Exploring Neural Granger Causality with xLLSTMs:
Unveiling Temporal Dependencies in Complex Data
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Abstract

Causality in time series can be challenging to determine, especially in the presence
of non-linear dependencies. Granger causality helps analyze potential relation-
ships between variables, thereby offering a method to determine whether one
time series can predict—Granger cause—future values of another. Although suc-
cessful, Granger causal methods still struggle with capturing long-range relations
between variables. To this end, we leverage the recently successful Extended
Long Short-Term Memory (xXLSTM) architecture and propose Granger causal xL-
STMs (GC-xLSTM). It first enforces sparsity between the time series components
by using a novel dynamic loss penalty on the initial projection. Specifically, we
adaptively improve the model and identify sparsity candidates. Our joint opti-
mization procedure then ensures that the Granger causal relations are recovered
robustly. Our experimental evaluation on six diverse datasets demonstrates the
overall efficacy of GC-xLSTM.

1 Introduction

Finding cause and effect among and within a group of multivariate time series can lead to a better un-
derstanding of the dynamics of the involved time series. For instance, in computational neuroscience
and medicine, discovering brain connectivity assists in better understanding natural cognition [[Smith
et al.| 2011]]. Discovering inter-dependencies between time series also has a critical impact on many
other research areas, such as finance [Masini et al.l [2023]], climate science [Mudelsee, 2019|], and
industrial applications [[Strem et al., 2025]]. Although efforts have recently been made to improve
the interpretability of time series models [Ismail et al., [2020} |Turbé et al.,|2023|], most methods are
restricted to finding post-hoc interpretations and only focus on short-term dependencies.

The framework of Granger causality (GC) [Granger, |1969] was introduced to address the challenge
of determining whether one variable’s past values can help forecast another’s future values, without
implying direct causality. GC can be established using statistical hypothesis tests, determining
whether one time series can predict another. The test traditionally involves estimating a vector
autoregressive model and examining whether lagged values of a time series improve or degrade
the prediction of the other, while controlling the past behavior of both series. Although GC does
not imply a direct cause-and-effect relationship between the involved time series [Heckman), 2008]],
recognizing these interdependencies can lead to a better understanding of the dynamic relationships
between variables over time [Marcinkevics and Vogt, [2021} |Shojaie and Fox, [2022]].
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Many families of deep learning architectures have been explored for time series analysis over
the years, such as multilayer perceptrons [Zeng et al., |2023| Das et al.l 2023]], recurrent neural
networks (RNNSs) [Hochreiter and Schmidhuber, 1997, |Cho et al., [2014]], convolutional neural
networks [Wu et al., 2022| |[Wang et al.| |2022], Transformers [[Vaswani et al., 2017, Nie et al.,
2023|], state-space models (SSMs) [Wang et al., [2025]], or mixing architectures [Wang et al., 2024]].
Throughout this, recurrent models remained a natural choice for time series data since their direction
of computation aligns well with the forward flow of time. This aligns particularly well with the goals
of neural Granger causality. Although SSMs are comparable in that regard, RNNs tend to offer more
powerful forecasting capabilities since they deteriorate less when modeling long-term dependencies.
Furthermore, their inference runtime is typically linear in the sequence length at constant memory
cost, making them much more efficient than, for instance, Transformers with quadratic runtimes and
memory requirements, while remaining highly expressive. Recently, |[Beck et al.| [2024] revisited
recurrent models by borrowing insights gained from Transformers in many domains, specifically
natural language processing. Their proposed Extended Long Short-Term Memory (xXLSTM) model
sparked a resurgence of interest in recurrent architectures for sequence modeling and has already
proven highly suitable for time series forecasting [Kraus et al., 2025} |Alharthi and Mahmood, 2024].

Although most Granger causal machine learning methods assume linearity in time series as a
fundamental prerequisite [Siggiridou and Kugiumtzis, 2015| |[Zhang et al., 2020, recent efforts
capture non-linear dynamics in time series by using neural networks as the modeling choice instead of
VARs [Tank et al., 2022} Lowe et al., [2022} [Cheng et al., [2024]. Although successful, these non-linear
methods require careful feature engineering to include time-based patterns. Thus, they may not
capture interactions between time series and external factors as effectively as xLSTMs, which can
learn non-linear patterns and adapt to the non-stationary nature of time series data.

We introduce GC-xLSTM, a novel method that leverages xLSTMs to uncover the GC relations in the
presence of complex data, which inherently can have long-range dependenciesﬂ GC-xLSTM first
enforces sparsity between the time series components by using a novel lasso penalty on the initial
projection layer of the xXLSTM. We learn a weight per time series and then adapt them to find the
relevant variates for that step. Then, each time series component is modeled using a separate XLSTM
model, enabling us to discover interpretable GC relationships between the time series variables.
After the forecast results by the individual xLSTM models, the important features are made more
prominent, whereas the less important ones are diminished by a joint optimization technique, which
includes using a novel reduction coefficient. Thus, the overall GC-xXLSTM model can be trained
end-to-end to uncover long-range Granger causal relations.

Our main research contributions can be summarized as follows:

(i) We propose GC-xLSTM, a novel model that can uncover Granger causal relations in non-
linear time series.

(i1) Our novel algorithm jointly improves the forecasting model while adaptively enforcing strict
sparsity.

