

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM ONE TO MANY: TRAJECTORY INVARIANT LEARNING FOR MULTIMODAL LARGE LANGUAGE MODEL EDITING

Anonymous authors

Paper under double-blind review

ABSTRACT

Knowledge editing emerges as a crucial technique for efficiently correcting incorrect or outdated knowledge in large language models (LLMs). Existing editing methods for unimodal LLM rely on a rigid parameter-to-output mapping, which causes causal-underfit and causal-overfit in cascaded reasoning for Multimodal LLM (MLLM). In this paper, we reformulate MLLM editing as an out-of-distribution (OOD) generalization problem, where the goal is to discern semantic shift with factual shift and thus achieve robust editing among diverse cross-modal prompting. The key challenge of this OOD problem lies in identifying invariant causal trajectories that generalize accurately while suppressing spurious correlations. To address it, we propose ODEdit, a plug-and-play invariant learning based framework that optimizes the tripartite OOD risk objective to simultaneously enhance editing reliability, locality, and generality. We further introduce an edit trajectory invariant learning method, which integrates a total variation penalty into the risk minimization objective to stabilize edit trajectories against environmental variations. Theoretical analysis and extensive experiments demonstrate the effectiveness of ODEdit. Our code is available at <https://anonymous.4open.science/r/ODEdit-2756>.

1 INTRODUCTION

With rapid applications of large language models (LLM) (Liu et al., 2024), ensuring their knowledge correctness and currency in a cost-efficient manner has become a critical concern. *Knowledge editing* (De Cao et al., 2021; Wang et al., 2023; 2024b) is an emerging technique that supports data-efficient modifications on pre-trained models within a specific scope of knowledge. Existing editing methods have two categories, *i.e.*, i) **parameter-adjusting** (Meng et al., 2022b; Fang et al., 2024; Jiang et al., 2025) directly tune a subset of parameters in the original model, and ii) **model-extending** (Huang et al., 2023; Hartvigsen et al., 2023; Yu et al., 2024) attaches auxiliary components while keeping the backbone parameters intact. A unifying goal is to promote the precision (*Reliability*) and generalization (*Generality*) of LLM perception on the editing knowledge, without compromising irrelevant knowledge outside the editing scope (*Locality*).

Despite these advances, current studies remain largely confined to unimodal LLMs, leaving open their extension to multimodal LLMs (MLLM) (Cheng et al., 2023; Du et al., 2025; Pan et al., 2024; Guo et al., 2025). As Figure 1(a) illustrates, both parameter-adjusting and model-extending methods operationalize editing as a rigid mapping from parameter modifications ΔW or auxiliary component modifications ΔM to output variations ΔY , distilled from a limited training cases. However, in the Structural Causal Model (SCM) view (Li et al., 2024c; Zhou et al., 2024), the forward computation graph of an MLLM is a structural causal model: each module implements a structural equation, forming a directed causal chain as *unimodal perception* \rightarrow *cross-modal alignment* \rightarrow *shared semantic reasoning*. Under this structure, any local change to a module or parameter inevitably propagates downstream and alters subsequent states, and their effect are mediated by all later causal mechanisms. Consequently, rigid mapping from any single structure to the edited output in MLLM editing easily induces two issues:

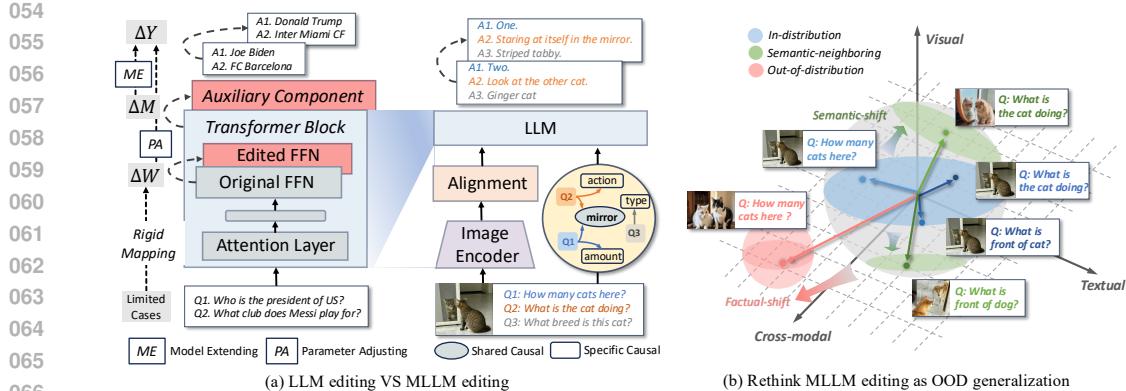


Figure 1: The motivation of ODEdit. The left presents why previous editing work targeted at unimodal LLM is not effective in MLLM. The right denotes two shifts in this editing OOD problem.

- **Causal Underfit.** It fails to disentangle the coherent *shared* causal structures that span diverse cross-modal contexts. This precludes MLLM from discovering reusable semantic substrates, reducing editing to a brittle case-wise alignment exercise rather than principled semantic *generality*.
- **Causal Overfit.** Such a mapping drives MLLM to memorize entrenched linkages between recurrent local features and outputs. The inflexible causal chains misguide the model when faced with queries that share local features yet differ in specific causal semantics, thus compromising *locality*.

These limitations raise a critical question: *How can knowledge editing orchestrate MLLM comprehension adaptively on cross-modal prompting, while balancing semantic transferability and robustness to spurious correlations?*

To this end, we rethink MLLM editing as an out-of-distribution (OOD) cross-modal semantic generalization problem. OOD (Ye et al., 2021; Montasser et al., 2024) originally refers to identifying invariant versus spurious features that drive distribution shifts, enabling the model to generalize to unseen domains. In Figure 1(b), editing MLLM involves partitioning causal scopes in prompts, which has two distributional shifts: **(i) Semantic-shift** indicates the shift from **in-distribution editing scopes to neighboring regions**, constituting the intended generalized targets. It refers to meaning-preserving variations that keep the atomic factual content and output-relevant conceptual factors unchanged. Once the editing process instills the *mirror reflection* principle into MLLM, the model can generalize from a narrowly edited instance (*a tabby cat staring itself in the mirror*) to similar scenarios (*an orange cat or dog doing the same thing*). **(ii) Factual-shift** denotes the transition from **in-distribution to out-of-distribution regions**, encompassing extraneous concepts beyond editing scopes. It refers to variations that alter the underlying atomic factual content and modify the model’s reasoning-relevant conceptual representation. The mirror reflection principle should not be overapplied to counting prompts lacking mirror-specific visual features. Building on two shifts, robust MLLM editing requires identifying **invariant trajectories** for cross-modal predictions and removing **spurious factors** that disrupt causal associations.

In this paper, we propose a plug-and-play editing OOD optimization framework for multimodal LLM, termed ODEdit, which leverages cross-modal causal trajectory invariant learning to ensure knowledge editing robustness across diverse distributions. To explicitly enhance the MLLM’s *discriminative awareness of semantic-shift and factual-shift*, we first introduce a tripartite OOD risk formulation that imposes tailored constraints on in-distribution, semantic-neighboring, and out-of-distribution features. We apply the Kullback-Leibler divergence regularization to preserve locality while developing a maximum mean discrepancy-based metric learning to align representations of edited concepts and their semantic variants. To *discern and stabilize the edit trajectories* across heterogeneous cross-modal environments, we further propose Edit Trajectory Invariant Learning (ETIL). ETIL first reforms the editing OOD objective into an equivalent invariant risk minimization problem, where an environment-aware classifier is introduced to exploit feature invariance and irrelevance. Then, to suppress the sensitivity of the edit trajectory to spurious environmental changes, ETIL integrates a Total Variation factor as the penalty term in the risk estimation. The invariant risk minimization is achieved through a primal-dual optimization strategy, ensuring that the edited model captures reusable causal structures while filtering out superficial correlations.

108 Main contributions are (1) We revisit the knowledge editing on MLLM from the OOD generalization
 109 perspective, and propose a plug-and-play optimization paradigm. (2) We introduce a tripartite
 110 OOD risk that imposes tailored constraints on semantic- and factual-shift, and develop a trajectory
 111 invariant learning to minimize composed editing risk across diverse cross-modal prompting. (3) We
 112 provide theoretical analyses and extensive experiments to validate effectiveness of ODEdit.
 113

114 2 PRELIMINARY

115 **Out-of-Distribution Generalization.** Considering datasets $\mathcal{D}_e := \{x_i^e, y_i^e\}_{i=1}^{n_e}$ collected from di-
 116 verse training environments $e \in \mathcal{E}_{train}$, the environments correspond to identical random variables
 117 assessed under distinct conditions. The dataset \mathcal{D}_e consists of i.i.d. samples drawn from the proba-
 118 bility distribution $P(X^e, Y^e)$. OOD generalization targets at learning a predictor $f : \mathcal{X} \rightarrow \mathcal{Y}$ that
 119 minimizes the worst-case risk over a broad, potentially unseen set of environments $\mathcal{E}_{all} \supseteq \mathcal{E}_{train}$:
 120

$$121 \mathcal{R}_{OOD}(f) = \max_{e \in \mathcal{E}_{all}} \mathbb{E}_{(X^e, Y^e) \sim P^e} [\ell(f(X^e), Y^e)].$$

122 Here, $\mathbb{E}_{(X^e, Y^e) \sim P^e} [\ell(f(X^e), Y^e)]$ denotes the risk under specific environment e , and ℓ is a suitable
 123 loss function. The set \mathcal{E}_{all} includes environments not encountered during training.

124 **Invariant Risk Minimization (IRM).** IRM (Arjovsky et al., 2019; Tan et al., 2023) generalizes
 125 invariant features to different environments. Given training data as $\mathcal{D} := \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}$ where
 126 \mathcal{X} and \mathcal{Y} denotes the input and output space. IRM constructs the learning model $\mathcal{X} \rightarrow \mathcal{Y}$ into two
 127 parts, *i.e.*, the feature extractor $\Psi : \mathcal{X} \rightarrow \mathcal{H}$ mapping input into the invariant feature space and the
 128 classifier $\omega : \mathcal{H} \rightarrow \mathcal{Y}$ predicting based on these features. The empirical risk under environment e is:
 129

$$130 \mathcal{R}(\omega \circ \Psi, e) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\omega \circ \Psi(x_i), y_i, e),$$

131 where \mathcal{L} is the loss function. The original IRM formulation is a bi-level optimization problem:
 132

$$133 \min_{\omega, \Psi} \sum_{e \in \mathcal{E}_{tr}} \mathcal{R}(\omega \circ \Psi, e) \quad \text{s.t. } \omega \in \arg \min_{\tilde{\omega}} \mathcal{R}(\tilde{\omega} \circ \Psi, e), \quad \forall e \in \mathcal{E}.$$

134 This constraint requires ω to be optimal for each environment given Ψ , encouraging Ψ to extract
 135 invariant features. Further, IRMv1 (Arjovsky et al., 2019) provides a surrogate form, which fixes
 136 the classifier ω to a constant scalar and replaces the constraint with a gradient norm penalty:
 137

$$138 \min_{\Psi} \sum_{e \in \mathcal{E}} \left\{ \mathcal{R}(1 \circ \Psi, e) + \lambda \|\nabla_{\omega|_{\omega=1}} \mathcal{R}(\omega \circ \Psi, e)\|_2^2 \right\}.$$

145 3 METHODOLOGY

146 3.1 PROBLEM SETTING

147 **MLLM Editing as OOD Problem.** First, we formulate the knowledge editing task in a MLLM with
 148 the out-of-distribution generalization form. Considering the MLLM as a function $\mathcal{M} : \mathcal{I} \times \mathcal{X} \rightarrow \mathcal{Y}$
 149 with parameters ϕ , which takes the cross-modal prompt (i_e, x_e) consisting of an image i_e and a
 150 textual description x_e as input, and generates y_o as the original output. Denote the editing dataset
 151 containing facts to be updated as \mathcal{D}_{edit} , we define an environment factor $e \in \mathcal{E}$ which parameterizes
 152 the data distribution $\mathcal{P}_e(I, X, Y)$, indicating all the possible causal associations that can occur in
 153 testing prompts. The objective of MLLM editing is to update $\phi \rightarrow \phi_e$ for the worst-case risk
 154 $\mathcal{R}_{edit}(\phi_e, e)$ across all conceivable environments:
 155

$$156 \min_{\phi_e} \max_{e \in \mathcal{E}} \mathbb{E}_{(i_e, x_e, y_e) \sim \mathcal{P}_e(I, X, Y)} \mathcal{R}_{edit}(\phi_e, (i_e, x_e, y_e), e), \quad (1)$$

