parameter-to-output mapping,
which causes causal-underfit and causal-overfit in cascaded reasoning for Mul-
timodal LLM (MLLM). In this paper, we reformulate MLLM editing as an out-
of-distribution (OOD) generalization problem, where the goal is to discern se-
mantic shift with factual shift and thus achieve robust editing among diverse
cross-modal prompting. The key challenge of this OOD problem lies in iden-
tifying invariant causal trajectories that generalize accurately while suppressing
spurious correlations. To address it, we propose ODEdit,a plug-and-play in-
variant learning based framework that optimizes the tripartite OOD risk objec-
tive to simultaneously enhance editing reliability, locality, and generality. We
further introduce an edit trajectory invariant learning method, which integrates a
total variation penalty into the risk minimization objective to stabilize edit tra-
jectories against environmental variations. Theoretical analysis and extensive ex-
periments demonstrate the effectiveness of ODEdit. Our code is available at
https://anonymous.4open.science/r/ODEdit-2756.

1 INTRODUCTION

With rapid applications of large language models (LLM) (Liu et al., 2024), ensuring their knowl-
edge correctness and currency in a cost-efficient manner has become a critical concern. Knowledge
editing (De Cao et al., 2021; Wang et al., 2023; 2024b) is an emerging technique that supports data-
efficient modifications on pre-trained models within a specific scope of knowledge. Existing editing
methods have two categories, i.e., , i) parameter-adjusting (Meng et al., 2022b; Fang et al., 2024;
Jiang et al., 2025) directly tune a subset of parameters in the original model, and ii) model-extending
(Huang et al., 2023; Hartvigsen et al., 2023; Yu et al., 2024) attaches auxiliary components while
keeping the backbone parameters intact. A unifying goal is to promote the precision (Reliability)
and generalization (Generality) of LLM perception on the editing knowledge, without compromis-
ing irrelevant knowledge outside the editing scope (Locality).

Despite these advances, current studies remain largely confined to unimodal LLMs, leaving
open their extension to multimodal LLMs (MLLM) (Cheng et al., 2023; Du et al., 2025; Pan
et al., 2024; Guo et al., 2025). As Figure 1(a) illustrates, both parameter-adjusting and model-
extending methods operationalize editing as a rigid mapping from parameter modifications ∆W or
auxiliary component modifications ∆M to output variations ∆Y , distilled from a limited training
cases. However, in the Structural Causal Model (SCM) view (Li et al., 2024c; Zhou et al.,
2024), the forward computation graph of an MLLM is a structural causal model: each module
implements a structural equation, forming a directed causal chain as unimodal perception →
cross-modal alignment → shared semantic reasoning. Under this structure, any local change to
a module or parameter inevitably propagates downstream and alters subsequent states, and
their effect are mediated by all later causal mechanisms. Consequently, rigid mapping from any
single structure to the edited output in MLLM editing easily induces two issues:
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Figure 1: The motivation of ODEdit. The left presents why previous editing work targeted at
unimodal LLM is not effective in MLLM. The right denotes two shifts in this editing OOD problem.

• Causal Underfit. It fails to disentangle the coherent shared causal structures that span diverse
cross-modal contexts. This precludes MLLM from discovering reusable semantic substrates, reduc-
ing editing to a brittle case-wise alignment exercise rather than principled semantic generality.

• Causal Overfit. Such a mapping drives MLLM to memorize entrenched linkages between recur-
rent local features and outputs. The inflexible causal chains misguide the model when faced with
queries that share local features yet differ in specific causal semantics, thus compromising locality.

These limitations raise a critical question: How can knowledge editing orchestrate MLLM com-
prehension adaptively on cross-modal prompting, while balancing semantic transferability and
robustness to spurious correlations?

To this end, we rethink MLLM editing as an out-of-distribution (OOD) cross-modal semantic gen-
eralization problem. OOD (Ye et al., 2021; Montasser et al., 2024) originally refers to identifying
invariant versus spurious features that drive distribution shifts, enabling the model to generalize to
unseen domains. In Figure 1(b), editing MLLM involves partitioning causal scopes in prompts,
which has two distributional shifts: (i) Semantic-shift indicates the shift from in-distribution
editing scopes to neighboring regions, constituting the intended generalized targets. It refers
to meaning-preserving variations that keep the atomic factual content and output-relevant
conceptual factors unchanged. Once the editing process instills the mirror reflection principle
into MLLM, the model can generalize from a narrowly edited instance (a tabby cat staring itself
in the mirror) to similar scenarios (an orange cat or dog doing the same thing). (ii) Factual-shift
denotes the transition from in-distribution to out-of-distribution regions, encompassing extra-
neous concepts beyond editing scopes. It refers to variations that alter the underlying atomic
factual content and modify the model’s reasoning-relevant conceptual representation. The
mirror reflection principle should not be overapplied to counting prompts lacking mirror-specific
visual features. Building on two shifts, robust MLLM editing requires identifying invariant trajec-
tories for cross-modal predictions and removing spurious factors that disrupt causal associations.

In this paper, we propose a plug-and-play editing OOD optimization framework for multimodal
LLM, termed ODEdit, which leverages cross-modal causal trajectory invariant learning to ensure
knowledge editing robustness across diverse distributions. To explicitly enhance the MLLM’s dis-
criminative awareness of semantic-shift and factual-shift, we first introduce a tripartite OOD risk
formulation that imposes tailored constraints on in-distribution, semantic-neighboring, and out-of-
distribution features. We apply the Kullback-Leibler divergence regularization to preserve locality
while developing a maximum mean discrepancy-based metric learning to align representations of
edited concepts and their semantic variants. To discern and stabilize the edit trajectories across
heterogeneous cross-modal environments, we further propose Edit Trajectory Invariant Learning
(ETIL). ETIL first reforms the editing OOD objective into an equivalent invariant risk minimization
problem, where an environment-aware classifier is introduced to exploit feature invariance and ir-
relevance. Then, to suppress the sensitivity of the edit trajectory to spurious environmental changes,
ETIL integrates a Total Variation factor as the penalty term in the risk estimation. The invariant
risk minimization is achieved through a primal-dual optimization strategy, ensuring that the edited
model captures reusable causal structures while filtering out superficial correlations.
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Main contributions are (1) We revisit the knowledge editing on MLLM from the OOD generaliza-
tion perspective, and propose a plug-and-play optimization paradigm. (2) We introduce a tripartite
OOD risk that imposes tailored constraints on semantic- and factual-shift, and develop a trajectory
invariant learning to minimize composed editing risk across diverse cross-modal prompting. (3) We
provide theoretical analyses and extensive experiments to validate effectiveness of ODEdit.

2 PRELIMINARY

Out-of-Distribution Generalization. Considering datasets De := {xe
i , y

e
i }

ne
i=1 collected from di-

verse training environments e ∈ Etrain, the environments correspond to identical random variables
assessed under distinct conditions. The dataset De consists of i.i.d. samples drawn from the proba-
bility distribution P (Xe, Y e). OOD generalization targets at learning a predictor f : X → Y that
minimizes the worst-case risk over a broad, potentially unseen set of environments Eall ⊇ Etrain:

ROOD(f) = max
e∈Eall

E(Xe,Y e)∼P e [ℓ(f(Xe), Y e)].

Here, E(Xe,Y e)∼P e [ℓ(f(Xe), Y e)] denotes the risk under specific environment e, and ℓ is a suitable
loss function. The set Eall includes environments not encountered during training.

Invariant Risk Minimization (IRM). IRM (Arjovsky et al., 2019; Tan et al., 2023) generalizes
invariant features to different environments. Given training data as D := {(xi, yi) ∈ X ×Y} where
X and Y denotes the input and output space. IRM constructs the learning model X → Y into two
parts, i.e., the feature extractor Ψ : X → H mapping input into the invariant feature space and the
classifier ω : H → Y predicting based on these features. The empirical risk under environment e is:

R(ω ◦Ψ, e) =
1

n

n∑
i=1

L(ω ◦Ψ(xi), yi, e),

where L is the loss function. The original IRM formulation is a bi-level optimization problem:

min
ω,Ψ

∑
e∈Etr

R(ω ◦Ψ, e) s.t. ω ∈ argmin
w̃

R(ω̃ ◦Ψ, e), ∀e ∈ E .

This constraint requires ω to be optimal for each environment given Ψ, encouraging Ψ to extract
invariant features. Further, IRMv1 (Arjovsky et al., 2019) provides a surrogate form, which fixes
the classifier ω to a constant scalar and replaces the constraint with a gradient norm penalty:

min
Ψ

∑
e∈E

{
R(1 ◦Ψ, e) + λ

∥∥∇ω|ω=1
R(ω ◦Ψ, e)

∥∥2
2

}
.

