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Abstract

Models requiring probabilistic outputs are ubiquitous and used in fields such as nat-
ural language processing, contrastive learning, and recommendation systems. The
standard method of designing such a model is to output unconstrained logits, which
are normalized into probabilities with the softmax function. The normalization
involves computing a summation across all classes, which becomes prohibitively
expensive for problems with a large number of classes. An important strategy to
reduce the cost is to sum over a sampled subset of classes in the softmax function,
known as the sampled softmax. It was known that the sampled softmax is biased;
the expectation taken over the sampled classes is not equal to the softmax function.
Many works focused on reducing the bias by using a better way of sampling the
subset. However, while sampled softmax is biased, it is unclear whether an unbi-
ased function different from sampled softmax exists. In this paper, we show that
all functions that only access a sampled subset of classes must be biased. With this
result, we prevent efforts in finding unbiased loss functions and validate that past
efforts devoted to reducing bias are the best we can do.

1 Introduction

Training losses based on the softmax function are extensively used across various fields, e.g., natural
language processing [12, 13, 17, 1], contrastive learning [5, 4], and recommendation systems [6, 22].
The most common loss is to take the log of the softmax function, known as the log-softmax or
cross-entropy loss,

L(ŷ+, ŷ−1 , . . . , ŷ
−
n ) = log Softmax(ŷ+, ŷ−1 , . . . , ŷ

−
n ).

In this loss, the softmax function gives the probability of a class by

Softmax(ŷ+, ŷ−1 , . . . , ŷ
−
n ) =

eŷ
+

eŷ+ +
∑n
i=1 e

ŷ−i
, (1)

where ŷ+ ∈ R is the logit of the target class, ŷ−i ∈ R for every 1 ≤ i ≤ n are the logits of all negative
classes, and there are n+ 1 total classes. By summing this loss over all training data, we obtain the
overall learning objective.

∗Work mainly done while visiting Mohamed bin Zayed University of Artificial Intelligence.
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One typically employs gradient methods to train machine learning models. At each training step, the
gradient of log-softmax must be calculated, leading to the following partial derivatives2

∂

∂ŷ+
log Softmax(ŷ+, ŷ−1 , . . . , ŷ

−
n ) = 1− Softmax(ŷ+, ŷ−1 , . . . , ŷ

−
n ) (2)

and for every 1 ≤ i ≤ n,

∂

∂ŷ−i
log Softmax(ŷ+, ŷ−1 , . . . , ŷ

−
n ) = −Softmax(ŷ−i , ŷ

−
1 , . . . , ŷ

−
i−1, ŷ

+, ŷ−i+1, . . . ŷ
−
n ). (3)

Both the loss and gradient computations inevitably rely on the softmax function. The denominator
in (1) sums over logits for all n negative classes, leading to a computational cost of O(n) for each
calculation. This cost can become prohibitively expensive when training models on datasets with a
large number of classes. A typical example involves recommendation systems, like [22], in which the
size of n can reach millions. In addition to the O(n) computational complexity of the denominator,
evaluating (1) requires computing all n logits, ŷ−i . When using large neural networks such as BERT
[9], computing all n logits can become prohibitively expensive.

As shown in [22], an intuitive idea to reduce the computation cost is to sample a subset of k classes
for loss calculation, and k � n typically. An important scenario is the stochastic gradient descent
method, where each training step involves a mini-batch of data, and within each batch only the
sampled k classes are used to compute the stochastic gradient. That is, we use only k sampled classes
in calculating (2) and (3), where a widely used setting is to consider the following sampled softmax:

eŷ
+

eŷ+ +
∑k
j=1 w(ij)e

ŷ−ij

, (4)

where k classes (i1, . . . , ik) are randomly sampled from the n classes and w(ij) is a weighting term
inversely proportional to the probability of sampling the ij th sampled class [2]. In contrast, (1)
represents the full softmax, which involves all n+ 1 classes.

To ensure equivalence with training a model using the full softmax, it is desirable for the sampled
softmax to satisfy the condition of unbiasedness. Specifically, this condition is defined as follows:

∀ŷ+, ŷ−1 , . . . , ŷ−n ∈ R, E [Stochastic Gradient] = Full Gradient. (5)

When applying (4), this condition implies that

∀ŷ+, ŷ−1 , . . . , ŷ−n ∈ R, E [(4)] = (1), (6)

where E [·] denotes the expectation over the sampled classes (i1, . . . , ik). If this condition does not
hold, we consider that (4) is biased with respect to (1). The different gradients are potentially harmful
to the optimization process and solutions. Unfortunately, previous works like [2, 3] have already
demonstrated that (6) does not hold, highlighting the inherent bias of the sampled softmax. Moreover,
experiments in [3, 16] have demonstrated that bias degrades model performance in tasks such as
multi-label classification and content recommendation.