157 Empirically, we assume the testing prompts \mathcal{D}_{test} are composed of in-distribution data \mathcal{D}_{in} , semantic-
 158 neighboring data \mathcal{D}_{se} , and out-of-distribution data \mathcal{D}_{out} . The overall risk is defined as $\mathcal{R}_{edit} = \mathcal{R}_{rel} +$
 159 $\mathcal{R}_{gen} + \mathcal{R}_{loc}$, demonstrating the composite measure of three editing metrics (Cheng et al., 2023). \mathcal{R}_{rel} ,

\mathcal{R}_{gen} , and \mathcal{R}_{loc} respectively justify the editing performance on three aspects, *i.e.*, editing accuracy on \mathcal{D}_{IN} , generalization ability on \mathcal{D}_{SE} , and side effects on \mathcal{D}_{OUT} , as follows:

$$\begin{aligned}\mathcal{R}_{\text{rel}} &:= \mathbb{E}_{(i_e, x_e, y_e) \sim \mathcal{P}_{\mathcal{D}_{\text{IN}}}} [\mathbb{1}\{\mathcal{M}(i_e, x_e; \phi_e(i_e, x_e, y_e)), y_e\}]\ \\ \mathcal{R}_{\text{loc}} &:= \mathbb{E}_{(i_t, x_t) \sim \mathcal{P}_{\mathcal{D}_{\text{OUT}}}} [\mathbb{1}\{\mathcal{M}(i_t, x_t; \phi_e(i_e, x_e, y_e)) = \mathcal{M}(i_t, x_t; \phi)\}]\ \\ \mathcal{R}_{\text{gen}} &:= \mathbb{E}_{(i_r, x_r) \sim \mathcal{P}_{\mathcal{D}_{\text{SE}}}} [\mathbb{1}\{\mathcal{M}(i_e, x_e; \phi_e(i_e, x_e, y_e)) = \mathcal{M}(i_r, x_r; \phi_e(i_e, x_e, y_e))\}]\end{aligned}\quad (2)$$

3.2 SEMANTIC-FACTUAL SHIFT DISENTANGLEMENT

To facilitate MLLM discriminate editing environments between semantic-shift and factual-shift, we first design independent editing risks to evaluate transferability on invariant trajectories and capability to eliminate spurious factors. Our framework aims to construct a unified optimization paradigm that is agnostic to specific editing methods, so it can be incorporated into any parameter-adjusting or model-extending editing approach based on fine-tuning. With the pre-trained multimodal LLM \mathcal{M}_ϕ and editing dataset as $\mathcal{D}_{\text{edit}}$, we denote the editing model as f_θ . Editing is cast as learning a mapping Γ that adapts the model and its parameters guided by the edit instance and f_θ :

$$\mathcal{M}(\phi_e, \theta_e) = \Gamma(\mathcal{M}_\phi, f_\theta; (i_e, x_e, y_e))(\cdot), \quad (i_e, x_e, y_e) \in \mathcal{D}_{\text{edit}} \quad (3)$$

Then, to optimize the three objectives outlined in Section 3.1, *i.e.*, reliability, locality, and generality, we propose corresponding risk metrics that are seamlessly integrated into these base editing models.

Reliability Risk. To ensure precise assimilation of the edited knowledge, we minimize the negative log-likelihood of the target output conditioned on the edit instance:

$$\mathcal{R}_{\text{rel}} = -\log p_{\phi_e}(y_e | i_e, x_e), \quad (i_e, x_e, y_e) \in \mathcal{D}_{\text{IN}}, \quad (4)$$

which explicitly maximizes the probability of the desired output y_e for the edited input (i_e, x_e) , ensuring accurate cognition on the in-distribution cross-modal semantics.

Locality Risk. In order to avoid the edited concepts affecting the interpretation of unrelated content falling within the factual-shift scope, we regularize the editing process by imposing a Kullback–Leibler divergence (Attias, 1999) penalty between the pre- and post-edit output distributions:

$$\mathcal{R}_{\text{loc}} = \text{KL}(p_{\phi_e}(\cdot | i_t, x_t) \| p_\phi(\cdot | i_t, x_t)), \quad (i_t, x_t, y_t) \in \mathcal{D}_{\text{OUT}}. \quad (5)$$

This constraint strengthens model capacity to preserve knowledge beyond the designated editing scope, maintaining editorial locality and minimizing unintended side effects.

Generality Risk. Previous methods (Mitchell et al., 2022; Zeng et al., 2024) mostly emphasize supervised partitioning of in-scope and out-of-scope knowledge regions, but fall short in achieving semantic generalization, and thus cause issues of causal-underfit or causal-overfit. Thus, we propose a generality risk for extracting invariant trajectories hidden underneath semantic-shift cross-modal prompting. **For each edited instance (i_e, x_e) , we utilize its rephrase counterparts (i_r, x_r) from the benchmark training datasets.** Let $\mathbf{z}_{\phi_e}(i, x)$ denote the last hidden states of edited model \mathcal{M}_{ϕ_e} for prompt (i, x) , we retrieve the distributions of edited prompts and rephrase prompts as \mathbf{Z}_E and \mathbf{Z}_R respectively. Then we develop a Maximum Mean Discrepancy (MMD) (Tolstikhin et al., 2016) based metric learning to measure the discrepancy between in- and semantic-neighboring distributions. Given the Kernel Hilbert Space \mathcal{H} associated with the Borel measurable kernel k , the kernel mean embedding $\mu_{\mathbf{Z}_E}$ and $\mu_{\mathbf{Z}_R}$ is formulated with the reproducing property as:

$$\mu_{\mathbf{Z}_E} = \int_{\mathbb{S}} k(s, \cdot) \mathbf{Z}_E(ds) \in \mathcal{H}, \quad \mu_{\mathbf{Z}_R} = \int_{\mathbb{V}} k(v, \cdot) \mathbf{Z}_R(dv) \in \mathcal{H}, \quad (6)$$

where s and v are random variables with distribution \mathbf{Z}_E and \mathbf{Z}_R . It satisfies the distribution probability density equation that for all functions $f \in \mathcal{F}$:

$$\mathbb{E}[f(S)] = \langle f, \mu_{\mathbf{Z}_E} \rangle_{\mathcal{H}}, \quad \mathbb{E}[f(V)] = \langle f, \mu_{\mathbf{Z}_R} \rangle_{\mathcal{H}}. \quad (7)$$

We deploy the multi-scale Gaussian kernel function $k(x_i, x_j) = \sum_{q=1}^k \exp\left(-\frac{\|x_i - x_j\|_2^2}{2\sigma_q^2}\right)$ in \mathcal{H} to simultaneously capture local and global similarity between two instances, where σ_q denotes the bandwidth of q -th kernel. Based on this, the generality risk in the MMD form is defined as:

$$\mathcal{R}_{\text{gen}} = \mathbb{E}_{z_e, z'_e \sim \mathbf{Z}_E} [k(\mathbf{z}, \mathbf{z}'_e)] + \mathbb{E}_{z_r, z'_r \sim \mathbf{Z}_R} [k(\mathbf{z}, \mathbf{z}'_r)] - 2\mathbb{E}_{z_e \sim \mathbf{Z}_E, z_r \sim \mathbf{Z}_R} [k(\mathbf{z}_e, \mathbf{z}_r)]. \quad (8)$$

216 3.3 EDIT TRAJECTORY INVARIANT LEARNING
217

218 With the editing OOD formulation in Section 3.1 and the overall risk composed of supervised sig-
219 nals on two distributional shifts in Section 3.2, we now introduce an invariant learning paradigm to
220 discern and stabilize the edit trajectories across diverse cross-modal environments. Our goal is op-
221 timizing the edited model parameters ϕ_e to minimize the risk over all environments, which requires
222 exploiting invariance and specificity in the causal pathways activated by edit.

223 **Transformation into IRM Problem.** To extract invariant trajectories, we invoke the IRM principle
224 and employ a classifier ω which maps environment features to predictions (Lai & Wang, 2024).

225 **Proposition 1** (Equivalence between OOD- ω and IRM). *Under the condition that the environment
226 variability is channeled through the classifier ω , it satisfies the identity $\mathcal{R}_{\text{edit}}(\phi_e, e) \equiv \mathcal{R}_{\text{edit}}(\omega(e) \circ
227 \phi_e)$. The OOD editing objective in Eq.(1) admits the following equivalent IRM formulation:*

$$228 \min_{\phi_e} \max_{\omega \in \Sigma} \mathbb{E}_{(i_e, x_e, y_e) \sim \mathcal{P}_e(I, X, Y)} \mathcal{R}_{\text{edit}}(\omega(i_e, x_e, y_e) \circ \phi_e).$$

231 *Proof.* The proof can be found in Appendix A.1. \square
232

233 **Invariant Learning in Editing Trajectory.** Directly optimizing the OOD- ω objective is intractable
234 due to the need to evaluate the supremum over \mathcal{E} . To this end, we reformulate it within a measure-
235 theoretic framework inspired by the connection between IRM and Total Variations (TV) (Chan et al.,
236 2006). The TV operator typically employed to measure the global variability bound of a function.
237 For a function f defined on a measure space $(\Omega, \mathcal{F}_\Omega, \nu)$, the TV seminorm is given by

$$238 \quad 239 \quad 240 \quad TV(f) := \sup \left\{ \int_{\Omega} f(\nu) \operatorname{div} g(\nu) d\nu : g \in C_c^1(\Omega, \mathbb{R}^d), \|g\|_{\infty} \leq 1 \right\}, \quad (9)$$

241 where g is a differentiable vector function supported compactly in Ω and $\operatorname{div} g$ denotes its divergence.
242 Based on the Coarea Formula (Chan et al., 2006), the canonical TV- ℓ_1 (Rudin et al., 1992) can be
243 derived to recover a clean signal f from a noisy observation \tilde{f} by solving the variational problem:

$$244 \quad 245 \quad \inf_{f \in L^2(\Omega)} \left\{ \int_{\Omega} |\nabla f| + \lambda \int_{\Omega} (f - \tilde{f})^2 d\nu \right\} \quad (10)$$

246 Here, TV- ℓ_1 model pres sharp discontinuities while effectively removing noise and fine-scale details.
247 Correspondingly, we treat the environment-induced variations in the risk function $\mathcal{R}_{\text{edit}}(\omega \circ \phi_e)$ as
248 noise perturbing the ideal and invariant edit trajectory. The goal of editing is to *denoise* the risk,
249 recovering a piecewise-constant profile that is robust to spurious cross-modal prompting changes.
250 Inspired by Lai & Wang (2024), we further absorb TV- ℓ_1 penalty into our editing IRM objective as

$$251 \quad 252 \quad \min_{\phi_e} \left\{ \mathbb{E}_{\omega} [\mathcal{R}_{\text{rel}}(\omega \circ \phi_e) + \mathcal{R}_{\text{loc}}(\omega \circ \phi_e) + \mathcal{R}_{\text{gen}}(\omega \circ \phi_e)] + \lambda_{\phi_e} (\mathbb{E}_{\omega} [|\nabla_{\omega} \mathcal{R}_{\text{edit}}(\omega \circ \phi_e)|])^2 \right\}. \quad (11)$$

253 The first term represents the basic risk of editing, while the second term promotes invariance by
254 encouraging the generalization risk to be insensitive to environmental changes. This form directly
255 addresses the dual requirements of *precise knowledge assimilation* and *controlled generalization*.