(iii) Our empirical evaluations demonstrate that GC-xXLSTM can robustly discover Granger
causal relations in the presence of complex simulated and real-world data.

Outline. We start by recalling preliminaries and reviewing related research to contextualize this
work in the broader body of research on neural Granger causality in Section [2| This allows us to
introduce GC-xLSTM in Section [3]and empirically evaluate in relation to other methods in Section 4]
Finally, we conclude with an outlook to future work in Section 5]

2  Preliminaries and Related Work

We are interested in datasets of strictly stationary time series S € RV *T of V variates with length
T. Let S; € RY denote the value of S at time ¢. A variate v (sometimes called a channel) can be
any scalar measurement, such as the chlorophyll content of a plant or the spatial location of some
object being tracked. Its value at time ¢ is S, ; € R. The measurements are assumed to be carried out
jointly at T regularly spaced time steps. In forecasting, a model is presented with a time series of C
context steps S before ¢, from which it shall predict the next value S; € RY.

'Code available at github.com/harpoonix/GC-xLSTM.
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2.1 Granger Causality

If the observed time series were generated by some underlying process g, which we can formalize as
a structural equation model for all time steps t as S, 1 = G, (S1,<t5---,Sv,<t) + € ¢ forallv € V,
where €, ¢ is some additive zero mean noise independent from all variates S, <; and V := {1,...,V}
is the set of all variates. In Granger causality [[Granger, |1969], we aim to determine whether past
values S, < of a variate v are predictive for future values S, >; of another variate w. Following the
notation of Shojaie and Fox|[2022]], we formally define:

Definition 1 (Granger Causality). Variate v is Granger non-causal for w if and only if g, is invariant
to Sy<iforallt € {1,...,T}, ie., if and only if

gv(51,<t, s SV,<t) = gu(51,<t’ sy SV,<t \ Sw,<t)~

Else, we call v Granger causal for w.

The set of all such relationships are the directed edges € C V x V of the Granger causal graph (V, £)
of the variates, which we eventually aim to uncover.

2.2 Neural Granger Causality

Unfortunately, however, we cannot explicitly access g in most realistic settings. Using machine learn-
ing methods, we can nonetheless estimate each of the V' process components g, by an autoregressive
time series forecasting model Mg ,,(S<;) = g,(S<t) = Syt — €y,t- We can do so by estimating
the parameters 6 of the model based on the dataset of time series, minimizing the predictive mean
squared error (MSE) loss

v T
pred Z Z (Sv,t - Mﬂ,v(s<t))2 . (1)

v=1 t=1

In the case of using neural networks for My ,,, this approach is called Neural Granger Causality [Tank
et al.,2022].

It would be very costly to train a total of V2 models to test if each variate Granger causes any other
variate and thus construct the entire Granger causal graph. To avoid this, we can train merely a single
component-wise model Mg ,, for each variate v and inspect what inputs w it is sensitive to. While
this does not ablate models as in classical GC, it reduces the number of models to be trained from
quadratic to linear in V. This can, for instance, be achieved by optimizing the predictive loss Lpreq (0)

based on all model parameters 8 with a regularizer Q( ») enforcing sparsity in the input features:
min Lpreq (0) + A Z Q ( ) 2)
0,0

where 0, are tunable parameters of the regularizer for variate v and A € R, is a hyperparameter
to adjust the degree of sparsity. One such approach are cMLPs [Tank et al. 2022]]; multilayer
perceptrons where the first weight matrix W € RP*V projecting from V features at each time step
to D hidden dimensions is regularized to encode a sparse selection of input features. {2 is instantiated

as an L2 norm of its columns: Z:}/=1 [|W,||,. Note that 8 and 6 can overlap.

Sparsity can then be extracted by binarizing the entries of W using a user-defined threshold 7. This
is necessary as the L? penalty tends only to shrink parameters to small values near zero, yet not clamp
them sharply to it. This, however, allows subsequent layers to amplify the dampened signal again
and still use it for forecasting. We avoid this disadvantage in GC-xLSTM by explicitly optimizing
the feature extractor for strict sparsity. This more principled approach works without determining a
sparsity threshold 7.

Previous work has explored both more regularizers [Tank et al.,[2022] and different means to extract
Granger causal relationships, including using feature attribution via explainability [|Atashgahi et al.,
2024] and interpretability [MarcinkeviCs and Vogt, [2021]]. Furthermore, several works have gone
towards learning relevant representations that respect the underlying Granger causality [Xu et al.,
2016l |Varando et al., 2021} [Dmochowskil 2023]]. Zoroddu et al.| [2024]] present another approach
where prior knowledge is encoded in the form of a noisy undirected graph, which aids the learning of
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Figure 1: GC-xLSTM performs three key steps to determine the Granger causal links: Firstly,
for each time series component, all variates are embedded with a sparse feature encoder W that is
regularized through a novel sparsity loss with learned reduction coefficients cc. XLSTM models then
learn to autoregressively predict future steps from that embedding. Finally, once model estimation is
complete, Granger causal dependencies can be extracted from W.

Granger causality graphs. A more recent approach [Lin et al.,[2024]] employs Kolmogorov-Arnold
networks [Liu et al.|[2024] to learn the Granger causal relations between time series. For a discussion
of when Granger causality implies (Pearlian) causality, we refer to |Pettenuzzo and White|[2011]] and
Das and Babadi[2023]], allowing to connect to works such as the one of Rubenstein et al.[[2017].