The bias of sampled softmax leads us to wonder whether, beyond (4), there could be other forms of
approximation that are unbiased. In this paper, we show that any general function with access to a
subset of logits must be biased. Specifically, when k < n, let

Sk = {s | s : Rk+1 → R}

denote the set of all real-valued functions of k + 1 real inputs, which covers all possible estimators
operating on one positive logit and k sampled negative logits. Then,

∀s ∈ Sk, ∃ŷ+, ŷ−1 , . . . , ŷ−n ∈ R, s.t. E
[
s(ŷ+, ŷ−i1 , . . . , ŷ

−
ik
)
]
6= (1), (7)

where k classes (i1, . . . , ik) are randomly sampled from the n classes. In other words, there is no
estimator s satisfying the unbiased condition for every possible set of n logits when s has access to
only k < n logits. By extending from the sampled softmax to any general function s, this conclusion
generalizes the finding of [3] and forms our main contribution. Our negative answer to the existence

2The detailed proof is given in Appendix A.
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Table 1: Notation

Notation Description

n Number of classes excluding the target
ŷ+ ∈ R Logit of the target class
ŷ−1 , . . . , ŷ

−
n ∈ R Logits of the remaining classes

k Number of sampled classes
[r] = {1, . . . , r} Set of positive integers up to r
Sr Set of permutations on [r](
q

r

)
=

q!

r!(q − r)!
Number of combinations of r items chosen from q items

R>0 = {a ∈ R | a > 0} Set of positive real numbers
hk : Rk → R Estimator taking k arguments
fk : Rk → R The symmetrization of hk

of unbiased approximations establishes a theoretical boundary on what is and is not achievable.
Our result not only fills a notable gap in the literature but also sets clear limits for future research
directions.

The remainder of this paper is organized as follows: In Section 2, we summarize related works.
In Section 3, we formally define the problem we aim to address and then state the main results
of this work and our assumption. Section 4 starts with preliminaries in Section 4.1 that provide
the necessary background and lemmas, followed by a sketch of the proof in Section 4.2. The
detailed proof is presented in Sections 4.3 and Appendix E. Finally, Section 5 concludes the paper.
The main notations used in this work are in Table 1, and the appendix is available at https:
//www.csie.ntu.edu.tw/~cjlin/papers/softmax_biased/.

2 Related Works

Prior efforts all implicitly assume that an unbiased solution does not exist without attempting to
justify or challenge it. They can be roughly categorized into three directions.

• Focusing on the sampled softmax (4) and attempting to minimize its bias. While [3] demon-
strated that the inherent bias in the sampled softmax cannot be completely eliminated, they proposed
a strategy to minimize this bias. Specifically, the closer the sampling distribution used for selecting
(i1, . . . , ik) approximates the full softmax, the less biased the sampled softmax becomes. To this
end, [3] and its follow-up study [16] developed computationally efficient approximations for sam-
pling. Additionally, numerous hard negative mining strategies have been widely adopted alongside
the sampled softmax, such as those used in representation learning [21, 20, 7]. Hard negatives refer
to negative classes that produce large gradients when used in the sampled log-softmax loss:

− log

 eŷ
+

eŷ+ +
∑k
j=1 e

ŷ−ij

 .

This setting effectively involves sampling negatives based on their corresponding logits. Further-
more, studies like [24] have argued that an effective hard negative mining method should be based
on a good approximation of the full softmax distribution, consistent with the ideas proposed in [3].
In addition to the aforementioned approach of selecting an appropriate sampling distribution,
[3] mentioned another idea: using a larger sample size k to reduce bias. However, increasing k
naturally leads to higher computational cost. To address this issue, subsequent works [19, 23]
introduced the concept of applying moving averages over multiple mini-batches of gradients,
thereby approximating the effect of a large sample size k while maintaining low cost.

• Exploring alternative functions that are computationally more efficient than the full softmax
(1). Works in this category generally try to avoid sampling and explore a new loss with all n
logits in their calculation. Well-known examples include hierarchical softmax [14] and spherical
softmax [8]. However, as reported in [8], such alternative functions may perform worse than the

3
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full softmax (1). Since these methods do not involve sampling over the n classes, we do not extend
our discussion to them.

• Designing a different learning problem with the same optimal solution. In [11, 15, 10], they
transform the original optimization problem involving a log-softmax term in the objective function
into a new optimization problem. In the transformed problem, there is no log-softmax term in
the objective function. They then show that for special types of models, the transformed problem
has the same optimal solution as the original problem. The equivalence of the optimal solution is
what they refer to as “unbiased,” which is unrelated to the problem of bias discussed in this paper.
While these reformulation approaches are still under development, our negative answer to directly
sampling softmax indicates that they are directions worth investigation.