3 METHODOLOGY

3.1 PROBLEM SETTING

MLLM Editing as OOD Problem. First, we formulate the knowledge editing task in a MLLM with
the out-of-distribution generalization form. Considering the MLLM as a function M : I × X → Y
with parameters ϕ, which takes the cross-modal prompt (ie, xe) consisting of an image ie and a
textual description xe as input, and generates yo as the original output. Denote the editing dataset
containing facts to be updated as Dedit, we define an environment factor e ∈ E which parameterizes
the data distribution Pe(I,X, Y ), indicating all the possible causal associations that can occur in
testing prompts. The objective of MLLM editing is to update ϕ → ϕe for the worst-case risk
Redit(ϕe, e) across all conceivable environments:

min
ϕe

max
e∈E

E(ie,xe,ye)∼Pe(I,X,Y )Redit(ϕe, (ie, xe, ye), e), (1)

Empirically, we assume the testing prompts Dtest are composed of in-distribution data Din, semantic-
neighboring data Dse, and out-of-distribution data Dout. The overall risk is defined as Redit = Rrel +
Rgen+Rloc, demonstrating the composite measure of three editing metrics (Cheng et al., 2023). Rrel,
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Rgen, and Rloc respectively justify the editing performance on three aspects, i.e., editing accuracy
on DIN, generalization ability on DSE, and side effects on DOUT, as follows:

Rrel : = E(ie,xe,ye)∼PDIN
[1{M(ie, xe;ϕe(ie, xe, ye)), ye)}]

Rloc : = E(it,xt)∼PDOUT
[1{M(it, xt;ϕe(ie, xe, ye)) = M(it, xt;ϕ)}]

Rgen : = E(ir,xr)∼PDSE
[1{M(ie, xe;ϕe(ie, xe, ye)) = M(ir, xr;ϕe(ie, xe, ye))}]

(2)

3.2 SEMANTIC-FACTUAL SHIFT DISENTANGLEMENT

To facilitate MLLM discriminate editing environments between semantic-shift and factual-shift, we
first design independent editing risks to evaluate transferability on invariant trajectories and capabil-
ity to eliminate spurious factors. Our framework aims to construct a unified optimization paradigm
that is agnostic to specific editing methods, so it can be incorporated into any parameter-adjusting
or model-extending editing approach based on fine-tuning. With the pre-trained multimodal LLM
Mϕ and editing dataset as Dedit, we denote the editing model as fθ. Editing is cast as learning a
mapping Γ that adapts the model and its parameters guided by the edit instance and fθ:

M(ϕe, θe) = Γ (Mϕ, fθ; (ie, xe, ye)) (·), (ie, xe, ye) ∈ Dedit (3)

Then, to optimize the three objectives outlined in Section 3.1, i.e., reliability, locality, and generality,
we propose corresponding risk metrics that are seamlessly integrated into these base editing models.
Reliability Risk. To ensure precise assimilation of the edited knowledge, we minimize the negative
log-likelihood of the target output conditioned on the edit instance:

Rrel = − log pϕe
(ye | ie, xe), (ie, xe, ye) ∈ DIN, (4)

which explicitly maximizes the probability of the desired output ye for the edited input (ie, xe),
ensuring accurate cognition on the in-distribution cross-modal semantics.

Locality Risk. In order to avoid the edited concepts affecting the interpretation of unrelated con-
tent falling within the factual-shift scope, we regularize the editing process by imposing a Kull-
back–Leibler divergence (Attias, 1999) penalty between the pre- and post-edit output distributions:

Rloc = KL (pϕe
(· | it, xt) ∥pϕ (· | it, xt)) , (it, xt, yt) ∈ DOUT. (5)

This constraint strengthens model capacity to preserve knowledge beyond the designated editing
scope, maintaining editorial locality and minimizing unintended side effects.

Generality Risk. Previous methods (Mitchell et al., 2022; Zeng et al., 2024) mostly emphasize
supervised partitioning of in-scope and out-of-scope knowledge regions, but fall short in achieving
semantic generalization, and thus cause issues of causal-underfit or causal-overfit. Thus, we propose
a generality risk for extracting invariant trajectories hidden underneath semantic-shift cross-modal
prompting. For each edited instance (ie, xe), we utilize its rephrase counterparts (ir, xr) from
the benchmark training datasets. Let zϕe(i, x) denote the last hidden states of edited model
Mϕe for prompt (i, x), we retrieve the distributions of edited prompts and rephrase prompts as
ZE and ZR respectively. Then we develop a Maximum Mean Discrepancy (MMD) (Tolstikhin
et al., 2016) based metric learning to measure the discrepancy between in- and semantic-neighboring
distributions. Given the Kernel Hilbert Space H associated with the Borel measurable kernel k, the
kernel mean embedding µZE

and µZR
is formulated with the reproducing property as:

µZE
=

∫
S
k(s, ·)ZE(ds) ∈ H, µZR

=

∫
V
k(v, ·)ZR(dv) ∈ H, (6)

where s and v are random variables with distribution ZE and ZR. It satisfies the distribution prob-
ability density equation that for all functions f ∈ F :

E [f(S)] = ⟨f,µZE
⟩H, E [f(V )] = ⟨f,µZR

⟩H. (7)

We deploy the multi-scale Gaussain kernel function k(xi, xj) =
∑k

q=1 exp
(
−∥xi−xj∥2

2

2σ2
q

)
in H to

simultaneously capture local and global similarity between two instances, where σq denotes the
bandwidth of q-th kernel. Based on this, the generality risk in the MMD form is defined as:

Rgen = Eze,z′
e∼ZE

[k(z, z′
e)] + Ezr,z′

r∼ZR
[k(z, z′

r)]− 2Eze∼ZE ,zr∼ZR
[k(ze, zr)] . (8)
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3.3 EDIT TRAJECTORY INVARIANT LEARNING

With the editing OOD formulation in Section 3.1 and the overall risk composed of supervised sig-
nals on two distributional shifts in Section 3.2, we now introduce an invariant learning paradigm to
discern and stabilize the edit trajectories across diverse cross-modal environments. Our goal is op-
timizing the edited model parameters ϕe to minimize the risk over all environments, which requires
exploiting invariance and specificity in the causal pathways activated by edit.

Transformation into IRM Problem. To extract invariant trajectories, we invoke the IRM principle
and employ a classifier ω which maps environment features to predictions (Lai & Wang, 2024).
Proposition 1 (Equivalence between OOD-ω and IRM). Under the condition that the environment
variability is channeled through the classifier ω, it satisfies the identity Redit(ϕe, e) ≡ Redit(ω(e) ◦
ϕe). The OOD editing objective in Eq.(1) admits the following equivalent IRM formulation:

min
ϕe

max
ω∈Σ

E(ie,xe,ye)∼Pe(I,X,Y )Redit(ω(ie, xe, ye) ◦ ϕe).

Proof. The proof can be found in Appendix A.1.

Invariant Learning in Editing Trajectory. Directly optimizing the OOD-ω objective is intractable
due to the need to evaluate the supremum over E . To this end, we reformulate it within a measure-
theoretic framework inspired by the connection between IRM and Total Variations (TV) (Chan et al.,
2006). The TV operator typically employed to measure the global variability bound of a function.
For a function f defined on a measure space (Ω,FΩ, ν), the TV seminorm is given by

TV (f) := sup

{∫
Ω

f(ν) div g(ν)dν : g ∈ C1
c (Ω,Rd), ∥g∥∞ ≤ 1

}
, (9)

where g is a differentiable vector function supported compactly in Ω and divg denotes its divergence.
Based on the Coarea Formula (Chan et al., 2006), the canonical TV-ℓ1 (Rudin et al., 1992) can be
derived to recover a clean signal f from a noisy observation f̃ by solving the variational problem:

inf
f∈L2(Ω)

{∫
Ω

|∇f |+ λ

∫
Ω

(f − f̃)2dν

}
(10)

Here, TV-ℓ1 model pres sharp discontinuities while effectively removing noise and fine-scale details.
Correspondingly, we treat the environment-induced variations in the risk function Redit(ω ◦ ϕe) as
noise perturbing the ideal and invariant edit trajectory. The goal of editing is to denoise the risk,
recovering a piecewise-constant profile that is robust to spurious cross-modal prompting changes.
Inspired by Lai & Wang (2024), we further absorb TV-ℓ1 penalty into our editing IRM objective as

min
ϕe

{
Eω[Rrel(ω ◦ ϕe) +Rloc(ω ◦ ϕe) +Rgen(ω ◦ ϕe)] + λϕe (Eω[|∇ωRedit(w ◦ ϕe)|])2

}
. (11)

The first term represents the basic risk of editing, while the second term promotes invariance by
encouraging the generalization risk to be insensitive to environmental changes. This form directly
addresses the dual requirements of precise knowledge assimilation and controlled generalization.
Proposition 2 (IRM-TV objective Achieves Editing OOD with a varying λ). The balancing pa-
rameter λ should vary with editing parameters ϕe to achieve editing OOD. For each ϕe, if
Eω[|∇ωRedit(ω ◦ ϕe)|] > 0, there exists a non-negative λϕe

, such that

max
e∈E

Redit(ϕe, e) = Eω[Rrel(ω◦ϕe)+Rloc(ω◦ϕe)+Rgen(ω◦ϕe)]+λϕe (Eω[|∇ωRedit(ω ◦ ϕe)|])2 .