2.3 Extended Long Short-Term Memory (xLSTM)

Beck et al.|[2024] propose two building blocks to build up xXLSTM architectures: the SLSTM and
mLSTM modules for vector-valued (i.e., multivariate) sequences. SLSTM cells improve upon classic
LSTMs by exponential gating. For parallelizable training, mLSTM cells replace memory mixing
between hidden states with an associative matrix memory. We will continue by recalling how sLSTM
cells function since we found their memory mixing more effective in time series forecasting.

The standard LSTM architecture of Hochreiter and Schmidhuber] [[1997]] updates the cell state c;
through a combination of input, forget, and output gates, which regulate the flow of information
across tokens. SLSTM blocks, owing to the contained SLSTM cells, enhance this by incorporating
exponential gating and memory mixing [Greff et al., [2017] to better handle complex temporal and
cross-variate dependencies. Additional normalization states are introduced to stabilize training under
the new exponential activation function. AsBeck et al. have shown, it is sufficient and computationally
beneficial to constrain the memory mixing performed by the recurrent weight matrices R, R;, Ry,
and R, to individual heads. This is inspired by the multi-head setup of Transformers [[Vaswani
et al.,[2017], yet more restricted and efficient. In particular, each token gets broken up into groups of
features, where the input weights W, ;  , act across all of them, but the recurrence matrices R ; ¢ o
are implemented as block-diagonal. This permits specialization of the individual heads to patterns
specific to the respective section of the tokens and empirically does not sacrifice expressivity.

3 GC-xLSTM

We will now introduce the GC-xLSTM architecture and detail the optimization for strict sparsity
jointly with the model parameters. At the end, we will additionally discuss theoretical properties of
the proposed system.

3.1 Overall Architecture

As Figure[T|shows, we estimate a pipeline of sparse feature selectors and XLSTM models to predict
the multivariate time series. Eventually, this allows us to derive Granger causal dependencies from the
selected features. Specifically, we learn for each variate v a separate sparse projection and compute
x, = W,S + b, shared across time. The matrix W,, € RP*V is shared across all lags of the time
series for simplicity. We will lift this restriction in Section[4.2] Note that b does not affect the sparse
use of inputs. We write ¢ for the set of parameters W, and b,, for all v € V. In addition to selecting
dependencies, the sparse projection embeds the data into D-dimensional hidden space.
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Figure 2: Optimization procedure and compression intuition for GC-xLSTM.

For Neural Granger Causality to successfully and faithfully extract the proper underlying depen-
dencies, it is essential to employ models that can capture the complete set of dependencies. We,
therefore, employ powerful deep-learning models with significantly higher capacity than the cMLPs
and cLSTMs in prior work [Tank et al.,[2022]. In particular, we instantiate the individual time series
forecasters Mg, , with SLSTM blocks as introduced in Section@ They can capture long-range
dependencies in time series data, substantially enhancing the capabilities of traditional LSTMs in
handling extended contexts. GC-XxLSTM consists of V' sLSTM models, each modeling a different
time series component. They are trained using established forecasting losses, such as the MSE loss

Lored (¢, 0) from Eq. .

3.2 Optimizing for Strict Input Sparsity

The purpose of the feature selector W' is to only “pay attention” to as many variates as necessary
for successful forecasting. A common approach to achieve this sparsity on the Granger causal
relationships is via the lasso regularization explained in Section 2.2} We use a variation of the group
lasso penalty [Yuan and Lin| [2006, [Simon and Tibshiranil [2012]] on the initial projection layer of
GC-xLSTM as a structured sparsity-inducing penalty that encourages the selection of entire groups of
variables, encoded as the columns of W,,. Note that our penalty differs from adaptive lasso [[Yuan and
Linl 2006], where the weights are not learned but are treated as fixed heuristics. Note that standard
gradient descent methods cannot optimize such a penalty directly due to its non-differentiability. We
thus adaptively compress by learning a reduction coefficient a,, € R that selects which of the V/
columns of W, are redundant. We perform this compression of W, in a joint procedure with the
general optimization of the forecasting model, as provided in Algorithm[I] Specifically, we perform
two updates per optimization step for each of the variates, as Figure [2a] depicts. Firstly, we optimize
the projection weights ¢, the reduction coefficients a, and the XLSTM parameters 8 using mini-batch
gradient descent. This corresponds to lines [I0]to[I3]in Algorithm[I] It optimizes the following loss
expected over the time series data S

\%4
min - Loea(S; ¢y, 0,) + Alog (Z ay [|sg (Wf’)Hz) )
v, 0y, 0y we1

Lmd(av,Wv)

Note that we, crucially, only descend on the reduction coefficient a in L4 and not on W, as the
stop-gradient sg(-) denotes. This sparsity optimization is instead performed by the second step in
the procedure, shown in line[T6] where a proximal gradient descent step dynamically shrinks W,
proportional to a,,. The compression update takes a descent step towards the gradient of

\%4
A al (W, “
w=1

followed by a soft thresholding. Intuitively, the £,.q component of Eq. keeps W, fixed while
learning cx,,, and Eq. (4) keeps o, fixed in the proximal step to compress W,,. Figure 2b|depicts the
intuition of the proximal gradient step and soft-thresholding in line



Details on learning the reduction loss L,.q. It is worth briefly discussing the use of the logarithm
in Eq. (3). It mainly gives more equal weight to the decreases in W, column norms and encourages
learning of better sparse Granger causal relations. It furthermore normalizes the gradient updates to
«,,. Empirically, this loss engineering allowed training models that were significantly more robust
to noise and changes to the sparsity hyperparameter A. This was reflected by a more stable variable
usage and predictive loss Lpeq.