By proving the non-existence of an unbiased solution, our work provides a theoretical boundary and
serves as a meaningful complement to these studies.

3 Problem Definition and Main Result

Let (i1, . . . , ik) ∈ [n]k be random variables denoting a subset of k indices sampled from [n] =
{1, . . . , n} without replacement. We wish to find an estimator s(ŷ+, ŷ−i1 , . . . , ŷ

−
ik
) such that

E
[
s(ŷ+, ŷ−i1 , . . . , ŷ

−
ik
)
]
=

eŷ
+

eŷ+ +
∑n
i=1 e

ŷ−i
, (8)

where the expectation is over (i1, . . . , ik).3

Our main results are Theorem 3.1 and Corollary 3.3.

Theorem 3.1. Let k < n and Sk = {s | s : Rk+1 → R} denote the set of all real-valued functions of
k+1 real inputs. Consider the setting where (i1, . . . , ik) are sampled uniformly without replacement
from {1, . . . , n}, and an estimator s ∈ Sk is applied to one positive logit ŷ+ and the k sampled
negative logits (ŷ−i1 , . . . , ŷ

−
ik
). Then

∀s ∈ Sk, ∃ŷ+, ŷ−1 , . . . , ŷ−n ∈ R, s.t. E
[
s(ŷ+, ŷ−i1 , . . . , ŷ

−
ik
)
]
6= Softmax(ŷ+, ŷ−1 , . . . , ŷ

−
n ), (9)

where E [·] is taken over the random choice of (i1, . . . , ik).

In this work, we focus on the existence of an unbiased estimator of the softmax function for two main
reasons. First, during training, what matters most is the gradient of log-softmax, as model parameters
are updated through gradient-based optimization. Second, during inference, the output of interest is
softmax itself, which represents the predicted probability distribution over classes. In both situations,
the exact value of the log-softmax is not directly required. Regardless, with Theorem 3.1, we show
that an unbiased estimator of log-softmax does not exist in Appendix F.

After we establish that Theorem 3.1 applies for uniform sampling, we next examine whether Theorem
3.1 still holds for other ways of sampling the k classes (i1, . . . , ik). An example of non-uniform
sampling is [13], where the samples are the union of the target class, in-batch negative samples, and
samples based on BM25 [18]. In-batch negative samples refer to using the target classes of other
instances in a mini-batch as the negative classes of the current instance.

While we want to consider sampling distributions that are as general as possible, we must be careful
not to include impractical sampling distributions. Recall that the purpose of a sampled estimator is to
avoid computing all n logits; using the logits as part of the sampling process defeats the entire point
of sampling. Consequently, we make the following assumption.

Assumption 3.2. The sampling distribution is selected before computing the logits.

An example of violating Assumption 3.2 is to use a distribution where the probability of sampling
each class i is proportional to the exponential of its logit eyi . In such a case, it was proven [3] that the
sampled softmax is an unbiased estimator. However, constructing the distribution is equivalent to
computing the softmax function for each class. Clearly, if we already have the softmax function, we

3Note that (4) with w(ij) can be also expressed by (8). Details are in Appendix B.
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would not need to compute a sampled estimator. We obviously want to exclude such distributions
from consideration.

In the previous example of [13], in-batch sampling and negative sampling are both selected before
computing the logits, so they satisfy Assumption 3.2. Similarly, we find that most works on sampled
softmax satisfy Assumption 3.2. For the minority of exceptions [3, 16], we give a brief discussion in
Appendix D.

Given Assumption 3.2 and setting s(·) to (4), [3] concluded that the sampled softmax is biased with
respect to the full softmax,

E

 eŷ
+

eŷ+ +
∑k
j=1 w(ij)e

ŷ−ij

 6= eŷ
+

eŷ+ +
∑n
i=1 e

ŷ−i
.

In the following sections, we further extend their conclusion to any general s(·) under Assumption
3.2.
Corollary 3.3. Theorem 3.1 also holds if the indices (i1, . . . , ik) are sampled from any distribution
satisfying Assumption 3.2.

The proof of Corollary 3.3 is given in Appendix E.

In the following proof of (7), due to a simplification outlined in Section 4.2, we will work with a
function hk : Rk → R instead of s : Rk+1 → R, but they refer to the same problem of estimating
the full softmax.

4 Main Proof

In this section, we prove Theorem 3.1. We begin with necessary preliminaries and lemmas, followed
by a sketch that highlights the main ideas of the proof before presenting the complete derivation.

4.1 Preliminaries

This section introduces lemmas used in the proof of the main theorem. The proofs are provided in
Appendix C.
Definition 4.1. Let hk : Rk → R be a function and Sk be the set of permutations on [k]. The
symmetrization fk of hk is defined by

fk(x1, . . . , xk) ≡
1

k!