Besides, the optimality of ϕe for IRM-TV form is equivalent to its optimality for OOD-ω.

Proof. The proof can be found in Appendix A.2.

Optimization on Editing IRM-TV. To solve Eq.(11), we treat λϕe
as a Lagrangian multiplier and

parameterize it as a function λ(π, ϕe) of both the editing model parameters ϕe and an auxiliary dual
parameter set δ. We derive the Lagrangian function for the editing IRM-TV objective as

G(δ, ϕe) = Eω[Rrel(ω ◦ ϕe) +Rloc(ω ◦ ϕe) +Rgen(ω ◦ ϕe)]] + λ(δ, ϕe) (Eω[|∇ωRedit(ω ◦ ϕe)|])2 .
(12)
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Denote the risk sum as Redit, we derive it into a primal-dual optimization as (Wang et al., 2025)

min
ϕe

max
δ

G(δ, ϕe) := min
ϕe

{
Eω[Redit(w ◦ ϕe)] + max

δ

[
λ(δ, ϕe) (Eω [|∇ωRedit(ω ◦ ϕe)|])2

]}
,

(13)
where the primal variable ϕe is optimized to minimize the overall risk, and dual variable δ is
optimized to maximize the TV penalty. To solve it, an adversarial learning procedure is adopted,
alternating between updating ϕe and δ with adaptive learning rates γ1 and γ2:

ϕ(k+1)
e = ϕ(k)

e − γ
(k)
1 · ∂ϕeG(δ(k), ϕ(k)

e ), δ(k+1) = δ(k) + γ
(k)
2 · ∇δG(δ(k), ϕ(k+1)

e ). (14)

The computation process of gradient ∇δG and subgradient ∂ϕe
G are presented in Appendix A.3.

Consequently, after optimizing two variables, we obtain an edit model ϕe that is both accurate and
contained while being robustly generalizable through invariant mechanisms.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets & Backbones & Evaluation Metrics. In line with previous work (Pan et al., 2024),
we conduct experiments on the MMEdit benchmark (Cheng et al., 2023), encompassing two sub-
tasks, i.e., Editing VQA (E-VQA) and Editing Image Captioning (E-IC). Under this benchmark,
we choose BLIP2-OPT (Li et al., 2023) and MiniGPT-4 (Zhu et al., 2023) as the base MLLM. We
utilize Reliability, Generality, and Locality (T-Locality and M-Locality) as the evaluation metrics.

Baseline Methods. We describe four types of baselines and how we incorporate ODEdit into each
method as a plug-and-play optimization framework in Appendix D.3.

Implementation Details. We present all implementation details in Appendix D.4.

4.2 PERFORMANCE ON ONE-STEP KNOWLEDGE EDITING

To evaluate editing performance, we conduct one-step editing experiments. From Table 1, we can
find: 1) Previous methods fail to achieve balanced performance across all metrics when applied
to multimodal editing tasks. Model-extending methods frequently suffer from poor locality, while
parameter-adjusting methods often exhibit limited generality. For instance, SERAC achieves high
reliability (97.60) and generality (97.30) with BLIP2 on E-VQA, but its M-Locality drops drasti-
cally to 3.21. MEND shows a significant generality gap with the other SOTAs like SERAC. 2)
ODEdit demonstrates strong adaptability across diverse baselines and consistently improves
four evaluation metrics. On E-VQA with MiniGPT-4, T-Patcher+ODEdit improves generality
with the promotion ratio as 4.82%. WISE+ODEdit improves M-Locality by 19.2% with MiniGPT-
4 on E-VQA, while T-Locality by 17.2% with BLIP2 on E-IC. UniKE+ODEdit outperforms UniKE
on all metrics. (3) The balanced improvement across metrics underscores that effective OOD
generalization equates to holistic performance elevation, not merely gains in the generality
dimension. ODEdit accurately determines the generalization boundary, and its core contri-
bution is extracting invariant editing trajectories to both mitigate causal underfit and causal
overfit, thus resolving the trade-off between locality and generality.

4.3 PERFORMANCE ON LONG-TERM KNOWLEDGE EDITING

Following Pan et al. (2024), we typically set the T -step sequential editing scenario, where the
model is edited sequentially for each instance in the editing set with a capacity of T . After the
T -th edit, we evaluate the post-edit MLLM. We report the results for T = 5 and T = 10 on
both E-VQA and E-IC tasks. From Table 2, we find: 1) Unimodal editors like WISE fail catas-
trophically in multimodal long-term editing, particularly in preserving locality and generality.
On E-VQA, WISE’s T-Loc. collapses to near zero, demonstrating the rigid editing mapping
cannot adaptively modify MLLM’s causal reasoning. 2) Even specialized multimodal editors
like UniKE exhibit performance decay over time. This indicates that without explicit invari-
ance learning, sequential edits cause interference and erode previously learned knowledge. 3)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall editing performance (%). Rel., Gen., T-Loc., M-Loc., denote Reliability, Generality,
Text Locality, and Image Locality respectively. The higher scores within the same editing backbone
are highlighted in bold. All improvements are significant with p-value < 0.05 based on t-tests.

Model Method
Editing VQA (E-VQA) Editing Image Caption (E-IC)

Rel.↑ Gen.↑ T-Loc.↑ M-Loc.↑ Rel.↑ Gen.↑ T-Loc.↑ M-Loc.↑
B

L
IP

2-
O

PT
2.

7B

Pre-edited 25.85 26.37 99.38 92.83 0 0 99.79 94.93

FT 100 100 93.94 64.79 100 0 78.79 29.58
IKE 99.71 99.62 47.74 2.53 94.40 88.00 50.43 2.87

SERAC 97.60 97.30 100 3.21 99.71 99.71 100 2.64

WISE 100 83.33 40.94 16.89 100 85.93 33.61 11.89
WISE+ODEdit 100 83.33 41.24 13.83 100 87.33 39.37 14.77

MEND 97.80 97.20 99.68 94.23 77.90 62.80 98.14 78.86
MEND+ODEdit 97.60 97.20 99.52 91.75 79.40 64.40 99.01 86.14

T-Patcher 80.35 77.82 87.14 85.28 72.78 72.75 71.59 80.49
T-Patcher+ODEdit 81.85 80.47 86.25 85.37 73.44 74.28 71.18 81.67

UniKE 94.32 87.18 95.98 93.15 74.01 73.84 76.09 82.36
UniKE+ODEdit 96.58 89.34 96.17 93.27 74.52 75.49 76.65 83.28

M
in

iG
PT

-4
7B

Pre-edited 19.21 24.08 99.44 91.56 0 0 99.79 94.93

FT 100 100 97.50 40.85 100 0 95.00 39.83
IKE 99.95 99.90 50.02 3.31 90.30 90.00 51.49 4.27

SERAC 91.70 98.60 99.99 3.72 83.60 93.10 99.99 4.65

WISE 100 100 90.10 52.15 100 91.58 92.81 70.68
WISE+ODEdit 100 97.50 92.39 62.14 100 90.04 94.54 73.17

MEND 96.20 96.00 99.42 88.25 77.80 74.60 99.28 87.85
MEND+ODEdit 97.00 97.00 99.52 88.61 78.60 74.20 99.36 86.77

T-Patcher 70.56 68.79 64.45 81.77 69.54 68.95 63.59 81.34
T-Patcher+ODEdit 72.38 72.11 65.29 82.93 71.42 70.98 65.03 82.75

UniKE 84.32 81.29 78.45 85.81 72.18 70.41 68.53 84.59
UniKE+ODEdit 85.14 83.23 79.35 86.56 73.06 71.58 69.46 85.12

Table 2: Results of long-term editing on BLIP2-OPT.

Dataset Model
T=5 T=10

Rel.↑ Gen.↑ T-Loc.↑ M-Loc.↑ Rel.↑ Gen.↑ T-Loc.↑ M-Loc.↑

E
-V

Q
A WISE 44.50 34.75 0.40 0.15 28.50 24.55 0.63 0.15

WISE+ODEdit 49.42 43.52 0.80 0.15 43.33 24.22 0.81 0.15
UniKE 90.28 80.26 91.41 89.37 86.52 76.58 87.64 86.31

UniKE+ODEdit 92.63 83.59 92.38 89.95 89.79 81.25 89.35 87.54

E
-I

C

WISE 84.31 65.49 0.76 0.14 75.96 55.56 0.71 0.14
WISE+ODEdit 86.53 66.94 0.94 0.14 84.64 61.70 0.77 0.14

UniKE 70.16 71.45 72.09 79.52 63.54 64.71 66.29 73.25
UniKE+ODEdit 71.05 73.22 72.68 80.77 65.87 68.82 67.11 76.59

ODEdit consistently mitigates this decay and enhances stability. By learning invariant tra-
jectories, ODEdit preserves higher reliability, generality, and locality, and the improvement
becomes more pronounced as T increases. These results prove the ability of ODEdit to discern
and stabilize core causal features against the variations introduced by successive edits.