256 **Proposition 2** (IRM-TV objective Achieves Editing OOD with a varying λ). *The balancing pa-
257 rameter λ should vary with editing parameters ϕ_e to achieve editing OOD. For each ϕ_e , if
258 $\mathbb{E}_{\omega} [|\nabla_{\omega} \mathcal{R}_{\text{edit}}(\omega \circ \phi_e)|] > 0$, there exists a non-negative λ_{ϕ_e} , such that*

$$259 \quad 260 \quad \max_{e \in \mathcal{E}} \mathcal{R}_{\text{edit}}(\phi_e, e) = \mathbb{E}_{\omega} [\mathcal{R}_{\text{rel}}(\omega \circ \phi_e) + \mathcal{R}_{\text{loc}}(\omega \circ \phi_e) + \mathcal{R}_{\text{gen}}(\omega \circ \phi_e)] + \lambda_{\phi_e} (\mathbb{E}_{\omega} [|\nabla_{\omega} \mathcal{R}_{\text{edit}}(\omega \circ \phi_e)|])^2.$$

261 *Besides, the optimality of ϕ_e for IRM-TV form is equivalent to its optimality for OOD- ω .*

263 *Proof.* The proof can be found in Appendix A.2. \square
264

265 **Optimization on Editing IRM-TV.** To solve Eq.(11), we treat λ_{ϕ_e} as a Lagrangian multiplier and
266 parameterize it as a function $\lambda(\pi, \phi_e)$ of both the editing model parameters ϕ_e and an auxiliary dual
267 parameter set δ . We derive the Lagrangian function for the editing IRM-TV objective as

$$268 \quad 269 \quad \mathcal{G}(\delta, \phi_e) = \mathbb{E}_{\omega} [\mathcal{R}_{\text{rel}}(\omega \circ \phi_e) + \mathcal{R}_{\text{loc}}(\omega \circ \phi_e) + \mathcal{R}_{\text{gen}}(\omega \circ \phi_e)] + \lambda(\delta, \phi_e) (\mathbb{E}_{\omega} [|\nabla_{\omega} \mathcal{R}_{\text{edit}}(\omega \circ \phi_e)|])^2. \quad (12)$$

270 Denote the risk sum as $\mathcal{R}_{\text{edit}}$, we derive it into a primal-dual optimization as (Wang et al., 2025)
 271

$$272 \min_{\phi_e} \max_{\delta} \mathcal{G}(\delta, \phi_e) := \min_{\phi_e} \left\{ \mathbb{E}_{\omega}[\mathcal{R}_{\text{edit}}(w \circ \phi_e)] + \max_{\delta} \left[\lambda(\delta, \phi_e) (\mathbb{E}_{\omega} [\|\nabla_{\omega} \mathcal{R}_{\text{edit}}(w \circ \phi_e)\|])^2 \right] \right\}, \\ 273 \quad (13)$$

274 where the *primal variable* ϕ_e is optimized to minimize the overall risk, and *dual variable* δ is
 275 optimized to maximize the TV penalty. To solve it, an adversarial learning procedure is adopted,
 276 alternating between updating ϕ_e and δ with adaptive learning rates γ_1 and γ_2 :
 277

$$278 \phi_e^{(k+1)} = \phi_e^{(k)} - \gamma_1^{(k)} \cdot \partial_{\phi_e} \mathcal{G}(\delta^{(k)}, \phi_e^{(k)}), \quad \delta^{(k+1)} = \delta^{(k)} + \gamma_2^{(k)} \cdot \nabla_{\delta} \mathcal{G}(\delta^{(k)}, \phi_e^{(k+1)}). \\ 279 \quad (14)$$

280 The computation process of gradient $\nabla_{\delta} \mathcal{G}$ and subgradient $\partial_{\phi_e} \mathcal{G}$ are presented in Appendix A.3.
 281 Consequently, after optimizing two variables, we obtain an edit model ϕ_e that is both accurate and
 282 contained while being robustly generalizable through invariant mechanisms.
 283

284 4 EXPERIMENT

285 4.1 EXPERIMENTAL SETUP

286 **Datasets & Backbones & Evaluation Metrics.** In line with previous work (Pan et al., 2024),
 287 we conduct experiments on the MMEdit benchmark (Cheng et al., 2023), encompassing two sub-
 288 tasks, *i.e.*, Editing VQA (E-VQA) and Editing Image Captioning (E-IC). Under this benchmark,
 289 we choose BLIP2-OPT (Li et al., 2023) and MiniGPT-4 (Zhu et al., 2023) as the base MLLM. We
 290 utilize Reliability, Generality, and Locality (T-Locality and M-Locality) as the evaluation metrics.
 291

292 **Baseline Methods.** We describe four types of baselines and how we incorporate `ODEdit` into each
 293 method as a plug-and-play optimization framework in Appendix D.3.
 294

295 **Implementation Details.** We present all implementation details in Appendix D.4.
 296

297 4.2 PERFORMANCE ON ONE-STEP KNOWLEDGE EDITING

300 To evaluate editing performance, we conduct one-step editing experiments. From Table 1, we can
 301 find: 1) **Previous methods fail to achieve balanced performance across all metrics when applied**
 302 **to multimodal editing tasks.** Model-extending methods frequently suffer from poor locality, while
 303 parameter-adjusting methods often exhibit limited generality. For instance, SERAC achieves high
 304 reliability (97.60) and generality (97.30) with BLIP2 on E-VQA, but its M-Locality drops drasti-
 305 cally to 3.21. MEND shows a significant generality gap with the other SOTAs like SERAC. 2)
 306 **ODEdit demonstrates strong adaptability across diverse baselines and consistently improves**
 307 **four evaluation metrics.** On E-VQA with MiniGPT-4, T-Patcher+ODEdit improves generality
 308 with the promotion ratio as 4.82%. WISE+ODEdit improves M-Locality by 19.2% with MiniGPT-
 309 4 on E-VQA, while T-Locality by 17.2% with BLIP2 on E-IC. UniKE+ODEdit outperforms UniKE
 310 on all metrics. 3) **The balanced improvement across metrics underscores that effective OOD**
 311 **generalization equates to holistic performance elevation, not merely gains in the generality**
 312 **dimension. ODEdit accurately determines the generalization boundary, and its core contribu-**
 313 **tion is extracting invariant editing trajectories to both mitigate causal underfit and causal**
 314 **overfit, thus resolving the trade-off between locality and generality.**

315 4.3 PERFORMANCE ON LONG-TERM KNOWLEDGE EDITING

316 **Following Pan et al. (2024), we typically set the T -step sequential editing scenario, where the**
 317 **model is edited sequentially for each instance in the editing set with a capacity of T . After the**
 318 **T -th edit, we evaluate the post-edit MLLM. We report the results for $T = 5$ and $T = 10$ on**
 319 **both E-VQA and E-IC tasks. From Table 2, we find: 1) Unimodal editors like WISE fail catas-**
 320 **trophically in multimodal long-term editing, particularly in preserving locality and generality.**
 321 **On E-VQA, WISE’s T-Loc. collapses to near zero, demonstrating the rigid editing mapping**
 322 **cannot adaptively modify MLLM’s causal reasoning. 2) Even specialized multimodal editors**
 323 **like UniKE exhibit performance decay over time. This indicates that without explicit invari-**
 324 **ance learning, sequential edits cause interference and erode previously learned knowledge. 3)**

324
 325
 326
 Table 1: Overall editing performance (%). *Rel.*, *Gen.*, *T-Loc.*, *M-Loc.*, denote Reliability, Generality,
 Text Locality, and Image Locality respectively. The higher scores within the same editing backbone
 are highlighted in bold. All improvements are significant with p -value < 0.05 based on t -tests.

327 Model	328 Method	329 Editing VQA (E-VQA)				329 Editing Image Caption (E-IC)			
		330 Rel. \uparrow	330 Gen. \uparrow	330 T-Loc. \uparrow	330 M-Loc. \uparrow	330 Rel. \uparrow	330 Gen. \uparrow	330 T-Loc. \uparrow	330 M-Loc. \uparrow
331 BLIP2-OPT 2.7B	332 Pre-edited	333 25.85	333 26.37	333 99.38	333 92.83	333 0	333 0	333 99.79	333 94.93
	334 FT	335 100	335 100	335 93.94	335 64.79	335 100	335 0	335 78.79	335 29.58
	336 IKE	337 99.71	337 99.62	337 47.74	337 2.53	337 94.40	337 88.00	337 50.43	337 2.87
	338 SERAC	339 97.60	339 97.30	339 100	339 3.21	339 99.71	339 99.71	339 100	339 2.64
	340 WISE	341 100	341 83.33	341 40.94	341 16.89	341 100	341 85.93	341 33.61	341 11.89
	342 WISE+ODEdit	343 100	343 83.33	343 41.24	343 13.83	343 100	343 87.33	343 39.37	343 14.77
	344 MEND	345 97.80	345 97.20	345 99.68	345 94.23	345 77.90	345 62.80	345 98.14	345 78.86
	346 MEND+ODEdit	347 97.60	347 97.20	347 99.52	347 91.75	347 79.40	347 64.40	347 99.01	347 86.14
	348 T-Patcher	349 80.35	349 77.82	349 87.14	349 85.28	349 72.78	349 72.75	349 71.59	349 80.49
	350 T-Patcher+ODEdit	351 81.85	351 80.47	351 86.25	351 85.37	351 73.44	351 74.28	351 71.18	351 81.67
352 MiniGPT-4 7B	353 UniKE	354 94.32	354 87.18	354 95.98	354 93.15	354 74.01	354 73.84	354 76.09	354 82.36
	355 UniKE+ODEdit	356 96.58	356 89.34	356 96.17	356 93.27	356 74.52	356 75.49	356 76.65	356 83.28
	357 Pre-edited	358 19.21	358 24.08	358 99.44	358 91.56	358 0	358 0	358 99.79	358 94.93
	359 FT	360 100	360 100	360 97.50	360 40.85	360 100	360 0	360 95.00	360 39.83
	361 IKE	362 99.95	362 99.90	362 50.02	362 3.31	362 90.30	362 90.00	362 51.49	362 4.27
	363 SERAC	364 91.70	364 98.60	364 99.99	364 3.72	364 83.60	364 93.10	364 99.99	364 4.65
	365 WISE	366 100	366 100	366 90.10	366 52.15	366 100	366 91.58	366 92.81	366 70.68
	367 WISE+ODEdit	368 100	368 97.50	368 92.39	368 62.14	368 100	368 90.04	368 94.54	368 73.17
	369 MEND	370 96.20	370 96.00	370 99.42	370 88.25	370 77.80	370 74.60	370 99.28	370 87.85
	371 MEND+ODEdit	372 97.00	372 97.00	372 99.52	372 88.61	372 78.60	372 74.20	372 99.36	372 86.77
	373 T-Patcher	374 70.56	374 68.79	374 64.45	374 81.77	374 69.54	374 68.95	374 63.59	374 81.34
	375 T-Patcher+ODEdit	376 72.38	376 72.11	376 65.29	376 82.93	376 71.42	376 70.98	376 65.03	376 82.75
	377 UniKE	378 84.32	378 81.29	378 78.45	378 85.81	378 72.18	378 70.41	378 68.53	378 84.59
	379 UniKE+ODEdit	380 85.14	380 83.23	380 79.35	380 86.56	380 73.06	380 71.58	380 69.46	380 85.12

Table 2: **Results of long-term editing on BLIP2-OPT.**

381 Dataset	382 Model	383 T=5				383 T=10			
		384 Rel. \uparrow	384 Gen. \uparrow	384 T-Loc. \uparrow	384 M-Loc. \uparrow	385 Rel. \uparrow	385 Gen. \uparrow	385 T-Loc. \uparrow	385 M-Loc. \uparrow
386 E-VQA	387 WISE	388 44.50	388 34.75	388 0.40	388 0.15	388 28.50	388 24.55	388 0.63	388 0.15
	389 WISE+ODEdit	390 49.42	390 43.52	390 0.80	390 0.15	390 43.33	390 24.22	390 0.81	390 0.15
	391 UniKE	392 90.28	392 80.26	392 91.41	392 89.37	392 86.52	392 76.58	392 87.64	392 86.31
	393 UniKE+ODEdit	394 92.63	394 83.59	394 92.38	394 89.95	394 89.79	394 81.25	394 89.35	394 87.54
395 E-IC	396 WISE	397 84.31	397 65.49	397 0.76	397 0.14	397 75.96	397 55.56	397 0.71	397 0.14
	398 WISE+ODEdit	399 86.53	399 66.94	399 0.94	399 0.14	399 84.64	399 61.70	399 0.77	399 0.14
	400 UniKE	401 70.16	401 71.45	401 72.09	401 79.52	401 63.54	401 64.71	401 66.29	401 73.25
	402 UniKE+ODEdit	403 71.05	403 73.22	403 72.68	403 80.77	403 65.87	403 68.82	403 67.11	403 76.59

396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026

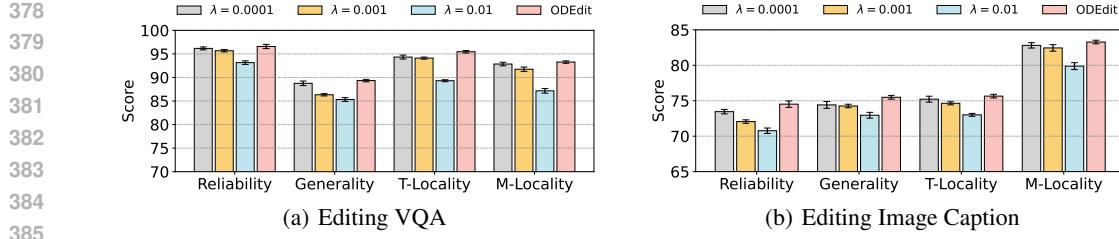


Figure 2: Results of ablation study to illustrate the effect of IRM-TV optimization.