∑
τ∈Sk

hk(xτ(1), . . . , xτ(k)).

The symmetrization is so named because it is symmetric in its arguments, stated as follows.
Lemma 4.2. For every σ ∈ Sk,

fk(x1, . . . , xk) = fk(xσ(1), . . . , xσ(k)).

Furthermore, the symmetrization has the same expectation under a uniform sample, stated as follows.
Lemma 4.3. Let a = (a1, . . . , an) ∈ Rn be n real numbers and (i1, . . . , ik) ∈ [n]k be random
variables denoting k indices sampled uniformly from [n] without replacement. Then

E [fk(ai1 , . . . , aik)] = E [hk(ai1 , . . . , aik)] ,

where the expectation is over (i1, . . . , ik).

4.2 Sketch of Proof for Theorem 3.1

The core idea of our proof is that unbiasedness imposes a strong requirement, demanding the
estimator to generalize across arbitrary cases. To illustrate this, we constructed two of the simplest
yet representative cases: one where all logits are identical and another where the logits are divided
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into two groups, each with a distinct value. It turns out that these two minimal cases alone have
already revealed a set of contradictory constraints. The proof is non-trivial, as it involves identifying
subtle examples that clearly demonstrate the inherent contradictions.

The proof of Theorem 3.1 proceeds by contradiction, as shown below:

1. We begin by reformulating the problem of estimating the full softmax into an equivalent problem
of estimating:

F (a) =
1

1 +
∑n
i=1 ai

,

where a = (a1, . . . , an) ∈ Rn>0 and R>0 = {a ∈ R | a > 0}.
2. We hypothesize the existence of an unbiased estimator hk : Rk → R for F , which accepts k

arguments, and uses the symmetrization fk of hk, which has the same expectation, to simplify the
derivations.

3. We analyze the expectation of fk across various possible values of a and derive a necessary
equation for each vector a that fk must satisfy to be unbiased. These equations are derived using
mathematical induction.

4. Finally, we complete our proof by demonstrating that it is impossible for fk to simultaneously
satisfy all equations, leading to a contradiction.

Specifically, for Step 3 above, we check different a of the form,

(b1, . . . , b1, b2, . . . , b2︸ ︷︷ ︸
m

),

where b1, b2 ∈ R>0 and m = 0, . . . , k.

4.3 Proof of Theorem 3.1

Proof. First, we note that

Softmax(ŷ+, ŷ−1 , . . . , ŷ
−
n ) =

eŷ
+

eŷ+ +
∑n
i=1 e

ŷ−i
=

1

1 +
∑n
i=1 e

ŷ−i −ŷ+
.

It follows that there is an unbiased estimator for the full softmax for every possible model output if
and only if there is an unbiased estimator for F

F (a) =
1

1 +
∑n
i=1 ai

(10)

for every a = (a1, . . . , an) ∈ Rn>0.

We prove by contradiction, so we assume there is an unbiased estimator hk. That is, there exists an
hk such that for every a

F (a) = E [hk(ai1 , . . . , aik)] , (11)

where (i1, . . . , ik) ∈ [n]k are random variables denoting k indices sampled uniformly from [n]
without replacement.

Next, we calculate the expectation in (11) in detail. For the selection of (i1, . . . , ik), the number of
all possible samples of indices is (

n

k

)
· k! = n!

(n− k)!
,

which is the number of combinations of k choices from n items multiplied by the number of
permutations on k items. Therefore, for every function G : Rk → R we have

E [G(ai1 , . . . , aik)] =
(n− k)!
n!

∑
x∈C(n,k;a)

∑
σ∈Sk

G(xσ(1), . . . , xσ(k)), (12)

6



where C(n, k;a) denotes the set of
(
n
k

)
choices of k elements from a.

Let fk be the symmetrization of hk. Then

F (a) = E [hk(ai1 , . . . , aik)] = E [fk(ai1 , . . . , aik)] (13)

=
(n− k)!
n!

∑
x∈C(n,k;a)

∑
σ∈Sk

fk(xσ(1), . . . , xσ(k))

=
(n− k)!
n!

∑
x∈C(n,k;a)

∑
σ∈Sk

fk(x1, . . . , xk) (14)

=
(n− k)!k!

n!

∑
x∈C(n,k;a)

fk(x1, . . . , xk)

=
1(
n
k

) ∑
x∈C(n,k;a)

fk(x1, . . . , xk), (15)

where (13) follows from Lemma 4.3 and (14) follows from Lemma 4.2.