4.4 IN-DEPTH ANALYSIS

Ablations of OOD Risks. We conduct ablation studies by removing each risk separately. The results
in Table 3 show: 1) Reliability risk is essential for knowledge assimilation. The removal of Rrel

causes Rel. and Gen. to collapse, showing MLLM fails to learn the intended knowledge. 2) Locality
risk constraints editing within scope. Ablating Rloc leads to a decrease in T-Loc. and M-Loc.,
indicating edit effects spill over into irrelevant knowledge areas, causing causal-overfit and violating
locality. 3) Generality risk facilitates semantic generalization. The addition of Rgen yields
a substantial gain in the Gen. metric (e.g., from 86.59 to 89.34 on E-VQA and from 71.24 to
75.49 on E-IC). While it induces minimal fluctuations in Rel. and minor variations in Loc., this
aligns with our OOD formulation where the three risks exhibit inherent cross-effects. Rgen

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Reliability Generality T-Locality M-Locality70
75
80
85
90
95

100

Sc
or

e

= 0.0001 = 0.001 = 0.01 ODEdit

(a) Editing VQA
Reliability Generality T-Locality M-Locality65

70

75

80

85

Sc
or

e

= 0.0001 = 0.001 = 0.01 ODEdit
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Figure 2: Results of ablation study to illustrate the effect of IRM-TV optimization.

Table 3: Results of ablation study to illustrate effects of each OOD risk.

Invariants
Editing VQA (E-VQA) Editing Image Caption (E-IC)

Rel.↑ Gen.↑ T-Loc.↑ M-Loc.↑ Rel.↑ Gen.↑ T-Loc.↑ M-Loc.↑
w/o Rrel 0 0 99.85 98.63 0 0 95.81 97.22
w/o Rloc 96.65 89.51 74.36 71.25 74.62 75.45 64.49 73.19
w/o Rgen 96.49 86.59 95.97 93.54 74.60 71.24 75.83 83.60
ODEdit 96.58 89.34 95.46 93.27 74.52 75.49 75.65 83.28

primarily works by aligning semantic-neighboring samples with the edited instance in the
latent space, which successfully promotes invariant feature learning to prevent causal underfit.
The slight impact on locality can be attributed to the potential reinforcement of local concept-
output associations as a byproduct of this semantic alignment process.

Effects of Maximum Mean Discrepancy Alignment. We perform ablations with invariants:
Table 4: Ablation studies on the MMD alignment.

Invariant Rel. Gen. T-Loc. M-Loc.

MMD-s RBF 79.40 64.40 99.01 86.14
MMD-s Linear 78.80 63.20 98.49 80.75
MMD-m RBF 76.81 63.59 99.00 85.73
Contrast 76.40 63.80 99.00 89.91

(a) MMD-s RBF denotes MMD with a Ra-
dial Basis Function (RBF) kernel and a single
rephrase prompt. (b) MMD-s Linear with lin-
ear kernel. (c) MMD-m RBF utilizes multiple
rephrase prompts. (d) Contrast replace MMD
with contrastive learning. Results in Table 4
show that MMD-s RBF achieves the most bal-
anced and effective performance. MMD-s Lin-
ear is less effective at capturing cross-modal semantic distributions. The gap between Contrast and
MMD-s RBF underscores advantages of a distribution-level alignment objective over instance-level.
An insightful finding is that using multiple rephrase prompts yields no additional benefit. The poten-
tial reason is that a single rephrase prompt provides a focused semantic transformation path, while
multiple prompts introduce noisy variations which might lead to spurious correlations.

Performance on other MLLMs. We further conduct editing on other MLLMs, i.e., LLaVA
(Liu et al., 2023). From Table 5, ODEdit enhances WISE across all metrics on LLaVA,

Table 5: Results on other MLLMs.
E-VQA Rel. Gen. T-Loc. M-Loc.

WISE 100 71.42 91.51 93.75
WISE+ODEdit 100 72.01 94.40 95.47

E-IC Rel. Gen. T-Loc. M-Loc.

WISE 99.89 81.28 92.69 94.63
WISE+ODEdit 99.78 82.22 92.54 95.92

with particularly notable gains in gen-
erality and locality. These robust im-
provements on a distinct MLLM ar-
chitecture underscore the strong gen-
eralizability of ODEdit, which stems
from its core design of learning invari-
ant editing trajectories that effectively
suppress spurious correlations across
diverse model backbones.

Effects of Edit Trajectory Invariant Learning. We ablate the effect of the TV-ℓ1 penalty strength
(λ) in IRM-TV optimization, and present results in Figure 2, from which we find: 1) An insufficient
penalty, i.e., λ = 0.0001, fails to extract feature invariance, thus hurting generality extremely. 2) An
excessive penalty, i.e., λ = 0.01, over-constrains the model, simultaneously degrading three met-
rics. An overly strong invariance constraint makes the model’s internal representations rigid, so that
failing to make updates to target knowledge while incorrectly altering peripheral features it should
preserve. 3) The dynamic and adaptive formulation of λ(π, ϕe) shows its superiority, validating it
robustly balances knowledge assimilation and discrimination across diverse environments.

Visualization on OOD Generalization. We visualize the latent representations of original
and rephrased prompts in MLLM with t-SNE (Van der Maaten & Hinton, 2008) across dif-
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(a) MEND before-edit (b) MEND in editing (c) MEND converged

(d) MEND+ODEdit before-edit (e) MEND + ODEdit in editing (f) MEND + ODEdit converged
Figure 3: The t-SNE distributions of the latent representations on original prompts (SRC) and
rephrase prompts (GEN) in MLLM. The curves depict the marginal distributions along the
two dimensions, with βx and βy representing the proportion of the overlap.

The capital 
is Paris.

Edited Sample Rephrased Sample

This is a photo of ?

An empty classroom with black chairs 
and a window behind it.

Edit with Baseline

An office with several 
desks and chairs in it

Edit with ODEdit

(a) Generality (b) Image Locality (c) Text Locality

Edited Sample Irrelevant Sample

What is this type of blanket called ?

An afghan.
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Quilted blanket with 
patterns on it.

Edit with ODEdit
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Before Edit
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Edit with ODEdit

Before Edit
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Preserve MLLM 
cognition against 
editing effects.

Figure 4: Case studies on the evaluation for generality, image locality, and text locality.

ferent editing stages. From Figure 3: 1) Before editing, rephrased prompts align with orig-
inal prompt distributions in the pre-trained MLLM. 2) During editing, MEND induces a
marked distribution shift as βx and βy values drop, fails to extract semantic invariance. But
MEND+ODEdit maintains strong alignment with high β values, showing stable trajectory
learning. 3) At Convergence, the distribution shift in MEND persists while ODEdit sustains
robust alignment, proving superior generalization to semantic-neighboring regions.
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Figure 5: Effects of learning rate and layer depth.

Hyperparameter Sensitivity. We study effects
of the learning rate and layer depth in the IRM-
TV network. From Figure 5: 1) A small learn-
ing rate hinders extraction of invariant features,
while a moderate increase enhances generality,
accompanied by a slight sacrifice in locality.
However, an excessively large rate suppresses
overall performance. 2) Deeper networks facil-
itate diverse cross-modal association learning, but the marginal benefit diminishes once layer depth
reaches a certain level. Principled guidelines for setting parameters in Appendix D.5.

Computational Cost. We pick one typical parameter-adjusting (MEND) and model-extending
(WISE) baselines for comparison. From Table 6: 1) ODEdit introduces a supplementary net-
work that processes parameters from the knowledge-editing layer, leading to increased mem-
ory usage. But this is the reasonable trade-off for the gains in performance and is acceptable
given the current state of computational resources. 2) ODEdit does not incur a significant
increase in time cost, indicating its efficiency. 3) While integrating ODEdit increases steps,
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Table 6: Computational cost comparison on E-IC. Memo. = Memory usage, Edit-T/sp = Edit-
ing time per step, Train-T/sp = Training time per step, All-T/sp = Total time per step.

Models BLIP2-OPT MiniGPT-4
Memo. Edit-T/sp Train-T/sp All-T/sp Steps. Memo. Edit-T/sp Train-T/sp All-T/sp Steps.

WISE 28.47GB 0.401 0.023 0.424 7 36.59GB 0.473 0.035 0.508 8
WISE+ODEdit 47.53GB 0.442 0.043 0.485 7 69.36GB 0.533 0.072 0.605 8

MEND 14.75GB 1.369 0.018 1.387 25000 25.30GB 1.676 0.188 1.865 10000
MEND+ODEdit 36.05GB 1.480 0.116 1.596 45000 62.80GB 1.861 0.204 2.066 15000

the resultant increase in total time cost does not constitute an order-of-magnitude change and
remains within a practical range for real-world deployment. Employing higher-performance
computing resources would substantially reduce this training time gap.