Ensuring non-negativity of the reduction coefficients c.. For the proximal update step to be
well-behaved, we need to ensure that o, results in a convex combination of column weights, i.e., that
a¥ > 0forallw € V and a1 = 1. We achieve this by re-parameterizing it as cv, = softmax (3,),
and learning 3, instead of av,.

Intuitive dynamics of the gradient update step. The weights W, in the reduction loss L of
Eq. (3) only serve to learn good reduction coefficients cv,,, and are not optimized themselves. Deriving
the gradient of the penalty term L., with respect to the underlying 3 provides a helpful intuition of
the training dynamics:

9 \4 P |4 \4
agw 2 O IWilly = g0 D softmax(8y)” [W'll, = a:f@wsvnz - al ||W5f||2>
vow vow=1

-1 w=1

] 9 - Wyl
— ==Ly = A5 log ( a ||W5f||2> =Y ( v "2 -1
9B 9By g Sy _av|[we,

w=1%
We can see that if the norm of a column ||[W}”||, is large, that corresponding ﬁﬁreg will be large.
Gradient descent will thus decrease o and effectively allocate less weight to its removal in the
compression step. Furthermore, %Ereg also scales with o, resulting in a self-reinforcing loop that
aids learning sparse representations.

Practical considerations. Furthermore, we perform staged optimization of o, which is initialized to
a uniform distribution by setting all 3 = 0. We only start training « after exploring the prediction loss
and having obtained a reasonably compressed forecaster, which is controlled by the hyperparameter
K in Algorithm [T] (see line [I3). While we present the method with mini-batch gradient descent
for conciseness, modern optimizers, such as Adam [Kingma and Bal [2017]], can further improve
convergence.

3.3 Theoretical Analysis

Ultimately, we want to ensure that, provided real-world data, we can find hyperparameters such
that Algorithm |1|discovers all and only those edges of the unique underlying GC graph (V, &) as
per Definition I} Providing convergence guarantees in full generality is notoriously hard for such
practical architectures and optimization schemes, and thus rarely attempted. However, we can at
least investigate whether the chosen model class containing My ,, can approximate g,, to arbitrary
precision. If that is the case, we can be reasonably sure that gradient-based optimization schemes
will yield satisfactory approximations, even without formal guarantees.

The forecasting component of GC-xLSTM consists of two main steps: the sparse initial projection
W, and the subsequent XLSTM blocks. One might think that the sparsity of W, hinders learning
the correct g,. However, the true underlying g, is independent of all variates w without ingoing
edges into variate v. Thus, depending on an appropriate choice of the sparsity hyperparameter A, the
projection W, can encode exactly those as zero entries. It remains to investigate the approximation
capabilities of the SLSTM blocks, which we present in Appendix [B|in more detail. In summary,
we can assume that SLSTM blocks are at least as powerful as RNNs, which are, in turn, universal
function approximators. Thus, the overall GC-xLSTM architecture is sufficiently rich to model g, to
adequate precision. We continue by confirming this empirically in the next section.



Table 1: GC-xLSTM is highly accurate at discovering GC relations in the chaotic and non-
linear Lorentz-96 system. For each setting and baseline, we provide the accuracy (Acc.), balanced
accuracy (BA), and AUROC. The best models are highlighted as bold.

F=10 F =140
Model Year Acc. () BA (1) AUROC (1) Acc.(T) BA(T) AUROC (1)
VAR 2021 91.8+x12 83.8+1.6 94.0+1.6 86.4+0.8 58.5+1.7 74.5+4.7
cLSTM 2022 97.0£1.0 95.0+2.8 95.8+2.6 84.4+12 65.6+3.7 66.1+3.8
cMLP 2022 97.2+05 95.6x1.6 96.3+1.8 68.3+2.7 80.5+1.7 97.9+1.6
GC-KAN 2024 - - 92.1+0.3 - - 87.1+0.4
TCDF 2019 87.1x12 70.9+4.4 85.7+2.7 77.5+23  62.2+3.0 67.9+3.1
eSRU 2020/ 96.6+1.1 95.1+2.0 96.3+2.0 86.7+0.9 88.6+1.4 93.4+2.1
GVAR 2021 98.2+03 98.2+0.6 99.7+0.1 94.5+1.0 88.5+4.6 97.0+0.9

GC-xLSTM ours 99.1+02 98.5+1.0 99.3+0.3 96.3+03 96.6+0.3 88.0+0.2

4 Experimental Evaluation

We conduct extensive experiments on six datasets to assess the practical effectiveness of GC-xLSTM.
We will now explain the chosen architecture and parameters used to train GC-xLSTM and then discuss
the datasets used before presenting our obtained results in detail. The results are split into investigating
the general GC modeling capabilities on a diverse range of applications (Section4.T)) and a subsequent
model analysis, including an ablation study and using different numbers of variates (Section §.2).