Table 3: Results of ablation study to illustrate effects of each OOD risk.

Invariants	Editing VQA (E-VQA)				Editing Image Caption (E-IC)			
	Rel. \uparrow	Gen. \uparrow	T-Loc. \uparrow	M-Loc. \uparrow	Rel. \uparrow	Gen. \uparrow	T-Loc. \uparrow	M-Loc. \uparrow
w/o \mathcal{R}_{rel}	0	0	99.85	98.63	0	0	95.81	97.22
w/o \mathcal{R}_{loc}	96.65	89.51	74.36	71.25	74.62	75.45	64.49	73.19
w/o \mathcal{R}_{gen}	96.49	86.59	95.97	93.54	74.60	71.24	75.83	83.60
ODEdit	96.58	89.34	95.46	93.27	74.52	75.49	75.65	83.28

primarily works by aligning semantic-neighboring samples with the edited instance in the latent space, which successfully promotes invariant feature learning to prevent causal underfit. The slight impact on locality can be attributed to the potential reinforcement of local concept-output associations as a byproduct of this semantic alignment process.

Effects of Maximum Mean Discrepancy Alignment. We perform ablations with invariants: (a) *MMD-s RBF* denotes MMD with a Radial Basis Function (RBF) kernel and a single rephrase prompt. (b) *MMD-s Linear* with linear kernel. (c) *MMD-m RBF* utilizes multiple rephrase prompts. (d) *Contrast* replace MMD with contrastive learning. Results in Table 4 show that *MMD-s RBF* achieves the most balanced and effective performance. *MMD-s Linear* is less effective at capturing cross-modal semantic distributions. The gap between *Contrast* and *MMD-s RBF* underscores advantages of a distribution-level alignment objective over instance-level. An insightful finding is that using multiple rephrase prompts yields no additional benefit. The potential reason is that a single rephrase prompt provides a focused semantic transformation path, while multiple prompts introduce noisy variations which might lead to spurious correlations.

Performance on other MLLMs. We further conduct editing on other MLLMs, *i.e.*, LLaVA (Liu et al., 2023). From Table 5, ODEdit enhances WISE across all metrics on LLaVA, with particularly notable gains in generality and locality. These robust improvements on a distinct MLLM architecture underscore the strong generalizability of ODEdit, which stems from its core design of learning invariant editing trajectories that effectively suppress spurious correlations across diverse model backbones.

Effects of Edit Trajectory Invariant Learning. We ablate the effect of the $TV-\ell_1$ penalty strength (λ) in IRM-TV optimization, and present results in Figure 2, from which we find: 1) An insufficient penalty, *i.e.*, $\lambda = 0.0001$, fails to extract feature invariance, thus hurting generality extremely. 2) An excessive penalty, *i.e.*, $\lambda = 0.01$, over-constrains the model, simultaneously degrading three metrics. An overly strong invariance constraint makes the model’s internal representations rigid, so that failing to make updates to target knowledge while incorrectly altering peripheral features it should preserve. 3) The dynamic and adaptive formulation of $\lambda(\pi, \phi_e)$ shows its superiority, validating it robustly balances knowledge assimilation and discrimination across diverse environments.

Visualization on OOD Generalization. We visualize the latent representations of original and rephrased prompts in MLLM with t-SNE (Van der Maaten & Hinton, 2008) across dif-

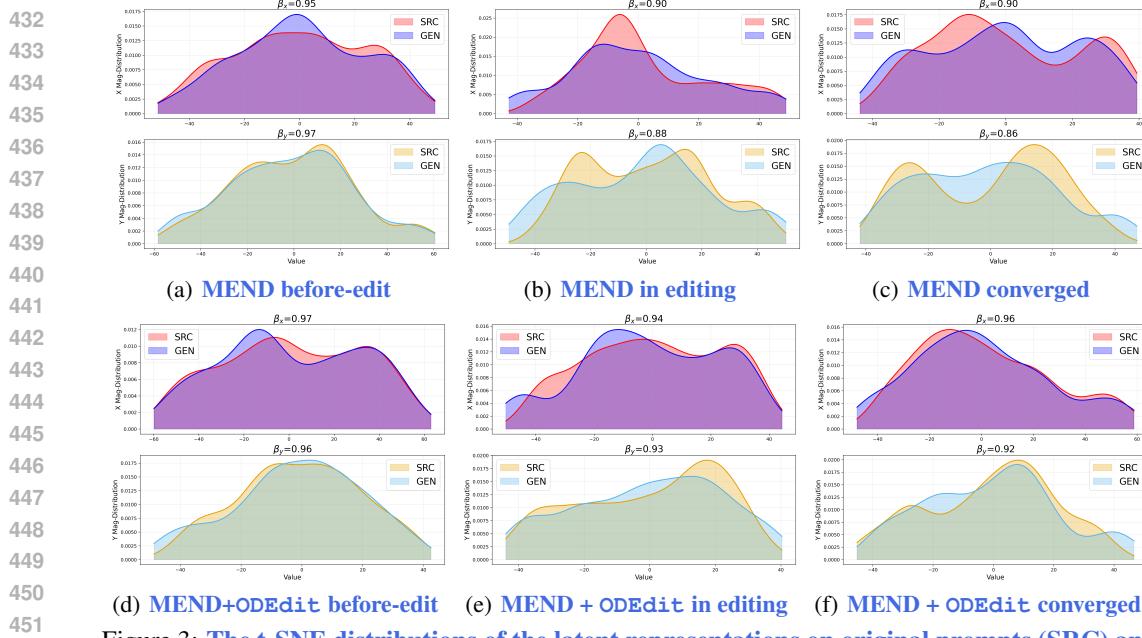


Figure 3: The t-SNE distributions of the latent representations on original prompts (SRC) and rephrase prompts (GEN) in MLLM. The curves depict the marginal distributions along the two dimensions, with β_x and β_y representing the proportion of the overlap.

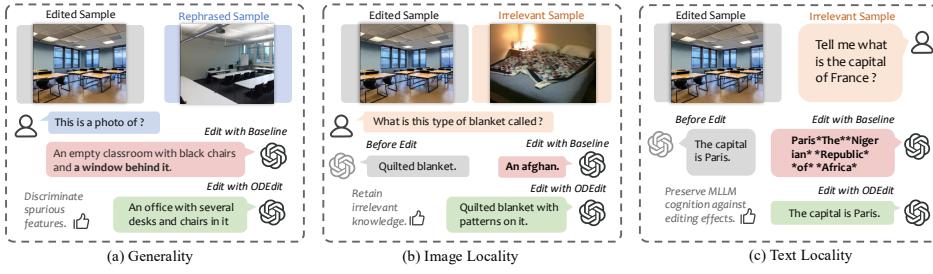


Figure 4: Case studies on the evaluation for generality, image locality, and text locality.

ferent editing stages. From Figure 3: 1) Before editing, rephrased prompts align with original prompt distributions in the pre-trained MLLM. 2) During editing, MEND induces a marked distribution shift as β_x and β_y values drop, fails to extract semantic invariance. But MEND+ODEEdit maintains strong alignment with high β values, showing stable trajectory learning. 3) At Convergence, the distribution shift in MEND persists while ODEEdit sustains robust alignment, proving superior generalization to semantic-neighboring regions.

Hyperparameter Sensitivity. We study effects of the learning rate and layer depth in the IRM-TV network. From Figure 5: 1) A small learning rate hinders extraction of invariant features, while a moderate increase enhances generality, accompanied by a slight sacrifice in locality. However, an excessively large rate suppresses overall performance. 2) Deeper networks facilitate diverse cross-modal association learning, but the marginal benefit diminishes once layer depth reaches a certain level. **Principled guidelines for setting parameters in Appendix D.5.**

Computational Cost. We pick one typical parameter-adjusting (MEND) and model-extending (WISE) baselines for comparison. From Table 6: 1) ODEEdit introduces a supplementary network that processes parameters from the knowledge-editing layer, leading to increased memory usage. But this is the reasonable trade-off for the gains in performance and is acceptable given the current state of computational resources. 2) ODEEdit does not incur a significant increase in time cost, indicating its efficiency. 3) While integrating ODEEdit increases steps,

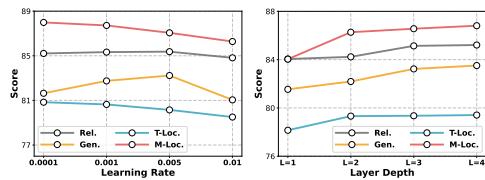


Figure 5: Effects of learning rate and layer depth.

486
 487 **Table 6: Computational cost comparison on E-IC. Memo. = Memory usage, Edit-T/sp = Editing**
 488 **time per step, Train-T/sp = Training time per step, All-T/sp = Total time per step.**

Models	BLIP2-OPT					MiniGPT-4				
	Memo.	Edit-T/sp	Train-T/sp	All-T/sp	Steps.	Memo.	Edit-T/sp	Train-T/sp	All-T/sp	Steps.
WISE	28.47GB	0.401	0.023	0.424	7	36.59GB	0.473	0.035	0.508	8
WISE+ODEdit	47.53GB	0.442	0.043	0.485	7	69.36GB	0.533	0.072	0.605	8
MEND	14.75GB	1.369	0.018	1.387	25000	25.30GB	1.676	0.188	1.865	10000
MEND+ODEdit	36.05GB	1.480	0.116	1.596	45000	62.80GB	1.861	0.204	2.066	15000

494 the resultant increase in total time cost does not constitute an order-of-magnitude change and
 495 remains within a practical range for real-world deployment. Employing higher-performance
 496 computing resources would substantially reduce this training time gap.

497 **Interpretability Studies.** Qualitative cases in Figure 4 and more analysis in Appendix D.6.

5 RELATED WORK

502 **Unimodal LLM Editing.** Model editing aims to modify the target knowledge in LLM while
 503 preserving irrelevant concepts. Previous approaches can be divided into two types. *Parameter-*
 504 *adjusting methods* modify intrinsic parameters of LLMs to update new knowledge. In this line,
 505 locate-then-edit models such as ROME (Meng et al., 2022a), MÈMIT (Meng et al., 2022b), GLAME
 506 (Zhang et al., 2024b), AnyEdit (Jiang et al., 2025), AlphaEdit (Fang et al., 2024), first identify cru-
 507 cial knowledge-related parameters and then perform targeted edits. Besides, meta-learning based
 508 approaches like KE (De Cao et al., 2021), MEND (Mitchell et al., 2021), InstructEdit (Zhang
 509 et al., 2024c), determine parameter modifications by training hypernetworks. Contrastingly, *model-*
 510 *extending methods* incorporate additional components to store new knowledge while keeping orig-
 511 inial model parameters. The added components take diverse forms, including memory in SERAC
 512 (Mitchell et al., 2022) and WISE (Wang et al., 2024a), auxiliary neurons in T-Patcher (Huang et al.,
 513 2023), codebooks in GRACE (Hartvigsen et al., 2023), and LoRA modules in MELO (Yu et al.,
 514 2024). Other works like MemPrompt (Madaan et al., 2022), IKE (Zheng et al., 2023), and DeCK
 515 (Bi et al., 2024) utilize in-context learning to update factual knowledge. Despite their efficacy in
 516 unimodal LLM editing, they suffer from causal-underfit and causal-overfit issues in MLLM.

517 **Multimodal LLM Editing.** Recent advances in MLLMs (Li et al., 2023; 2024a; Ma et al., 2025)
 518 have motivated research on multimodal knowledge editing (Pan et al., 2023; Zhou et al.). A se-
 519 ries of benchmarks, e.g., MMEdit (Cheng et al., 2023), MIKE (Li et al., 2024b), VLKEB (Huang
 520 et al., 2024), MC-MKE (Zhang et al., 2024a), MMKE (Du et al., 2025), provide unified datasets and
 521 evaluation to assess multimodal editing efficacy. However, research on strengthening the robustness
 522 of MLLM editing methods holistically across reliability, locality, and generality remains under-
 523 explored. MSCKE (Zeng et al., 2024) establishes a multimodal scope classifier-based knowledge
 524 editor to identify and update specific visual entities. UniKE (Pan et al., 2024) integrates intrinsic
 525 knowledge editing and external knowledge resorting to promote locality and generality. **BalancEdit**
 526 (**Guo et al., 2025**) **performs codebook-based edits that balance generality and locality by us-**
 527 **ing contrastive samples to localize each fact’s influence.** Nevertheless, existing work remains
 528 constrained to rigid parameter-to-output mappings, which prevent MLLMs from intelligently distin-
 529 guishing between semantic-shift and factual-shift, thereby hindering adaptive and robust editing.