We claim that for every b1 ∈ R>0, we have

fk(b1, . . . , b1) =
1

1 + nb1
. (16)

This is because fk is unbiased for every a, including for a = (b1, . . . , b1), implying

F (a) =
1

1 + nb1
(17)

= E [fk(ai1 , . . . , aik)] (18)

=
1(
n
k

) ∑
x∈C(n,k;a)

fk(b1, . . . , b1) (19)

= fk(b1, . . . , b1),

where (17) is the definition of F in (10), (18) is from (13) and (19) is from (15).

Similarly, suppose a = (b1, . . . , b1, b2) for some b1, b2 ∈ R>0. Then we have

F (a) =
1

1 + (n− 1)b1 + b2

= E [fk(ai1 , . . . , aik)]

=
1(
n
k

) ((n− 1

k

)
fk(b1, . . . , b1) +

(
n− 1

k − 1

)
fk(b1, . . . , b1, b2)

)
(20)

=
(n− k)!k!

n!

(n− 1)!

(n− k − 1)!k!

1

1 + nb1
+

(n− k)!k!
n!

(n− 1)!

(n− k)!(k − 1)!
fk(b1, . . . , b1, b2)

(21)

=
n− k
n

1

1 + nb1
+
k

n
fk(b1, . . . , b1, b2).

The term
(
n−1
k

)
in (20) is the number of ways of choosing k counts of b1 and the term

(
n−1
k−1
)

is
the number of ways of choosing k − 1 counts of b1 and 1 count of b2. Also, in (21), we use (16).
Rearranging, we have

fk(b1, . . . , b1, b2) =
n

k

1

1 + (n− 1)b1 + b2
− n− k

k

1

1 + nb1
.

More generally, for each m ≤ k, if we consider

a = (b1, . . . , b1, b2, . . . , b2︸ ︷︷ ︸
m

),

7



we find that

F (a) =
1

1 + (n−m)b1 +mb2
= E [fk(ai1 , . . . , aik)] =

1(
n
k

) m∑
j=0

(
n−m
k − j

)(
m

j

)
g(j), (22)

where

g(j) ≡ fk(b1, . . . , b1, b2, . . . , b2︸ ︷︷ ︸
j

) j = 0, . . . , k, (23)

and the factor
(
n−m
k−j

)(
m
j

)
is the number of ways of choosing k − j counts of b1 and j counts of b2.

The dependence of g on n, k, b1 and b2 are suppressed in the notation for brevity. We prove by strong
induction on m that

g(m) =

m∑
l=0

c(m, l)

1 + (n− l)b1 + lb2
m = 0, . . . , k, (24)

where

c(m, l) (25)

=



(
n
k

)(
n−m
k−m

) if m = l,

− 1(
n−m
k−m

) m−1∑
j=l

(
n−m
k − j

)(
m

j

)
c(j, l) if m > l,

0 otherwise.

Likewise, the dependence of c on n and k are suppressed in the notation for brevity.

For the base case,

g(0) = fk(b1, . . . , b1) =
1

1 + nb1
=

c(0, 0)

1 + nb1
,

where we respectively use (23), (16) and

c(0, 0) =

(
n

k

)
/

(
n

k

)
= 1 (26)

for the derivation above.

For the induction step, we split the summation in (22) to single out g(m):

1(
n
k

)(n−m
k −m

)(
m

m

)
g(m) +

1(
n
k

) m−1∑
j=0

(
n−m
k − j

)(
m

j

)
g(j). (27)

Rearranging (22), we have

g(m) =

(
n
k

)(
n−m
k−m

)(
m
m

)( 1

1 + (n−m)b1 +mb2
− 1(

n
k

) m−1∑
j=0

(
n−m
k − j

)(
m

j

)
g(j)

)

=

(
n
k

)(
n−m
k−m

) 1

1 + (n−m)b1 +mb2
− 1(

n−m
k−m

) m−1∑
j=0

(
n−m
k − j

)(
m

j

)
g(j). (28)

For the first term in (28), by the definition in (25), we have

c(m,m) =

(
n
k

)(
n−m
k−m

) . (29)

8



For the second term, assuming the induction hypothesis (24) is true for all j = 0, . . . ,m− 1, we have

− 1(
n−m
k−m

) m−1∑
j=0

(
n−m
k − j

)(
m

j

)
g(j)

=
−1(
n−m
k−m

) m−1∑
j=0

(
n−m
k − j

)(
m

j

) j∑
l=0

c(j, l)

1 + (n− l)b1 + lb2
(30)

=
−1(
n−m
k−m

) m−1∑
j=0

j∑
l=0

(
n−m
k − j

)(
m

j

)
c(j, l)

1 + (n− l)b1 + lb2

=
−1(
n−m
k−m

) m−1∑
l=0

m−1∑
j=l

(
n−m
k − j

)(
m

j

)
c(j, l)

1 + (n− l)b1 + lb2
(31)