Architecture Details. For our component-wise networks, we use a single xXLSTM block comprised
of one SLSTM layer, followed by a linear layer to predict the next time step from the preceding
C = 10 time steps (see Table [5in Appendix [C] for deviations). We then directly optimize the
architecture on each time step. The hidden dimension of the SLSTM block is set to 32 for all datasets.
We find that the presence of a gated MLP to up- and down-project the hidden states of the SLSTM
block does not significantly improve performance, so we omit it in all our experiments for simplicity.
We deliberately do not use any mLSTM blocks, as we also find that the SLSTM blocks are superior at
capturing long-range dependencies in the data [Kraus et al.| 2025]].

Training and Evaluation Details. We use the Adam optimizer [Kingma and Bal 2017 for full
gradient descent training with a weight decay of 0.1. We schedule the learning rate to follow a linear
warmup of 2,000 iterations to 7 = 10~%, followed by cosine annealing until the end of training
for a total of 13,000 steps. We start learning the reduction coefficients after a warmup period of
K = 1,500 iterations, during which the uniform compression across all columns combined with
the prediction loss gives reasonable priors for the gradient directions of the reduction coefficients.
Due to the moderate size of the datasets, we performed full-batch gradient descent. Only the sparsity
hyperparameter A was tuned specifically for each setting. This allows obtaining degrees of sparsity
specifically tailored to the characteristics and requirements of each dataset and task. Note that, except
for the customization of A, we use essentially the same hyperparameter configuration for an extensive
set of datasets, underpinning the robustness of GC-xLSTM. Following [Tank et al.,[2022, Sec. 6.1],
we compute all AUROC scores by sweeping over A € {5,...,15} in steps of one. This effectively
integrates this hyperparameter as it covers the entire empirically viable range. All training runs were
carried out on a single NVIDIA RTX A6000 GPU and concluded in at most 1.5 hours. Mini-batching
could further decrease this modest training time.

Datasets. We evaluate GC detection with GC-xLSTM on six diverse datasets. Obtaining objective
truth about the underlying graph for real-world scenarios is a constant challenge in Granger causality
research. We thus employ the Lorenz-96 system of differential equations [Karimi and Paul, 2010],
realistic fMRI brain activity simulations [Smith et al.,[2011]], and simulated linear VAR data following
Tank et al. [2022]]. For further qualitative insights on real-world data, we additionally analyze
the Moléne weather dataset [|Girault, |2015]], human motion capture recordings [CMUJ [2009]], and
company fundamentals [Divo et al.l2025]. An overview and more details are provided in Appendix[C]
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Figure 3: GC-XLSTM uncovers dynamic GC weather patterns in the Moléne dataset. We observe
that the sparsity of the learned Granger causal relations increases with higher A.
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Figure 4: GC-xLSTM captures complex human motions. GC-xLSTM is able to uncover complex
real-world dependencies in the Human Motion Capture dataset, giving us an intuitive understanding
of the learned interactions.

4.1 Main Results

Lorenz-96. Table [I] evaluates GC detection Ground Truth GC Estimated GC
with GC-xLSTM on three metrics. As a quali-
tative comparison, we provide results for seven
well-known baselines: VAR as classic F'-tests
for Granger causality taken from Marcinkevics
and Vogt [2021]], cMLP and cLSTM [Tank
et all [2022], GC-KAN |[Lin et al., 2024],
TCDF [Nauta et al., 2019]], eSRU [Khanna and
Tan}, 2020], and GVAR [Marcinkevics and Vogt,
2021]]. Their scores are taken as reported in
the original papers. First, GC-XLSTM outper-  gjoyre 5: GC-xLSTM uncovers the vast major-
forms alll baseline methods for both ' = 10 and ity of GC edges. In the highly chaotic F = 40
7= 40 in both accuracy and balanced accuracy. gayine of the Lorenz-96 system GC-xLSTM is ac-
This shows.that GC-xLSTM rehabl'y Captures  .yrate in predicting the GC edges, shown in dark
the underlying Granger causal relationships in ;o B Errors are marked red | 1.

the presence of limited and noisy data. Second,

it demonstrates that the sparsity hyperparameter A is rather well-behaved, as the AUROC score
resulting from a sweep over a range of A values still provides very competitive results. Third, as a
qualitative validation, Figure 5| visually confirms the strong prediction accuracies of GC-xLSTM.

Affected series

Causal series Causal series

Moléne. Unlike Zoroddu et al. [2024]], who incorporate graph prior knowledge based on sensor
locations, our approach learns the GC structure solely from the temperature observations. This
ensures that GC-xLSTM does not inherently favor regional connections over long-range dependencies,



allowing it to discover dominant weather patterns operating both locally and across broader spatial
scales. Adjusting A allows balancing granularity and interpretability for insights into both local and
regional dependencies. The dense structure of the resulting Figure [3a] exhibits a richer set of GC
interactions, while the more sparse Figure [3b] highlights only the most pronounced edges.

fMRI. Next, we evaluated the efficacy of GC-xLSTM in noisy settings Table 2: GC-xLSTM dis-
by considering the rich and realistic BOLD deconvolved time series covers brain connectivity
provided by the fMRI data. As the balanced accuracies (BA) in Table[2] highly accurately.

show, GC-xLSTM significantly outperforms the baseline models.