Interpretability Studies. Qualitative cases in Figure 4 and more analysis in Appendix D.6.

5 RELATED WORK

Unimodal LLM Editing. Model editing aims to modify the target knowledge in LLM while
preserving irrelevant concepts. Previous approaches can be divided into two types. Parameter-
adjusting methods modify intrinsic parameters of LLMs to update new knowledge. In this line,
locate-then-edit models such as ROME (Meng et al., 2022a), MEMIT (Meng et al., 2022b), GLAME
(Zhang et al., 2024b), AnyEdit (Jiang et al., 2025), AlphaEdit (Fang et al., 2024), first identify cru-
cial knowledge-related parameters and then perform targeted edits. Besides, meta-learning based
approaches like KE (De Cao et al., 2021), MEND (Mitchell et al., 2021), InstructEdit (Zhang
et al., 2024c), determine parameter modifications by training hypernetworks. Contrastingly, model-
extending methods incorporate additional components to store new knowledge while keeping orig-
inal model parameters. The added components take diverse forms, including memory in SERAC
(Mitchell et al., 2022) and WISE (Wang et al., 2024a), auxiliary neurons in T-Patcher (Huang et al.,
2023), codebooks in GRACE (Hartvigsen et al., 2023), and LoRA modules in MELO (Yu et al.,
2024). Other works like MemPrompt (Madaan et al., 2022), IKE (Zheng et al., 2023), and DeCK
(Bi et al., 2024) utilize in-context learning to update factual knowledge. Despite their efficacy in
unimodal LLM editing, they suffer from causal-underfit and causal-overfit issues in MLLM.

Multimodal LLM Editing. Recent advances in MLLMs (Li et al., 2023; 2024a; Ma et al., 2025)
have motivated research on multimodal knowledge editing (Pan et al., 2023; Zhou et al.). A se-
ries of benchmarks, e.g., MMEdit (Cheng et al., 2023), MIKE (Li et al., 2024b), VLKEB (Huang
et al., 2024), MC-MKE (Zhang et al., 2024a), MMKE (Du et al., 2025), provide unified datasets and
evaluation to assess multimodal editing efficacy. However, research on strengthening the robustness
of MLLM editing methods holistically across reliability, locality, and generality remains under-
explored. MSCKE (Zeng et al., 2024) establishes a multimodal scope classifier-based knowledge
editor to identify and update specific visual entities. UniKE (Pan et al., 2024) integrates intrinsic
knowledge editing and external knowledge resorting to promote locality and generality. BalancEdit
(Guo et al., 2025) performs codebook-based edits that balance generality and locality by us-
ing contrastive samples to localize each fact’s influence. Nevertheless, existing work remains
constrained to rigid parameter-to-output mappings, which prevent MLLMs from intelligently distin-
guishing between semantic-shift and factual-shift, thereby hindering adaptive and robust editing.

Out-of-Distribution Generalization. We present related work in this field in Appendix E.

6 CONCLUSION AND FUTURE WORK

In this work, we rethink knowledge editing in MLLM as an OOD generalization problem. To iden-
tify semantic-shift and factual-shift among various cross-modal prompting environments, we pro-
pose a plug-and-play invariant learning based optimization paradigm with tripartite OOD risks to
jointly enhance editing reliability, locality, and generality. This work marks an initial step in solving
multimodal editing from an OOD perspective, for which we introduce simple yet general editing
invariant risk metrics with an pathway to guide robust model adaptation. In the future, researchers
could investigate advanced strategies to strengthen MLLM’s grasp of invariant trajectories and dis-
cern spurious factors, with refined regularization functions for more robust cross-modal editing.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. All experiments are conducted on publicly available
datasets without involving any personally identifiable or sensitive user information. No human sub-
jects were recruited, and no private data was collected or released. We are not aware of any ethical
concerns or potential risks associated with the deployment of our approach.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have taken the following steps. The source code
for ODEdit, including implementations of the tripartite OOD risk and the Edit Trajectory Invari-
ant Learning algorithm, has been made publicly available at https://anonymous.4open.
science/r/ODEdit-2756. Complete theoretical proofs for our key propositions, including
the equivalence between the OOD and IRM-TV objectives, are provided in Appendix A. Detailed
descriptions of the experimental setup, including the MLLM backbones (Appendix B.1), baseline
methods (Appendix B.2), hyperparameter configurations, and training procedures, are thoroughly
documented in Appendix B.3. The MMEdit benchmark used for evaluation is publicly available,
and our data processing steps are clearly outlined in Section 4.1 and Appendix B. We hope these
resources will facilitate the replication and extension of our work.
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A PROOFS

A.1 EQUIVALENCE BETWEEN OOD-W AND IRM FORMULATION

In this section, we provide a detailed proof of the equivalence between the original out-of-
distribution (OOD) editing objective and its reformulation using an environment-aware classifier
ω. Specifically, we aim to show that for any edited model parameters ϕe, the worst-case risk over
all environments e ∈ E can be equivalently expressed as the worst-case risk over all possible classi-
fiers ω ∈ Σ, under the condition that ω captures the environmental variability through a surjective
mapping.

Proof. To establish the equality, we demonstrate two inequalities. First, we prove that

max
e∈E

Redit(ω(e) ◦ ϕe) ≥ max
ω∈Σ

Redit(ω ◦ ϕe).

Let ω∗ be a classifier that attains the maximum on the right-hand side, so that

ω∗ = argmax
ω∈Σ

Redit(ω ◦ ϕe).

Given the surjectivity of the mapping e 7→ ω(e), there exists an environment e0 ∈ E such that
ω(e0) = ω∗. Consequently,

Redit(ω(e0) ◦ ϕe) = Redit(ω
∗ ◦ ϕe) = max

ω∈Σ
Redit(ω ◦ ϕe).

Since e0 is an element of E , the maximum over E must be at least as large as the value at e0, yielding
the desired inequality. Second, we prove the opposite inequality:

max
e∈E

Redit(ω(e) ◦ ϕe) ≤ max
ω∈Σ

Redit(ω ◦ ϕe).

Let e∗ be an environment that achieves the maximum on the left-hand side, i.e.,

e∗ = argmax
e∈E

Redit(ω(e) ◦ ϕe).

Then, ω(e∗) is by construction a member of Σ. Therefore,

Redit(ω(e
∗) ◦ ϕe) ≤ max

ω∈Σ
Redit(ω ◦ ϕe),

which directly implies the inequality. By combining both inequalities, we conclude that

max
e∈E

Redit(ω(e) ◦ ϕe) = max
ω∈Σ

Redit(ω ◦ ϕe),

which holds for any ϕe. Thus, minimizing either expression with respect to ϕe leads to the same
optimal solution, confirming the equivalence between the OOD-ω and IRM formulations. This result
allows us to leverage the IRM framework for invariant learning in multimodal knowledge editing.

A.2 HOW IRM WITH TV-l1 PENALTY ACHIEVES EDITING OOD

In this section, we provide a theoretical analysis demonstrating how the proposed IRM formulation
with TV-ℓ1 penalty achieves the out-of-distribution (OOD) editing objective defined in Eq.11 of the
main text. Specifically, we prove that when the penalty parameter λϕe is allowed to vary with the
model parameters ϕe, the IRM-TV objective can achieve the same optimum as the original OOD
editing objective. Recall the IRM-TV formulation from Eq.11:

min
ϕe

{
Eω[Rrel(ω ◦ ϕe) +Rloc(ω ◦ ϕe)] + λϕe (Eω[|∇ωRgen(ω ◦ ϕe)|])2

}
,

where the first term represents the base editing risk (reliability + locality) and the second term is the
TV-ℓ1 penalty on the generalization risk. The original OOD editing objective is:

min
ϕe

max
ω∈Σ

Redit(ω ◦ ϕe).

We first demonstrate through a counterexample that a fixed λ cannot achieve the OOD objective,
then prove the existence of a λϕe

that varies with ϕe to achieve equivalence.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.1 THE NECESSITY OF λ VARYING WITH ϕe

Following (Lai & Wang, 2024), we provide a counterexample with a fixed λ to prove the necessity
of λ Varying with ϕe. To show that a fixed λ is insufficient, consider a simplified editing scenario
where we aim to optimize the feature parameter ϕe ∈ [−1, 1]. The classifier ω follows a uniform
distribution on [−0.9, 0.1], reflecting environmental variations. The editing risk is defined as:

Redit(ω ◦ ϕe) := |ω · ϕe + 1|.

For this setup, the OOD objective achieves its minimum at ϕe = 0 with value 1:

min
ϕe∈[−1,1]

max
ω∈[−0.9,0.1]

Redit(ω ◦ ϕe) = 1,

arg min
ϕe∈[−1,1]

max
ω∈[−0.9,0.1]

Redit(ω ◦ ϕe) = 0.