530 **Out-of-Distribution Generalization.** We present related work in this field in Appendix E.

6 CONCLUSION AND FUTURE WORK

533 In this work, we rethink knowledge editing in MLLM as an OOD generalization problem. To iden-
 534 tify semantic-shift and factual-shift among various cross-modal prompting environments, we pro-
 535 pose a plug-and-play invariant learning based optimization paradigm with tripartite OOD risks to
 536 jointly enhance editing reliability, locality, and generality. This work marks an initial step in solving
 537 multimodal editing from an OOD perspective, for which we introduce simple yet general editing
 538 invariant risk metrics with an pathway to guide robust model adaptation. In the future, researchers
 539 could investigate advanced strategies to strengthen MLLM’s grasp of invariant trajectories and dis-
 540 cern spurious factors, with refined regularization functions for more robust cross-modal editing.

540
541
ETHICS STATEMENT542
543
544
545
This work adheres to the ICLR Code of Ethics. All experiments are conducted on publicly available
datasets without involving any personally identifiable or sensitive user information. No human sub-
jects were recruited, and no private data was collected or released. We are not aware of any ethical
concerns or potential risks associated with the deployment of our approach.546
547
REPRODUCIBILITY STATEMENT
548549
550
551
552
553
554
555
556
557
558
To ensure the reproducibility of our work, we have taken the following steps. The source code
for ODEdit, including implementations of the tripartite OOD risk and the Edit Trajectory Invari-
ant Learning algorithm, has been made publicly available at [https://anonymous.4open.
science/r/ODEdit-2756](https://anonymous.4open.science/r/ODEdit-2756). Complete theoretical proofs for our key propositions, including
the equivalence between the OOD and IRM-TV objectives, are provided in Appendix A. Detailed
descriptions of the experimental setup, including the MLLM backbones (Appendix B.1), baseline
methods (Appendix B.2), hyperparameter configurations, and training procedures, are thoroughly
documented in Appendix B.3. The MMEdit benchmark used for evaluation is publicly available,
and our data processing steps are clearly outlined in Section 4.1 and Appendix B. We hope these
resources will facilitate the replication and extension of our work.559
560
REFERENCES
561562
Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk min-
imization games. In *International Conference on Machine Learning*, pp. 145–155. PMLR, 2020.
563
564
Martin Arjovsky, Léon Bottou, Ishaaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.
565
566
567
Hagai Attias. A variational bayesian framework for graphical models. *Advances in neural information
processing systems*, 12, 1999.
568
569
Baolong Bi, Shenghua Liu, Lingrui Mei, Yiwei Wang, Pengliang Ji, and Xueqi Cheng. Decod-
570
ing by contrasting knowledge: Enhancing llms’ confidence on edited facts. *arXiv preprint
arXiv:2405.11613*, 2024.
571
572
Tony Chan, Selim Esedoglu, Frederick Park, and Andy Yip. Total variation image restoration:
573
574
Overview and recent developments. *Handbook of mathematical models in computer vision*, pp.
575
17–31, 2006.
576
577
Shengzhuang Chen, Long-Kai Huang, Jonathan Richard Schwarz, Yilun Du, and Ying Wei. Secure
578
out-of-distribution task generalization with energy-based models. *Advances in Neural Informa-
579
tion Processing Systems*, 36:67007–67020, 2023.
580
581
Siyuan Cheng, Bozhong Tian, Qingbin Liu, Xi Chen, Yongheng Wang, Huajun Chen, and Ningyu
Zhang. Can we edit multimodal large language models? *arXiv preprint arXiv:2310.08475*, 2023.
582
583
Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. *arXiv
preprint arXiv:2104.08164*, 2021.
584
585
Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generaliza-
586
tion via model-agnostic learning of semantic features. *Advances in neural information processing
587
systems*, 32, 2019.
588
589
Yuntao Du, Kailin Jiang, Zhi Gao, Chenrui Shi, Zilong Zheng, Siyuan Qi, and Qing Li.
590
Mmke-bench: A multimodal editing benchmark for diverse visual knowledge. *arXiv preprint
arXiv:2502.19870*, 2025.
591
592
Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
593
Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. *arXiv
preprint arXiv:2410.02355*, 2024.

594 Soumya Suvra Ghosal and Yixuan Li. Distributionally robust optimization with probabilistic group.
 595 In *Proceedings of the AAAI Conference*, volume 37, pp. 11809–11817, 2023.
 596

597 Dongliang Guo, Mengxuan Hu, Zihan Guan, Thomas Hartvigsen, and Sheng Li. Balancedit: Dy-
 598 namically balancing the generality-locality trade-off in multi-modal model editing. *arXiv preprint*
 599 *arXiv:2505.01343*, 2025.

600 Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
 601 Aging with grace: Lifelong model editing with discrete key-value adaptors. *Advances in Neural*
 602 *Information Processing Systems*, 36:47934–47959, 2023.
 603

604 Han Huang, Haitian Zhong, Tao Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Vlkeb:
 605 A large vision-language model knowledge editing benchmark. *Advances in Neural Information*
 606 *Processing Systems*, 37:9257–9280, 2024.

607 Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
 608 Transformer-patcher: One mistake worth one neuron. *arXiv preprint arXiv:2301.09785*, 2023.
 609

610 Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Guojun Ma, Mingyang Wan, Xiang Wang, Xiangnan
 611 He, and Tat-seng Chua. Anyedit: Edit any knowledge encoded in language models. *arXiv preprint*
 612 *arXiv:2502.05628*, 2025.

613 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 614 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
 615 lation (rex). In *International conference on machine learning*, pp. 5815–5826. PMLR, 2021.

616 Zhao-Rong Lai and Weiwen Wang. Invariant risk minimization is a total variation model. *arXiv*
 617 *preprint arXiv:2405.01389*, 2024.
 618

619 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 620 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF*
 621 *Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024a.
 622

623 Jiaqi Li, MiaoZeng Du, Chuanyi Zhang, Yongrui Chen, Nan Hu, Guilin Qi, Haiyun Jiang, Siyuan
 624 Cheng, and Bozhong Tian. Mike: A new benchmark for fine-grained multimodal entity knowl-
 625 edge editing. *arXiv preprint arXiv:2402.14835*, 2024b.

626 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 627 pre-training with frozen image encoders and large language models. In *International conference*
 628 *on machine learning*, pp. 19730–19742. PMLR, 2023.

629 Zhiyuan Li, Heng Wang, Dongnan Liu, Chaoyi Zhang, Ao Ma, Jieting Long, and Weidong Cai.
 630 Multimodal causal reasoning benchmark: Challenging vision large language models to discern
 631 causal links across modalities. *arXiv preprint arXiv:2408.08105*, 2024c.
 632

633 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 634 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 635 *arXiv:2412.19437*, 2024.

636 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 637 *in neural information processing systems*, 36:34892–34916, 2023.
 638

639 Weijian Ma, Ruoxin Chen, Keyue Zhang, Shuang Wu, and Shouhong Ding. Instruct where the
 640 model fails: Generative data augmentation via guided self-contrastive fine-tuning. *Proceed-
 641 ings of the AAAI Conference on Artificial Intelligence*, 39(6):5991–5999, Apr. 2025. doi: 10.
 642 1609/aaai.v39i6.32640. URL <https://ojs.aaai.org/index.php/AAAI/article/view/32640>.
 643

644 Aman Madaan, Niket Tandon, Peter Clark, and Yiming Yang. Memprompt: Memory-assisted
 645 prompt editing with user feedback, 2022.
 646

647 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 648 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022a.

648 Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 649 memory in a transformer. *arXiv preprint arXiv:2210.07229*, 2022b.
 650

651 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
 652 editing at scale. *arXiv preprint arXiv:2110.11309*, 2021.

653 Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
 654 based model editing at scale. In *International Conference on Machine Learning*, pp. 15817–
 655 15831. PMLR, 2022.

656

657 Omar Montasser, Han Shao, and Emmanuel Abbe. Transformation-invariant learning and theoreti-
 658 cal guarantees for ood generalization. *Advances in Neural Information Processing Systems*, 37:
 659 108649–108673, 2024.

660

661 Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant
 662 feature representation. In *International conference on machine learning*, pp. 10–18. PMLR, 2013.

663

664 Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing do-
 665 main gap by reducing style bias. In *Proceedings of the IEEE/CVF conference on computer vision
 and pattern recognition*, pp. 8690–8699, 2021.

666

667 Haowen Pan, Yixin Cao, Xiaozhi Wang, Xun Yang, and Meng Wang. Finding and editing multi-
 668 modal neurons in pre-trained transformers. *arXiv preprint arXiv:2311.07470*, 2023.

669

670 Kaihang Pan, Zhaoyu Fan, Juncheng Li, Qifan Yu, Hao Fei, Siliang Tang, Richang Hong, Han-
 671 wang Zhang, and Qianru Sun. Towards unified multimodal editing with enhanced knowledge
 672 collaboration. *Advances in Neural Information Processing Systems*, 37:110290–110314, 2024.

673

Yangjun Ruan, Yann Dubois, and Chris J Maddison. Optimal representations for covariate shift.
 674 *arXiv preprint arXiv:2201.00057*, 2021.

675

676 Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
 677 algorithms. *Physica D: nonlinear phenomena*, 60(1-4):259–268, 1992.

678

679 Soroosh Shahtalebi, Jean-Christophe Gagnon-Audet, Touraj Laleh, Mojtaba Faramarzi, Kartik
 680 Ahuja, and Irina Rish. Sand-mask: An enhanced gradient masking strategy for the discovery
 681 of invariances in domain generalization. *arXiv preprint arXiv:2106.02266*, 2021.

682

Xiaoyu Tan, Lin Yong, Shengyu Zhu, Chao Qu, Xihe Qiu, Xu Yinghui, Peng Cui, and Yuan Qi.
 683 Provably invariant learning without domain information. In *International conference on machine
 684 learning*, pp. 33563–33580. PMLR, 2023.

685

Ilya O Tolstikhin, Bharath K Sriperumbudur, and Bernhard Schölkopf. Minimax estimation of
 686 maximum mean discrepancy with radial kernels. *Advances in Neural Information Processing
 687 Systems*, 29, 2016.

688

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine
 689 learning research*, 9(11), 2008.

690

Peng Wang, Ningyu Zhang, Bozhong Tian, Zekun Xi, Yunzhi Yao, Ziwen Xu, Mengru Wang,
 692 Shengyu Mao, Xiaohan Wang, Siyuan Cheng, et al. Easyedit: An easy-to-use knowledge editing
 693 framework for large language models. *arXiv preprint arXiv:2308.07269*, 2023.

694

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
 695 and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
 696 language models. *Advances in Neural Information Processing Systems*, 37:53764–53797, 2024a.

697

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
 698 editing for large language models: A survey. *ACM Computing Surveys*, 57(3):1–37, 2024b.

700

Yuanchao Wang, Zhao-Rong Lai, and Tianqi Zhong. Out-of-distribution generalization for total
 701 variation based invariant risk minimization. *arXiv preprint arXiv:2502.19665*, 2025.

702 Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a
 703 theoretical framework of out-of-distribution generalization. *Advances in Neural Information Pro-*
 704 *cessing Systems*, 34:23519–23531, 2021.

705
 706 Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
 707 dynamic lora. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 708 19449–19457, 2024.

709 Runpeng Yu, Songhua Liu, Xingyi Yang, and Xinchao Wang. Distribution shift inversion for out-
 710 of-distribution prediction. In *Proceedings of the IEEE/CVF conference on computer vision and*
 711 *pattern recognition*, pp. 3592–3602, 2023.

712 Zhen Zeng, Leijiang Gu, Xun Yang, Zhangling Duan, Zenglin Shi, and Meng Wang. Visual-
 713 oriented fine-grained knowledge editing for multimodal large language models. *arXiv preprint*
 714 *arXiv:2411.12790*, 2024.

715 Junzhe Zhang, Huixuan Zhang, Xunjian Yin, Baizhou Huang, Xu Zhang, Xinyu Hu, and Xiaojun
 716 Wan. Mc-mke: A fine-grained multimodal knowledge editing benchmark emphasizing modality
 717 consistency. *arXiv preprint arXiv:2406.13219*, 2024a.

718 Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren, Shu Wu, and Zhumin Chen. Knowledge graph
 719 enhanced large language model editing. *arXiv preprint arXiv:2402.13593*, 2024b.