Model BA (1)
Human Motion Capture. To analyze GC relations between body ~ tcppg 72.846.3
Joints, we focus on two specific activities: Salsa dancing and running,  GyAR 65.2445
which provide interpretable motion patterns. Figure ] shows the results  yaAp 513215
of the learned graphs for those activities. A closer look offers an intuitive . \jpp 61.416.8
understanding of the learned interactions. For example, in the Salsa | gTMm 65.5+5.3

dange, we observe gdges from the feet to the knee§ gnd the arms, sup- GC-xLSTM 73.3:3.0
porting the characteristic movements of the lower driving the upper body.
We can also see the cross-limb correlation, with movements initiating on
one side of the body and propagating across. Similarly, the results for running strongly establish the
lower limbs as primary motion drivers, with edges from the feet and knees to the arms. The cyclic
dependencies between the knees, ankles, and feet capture the repetitive, alternating nature of the gait.

Company Fundamentals. Lastly, we evaluated )

. . Other Operating
how well GC-xXLSTM can uncover relationships be- Expenses
tween financial indicators of large companies. The

dataset consists of short time series of quarterly per- N 4
formance indicators of 2527 large publicly traded

companies. As the excerpt in Figure [6] shows and as /
verified by a financial expert, those extracted edges

are mostly economically sensible. Results on the full

v N\
Income
set of 19 features are provided in Appendix Figure 6: GC-xLSTM extracts relations be-

tween company fundamentals.

4.2 Model Analysis

Ablation Study. GC-xLSTM comprises two key innovations: Employing the xLSTM ar-
chitecture (cf. Section and a novel joint optimization strategy (cf. Section [3.2). To
disentangle the empirical impact of each, we performed an ablation study. Table [3] to
the right shows balanced accuracy results on the Lorentz (F' = 40) and fMRI datasets.

First, to assess the architectural Table 3: Both the xXLSTM forecaster and the novel joint opti-

contribution, we replaced the N o e,
<LSTM block with a standard mization of GC-xLSTM drive its improved performance.

LSTM. The resulting substantial
performance drop (GC-xLSTM

Ablation  Forecaster Optimization Lorentz {fMRI

— (D)) validates the importance GC-xLSTM xLSTM Joint 96.6:0.3 73.3+3.0
of the xXLSTM’s advanced model- (D LSTM Joint 93.0£0.3 62.8+2.0
ing capacity. Second, to evaluate {an xLSTM  Group Lasso 73.0x4.6 65.4+2.0

the optimization strategy, we sub-
stituted it with standard Group
Lasso [[Simon and Tibshiranil 2012]. This also led to a marked decline in performance (GC-xLSTM
— (II)), confirming its ability to enforce strict input sparsity.

Variable Number of Lags. GC-xLSTM can Table 4: GC-xLSTM discovers specific relations
naturally be extended to learn separate projec- per lag. Balanced Accuracies for simulated VAR
tions W) per time lag ¢, effectively inflating at different lengths 7" and number of variates V.
W to rank three. We evaluate it on the simulated
VAR dataset across different time series lengths BA(f) T =250 T =500 T =1000
f ar;)‘?ﬁ“r?bi’r of Variﬁ?*’i ‘{ in Tabl% Plrot‘,’ing V=10 93.1:30 925:10  95.5:1.0
1ts ability to learn multiple lag-specilic relations V =20 83.941.0 89.1+15 88.542.0
without training additional xLSTM models. * * *




Complexity and Scaling Behaviour. To discover the entire GC graph, we need to fit IV models
M, ., to obtain the respective sparse projection matrices W, containing all edges arriving at each
v. Assuming for brevity that the latent dimension D « V/, i.e., is a fixed multiple of the number of
variates V/, each fitting runs in O(T'V?2/N},) time and requires O(T'V2/N},) space, with T being the
time steps and N}, the number of SLSTM heads. Their block-wise structure permits that, despite
the squared effort, forward and backward passes are efficiently computable even for thousands of
dimensions. Depending on whether all V' models are estimated in sequence or parallel, either the time
or memory complexity multiplies by V' to arrive at the total cost. In practice, however, GC-xXLSTM is
extremely efficient on contemporary computing platforms due to the availability of highly optimized
implementations for XLSTM layers. Figure [§]in Appendix [E|shows that it effectively scales linearly
in the number of variates for the ranges relevant to standard GC detection settings.

Inspecting Training Dynamics. Here, we elaborate on the utility of the logarithm in the reduction
loss Lreq of Eq. (3). The logarithm term incentivizes the model to explore sparser solutions to GC
discovery by allowing the training to move forward over any local minima that use the complete
set of input variates. As the projection matrix becomes sparser and the input variates vanish from
consideration by the model, the prediction loss Ly Will slightly increase. As seen in Figure@]in
Appendix [F] an increase in the sparsity of the feature selectors W drives down the loss and enables
learning more meaningful GC relations. It also shows how the variable usage quickly stabilizes.

5 Conclusion

We presented GC-xLSTM, a novel xLSTM-based model to uncover Granger causal relations from the
underlying time series data. GC-xLSTM first enforces sparsity between the time series components
and then learns a weight per time series to decide the importance of each time series for the underlying
task. Each time series component is then modeled using a separate XLSTM model, which enables
it to better discover Granger causal relationships between the time series variables. We validated
GC-xLSTM in six scenarios, showing its effectiveness and adaptability in uncovering Granger causal
relationships even in the presence of complex and noisy data.