However, for any fixed λ ≥ 0, the IRM-TV objective:

Eω[Redit(ω ◦ ϕe)] + λ (Eω[|∇ωRedit(ω ◦ ϕe)|])2 ,

fails to achieve the same optimum as the OOD objective. To demonstrate this, we analyze the
behavior of both objectives for the simplified editing scenario. For ϕe ≥ 0, the OOD objective
becomes maxω∈[−0.9,0.1] Redit(ω ◦ ϕe) = 1 + 0.1ϕe, which is minimized at ϕe = 0 with value 1.
For ϕe < 0, the OOD objective becomes maxω∈[−0.9,0.1] Redit(ω ◦ ϕe) = 1− 0.9ϕe, which is also
minimized at ϕe = 0 with value 1. Now, evaluating the IRM-TV objective with fixed λ:

Eω[Redit(ω ◦ ϕe)] =

∫ 0.1

−0.9

(1 + ωϕe)dν = 1 + ϕe · Eω[ω] = 1− 0.4ϕe,

Eω[|∇ωRedit(ω ◦ ϕe)|] = |ϕe| ·
∫ 0.1

−0.9

dν = |ϕe|.

Thus, the IRM-TV objective becomes 1 − 0.4ϕe + λϕ2
e. Minimizing this quadratic function over

ϕe ∈ [−1, 1] yields: 1) If λ > 0.2, the minimum occurs at ϕe = 0.2/λ with value 1− 0.04/λ. 2) If
0 < λ ≤ 0.2, the minimum occurs at ϕe = 1 with value 0.6 + λ. 3) If λ = 0, the minimum occurs
at ϕe = 1 with value 0.6. Comparing with the OOD optimum (ϕe = 0, value 1), for any fixed λ ≥ 0
we observe that:

min
ϕe∈[−1,1]

{
1− 0.4ϕe + λϕ2

e

}
̸= 1,

arg min
ϕe∈[−1,1]

{
1− 0.4ϕe + λϕ2

e

}
̸= 0.

This deviation occurs because the expectation term Eω[Redit(ω ◦ϕe)] pulls the optimum away from
ϕe = 0 to reduce the average risk, while the fixed λ cannot adequately compensate for this bias.
Only when λ is allowed to vary with ϕe can we achieve equivalence with the OOD objective.

A.2.2 PROOFS ON EXISTENCE OF λϕe

We now prove that there exists a λϕe that varies with ϕe such that the IRM-TV objective equals the
OOD objective for each ϕe. For the case where Eω[|∇ωRedit(ω ◦ ϕe)|] = 0, indicating constant
generalization risk, λϕe can be chosen arbitrarily since the TV term vanishes. For the nontrivial case
where Eω[|∇ωRgen(ω ◦ ϕe)|] > 0, we construct λϕe

as:

λϕe :=
maxω∈Σ Redit(ω ◦ ϕe)− Eω[Rrel(ω ◦ ϕe) +Rloc(ω ◦ ϕe) +Rgen(ω ◦ ϕe)]

(Eω[|∇ωRedit(ω ◦ ϕe)|])2
.

This construction ensures that for each ϕe, we have

Eω[Redit(ω ◦ ϕe)] + λϕe
(Eω[|∇ωRedit(ω ◦ ϕe)|])2 = max

ω∈Σ
Redit(ω ◦ ϕe),

since the numerator represents the gap between the worst-case risk and the expected base risk.
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A.2.3 ACHIEVING OOD-ω OPTIMALITY

Let ϕ∗
e be an optimal solution of the IRM-TV objective with λϕe

defined above. Then for any ϕe:

Eω[Rrel(ω ◦ ϕ∗
e) +Rloc(ω ◦ ϕ∗

e) +Rgen(ω ◦ ϕ∗
e)] + λϕ∗

e
(Eω[|∇ωRedit(ω ◦ ϕ∗

e)|])
2

≤ Eω[Rrel(ω ◦ ϕe) +Rloc(ω ◦ ϕe) +Rgen(ω ◦ ϕe)] + λϕe
(Eω[|∇ωRedit(ω ◦ ϕe)|])2 .

Substituting the definition of λϕe
, for all ϕe we have:

max
ω∈Σ

Redit(ω ◦ ϕ∗
e) ≤ max

ω∈Σ
Redit(ω ◦ ϕe).

This is the proof that ϕ∗
e is also optimal for the OOD objective. Conversely, if ϕ∗

e is optimal for the
OOD objective, then for all ϕe:
Eω[Redit(ω ◦ ϕ∗

e)] + λϕ∗
e
(Eω[|∇ωRedit(ω ◦ ϕ∗

e)|])
2
= max

ω∈Σ
Redit(ω ◦ ϕ∗

e) ≤ max
ω∈Σ

Redit(ω ◦ ϕe),

which shows that ϕ∗
e is also optimal for the IRM-TV objective. This completes the proof that the

IRM formulation with TV-ℓ1 penalty can achieve the OOD editing objective when λϕe
is properly

chosen as a function of ϕe.

A.3 COMPUTATION OF GRADIENTS IN PRIMAL-DUAL OPTIMIZATION

In this section, we provide the detailed computation process of the gradient ∇δG and the subgradient
∂ϕe

G for the primal-dual optimization problem defined in Eq. 12 and 13 of the main text. Recall the
Lagrangian function as:

G(δ, ϕe) = Eω[Redit(ω ◦ ϕe)] + λ(δ, ϕe) (Eω[|∇ωRedit(ω ◦ ϕe)|])2 ,

where Redit(ω ◦ ϕe) = Rrel(ω ◦ ϕe) +Rloc(ω ◦ ϕe) +Rgen(ω ◦ ϕe) represents the complete editing
risk. To compute the gradients, we assume that the risk functions are Lipschitz continuous and admit
subgradients at non-differentiable points.

Subgradient of G with Respect to ϕe. The subgradient ∂ϕeG(δ, ϕe) is computed as:
∂ϕe

G(δ, ϕe) =Eω[∇ϕe
Redit(ω ◦ ϕe)] + 2λ(δ, ϕe) · Eω[|∇ωRedit(ω ◦ ϕe)|]

· Eω[∂ϕe
|∇ωRedit(ω ◦ ϕe)|] +∇ϕe

λ(δ, ϕe) · (Eω[|∇ωRedit(ω ◦ ϕe)|])2 .

Here, the term ∂ϕe |∇ωRedit(ω ◦ ϕe)| requires special handling due to the absolute value function.
Based on derivations in (Wang et al., 2025), we obtain its subgradient as:

∂ϕe |∇ωRedit(ω◦ϕe)| =

{
sign(∇ωRedit(ω ◦ ϕe))J

−1
ϕe

[∇ωRedit(ω ◦ ϕe)] if ∇ωRedit(ω ◦ ϕe) ̸= 0,

0 if ∇ωRedit(ω ◦ ϕe) = 0,

where Jϕe [·] denotes the Jacobian matrix with respect to ϕe. This formulation ensures that the
subgradient is well-defined even at points where the gradient is zero.

Gradient of G with Respect to δ. The gradient ∇δG(δ, ϕe) is computed as:

∇δG(δ, ϕe) = ∇δλ(δ, ϕe) · (Eω[|∇ωRedit(ω ◦ ϕe)|])2 .

The first term in G, Eω[Redit(ω ◦ϕe)], does not depend on δ, so its gradient with respect to δ is zero.

Implementation Notes. In practice, the expectations over ω are approximated using Monte Carlo
sampling from the environment distribution. The gradients ∇ϕe

Redit, ∇ωRedit, and ∇δλ are com-
puted using standard backpropagation. The subgradient for the absolute value term is implemented
using a conditional statement, which is supported by autograd systems. This approach ensures effi-
cient and stable optimization during the primal-dual updates.

These gradient computations enable the iterative updates in Eq. 14 of the main text:

ϕ(k+1)
e = ϕ(k)

e − γ
(k)
1 · ∂ϕe

G(δ(k), ϕ(k)
e ), δ(k+1) = δ(k) + γ

(k)
2 · ∇δG(δ(k), ϕ(k+1)

e ),

leading to convergence to a solution that minimizes the OOD editing risk while maintaining the
invariance properties enforced by the TV-ℓ1 penalty.
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B CAUSAL GROUNDING ANALYSIS OF CASCADED REASONING IN MLLM

B.1 ARCHITECTURAL CAUSAL STRUCTURE EMBEDDED IN MLLM

Multimodal language models implement an unidirectional computational graph, that is: uni-
modal encoders → cross-modal fusion → unified semantic reasoning. This forward compu-
tation defines a structural causal ordering, for which in the Structural Causal Model (SCM)
view (Li et al., 2024c; Zhou et al., 2024), modules are equal to variables and the forward pass is
equal to structural equations. Thus the cascade reasoning is not a hypothesized causal model,
but the deterministic functional decomposition of existing architectures.