=

m−1∑
l=0

−1
(n−m
k−m)

∑m−1
j=l

(
n−m
k−j

)(
m
j

)
c(j, l)

1 + (n− l)b1 + lb2

=

m−1∑
l=0

c(m, l)

1 + (n− l)b1 + lb2
. (32)

In (30), g(j) is substituted with the induction hypothesis (24); (31) exchanges the order of summation
over j and l; and c(m, l) in (32) follows from the definition in (25). By replacing values in (28) with
(29) and (32), we have

g(m) =

(
n
k

)(
n−m
k−m

) 1

1 + (n−m)b1 +mb2
− 1(

n−m
k−m

) m−1∑
j=0

(
n−m
k − j

)(
m

j

)
g(j)

=
c(m,m)

1 + (n−m)b1 +mb2
+

m−1∑
l=0

c(m, l)

1 + (n− l)b1 + lb2

=

m∑
l=0

c(m, l)

1 + (n− l)b1 + lb2
.

Therefore, we have finished proving (24) by induction.

Let
c∗ = max

j,l≤k
|c(j, l)|.

Recalling that k < n, we have for all j ≤ k

|g(j)| =

∣∣∣∣∣
j∑
l=0

c(j, l)

1 + (n− l)b1 + lb2

∣∣∣∣∣
≤

j∑
l=0

|c(j, l)|
1 + (n− l)b1 + lb2

(33)

≤
j∑
l=0

c∗

1 + (n− l)b1 + lb2

<

j∑
l=0

c∗

1 + (n− k)b1
(34)

=
(j + 1)c∗

1 + (n− k)b1
j = 0, . . . , k, (35)

where (33) is due to triangle inequality, and (34) follows from the facts that b1, b2 ∈ R>0 and k > 0,
since k is the number of samples. However, by the definition of g in (23) and (16),

g(k) = fk(b2, . . . , b2) =
1

1 + nb2
.
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So we can use (35) to have

1

1 + nb2
= |g(k)| < (k + 1)c∗

1 + (n− k)b1
,

which is a contradiction because if

b1 =
2(k + 1)c∗ − 1

n− k
and

b2 =
1

n
,

then

1

1 + nb2
=

1

2
=

(k + 1)c∗

1 + (n− k)b1
.

To show that b1 is well-defined, i.e., b1 > 0, we have

b1 =
2(k + 1)c∗ − 1

n− k

=
(2(k + 1)maxj,l≤k |c(j, l)|)− 1

n− k

≥ 2(k + 1)|c(0, 0)| − 1

n− k

=
2(k + 1)− 1

n− k
(36)

> 0,

where (36) follows from (26). The contradiction completes our proof.

5 Conclusions

This paper considered the problem of bias for methods that sample classes and examined the
possibility of using a different function instead of the sampled softmax. Previous works have taken it
as a foundational assumption that such a function cannot be found, treating this claim as if it were
true without justification. We proved, for the first time, that no function can be an unbiased estimator,
which extends the conclusion in [3] that is only limited to the sampled softmax. Our result now can
serve as the theoretical premise for related studies. According to our result, future work should not
aim to find an unbiased estimator. By providing a proof of impossibility, our work allows follow-up
studies to focus on feasible solutions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction described our contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The scope of applicability and assumptions are formally stated in Section 3.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The proof of each lemma, theorem and corollary are formally written and
referred to. The only assumption, Assumption 3.2, used in Corollary 3.3 is clearly stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA] .
Justification: There is no experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA] .
Justification: There is no experiment.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA] .
Justification: There is no experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] .
Justification: There is no experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: There is no experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no human subjects or participants, no data, no model, no negative
societal impact and no potential harm.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a impossibility proof and is not implementable as anything executable.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a impossibility proof and is not implementable as anything executable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: There is no asset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There is no asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There is no crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: There is no crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development only involved human brains.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Using Log-Softmax Loss During Training

The typical loss function for models based on Softmax is the log-softmax function

L(ŷ+, ŷ−1 , . . . , ŷ
−
n ) = log Softmax(ŷ+, ŷ−1 , . . . , ŷ

−
n )

= ŷ+ − log

(
eŷ

+

+

n∑
i=1

eŷ
−
i

)
.

During training, we need to compute the gradient of L at each step. In other words, we need to
compute the partial derivatives. The partial derivative of log-softmax with respect to the target class is

∂L(ŷ+, ŷ−1 , . . . , ŷ
−
n )

∂ŷ+
= 1− eŷ

+

eŷ+ +
∑n
i=1 e

ŷ−i

= 1− Softmax(ŷ+, ŷ−1 , . . . , ŷ
−
n ),

and the partial derivatives with respect to the negative classes j ∈ {1, . . . , n} are

∂L(ŷ+, ŷ−1 , . . . , ŷ
−
n )

∂ŷ−j
= − eŷ

−
j

eŷ+ +
∑n
i=1 e

ŷ−i

= −Softmax(ŷ−j , ŷ
−
1 , . . . , ŷ

−
j−1, ŷ

+, ŷ−j+1, . . . ŷ
−
n ).