Limitations. While Section provides a theoretical analysis of GC-xLSTM, it does not give
guarantees in the form of mathematical proofs. The rigor is limited by a lack of formal analysis of
XLSTM blocks (see also Appendix [B]), which are yet to be formally analyzed to the same degree as
more established architectures like LSTMs. While we discuss and measure the scaling behaviour of
GC-xLSTM in Section[d.2] we only focused on dozens of variates as common in the literature.

Future work. This includes using more sophisticated architectures such as TimeMixer [Wang
et al.,2024]] or xXLSTM-Mixer [Kraus et al., 2025]]. Furthermore, discovering causal links specific to
certain lags could be refined, where per-lag projections are learned for the near past and a remainder
projection for the more distant lags. Finally, extending our evaluations to more real-world datasets
encompassing domains such as climate change or ecology is an essential next step.
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paper’s contributions and scope?
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: We discuss limitations as an explicitly named paragraph in Section [5] We
acknowledge that any empirical results are by their very nature limited to the settings in
which they were obtained, and thus strive to accurately describe them for best reproducibility
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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of the paper (regardless of whether the code and data are provided or not)?
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We strive to use freely available datasets where possible and exclusively employ
openly available software. Furthermore, we provide the source code for full reproducibility
at github.com/harpoonix/GC-xLSTM.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All such details are provided in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All quantitative results are accompanied by standard deviations (specifically,
see Table[T).
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The answer NA means that the paper does not include experiments.
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experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
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eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While we acknowledge that many technologies have wide-ranging societal
impacts, our primary focus is on technical innovation. We have thus not identified specific
concerns requiring emphasis in this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Please see Question 10. Specifically, we do not provide any trained models or
similar high-risk artifacts.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We carefully cite all immediately relevant scholarly works and provide URLs
to any other resources in Section {f] and appendix

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: ~ The documentation of the source code is also provided at
github.com/harpoonix/GC-xLSTM.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not perform any such experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Please see Question 14.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not employ LLMs in any part of GC-xLSTM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Full Algorithm

Algorithm [T|describes the entire procedure for extracting a Granger causal graph using GC-xLSTM.
()4 denotes truncation as max(+, 0).

Algorithm 1 Granger causality detection with GC-xLSTM

1: Input: Training data D = {S(i)}ie{l,‘..,N}’
n € Ry, and compression schedule start K € N
2: Output: Granger causal graph

3: forallv € V do

4 ¢, Wb, Nu(_m, m)

sparsity hyperparameter A € R, learning rate

> Training decomposes over )
> Kaiming/He initialization

5: a, <~ vl > Uniform reduction coefficient
6 6, 00 > Standard xLSTM initialization
7 k<« 0
8: repeat
9: Sample random mini-batch 5 ~ D
100 Gpao ¢ Voaors Sscs | Lma(Si b, 0) + Mog (S0, ot s (W), |
11: ¢v <~ ¢U —Nge¢ > GD step
12: 0, <~ 0, —nge > GD step
13: if £ > K then > Optimize o after K steps
14: Q, — 0y — NGa > GD step
15: end if
16: W, + (1 - H/}’%\T(z ) . W, > Compression step with proximal GD
17: k+—k+1
18: until convergence
19: end for

20: £+ {(v,w) eV x V| |W2X|, >0}
21: return extracted graph (V, £)

B On the Approximation Capabilities of SLSTM blocks

Classic RNNs have long been known to be extremely powerful models of computation. Specifically,
they are Turing complete [Siegelmann and Sontag| |1995] and, by extension, universal function
approximators [[Song et al., [2023]]. Traditional LSTMs as proposed by [Hochreiter and Schmidhuber
[[1997]] are universal function approximators being at least as powerful as the RNNs [Song et al.,|2023|
Corollary 16]. Due to their novelty, the SLSTM cells as presented in Section[2.3|have not yet received
the same degree of theoretical analysis Yet, it appears natural to extend the same reduction to RNNs
as has been shown for LSTMs, since the main technicality is the differing normalization of the hidden
state [Beck et al.l 2024] Eq. 36] and the alternative exponential activation function, which |Song et al.
[2023]] abstract away with. SLSTM blocks then wrap these cells with additional operations (cf. Beckl
et al.| [2024]], App. A.4). They, however, can be carefully configured to reduce to only rescaling
Layer Normalizations and residual connections, which are known to, again, yield universal function
approximators for many architectures [Tabuada and Gharesifard, [2020, Marchi et al.|[2021]. This can
be shown by first omitting the optional upfront convolution and Swish activation. We, furthermore,
set the number of heads to N, = 1, causing the per-head Group Normalization after the cell to
degenerate to yet another Layer Normalization. Lastly, the final post up-projection of xj, to @y, is
defined as

Tou = W3 ((Wlwin + bl) ® GeLU (WQCBm + bz)) + bs.

2A discussion of expressivity hierarchies can be found in|Auer et al|[2025, App. Al.
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With the right instantiation, where « is chosen such that GeLU(«) = 1, we obtain

I 00 0
Tow = | 0 0 0
001 0

I 0 0
0 0 0

= Tip-
This, again, shows that SLSTM blocks are at least as general as LSTMs. While a rigorous proof
is far beyond the scope of this work, this investigation still underpins the strong capabilities of
this architecture. These theoretical considerations align well with empirical findings, showing that
xLSTM blocks are at least as effective as LSTMs [Beck et al., [2024].
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C Dataset Details

This section details all six datasets used in our empirical evaluation of GC-xLSTM. An overview is
provided in Table[5}

Table 5: Overview of the diverse collection of datasets. It also shows the number of variates V,
time steps 7', samples [V, and look-back context steps of GC-xLSTM C.