B.2 HOW PERTURBATIONS PROPAGATE DURING MLLM EDITING

Under this structural ordering, any local perturbation to a module ∆M or parameter ∆W
necessarily propagates forward through the downstream modules and changes their internal
states. Thus, there is no one-to-one rigid mapping, i.e., rigid mapping, between a specific
parameter edit and the final output change, because the effect of the edit is mediated by all
subsequent causal mechanisms in the network. Formally, for a structural chain

h(unimodal) → h(align) → h(shared) → y

A perturbation enters the output through
y′ = fshared (falign (funimodal(x;W + δW )))

Thus the output shift ∆y depends not only on ∆W , but on how ∆W perturbs hunimodal , how
this shifted representation perturbs halign, and subsequently how the changed alignment influ-
ences the semantic reasoning module hshared. This cascading mediation proves why treating
parameter edit → output change as a rigid mapping is fundamentally inaccurate in MLLMs,
i.e., cause casual underfit and casual overfit in Section Introduction.

C DEFINITIONS OF SEMANTIC SHIFT AND FACTUAL SHIFT

The definitions of Semantic Shift and Factual Shift rely on three shared mappings:

Semantic neighborhood. Let f(x) be the MLLM’s semantic embedding. We define meaning-
preserving variation via the semantic neighborhood:

Nε(x) = {x′ : ∥f (x′)− f(x)∥2 ≤ ε} .
Atomic factual content. Let k(x) denote the atomic factual content (e.g., entity–attribute or en-
tity–relation tuples). Two inputs share factual content iff k(x) = k(x′).

Output-relevant concept mapping. Let c(x) denote the minimal set of conceptual factors that
feed into the MLLM’s forward causal chain (perception → alignment → semantic reasoning) and
determine the final output:

y = MLLM(c(x)).

Definition 1 (Semantic Shift). A sample x′ exhibits semantic shift w.r.t. x if and only if

x′ ∈ Nε(x), k (x′) = k(x), c(x) ∩ c (x′) ̸= ∅, MLLM(c (x′)) = MLLM(c(x))

That is, semantic shift refers to variations within the semantic neighborhood while preserv-
ing factual content and preserving the output-relevant conceptual factors. Typical examples
include paraphrases, lexical substitutions, stylistic rewordings, and mild visual variations.

Definition 2 (Factual Shift). To be rigorous, there should be two kinds of factual shift, i.e., easy
factual shift and hard factual shift:

Easy Factual Shift: x′ /∈ Nε(x), k (x
′) ̸= k(x), c(x)∩c (x′) = ∅,MLLM(c (x′)) ̸= MLLM(c(x))

Hard Factual Shift: x′ /∈ Nε(x), k (x
′) ̸= k(x), c(x)∩c (x′) ̸= ∅,MLLM(c (x′)) ̸= MLLM(c(x))
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Thus, the factual shift corresponds to moving outside the semantic neighborhood while alter-
ing the atomic fact, which necessarily changes the model’s reasoning-relevant conceptual rep-
resentation. The only difference between the two factual shifts is whether the prompts share
part of the conceptual framing, e.g., the same entities, question structure, or visual context.

D EXPERIMENTAL SETUP DETAILS

D.1 MLLM BACKBONES

BLIP2-OPT. Li et al. (2023) is a vision-language pre-training framework that leverages frozen pre-
trained image encoders and large language models bridged by a lightweight Querying Transformer.
Our setup uses ViT-L for the vision encoder and an unsupervised-trained OPT model with 2.7 billion
parameters as the decoder-based language model.

MiniGPT-4. Zhu et al. (2023) is a vision-language model that integrates a frozen visual encoder
with the frozen Vicuna language model built on LLaMA. The model employs a single projection
layer to align visual features with Vicuna and uses the same pre-trained vision component as BLIP-
2, consisting of ViT-G/14 from EVA-CLIP and a Q-Former. Our setup uses ViT-G/14 for the vision
encoder and a forzen Vicuna model with 7 billion parameters as the decoder-based language model.

D.2 DATASET STRUCTURES

The reliance of ODEdit on three distinct data splits (DIN , DSE , Dout) is not a new imposition
but rather a formalization of the training datasets from benchmark MMEdit (Cheng et al.,
2023), which is also the most popularly used benchmark in previous work (Pan et al., 2024).
The MMEdit benchmark that we use explicitly provides data structured as triplets for each
edit instance in the training datasets, i.e., the original edit sample (our DIN ), semantically
rephrase samples (our DSE), and unrelated samples (our Dout). For clarity, here we provide
the data structure of a training instance example:

src: A photo of
pred: Wooden spoons and forks on a wooden table.
rephrase: Provide a brief overview of the image content.
alt: A selection of wooden kitchen tools on a counter.
image: val2014/COCO val2014 000000386164.jpg
image rephrase: val2014 image rephrase/COCO val2014 000000386164.png
loc: Who was supported by the united states during mexican civil war?
loc ans: Benito Juárez.
m loc: val2014/COCO val2014 000000297147.jpg
m loc q: What sport can you use this for?
m loc a: Motocross.

D.3 BASELINE METHODS

To thoroughly evaluate the effectiveness of our model ODEdit, we compare it with four types of
baselines: (1) Naive fine-tuning: FT directly tunes the last three layers of MLLM. (2) Parameter-
adjusting unimodal editing: MEND (Mitchell et al., 2021). (3) Model-extending unimodal editing:
IKE (Zheng et al., 2023), SERAC Mitchell et al. (2022), T-Patcher (Huang et al., 2023), WISE
(Wang et al., 2024a). (4) Integrate parameter-adjusting and model-extending editing: UniKE
(Pan et al., 2024). ODEdit serves as a plug-and-play universal framework, capable of being
seamlessly integrated into any editing model that relies on loss-based optimization. Thus, we en-
hance one representative model under each type of baselines using ODEdit, i.e., WISE+ODEdit,
MEND+ODEdit, T-Patcher+ODEdit, UniKE+ODEdit, and compare the results against the orig-
inal models.

Fine-tune (FT). Fine-tuning is the predominant paradigm for adapting pre-trained models to down-
stream tasks. As our baseline for multimodal editing, we adopt vanilla fine-tuning by updating the
last three layers of the MLLM.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In-context Knowledge Editing (IKE). Zheng et al. (2023) explores in-context learning (ICL) for
knowledge editing in large language models. IKE designs demonstration templates, i.e., copy, up-
date, retain, and retrieves relevant facts from the training corpus to construct effective in-context
demonstrations that guide LLMs in precise knowledge editing.

SERAC. Mitchell et al. (2022) develops a memory-based editing framework, where edits are cached
in an explicit memory and retrieved at inference. A scope classifier decides whether the input falls
within memory coverage. When the input falls within memory coverage, it is augmented with the
most relevant memory entry and forwarded to a counterfactual model for prediction.

WISE. Wang et al. (2024a) introduces a dual-parametric memory with a main memory for pretrained
knowledge and a side memory for edits. A router determines which memory to access for each query.
To support continual editing, WISE adopts sharding and merging mechanisms that isolate edits in
different parameter subspaces and integrate them without conflicts.

MEND. Mitchell et al. (2021) designs model editor networks with gradient decomposition, a scal-
able approach for fast post-hoc editing of large pre-trained language models. Instead of directly
fine-tuning model parameters, MEND employs lightweight auxiliary networks to transform fine-
tuning gradients, using a low-rank decomposition to keep the transformation tractable. We set the
last three layers of MLLM as the tuned target for this auxiliary network in our experiments.

T-Patcher. Huang et al. (2023) proposes a lightweight approach for model editing, aimed at revising
transformer-based pre-trained language models without affecting overall performance. Instead of
updating all parameters, Transformer-Patcher adds a small set of trainable neurons, i.e., patches, to
the FFN layer, and trains them with activation and memory losses to respond only to targeted inputs.

UniKE. Pan et al. (2024) presents a unified framework for multimodal knowledge editing by com-
bining intrinsic memory updates and external memory resorting. Both types of knowledge are rep-
resented as key-value memories and edited in the latent space. Contrastive learning disentangles
semantic and truthfulness aspects, allowing intrinsic and external knowledge to guide each other.

D.4 IMPLEMENTATION DETAILS

For the generality risk in ODEdit, we employ a Gaussian RBF kernel with a multi-scale bandwidth
strategy as the kernel function for MMD. To achieve adaptive TV-ℓ1 penalty, we utilize a three-layer
MLP with ReLU activations for the IRM-TV optimization, Xavier initialization for weights, and
Softplus activation at the output to ensure positivity. We choose Adam as the optimizer, and vary
the learning rates in {0.0001, 0.001, 0.005, 0.01} for the IRM-TV network. For all experiments, we
repeat them five times and report the mean value of the results. We conduct all of our experiments
on an Ubuntu OS that contains 8 NVIDIA A40 GPUs.