720 Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou,
 721 Xi Chen, and Huajun Chen. Instructedit: Instruction-based knowledge editing for large language
 722 models. *arXiv preprint arXiv:2402.16123*, 2024c.

723 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
 724 we edit factual knowledge by in-context learning? *arXiv preprint arXiv:2305.12740*, 2023.

725 Guanyu Zhou, Yibo Yan, Xin Zou, Kun Wang, Aiwei Liu, and Xuming Hu. Mitigating modal-
 726 ity prior-induced hallucinations in multimodal large language models via deciphering attention
 727 causality. *arXiv preprint arXiv:2410.04780*, 2024.

728 Yang Zhou, Pengfei Cao, Yubo Chen, Qingbin Liu, Dianbo Sui, Xi Chen, Kang Liu, and Jun Zhao.
 729 M2edit: Locate and edit multi-granularity knowledge in multimodal large language model.

730 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
 731 hancing vision-language understanding with advanced large language models. *arXiv preprint*
 732 *arXiv:2304.10592*, 2023.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A PROOFS
757758 A.1 EQUIVALENCE BETWEEN OOD-W AND IRM FORMULATION
759

760 In this section, we provide a detailed proof of the equivalence between the original out-of-
761 distribution (OOD) editing objective and its reformulation using an environment-aware classifier
762 ω . Specifically, we aim to show that for any edited model parameters ϕ_e , the worst-case risk over
763 all environments $e \in \mathcal{E}$ can be equivalently expressed as the worst-case risk over all possible classi-
764 fiers $\omega \in \Sigma$, under the condition that ω captures the environmental variability through a surjective
765 mapping.

766 **Proof.** To establish the equality, we demonstrate two inequalities. First, we prove that

$$767 \max_{e \in \mathcal{E}} \mathcal{R}_{edit}(\omega(e) \circ \phi_e) \geq \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e).$$

769 Let ω^* be a classifier that attains the maximum on the right-hand side, so that

$$771 \omega^* = \arg \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e).$$

772 Given the surjectivity of the mapping $e \mapsto \omega(e)$, there exists an environment $e_0 \in \mathcal{E}$ such that
773 $\omega(e_0) = \omega^*$. Consequently,

$$775 \mathcal{R}_{edit}(\omega(e_0) \circ \phi_e) = \mathcal{R}_{edit}(\omega^* \circ \phi_e) = \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e).$$

776 Since e_0 is an element of \mathcal{E} , the maximum over \mathcal{E} must be at least as large as the value at e_0 , yielding
777 the desired inequality. Second, we prove the opposite inequality:

$$779 \max_{e \in \mathcal{E}} \mathcal{R}_{edit}(\omega(e) \circ \phi_e) \leq \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e).$$

780 Let e^* be an environment that achieves the maximum on the left-hand side, i.e.,

$$783 e^* = \arg \max_{e \in \mathcal{E}} \mathcal{R}_{edit}(\omega(e) \circ \phi_e).$$

784 Then, $\omega(e^*)$ is by construction a member of Σ . Therefore,

$$786 \mathcal{R}_{edit}(\omega(e^*) \circ \phi_e) \leq \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e),$$

787 which directly implies the inequality. By combining both inequalities, we conclude that

$$789 \max_{e \in \mathcal{E}} \mathcal{R}_{edit}(\omega(e) \circ \phi_e) = \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e),$$

790 which holds for any ϕ_e . Thus, minimizing either expression with respect to ϕ_e leads to the same
791 optimal solution, confirming the equivalence between the OOD- ω and IRM formulations. This result
792 allows us to leverage the IRM framework for invariant learning in multimodal knowledge editing.

794 A.2 HOW IRM WITH TV- ℓ_1 PENALTY ACHIEVES EDITING OOD

797 In this section, we provide a theoretical analysis demonstrating how the proposed IRM formulation
798 with TV- ℓ_1 penalty achieves the out-of-distribution (OOD) editing objective defined in Eq.11 of the
799 main text. Specifically, we prove that when the penalty parameter λ_{ϕ_e} is allowed to vary with the
800 model parameters ϕ_e , the IRM-TV objective can achieve the same optimum as the original OOD
801 editing objective. Recall the IRM-TV formulation from Eq.11:

$$802 \min_{\phi_e} \left\{ \mathbb{E}_{\omega} [\mathcal{R}_{rel}(\omega \circ \phi_e) + \mathcal{R}_{loc}(\omega \circ \phi_e)] + \lambda_{\phi_e} (\mathbb{E}_{\omega} [\|\nabla_{\omega} \mathcal{R}_{gen}(\omega \circ \phi_e)\|])^2 \right\},$$

804 where the first term represents the base editing risk (reliability + locality) and the second term is the
805 TV- ℓ_1 penalty on the generalization risk. The original OOD editing objective is:

$$806 \min_{\phi_e} \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e).$$

808 We first demonstrate through a counterexample that a fixed λ cannot achieve the OOD objective,
809 then prove the existence of a λ_{ϕ_e} that varies with ϕ_e to achieve equivalence.

810 A.2.1 THE NECESSITY OF λ VARYING WITH ϕ_e
811

812 Following (Lai & Wang, 2024), we provide a counterexample with a fixed λ to prove the necessity
813 of λ varying with ϕ_e . To show that a fixed λ is insufficient, consider a simplified editing scenario
814 where we aim to optimize the feature parameter $\phi_e \in [-1, 1]$. The classifier ω follows a uniform
815 distribution on $[-0.9, 0.1]$, reflecting environmental variations. The editing risk is defined as:

$$816 \quad \mathcal{R}_{edit}(\omega \circ \phi_e) := |\omega \cdot \phi_e + 1|.$$

818 For this setup, the OOD objective achieves its minimum at $\phi_e = 0$ with value 1:
819

$$820 \quad \min_{\phi_e \in [-1, 1]} \max_{\omega \in [-0.9, 0.1]} \mathcal{R}_{edit}(\omega \circ \phi_e) = 1,$$

$$822 \quad \arg \min_{\phi_e \in [-1, 1]} \max_{\omega \in [-0.9, 0.1]} \mathcal{R}_{edit}(\omega \circ \phi_e) = 0.$$

824 However, for any fixed $\lambda \geq 0$, the IRM-TV objective:
825

$$826 \quad \mathbb{E}_\omega[\mathcal{R}_{edit}(\omega \circ \phi_e)] + \lambda (\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|])^2,$$

827 fails to achieve the same optimum as the OOD objective. To demonstrate this, we analyze the
828 behavior of both objectives for the simplified editing scenario. For $\phi_e \geq 0$, the OOD objective
829 becomes $\max_{\omega \in [-0.9, 0.1]} \mathcal{R}_{edit}(\omega \circ \phi_e) = 1 + 0.1\phi_e$, which is minimized at $\phi_e = 0$ with value 1.
830 For $\phi_e < 0$, the OOD objective becomes $\max_{\omega \in [-0.9, 0.1]} \mathcal{R}_{edit}(\omega \circ \phi_e) = 1 - 0.9\phi_e$, which is also
831 minimized at $\phi_e = 0$ with value 1. Now, evaluating the IRM-TV objective with fixed λ :

$$832 \quad \mathbb{E}_\omega[\mathcal{R}_{edit}(\omega \circ \phi_e)] = \int_{-0.9}^{0.1} (1 + \omega\phi_e) d\nu = 1 + \phi_e \cdot \mathbb{E}_\omega[\omega] = 1 - 0.4\phi_e,$$

$$836 \quad \mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|] = |\phi_e| \cdot \int_{-0.9}^{0.1} d\nu = |\phi_e|.$$

838 Thus, the IRM-TV objective becomes $1 - 0.4\phi_e + \lambda\phi_e^2$. Minimizing this quadratic function over
839 $\phi_e \in [-1, 1]$ yields: 1) If $\lambda > 0.2$, the minimum occurs at $\phi_e = 0.2/\lambda$ with value $1 - 0.04/\lambda$. 2) If
840 $0 < \lambda \leq 0.2$, the minimum occurs at $\phi_e = 1$ with value $0.6 + \lambda$. 3) If $\lambda = 0$, the minimum occurs
841 at $\phi_e = 1$ with value 0.6. Comparing with the OOD optimum ($\phi_e = 0$, value 1), for any fixed $\lambda \geq 0$
842 we observe that:

$$843 \quad \min_{\phi_e \in [-1, 1]} \{1 - 0.4\phi_e + \lambda\phi_e^2\} \neq 1,$$

$$845 \quad \arg \min_{\phi_e \in [-1, 1]} \{1 - 0.4\phi_e + \lambda\phi_e^2\} \neq 0.$$

847 This deviation occurs because the expectation term $\mathbb{E}_\omega[\mathcal{R}_{edit}(\omega \circ \phi_e)]$ pulls the optimum away from
848 $\phi_e = 0$ to reduce the average risk, while the fixed λ cannot adequately compensate for this bias.
849 Only when λ is allowed to vary with ϕ_e can we achieve equivalence with the OOD objective.
850

851 A.2.2 PROOFS ON EXISTENCE OF λ_{ϕ_e}
852

853 We now prove that there exists a λ_{ϕ_e} that varies with ϕ_e such that the IRM-TV objective equals the
854 OOD objective for each ϕ_e . For the case where $\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|] = 0$, indicating constant
855 generalization risk, λ_{ϕ_e} can be chosen arbitrarily since the TV term vanishes. For the nontrivial case
856 where $\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{gen}(\omega \circ \phi_e)|] > 0$, we construct λ_{ϕ_e} as:

$$857 \quad \lambda_{\phi_e} := \frac{\max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e) - \mathbb{E}_\omega[\mathcal{R}_{rel}(\omega \circ \phi_e) + \mathcal{R}_{loc}(\omega \circ \phi_e) + \mathcal{R}_{gen}(\omega \circ \phi_e)]}{(\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|])^2}.$$

860 This construction ensures that for each ϕ_e , we have
861

$$862 \quad \mathbb{E}_\omega[\mathcal{R}_{edit}(\omega \circ \phi_e)] + \lambda_{\phi_e} (\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|])^2 = \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e),$$

863 since the numerator represents the gap between the worst-case risk and the expected base risk.

864 A.2.3 ACHIEVING OOD- ω OPTIMALITY
865866 Let ϕ_e^* be an optimal solution of the IRM-TV objective with λ_{ϕ_e} defined above. Then for any ϕ_e :

867
$$\mathbb{E}_\omega[\mathcal{R}_{rel}(\omega \circ \phi_e^*) + \mathcal{R}_{loc}(\omega \circ \phi_e^*) + \mathcal{R}_{gen}(\omega \circ \phi_e^*) + \lambda_{\phi_e^*}(\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e^*)|])^2]$$

868
$$\leq \mathbb{E}_\omega[\mathcal{R}_{rel}(\omega \circ \phi_e) + \mathcal{R}_{loc}(\omega \circ \phi_e) + \mathcal{R}_{gen}(\omega \circ \phi_e)] + \lambda_{\phi_e}(\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|])^2.$$

869

870 Substituting the definition of λ_{ϕ_e} , for all ϕ_e we have:

871
$$\max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e^*) \leq \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e).$$

872

873 This is the proof that ϕ_e^* is also optimal for the OOD objective. Conversely, if ϕ_e^* is optimal for the
874 OOD objective, then for all ϕ_e :

875
$$\mathbb{E}_\omega[\mathcal{R}_{edit}(\omega \circ \phi_e^*) + \lambda_{\phi_e^*}(\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e^*)|])^2] = \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e^*) \leq \max_{\omega \in \Sigma} \mathcal{R}_{edit}(\omega \circ \phi_e),$$

876

877 which shows that ϕ_e^* is also optimal for the IRM-TV objective. This completes the proof that the
878 IRM formulation with TV- ℓ_1 penalty can achieve the OOD editing objective when λ_{ϕ_e} is properly
879 chosen as a function of ϕ_e .
880

A.3 COMPUTATION OF GRADIENTS IN PRIMAL-DUAL OPTIMIZATION

882 In this section, we provide the detailed computation process of the gradient $\nabla_\delta \mathcal{G}$ and the subgradient
883 $\partial_{\phi_e} \mathcal{G}$ for the primal-dual optimization problem defined in Eq. 12 and 13 of the main text. Recall the
884 Lagrangian function as:

885
$$\mathcal{G}(\delta, \phi_e) = \mathbb{E}_\omega[\mathcal{R}_{edit}(\omega \circ \phi_e)] + \lambda(\delta, \phi_e)(\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|])^2,$$