Name Origin Type V T N C
Lorenz-96 Karimi and Paul| [2010]  Simulated 20 500 1 10
fMRI Smith et al.| [2011]] Real-world 15 200 1 10
Moléne Girault|[2015]] Real-world 32 744 1 10
Human MoCap (Run) CMU [2009] Real-world 54 1232 61 10
Human MoCap (Salsa) CMU| [[2009] Real-world 54 4136 30 10
Company Fundamentals Divo et al.|[2025]] Real-world 19 56 2527 40
VAR Karimi and Paul [2010]  Simulated 10/20  mult. 1 5

Lorenz-96. The V-dimensional Lorenz-96 model [Karimi and Paul, [2010] is a chaotic multivariate
dynamical system governed by the differential equations

dxy;
dt

with the external forcing coefficient F' regulating the non-linearity of the system. Low values of
F correspond to near-linear dynamics, while higher values induce chaotic behavior. There are two
sources of randomness in the system. Firstly, we sample i.i.d. starting conditions from N (0, 0.01).
Secondly, in each step of the simulation, we add i.i.d. noise sampled from A/ (0, 0.1) to z ;. Following
the setting of |Tank et al.|[2022] for best comparability, we simulate V' = 20 variates with a sampling
rate of At = 0.05 for a total of 7' = 500 time steps after a brief burn-in time. We use two forcing
constants F' € {10, 40} to test our model under different levels of non-linearity.

= (Tt,i41 — Tt,i—2)Tti—1 — Tt + F,

fMRI. Discovering connectivity networks within (human) brains is a key application of GC de-
tection methods. To this end, brain activity is measured non-invasively using functional magnetic
resonance imaging (fMRI) over time and grouped into regions between which connections are
looked for. Specifically, we used the realistic simulations of blood-oxygen-level-dependent (BOLD)
deconvolved data of Smith et al.|[2011]].

Moléne. The Moléne dataset [|Girault, 2015] contains hourly temperatures recorded by sensors at
V' = 32 locations in Brittany, France, during 7" = 744 hours. The objective is to understand the
spatio-temporal dynamics of the temperature and to assess the extent to which the model can uncover
complex relationships in weather by considering only local observations.
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Human Motion Capture. We also apply our methodology to detect complex, nonlinear dependen-
cies in human motion capture (MoCap) recordings. In contrast to the Lorenz-96 simulated dataset
results, this analysis allows us to visualize and interpret the learned network more easily. We consider
a data set from the CMU MoCap database [|[CMU| [2009]. The data comprises V' = 54 joint angle and
body position recordings across multiple subjects. Since some regions, like the neck, have multiple
degrees of freedom in both translation and rotation, we consider the GC relations between two joints
based on edges between all movement directions. The motion ranges from locomotion (e.g., walking)
over physical activities such as gymnastics and dancing to day-to-day social interactions.

Company Fundamentals. Another common field of application of GC detection methods is
discovering links in economic data, where it is otherwise hard to maintain an overview. We, therefore,
benchmark GC-xLSTM on company fundamentals data [Divo et al.l [2025]]. The dataset contains
V' = 19 economic variables, such as the Net Income and the Total Liabilities of 2527 companies.
The data was collected quarterly from 2009 Q1 to 2023 Q3, resulting in only 7" = 56 time steps.

VAR. Following the well-known setup of [Tank et al.|[2022]], we generate a two-step linear auto-
regressive process in V' € {10, 20} variates. All variables depend on themselves, and an additional
three random dependencies are added as targets to be discovered. The number of time steps varies in
T € {250,500, 1000}, and we start recording the data after a brief burn-in time.

D Extended Experimental Results

This section supplements the experimental findings of Section[d.1} Specifically, Figure [7] provides the
complete set of relations extracted from the Company Fundamentals dataset. On this challenging full
feature set, only some of the discovered GC relations are economically plausible.

Capital Expenditure
Cash from Financing

Cash from Investing
Cash from OperationsH
Cost of Revenues
Income Tax Expense-
Net Interest Expense-

Levered Free Cash Flow. -

Net Income

Operating Income

Other Operating Expenses+
Total Assets+

Total Cash and Investments .
Total Current Assets.

Total Current Liabilities
Total Debt1 .
Total Equity+
Total LiabilitiesH
Total Revenues-
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Figure 7: GC-xLSTM uncovers relationships between economic variables within individual
companies. Established GC links are highlighted in dark blue.
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E Scaling Behaviour

Figure 8] shows the training time and peak GPU memory reserved during the training of GC-xLSTM
on the Lorenz-96 dataset with 7" = 1000 for various numbers of variates V.
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Figure 8: GC-xLSTM effectively scales linearly in the relevant range of variate counts.

F Additional Insights into Training

Figure[Da]shows how the different loss components change during training. The robustness of training
is reflected in the stability of variable usage once an optimal set is found, as Figure [9b] shows.
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(a) Visualization of the different loss components. (b) Variable drops once the threshold k£ > K is reached

and then quickly stabilizes.

Figure 9: Algorithm|1|jointly optimizes the prediction loss while adaptively establishing sparsity.
Results show training on Lorenz-96 with F' = 40 and T" = 1000.
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