D.5 PRINCIPLED GUIDELINES FOR SETTING PARAMETERS

For TV penalty λ. We clarify that the coefficient of the TV penalty, denoted by λ, is not a fixed
hyperparameter that requires grid search. Instead, it is treated as a Lagrange multiplier and
is adaptively learned during training. This adaptive dual-variable treatment avoids additional
hyperparameter tuning for three reasons: 1) λ is not manually chosen, and it is automatically
adjusted via gradient ascent on the constraint violation. 2) The MLP parameterization for
λ is intentionally low-capacity (e.g., 2 layers, 32 units) 3) The dual update is stable across a
wide range of γ2, i.e., 1e−4 to 5e−3, and standard techniques, e.g., gradient clipping and EMA
smoothing ensure robust behavior. Thus, the learned TV penalty acts as a self-regulating
mechanism rather than a hand-tuned hyperparameter, and introduces negligible additional
tuning workload in practical use.

For MMD bandwidths σq . In our implementation, the bandwidth used by the RBF-based
MMD is computed directly from data rather than specified as a tunable hyperparameter.
Given a batch of source features {xi}ni=1 and target features {yj}mj=1, we concatenate them
intoZ = {zk}n+m

k=1 = {x1, . . . , xn, y1, . . . , ym}. We then compute all pairwise squared Eu-
clidean distances dij = ∥zi − zj∥2, 1 ≤ i, j ≤ n + m. The base bandwidth σ2 is defined
as the average pairwise distance (excluding diagonal entries) σ2 = 1

(n+m)(n+m−1)

∑
i̸=j dij .
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This formulation makes the bandwidth fully data-adaptive, as it automatically reflects the
intrinsic scale of the representations in each batch. Thus, the MMD kernel requires no man-
ual tuning of σ and does not introduce additional difficulty in hyperparameter optimization.
To further enhance robustness, we employ a multi-scale Gaussian kernel using a geometric
progression of bandwidths. Let K denote the number of kernels and κ the multiplicative
factor. After normalizing the base bandwidth by κ⌊K/2⌋, we generate a set of kernel band-
widths σ2

k = σ2 · κ k−⌊K/2⌋, k = 0, 1, . . . ,K − 1. Each scale defines an RBF kernel
kk(zi, zj) = exp

(
−dij

σ2
k

)
, and the final kernel matrix is obtained by summing across scales

K(zi, zj) =
∑K−1

k=0 kk(zi, zj). This multi-scale construction ensures sensitivity to both small
and large variations in the feature representations and effectively prevents kernel collapse,
i.e., a single bandwidth becomes either overly peaked or nearly constant.

For primal-dual learning rate γ1 γ2 and the stablity of the primal-dual optimization. From
the experiments results, as shown in Figure 5, we observe that the primal-dual learning rates
are not sensitive in practice. This is primarily due to the smoothness and boundedness of our
constraint terms. The primal update optimizes a standard editing loss combined with softly-
weighted regularizers, which results in well-behaved gradients. Formally, the primal step is
ϕ
(k+1)
e = ϕ

(k)
e − γ

(k)
1 · ∂ϕeG(δ(k), ϕ

(k)
e ) and the gradient ∂ϕeG remains Lipschitz-continuous

because both the MMD and TV terms are smooth with respect to ϕe. For the dual variable,
the update takes the form δ(k+1) = δ(k)+γ

(k)
2 ·∇δG(δ(k), ϕ(k+1)

e ). The dual signal ∇δG reduces
to the constraint violation term such as TV(θ)−τ , which is naturally bounded due to gradient
clipping and the compact support of the kernel function used in the MMD constraint. As a
consequence, the dual gradient magnitude is inherently constrained, making the update stable
over a broad range of γ2. Empirically, we find that any γ2 within 1e−3 to 5e−3 yields nearly
identical behaviors: λ grows only when the constraint is violated and quickly plateaus once the
constraint is satisfied. This monotonicity property acts as an automatic stabilizer, preventing
oscillation even when αd varies within a wide range. Finally, the EMA smoothing and non-
negativity projection applied to λ further dampen sensitivity. These properties ensure that
both primal and dual updates behave predictably, and the optimization remains robust even
when the learning rates are perturbed by one or two orders of magnitude.

Principled guidelines for parameter setting. Across all models and datasets we tested, we found
the following configuration consistently stable and near-optimal:

• Primal LR for editor parameters: identical to the backbone fine-tuning LR.

• Dual LR: 1e−3 to 5e−3, smaller than primal LR for stability.

• MMD bandwidth: median heuristic on the in-domain samples.

• TV penalty scale: initially set such that the initial TV magnitude is comparable to the editing
loss, and then adaptively learned by MLP.

• MLP for TV penalty: fixed 2-layer MLP network with dim as [32,8,1].

D.6 INTERPRETABILITY STUDIES

To evaluate the detailed effects of Maximum Mean Discrepancy Alignment and Edit Trajectory
Invariant Learning, we apply the WISE method and the WISE+ODEdit method on BLIP-2 OPT
to conduct interpretability studies. Figure 4 shows several qualitative cases.

For the generality evaluation, ODEdit eliminates the spurious environmental factor, i.e., window,
and produces generalized answers for rephrase prompts, while editing only with baseline fails to
discriminate factual shifts and loses the critical invariant feature, i.e., desk. For image and text
locality, ODEdit preserves accurate answers after editing, owing to the edit trajectory invariant
learning. In contrast, the cognition of MLLM on irrelevant samples is affected by editing in the
baseline, leading to off-topic responses.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E RELATED WORK

E.1 OUT-OF-DISTRIBUTION GENERALIZATION

OOD generalization is a core challenge in machine learning, aiming for generalization under covari-
ate shift without access to data in the target domain (Muandet et al., 2013; Arjovsky et al., 2019).
The mainstream works (Arjovsky et al., 2019; Krueger et al., 2021; Ahuja et al., 2020; Lai & Wang,
2024) utilize invariant risk minimization with regularizer to explore invariant representations across
different training environments. Further, a wide range of techniques is leveraged to extract and
generalize invariant features (Yu et al., 2023), e.g., context-based augmentation (Nam et al., 2021),
representation alignment (Dou et al., 2019; Ruan et al., 2021), gradient manipulation (Shahtalebi
et al., 2021), distributional robust optimization (Ghosal & Li, 2023), and meta-learning (Chen et al.,
2023). In this paper, we make the first attempt to cast MLLM editing as an OOD generalization
problem, where invariant learning across editing environments is enforced via a total invariance
regularizer on cross-modal semantic features, so as to improve editing robustness and adaptability.

F LIMITATIONS AND FUTURE WORK

While ODEdit presents a robust framework for multimodal knowledge editing, our work has certain
limitations that point to valuable future research directions.

Granularity of Invariance.. Our method learns invariant trajectories at a relatively macroscopic
level, e.g., across semantic neighbors. The framework does not explicitly model or enforce invari-
ance at a more fine-grained or neuron-level within the MLLM, which could be a future pathway for
achieving even more precise and disentangled edits.

MLLM Scale. Our empirical study is confined to the multimodal large language models established
in the MMEdit benchmark. Consequently, the effectiveness of ODEdit on more larger-scale, state-
of-the-art MLLMs remains an open question. Extending the evaluation to more powerful and diverse
architectures is a crucial direction for future work.

G ETHICS STATEMENT

Ethical Impacts. This work poses no ethical concerns, as it relies solely on publicly available
datasets and models for experimentation and does not involve subjective evaluation or private data.

Societal Impacts. This work introduces a robust framework for editing knowledge in multimodal
large language models (MLLM) from an out-of-distribution generalization perspective. The primary
positive social impact of this technology is its potential to significantly enhance the reliability and
safety of MLLM by enabling precise, controlled updates to their knowledge base. This is particularly
critical for applications in domains such as healthcare, education, and news dissemination, where
maintaining factual accuracy and mitigating harmful hallucinations are of utmost importance.

H REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have taken the following steps. The source code
for ODEdit, including implementations of the tripartite OOD risk and the Edit Trajectory Invariant
Learning algorithm, has been made publicly available as anonymized supplementary material (link
provided in the abstract, Our code is available at https://anonymous.4open.science/r/
ODEdit-2756.). Complete theoretical proofs for our key propositions, including the equivalence
between the OOD and IRM-TV objectives, are provided in Appendix A. Detailed descriptions of
the experimental setup, including the MLLM backbones (Appendix B.1), baseline methods (Ap-
pendix B.2), hyperparameter configurations, and training procedures, are thoroughly documented
in Appendix B.3. The MMEdit benchmark used for evaluation is publicly available, and our data
processing steps are clearly outlined in Section 4.1 and Appendix B. We hope these resources will
facilitate the replication and extension of our work.
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I USE OF LLMS IN WRITING

We used a large language model (LLM) solely to polish the writing and correct grammatical issues
during the preparation of this paper. The LLM was not involved in idea generation, experiment
design, or analysis, and all scientific contributions are entirely made by the authors.
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