886

887 where $\mathcal{R}_{edit}(\omega \circ \phi_e) = \mathcal{R}_{rel}(\omega \circ \phi_e) + \mathcal{R}_{loc}(\omega \circ \phi_e) + \mathcal{R}_{gen}(\omega \circ \phi_e)$ represents the complete editing
888 risk. To compute the gradients, we assume that the risk functions are Lipschitz continuous and admit
889 subgradients at non-differentiable points.890 **Subgradient of \mathcal{G} with Respect to ϕ_e .** The subgradient $\partial_{\phi_e} \mathcal{G}(\delta, \phi_e)$ is computed as:

891
$$\partial_{\phi_e} \mathcal{G}(\delta, \phi_e) = \mathbb{E}_\omega[\nabla_{\phi_e} \mathcal{R}_{edit}(\omega \circ \phi_e)] + 2\lambda(\delta, \phi_e) \cdot \mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|]$$

892
$$\cdot \mathbb{E}_\omega[\partial_{\phi_e} |\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|] + \nabla_{\phi_e} \lambda(\delta, \phi_e) \cdot (\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|])^2.$$

893

894 Here, the term $\partial_{\phi_e} |\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|$ requires special handling due to the absolute value function.
895 Based on derivations in (Wang et al., 2025), we obtain its subgradient as:
896

897
$$\partial_{\phi_e} |\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)| = \begin{cases} \text{sign}(\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)) J_{\phi_e}^{-1} [\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)] & \text{if } \nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e) \neq 0, \\ 0 & \text{if } \nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e) = 0, \end{cases}$$

898

901 where $J_{\phi_e}[\cdot]$ denotes the Jacobian matrix with respect to ϕ_e . This formulation ensures that the
902 subgradient is well-defined even at points where the gradient is zero.903 **Gradient of \mathcal{G} with Respect to δ .** The gradient $\nabla_\delta \mathcal{G}(\delta, \phi_e)$ is computed as:

904
$$\nabla_\delta \mathcal{G}(\delta, \phi_e) = \nabla_\delta \lambda(\delta, \phi_e) \cdot (\mathbb{E}_\omega[|\nabla_\omega \mathcal{R}_{edit}(\omega \circ \phi_e)|])^2.$$

905

906 The first term in \mathcal{G} , $\mathbb{E}_\omega[\mathcal{R}_{edit}(\omega \circ \phi_e)]$, does not depend on δ , so its gradient with respect to δ is zero.
907908 **Implementation Notes.** In practice, the expectations over ω are approximated using Monte Carlo
909 sampling from the environment distribution. The gradients $\nabla_{\phi_e} \mathcal{R}_{edit}$, $\nabla_\omega \mathcal{R}_{edit}$, and $\nabla_\delta \lambda$ are com-
910 puted using standard backpropagation. The subgradient for the absolute value term is implemented
911 using a conditional statement, which is supported by autograd systems. This approach ensures effi-
912 cient and stable optimization during the primal-dual updates.913 These gradient computations enable the iterative updates in Eq. 14 of the main text:
914

915
$$\phi_e^{(k+1)} = \phi_e^{(k)} - \gamma_1^{(k)} \cdot \partial_{\phi_e} \mathcal{G}(\delta^{(k)}, \phi_e^{(k)}), \quad \delta^{(k+1)} = \delta^{(k)} + \gamma_2^{(k)} \cdot \nabla_\delta \mathcal{G}(\delta^{(k)}, \phi_e^{(k+1)}),$$

916

917 leading to convergence to a solution that minimizes the OOD editing risk while maintaining the
invariance properties enforced by the TV- ℓ_1 penalty.
918

918 B CAUSAL GROUNDING ANALYSIS OF CASCADED REASONING IN MLLM
919920 B.1 ARCHITECTURAL CAUSAL STRUCTURE EMBEDDED IN MLLM
921

922 **Multimodal language models implement an unidirectional computational graph, that is: unidirectional**
 923 **encoders → cross-modal fusion → unified semantic reasoning. This forward computation**
 924 **defines a structural causal ordering, for which in the Structural Causal Model (SCM)**
 925 **view (Li et al., 2024c; Zhou et al., 2024), modules are equal to variables and the forward pass is**
 926 **equal to structural equations. Thus the cascade reasoning is not a hypothesized causal model,**
 927 **but the deterministic functional decomposition of existing architectures.**

928 B.2 HOW PERTURBATIONS PROPAGATE DURING MLLM EDITING
929

930 **Under this structural ordering, any local perturbation to a module ΔM or parameter ΔW**
 931 **necessarily propagates forward through the downstream modules and changes their internal**
 932 **states. Thus, there is no one-to-one rigid mapping, i.e., rigid mapping, between a specific**
 933 **parameter edit and the final output change, because the effect of the edit is mediated by all**
 934 **subsequent causal mechanisms in the network. Formally, for a structural chain**

$$h^{(unimodal)} \rightarrow h^{(align)} \rightarrow h^{(shared)} \rightarrow y$$

935 **A perturbation enters the output through**
936

$$y' = f_{shared}(f_{align}(f_{unimodal}(x; W + \delta W)))$$

937 **Thus the output shift Δy depends not only on ΔW , but on how ΔW perturbs $h_{unimodal}$, how**
 938 **this shifted representation perturbs h_{align} , and subsequently how the changed alignment influences**
 939 **the semantic reasoning module h_{shared} . This cascading mediation proves why treating**
 940 **parameter edit → output change as a rigid mapping is fundamentally inaccurate in MLLMs,**
 941 **i.e., cause causal underfit and causal overfit in Section Introduction.**

942 C DEFINITIONS OF SEMANTIC SHIFT AND FACTUAL SHIFT
943

944 The definitions of *Semantic Shift* and *Factual Shift* rely on three shared mappings:

945 **Semantic neighborhood.** Let $f(x)$ be the MLLM’s semantic embedding. We define meaning-
946 preserving variation via the semantic neighborhood:

$$\mathcal{N}_\varepsilon(x) = \{x' : \|f(x') - f(x)\|_2 \leq \varepsilon\}.$$

947 **Atomic factual content.** Let $k(x)$ denote the atomic factual content (e.g., entity–attribute or en-
948 tity–relation tuples). Two inputs share factual content iff $k(x) = k(x')$.

949 **Output-relevant concept mapping.** Let $c(x)$ denote the minimal set of conceptual factors that
950 feed into the MLLM’s forward causal chain (perception → alignment → semantic reasoning) and
951 determine the final output:

$$y = \text{MLLM}(c(x)).$$

952 **Definition 1 (Semantic Shift).** A sample x' exhibits semantic shift w.r.t. x if and only if

$$x' \in \mathcal{N}_\varepsilon(x), \quad k(x') = k(x), \quad c(x) \cap c(x') \neq \emptyset, \quad \text{MLLM}(c(x')) = \text{MLLM}(c(x))$$

953 **That is, semantic shift refers to variations within the semantic neighborhood while preserv-
954 ing factual content and preserving the output-relevant conceptual factors. Typical examples**
 955 **include paraphrases, lexical substitutions, stylistic rewordings, and mild visual variations.**

956 **Definition 2 (Factual Shift).** To be rigorous, there should be two kinds of factual shift, i.e., easy
957 factual shift and hard factual shift:

958 **Easy Factual Shift:** $x' \notin \mathcal{N}_\varepsilon(x), k(x') \neq k(x), c(x) \cap c(x') = \emptyset, \text{MLLM}(c(x')) \neq \text{MLLM}(c(x))$

959 **Hard Factual Shift:** $x' \notin \mathcal{N}_\varepsilon(x), k(x') \neq k(x), c(x) \cap c(x') \neq \emptyset, \text{MLLM}(c(x')) \neq \text{MLLM}(c(x))$

Thus, the factual shift corresponds to moving outside the semantic neighborhood while altering the atomic fact, which necessarily changes the model’s reasoning-relevant conceptual representation. The only difference between the two factual shifts is whether the prompts share part of the conceptual framing, *e.g.*, the same entities, question structure, or visual context.

D EXPERIMENTAL SETUP DETAILS

D.1 MLLM BACKBONES

BLIP2-OPT. Li et al. (2023) is a vision-language pre-training framework that leverages frozen pre-trained image encoders and large language models bridged by a lightweight Querying Transformer. Our setup uses ViT-L for the vision encoder and an unsupervised-trained OPT model with 2.7 billion parameters as the decoder-based language model.

MiniGPT-4. Zhu et al. (2023) is a vision-language model that integrates a frozen visual encoder with the frozen Vicuna language model built on LLaMA. The model employs a single projection layer to align visual features with Vicuna and uses the same pre-trained vision component as BLIP-2, consisting of ViT-G/14 from EVA-CLIP and a Q-Former. Our setup uses ViT-G/14 for the vision encoder and a frozen Vicuna model with 7 billion parameters as the decoder-based language model.

D.2 DATASET STRUCTURES

The reliance of `ODEdit` on three distinct data splits (\mathcal{D}_{IN} , \mathcal{D}_{SE} , \mathcal{D}_{out}) is not a new imposition but rather a formalization of the training datasets from benchmark MMEdit (Cheng et al., 2023), which is also the most popularly used benchmark in previous work (Pan et al., 2024). The MMEdit benchmark that we use explicitly provides data structured as triplets for each edit instance in the training datasets, i.e., the original edit sample (our \mathcal{D}_{IN}), semantically rephrase samples (our \mathcal{D}_{SE}), and unrelated samples (our \mathcal{D}_{out}). For clarity, here we provide the data structure of a training instance example:

src: A photo of wooden spoons and forks on a wooden table.
pred: Wooden spoons and forks on a wooden table.
rephrase: Provide a brief overview of the image content.
alt: A selection of wooden kitchen tools on a counter.
image: val2014/COCO_val2014_000000386164.jpg
image rephrase: val2014_image_rephrase/COCO_val2014_000000386164.png
loc: Who was supported by the united states during mexican civil war?
loc ans: Benito Juárez.
m_loc: val2014/COCO_val2014_000000297147.jpg
m_loc_q: What sport can you use this for?
m_loc_a: Motocross.

D.3 BASELINE METHODS

To thoroughly evaluate the effectiveness of our model `ODEdit`, we compare it with four types of baselines: (1) *Naive fine-tuning*: FT directly tunes the last three layers of MLLM. (2) *Parameter-adjusting unimodal editing*: MEND (Mitchell et al., 2021). (3) *Model-extending unimodal editing*: IKE (Zheng et al., 2023), SERAC Mitchell et al. (2022), T-Patcher (Huang et al., 2023), WISE (Wang et al., 2024a). (4) *Integrate parameter-adjusting and model-extending editing*: UniKE (Pan et al., 2024). `ODEdit` serves as a plug-and-play universal framework, capable of being seamlessly integrated into any editing model that relies on loss-based optimization. Thus, we enhance one representative model under each type of baselines using `ODEdit`, i.e., WISE+`ODEdit`, MEND+`ODEdit`, T-Patcher+`ODEdit`, UniKE+`ODEdit`, and compare the results against the original models.

Fine-tune (FT). Fine-tuning is the predominant paradigm for adapting pre-trained models to downstream tasks. As our baseline for multimodal editing, we adopt vanilla fine-tuning by updating the last three layers of the MLLM.

1026 **In-context Knowledge Editing (IKE).** [Zheng et al. \(2023\)](#) explores in-context learning (ICL) for
 1027 knowledge editing in large language models. IKE designs demonstration templates, *i.e.*, copy, up-
 1028 date, retain, and retrieves relevant facts from the training corpus to construct effective in-context
 1029 demonstrations that guide LLMs in precise knowledge editing.

1030 **SERAC.** [Mitchell et al. \(2022\)](#) develops a memory-based editing framework, where edits are cached
 1031 in an explicit memory and retrieved at inference. A scope classifier decides whether the input falls
 1032 within memory coverage. When the input falls within memory coverage, it is augmented with the
 1033 most relevant memory entry and forwarded to a counterfactual model for prediction.

1034 **WISE.** [Wang et al. \(2024a\)](#) introduces a dual-parametric memory with a main memory for pretrained
 1035 knowledge and a side memory for edits. A router determines which memory to access for each query.
 1036 To support continual editing, WISE adopts sharding and merging mechanisms that isolate edits in
 1037 different parameter subspaces and integrate them without conflicts.

1038 **MEND.** [Mitchell et al. \(2021\)](#) designs model editor networks with gradient decomposition, a scal-
 1039 able approach for fast post-hoc editing of large pre-trained language models. Instead of directly
 1040 fine-tuning model parameters, MEND employs lightweight auxiliary networks to transform fine-
 1041 tuning gradients, using a low-rank decomposition to keep the transformation tractable. We set the
 1042 last three layers of MLLM as the tuned target for this auxiliary network in our experiments.