Therefore, computing the gradient of the loss function requires computing Softmax.

B Reducing (4) to (8)

Let ô−i ∈ R denote the original logits for the ith negative class. Instead of using ô−i directly, we use

ŷ−i = ô−i + log(w(i))

such that

eŷ
−
i = eô

−
i +log(w(i))

= w(i) eô
−
i ,

where ∀i, w(i) are constants. So we have

s(ŷ+, ŷ−i1 , . . . , ŷ
−
ik
) =

eŷ
+

eŷ+ +
∑k
j=1 e

ŷ−ij

=
eŷ

+

eŷ+ +
∑k
j=1 w(ij)e

ô−ij

,

which is the sampled softmax in (4) on the original logits ô−i .

C Proof of Lemmas

C.1 Proof of Lemma 4.2

Proof.

fk(x1, . . . , xk) =
1

k!

∑
τ∈Sk

hk(xτ(1), . . . , xτ(k))

=
1

k!

∑
τ∈Sk

hk(xτ(σ(1)), . . . , xτ(σ(k))) (37)

= fk(xσ(1), . . . , xσ(k)),

where (37) follows because the summation over τ sums over the same set of summands.
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C.2 Proof of Lemma 4.3

Proof. We first note that the number of all possible samples of indices is(
n

k

)
· k! = n!

(n− k)!
,

which is the number of combinations of k choices from n items multiplied by the number of
permutations on k items. Let C(n, k;a) denote the set of

(
n
k

)
choices of k elements from a. Then

E [fk(ai1 , . . . , aik)] =
(n− k)!
n!

∑
x∈C(n,k;a)

∑
σ∈Sk

fk(xσ(1), . . . , xσ(k))

=
(n− k)!
n!

∑
x∈C(n,k;a)

∑
σ∈Sk

1

k!

∑
τ∈Sk

hk(xτ(σ(1)), . . . , xτ(σ(k)))

=
(n− k)!
n!

∑
x∈C(n,k;a)

∑
σ∈Sk

1

k!

∑
τ∈Sk

hk(xτ(1), . . . , xτ(k)) (38)

=
(n− k)!
n!

∑
x∈C(n,k;a)

∑
τ∈Sk

hk(xτ(1), . . . , xτ(k))

= E [hk(ai1 , . . . , aik)] ,

where (38) follows because the summation over τ sums over the same set of summands.

D Sampling Distributions Depending On All Logits

In this section, we show that [3] and [16] do not meet Assumption 3.2 by giving a brief overview of
how they work.

Their methods depend on the following problem structure. Given input space X and the input x ∈ X ,
logits of class i take the form

ŷi = 〈f(x),vi〉 ,

where f : X → Rd is the model, d is the embedding dimension and vi ∈ Rd is the embedding of
class i. In other words, the probability of class i is given by

Softmax(ŷi, ŷ1, . . . , ŷi−1, ŷi+1, . . . , ŷn+1) =
eŷi∑n+1
j=1 e

ŷj

=
e〈f(x),vi〉∑n+1
j=1 e

〈f(x),vj〉
.

In keeping with (1), we let n denote the number of negative classes, so there are a total of n + 1
classes. They proposed a sampling distribution p that is efficient to compute and has a structure
similar to the softmax function. The probability p(i) of sampling class i is given by

p(i) =
〈φ(f(x)), φ(vi)〉∑n+1
j=1 〈φ(f(x)), φ(vj)〉

, (39)

where φ : Rd → Rd2 is a feature map given by

φ(v) = (v1v1, . . . , v1vd, v2v1, . . . , v2vd, . . . , vdvd).
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Notably, the sampling distribution (39) does not satisfy Assumption 3.2 because (39) effectively
involves computing the logits. Expanding out the terms of the inner product, we have

〈φ(f(x)), φ(vi)〉 =
d∑
j=1

d∑
k=1

f(x)jf(x)kvijvik

=

d∑
j=1

f(x)jvij

d∑
k=1

f(x)kvik

= 〈f(x),vi〉 · 〈f(x),vi〉
= ŷ2i .

E Proof of Corollary 3.3

Proof. The proof is by contradiction. Assume there is an unbiased estimator hk for F with a sampling
distribution p. That is,

Pr (i1 = j1, . . . , ik = jk) = p(j1, . . . , jk).

The expectation is given by

F (a) = E
p
[hk(ai1 , . . . , aik)] =

1

(n− k)!
∑
σ∈Sn

p(σ(1), . . . , σ(k))hk(aσ(1), . . . , aσ(k)). (40)

Note that this is different from (12), in which we have k choices from items first due to the uniform
sampling. Therefore, here we have Sn instead of Sk in (12). Further, the summation over σ has n!
summands but there are only (

n

k

)
· k! = n!

(n− k)!

choices of indices. Therefore, the summation counts each choice of indices (n− k)! times, which is
corrected by the first factor 1

(n−k)! .

We first observe that F is symmetric in its arguments, i.e., for every permutation τ ∈ Sn,

F (a) =
1

1 +
∑n
i=1 ai

=
1

1 +
∑n
i=1 aτ(i)

= F (aτ(1), . . . , aτ(n)). (41)

By Assumption 3.2, p is the same function regardless of the values of a.4 This property and (41)
imply that, for every permutation τ ∈ Sn,

F (a) = F (aτ(1), . . . , aτ(n))

=
1

(n− k)!
∑
σ∈Sn

p(σ(1), . . . , σ(k))hk(aσ(τ(1)), . . . , aσ(τ(k))). (42)

4Without Assumption 3.2, it is possible to have a different distribution pa for each a. See Appendix D for
more details.
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Therefore,

F (a) =
1

n!

∑
τ∈Sn

F (a)

=
1

n!

∑
τ∈Sn

1

(n− k)!
∑
σ∈Sn

p(σ(1), . . . , σ(k))× hk(aσ(τ(1)), . . . , aσ(τ(k))) (43)

=
1

n!(n− k)!
∑
σ∈Sn

p(σ(1), . . . , σ(k))×
∑
τ∈Sn

hk(aσ(τ(1)), . . . , aσ(τ(k)))

=
1

n!(n− k)!
∑
σ∈Sn

p(σ(1), . . . , σ(k))×
∑
τ∈Sn

hk(aτ(1), . . . , aτ(k)) (44)

=
1

n!(n− k)!
(n− k)!×

∑
τ∈Sn

hk(aτ(1), . . . , aτ(k)), (45)

=
1

n!

∑
τ∈Sn

hk(aτ(1), . . . , aτ(k))

=
(n− k)!
n!

∑
x∈C(n,k;a)

∑
σ∈Sk

hk(xσ(1), . . . , xσ(k)), (46)

where (43) follows from (42), and (44) follows because the summation over τ sums over the same set
of summands. From (44) to (45), we use∑

σ∈Sn

p(σ(1), . . . , σ(k)) = (n− k)!

because, as we mentioned earlier, each element is counted (n−k)! times. Finally, (46) is just (12), the
expectation under the uniform distribution. This implies that hk is also an unbiased estimator under
the uniform distribution. Such an hk does not exist by Theorem 3.1, leading to a contradiction.

F Impossibility of an Unbiased Log-Softmax Estimator

In this section, we prove that an unbiased and differentiable log-softmax estimator ` does not exist.
We prove by contradiction. Assume that

E
[
`(ŷ+, ŷ−i1 , . . . , ŷ

−
ik
)
]
= log Softmax(ŷ+, ŷ−1 , . . . , ŷ

−
n ).

Then
∂

∂ŷ+
log Softmax(ŷ+, ŷ−1 , . . . , ŷ

−
n ) =

∂

∂ŷ+
E
[
`(ŷ+, ŷ−i1 , . . . , ŷ

−
ik
)
]

=
∂

∂ŷ+
1

n!

∑
σ∈Sn

`(ŷ+, ŷ−σ(1), . . . , ŷ
−
σ(k))

=
1

n!

∑
σ∈Sn

∂

∂ŷ+
`(ŷ+, ŷ−σ(1), . . . , ŷ

−
σ(k))

= E
[
∂

∂ŷ+
`(ŷ+, ŷ−i1 , . . . , ŷ

−
ik
)

]
. (47)

So

Softmax(ŷ+, ŷ−1 , . . . , ŷ
−
n ) = −

∂

∂ŷ+
log Softmax(ŷ+, ŷ−1 , . . . , ŷ

−
n )− 1

= E
[
− ∂

∂ŷ+
`(ŷ+, ŷ−i1 , . . . , ŷ

−
ik
)− 1

]
, (48)
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where the first equality follows from (2) and the second equality follows from (47). The expression

− ∂

∂ŷ+
`(ŷ+, ŷ−i1 , . . . , ŷ

−
ik
)− 1

in (48) is therefore an unbiased estimator for softmax, which contradicts Theorem 3.1.

Note that the proof above assumes a differentiable estimator `, but the proof of Theorem 3.1 does
not. Since we take the gradient of the loss estimator during training, we can reasonably assume that
practical loss estimators are differentiable.
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