1043 **T-Patcher.** [Huang et al. \(2023\)](#) proposes a lightweight approach for model editing, aimed at revising
 1044 transformer-based pre-trained language models without affecting overall performance. Instead of
 1045 updating all parameters, Transformer-Patcher adds a small set of trainable neurons, *i.e.*, patches, to
 1046 the FFN layer, and trains them with activation and memory losses to respond only to targeted inputs.

1047 **UniKE.** [Pan et al. \(2024\)](#) presents a unified framework for multimodal knowledge editing by com-
 1048 bining intrinsic memory updates and external memory resorting. Both types of knowledge are rep-
 1049 resented as key-value memories and edited in the latent space. Contrastive learning disentangles
 1050 semantic and truthfulness aspects, allowing intrinsic and external knowledge to guide each other.

1053 D.4 IMPLEMENTATION DETAILS

1054 For the generality risk in `ODEdit`, we employ a Gaussian RBF kernel with a multi-scale bandwidth
 1055 strategy as the kernel function for MMD. To achieve adaptive $\text{TV-}\ell_1$ penalty, we utilize a three-layer
 1056 MLP with ReLU activations for the IRM-TV optimization, Xavier initialization for weights, and
 1057 Softplus activation at the output to ensure positivity. We choose Adam as the optimizer, and vary
 1058 the learning rates in $\{0.0001, 0.001, 0.005, 0.01\}$ for the IRM-TV network. For all experiments, we
 1059 repeat them five times and report the mean value of the results. We conduct all of our experiments
 1060 on an Ubuntu OS that contains 8 NVIDIA A40 GPUs.

1062 D.5 PRINCIPLED GUIDELINES FOR SETTING PARAMETERS

1063 **For TV penalty λ .** We clarify that the coefficient of the TV penalty, denoted by λ , is not a fixed
 1064 hyperparameter that requires grid search. *Instead, it is treated as a Lagrange multiplier and* is adaptively learned during training. This adaptive dual-variable treatment avoids additional
 1065 hyperparameter tuning for three reasons: 1) λ is not manually chosen, and it is automatically
 1066 adjusted via gradient ascent on the constraint violation. 2) The MLP parameterization for
 1067 λ is intentionally low-capacity (e.g., 2 layers, 32 units) 3) The dual update is stable across a
 1068 wide range of γ_2 , *i.e.*, 10^{-4} to 50^{-3} , and standard techniques, *e.g.*, gradient clipping and EMA
 1069 smoothing ensure robust behavior. Thus, the learned TV penalty acts as a self-regulating
 1070 mechanism rather than a hand-tuned hyperparameter, and introduces negligible additional
 1071 tuning workload in practical use.

1072 **For MMD bandwidths σ_q .** In our implementation, the bandwidth used by the RBF-based
 1073 MMD is computed directly from data rather than specified as a tunable hyperparameter.
 1074 Given a batch of source features $\{x_i\}_{i=1}^n$ and target features $\{y_j\}_{j=1}^m$, we concatenate them
 1075 into $\mathcal{Z} = \{z_k\}_{k=1}^{n+m} = \{x_1, \dots, x_n, y_1, \dots, y_m\}$. We then compute all pairwise squared
 1076 Euclidean distances $d_{ij} = \|z_i - z_j\|^2, 1 \leq i, j \leq n + m$. The base bandwidth σ^2 is defined
 1077 as the average pairwise distance (excluding diagonal entries) $\sigma^2 = \frac{1}{(n+m)(n+m-1)} \sum_{i \neq j} d_{ij}$.

1080 This formulation makes the bandwidth fully data-adaptive, as it automatically reflects the
 1081 intrinsic scale of the representations in each batch. Thus, the MMD kernel requires no man-
 1082 ual tuning of σ and does not introduce additional difficulty in hyperparameter optimization.
 1083 To further enhance robustness, we employ a multi-scale Gaussian kernel using a geometric
 1084 progression of bandwidths. Let K denote the number of kernels and κ the multiplicative
 1085 factor. After normalizing the base bandwidth by $\kappa^{\lfloor K/2 \rfloor}$, we generate a set of kernel band-
 1086 widths $\sigma_k^2 = \sigma^2 \cdot \kappa^{k-\lfloor K/2 \rfloor}$, $k = 0, 1, \dots, K-1$. Each scale defines an RBF kernel
 1087 $k_k(z_i, z_j) = \exp\left(-\frac{d_{ij}}{\sigma_k^2}\right)$, and the final kernel matrix is obtained by summing across scales
 1088 $K(z_i, z_j) = \sum_{k=0}^{K-1} k_k(z_i, z_j)$. This multi-scale construction ensures sensitivity to both small
 1089 and large variations in the feature representations and effectively prevents kernel collapse,
 1090 i.e., a single bandwidth becomes either overly peaked or nearly constant.
 1091

1092 **For primal-dual learning rate γ_1 γ_2 and the stability of the primal-dual optimization.** From
 1093 the experiments results, as shown in Figure 5, we observe that the primal-dual learning rates
 1094 are not sensitive in practice. This is primarily due to the smoothness and boundedness of our
 1095 constraint terms. The primal update optimizes a standard editing loss combined with softly-
 1096 weighted regularizers, which results in well-behaved gradients. Formally, the primal step is
 1097 $\phi_e^{(k+1)} = \phi_e^{(k)} - \gamma_1^{(k)} \cdot \partial_{\phi_e} \mathcal{G}(\delta^{(k)}, \phi_e^{(k)})$ and the gradient $\partial_{\phi_e} \mathcal{G}$ remains Lipschitz-continuous
 1098 because both the MMD and TV terms are smooth with respect to ϕ_e . For the dual variable,
 1099 the update takes the form $\delta^{(k+1)} = \delta^{(k)} + \gamma_2^{(k)} \cdot \nabla_{\delta} \mathcal{G}(\delta^{(k)}, \phi_e^{(k+1)})$. The dual signal $\nabla_{\delta} \mathcal{G}$ reduces
 1100 to the constraint violation term such as $\text{TV}(\theta) - \tau$, which is naturally bounded due to gradient
 1101 clipping and the compact support of the kernel function used in the MMD constraint. As a
 1102 consequence, the dual gradient magnitude is inherently constrained, making the update stable
 1103 over a broad range of γ_2 . Empirically, we find that any γ_2 within $1e^{-3}$ to $5e^{-3}$ yields nearly
 1104 identical behaviors: λ grows only when the constraint is violated and quickly plateaus once the
 1105 constraint is satisfied. This monotonicity property acts as an automatic stabilizer, preventing
 1106 oscillation even when α_d varies within a wide range. Finally, the EMA smoothing and non-
 1107 negativity projection applied to λ further dampen sensitivity. These properties ensure that
 1108 both primal and dual updates behave predictably, and the optimization remains robust even
 1109 when the learning rates are perturbed by one or two orders of magnitude.

1110 **Principled guidelines for parameter setting.** Across all models and datasets we tested, we found
 1111 the following configuration consistently stable and near-optimal:

- 1112 • **Primal LR for editor parameters: identical to the backbone fine-tuning LR.**
- 1113 • **Dual LR: $1e^{-3}$ to $5e^{-3}$, smaller than primal LR for stability.**
- 1114 • **MMD bandwidth: median heuristic on the in-domain samples.**
- 1115 • **TV penalty scale: initially set such that the initial TV magnitude is comparable to the editing
 1116 loss, and then adaptively learned by MLP.**
- 1117 • **MLP for TV penalty: fixed 2-layer MLP network with dim as [32,8,1].**

1123 D.6 INTERPRETABILITY STUDIES

1124
 1125 To evaluate the detailed effects of Maximum Mean Discrepancy Alignment and Edit Trajectory
 1126 Invariant Learning, we apply the WISE method and the WISE+ODEdit method on BLIP-2 OPT
 1127 to conduct interpretability studies. Figure 4 shows several qualitative cases.

1128 For the generality evaluation, ODEdit eliminates the spurious environmental factor, *i.e.*, window,
 1129 and produces generalized answers for rephrase prompts, while editing only with baseline fails to
 1130 discriminate factual shifts and loses the critical invariant feature, *i.e.*, desk. For image and text
 1131 locality, ODEdit preserves accurate answers after editing, owing to the edit trajectory invariant
 1132 learning. In contrast, the cognition of MLLM on irrelevant samples is affected by editing in the
 1133 baseline, leading to off-topic responses.

1134

E RELATED WORK

1135

E.1 OUT-OF-DISTRIBUTION GENERALIZATION

1136 OOD generalization is a core challenge in machine learning, aiming for generalization under covari-
 1137 ate shift without access to data in the target domain (Muandet et al., 2013; Arjovsky et al., 2019).
 1138 The mainstream works (Arjovsky et al., 2019; Krueger et al., 2021; Ahuja et al., 2020; Lai & Wang,
 1139 2024) utilize invariant risk minimization with regularizer to explore invariant representations across
 1140 different training environments. Further, a wide range of techniques is leveraged to extract and
 1141 generalize invariant features (Yu et al., 2023), e.g., context-based augmentation (Nam et al., 2021),
 1142 representation alignment (Dou et al., 2019; Ruan et al., 2021), gradient manipulation (Shahtalebi
 1143 et al., 2021), distributional robust optimization (Ghosal & Li, 2023), and meta-learning (Chen et al.,
 1144 2023). In this paper, we make the first attempt to cast MLLM editing as an OOD generalization
 1145 problem, where invariant learning across editing environments is enforced via a total invariance
 1146 regularizer on cross-modal semantic features, so as to improve editing robustness and adaptability.
 1147

1148

F LIMITATIONS AND FUTURE WORK

1149 While ODEdit presents a robust framework for multimodal knowledge editing, our work has certain
 1150 limitations that point to valuable future research directions.

1151 **Granularity of Invariance.** Our method learns invariant trajectories at a relatively macroscopic
 1152 level, e.g., across semantic neighbors. The framework does not explicitly model or enforce invari-
 1153 ance at a more fine-grained or neuron-level within the MLLM, which could be a future pathway for
 1154 achieving even more precise and disentangled edits.

1155 **MLLM Scale.** Our empirical study is confined to the multimodal large language models established
 1156 in the MMEedit benchmark. Consequently, the effectiveness of ODEdit on more larger-scale, state-
 1157 of-the-art MLLMs remains an open question. Extending the evaluation to more powerful and diverse
 1158 architectures is a crucial direction for future work.

1163

G ETHICS STATEMENT

1164 **Ethical Impacts.** This work poses no ethical concerns, as it relies solely on publicly available
 1165 datasets and models for experimentation and does not involve subjective evaluation or private data.

1166 **Societal Impacts.** This work introduces a robust framework for editing knowledge in multimodal
 1167 large language models (MLLM) from an out-of-distribution generalization perspective. The primary
 1168 positive social impact of this technology is its potential to significantly enhance the reliability and
 1169 safety of MLLM by enabling precise, controlled updates to their knowledge base. This is particularly
 1170 critical for applications in domains such as healthcare, education, and news dissemination, where
 1171 maintaining factual accuracy and mitigating harmful hallucinations are of utmost importance.

1175

H REPRODUCIBILITY STATEMENT

1176 To ensure the reproducibility of our work, we have taken the following steps. The source code
 1177 for ODEdit, including implementations of the tripartite OOD risk and the Edit Trajectory Invariant
 1178 Learning algorithm, has been made publicly available as anonymized supplementary material (link
 1179 provided in the abstract, Our code is available at [https://anonymous.4open.science/r/
 1180 ODEdit-2756](https://anonymous.4open.science/r/ODEdit-2756)). Complete theoretical proofs for our key propositions, including the equivalence
 1181 between the OOD and IRM-TV objectives, are provided in Appendix A. Detailed descriptions of
 1182 the experimental setup, including the MLLM backbones (Appendix B.1), baseline methods (Ap-
 1183 pendix B.2), hyperparameter configurations, and training procedures, are thoroughly documented
 1184 in Appendix B.3. The MMEedit benchmark used for evaluation is publicly available, and our data
 1185 processing steps are clearly outlined in Section 4.1 and Appendix B. We hope these resources will
 1186 facilitate the replication and extension of our work.

1188 **I USE OF LLMs IN WRITING**
11891190 We used a large language model (LLM) solely to polish the writing and correct grammatical issues
1191 during the preparation of this paper. The LLM was not involved in idea generation, experiment
1192 design, or analysis, and all scientific contributions are entirely made by the authors.
11931194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241