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a b s t r a c t

Truth discovery is an effective way to eliminate data inconsistency by integrating different worker-
provided values. Although directly conducting non-private truth discovery approaches based on
uploaded noisy values after adding Laplace noise for continuous inputs guarantees rigorous local
differential privacy (LDP), it may result in poor performance due to the lot of contained noise. First, the
injected noise for privacy protection randomly sampled from Laplace distribution may be excessive
even with a large privacy budget, as the above distribution is unbounded and drops sharply with
respect to the x-axis. Built-in Gaussian noise also usually exists within these uploaded noisy values,
which may also have a negative effect on the aggregated truths under LDP and makes the problem
investigated in this paper far more challenging. In this paper, we focus on obtaining accurate truths in
the above cases under rigorous LDP for continuous inputs, and present a novel solution TESLA. The key
idea of this solution is that we let injected noise for privacy protection and inherent Gaussian noise
only weakly negatively affect the weight estimation and true aggregation. In particular, we design a
runtime filtering mechanism (RFM) to obtain the supremum and infimum for the values after adding
Laplace noise by considering these two types of noise together. Moreover, we develop a probabilistic
fusion mechanism (PFM) to get the fused values by adaptively using the obtained supremum and
infimum. Furthermore, we devise a probabilistic weight mechanism (PWM) to obtain a more accurate
weight for each worker. Therefore, truth discovery can be conducted based on the new weight of
each worker and the filtered values. We provide theoretical analyses of TESLA’s utility, privacy and
complexity. Experimental results demonstrate the effectiveness and efficiency of TESLA. We also extend
and verify TESLA over typical mean estimation as well as standard deviation calculation, and various
machine learning tasks (e.g., logistic regression, support vector machine (SVM) and neural network).
Experimental results also demonstrate its superiority.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Crowdsensing systems have become an increasingly popular
ensing paradigm that aggregate sensory data from a crowd of
articipating workers. Due to the diversity in sensing efforts,
ensor qualities, ambient noises, etc., data inconsistency arises
rom multiple observed values drawn from different workers.
or example, customer information can be found from multiple

✩ This work is the results of the research project funded by the National
Natural Science Foundation of China [Grant No. 62072052 and No. 61872045]
and the Foundation for Innovative Research Groups of the National Natural
Science Foundation of China [Grant No. 61921003].

∗ Corresponding author at: State Key Laboratory of Networking and Switching
echnology, No. 10, Xitucheng Road, Haidian District, 100876, Beijing, China.

E-mail addresses: zpf.bupt@bupt.edu.cn (P. Zhang),
hengxiang@bupt.edu.cn (X. Cheng), susen@bupt.edu.cn (S. Su),
angn@bupt.edu.cn (N. Wang).
ttps://doi.org/10.1016/j.knosys.2022.110213
950-7051/© 2022 Elsevier B.V. All rights reserved.
databases in a company, and erroneous customer account infor-
mation in a company database may cause financial losses [1]. A
patient’s medical records may be scattered across different hospi-
tals, and an incorrect diagnosis based on incorrect measurements
of a patient may lead to serious consequences [2], and scientific
discoveries may be guided in the wrong direction if they are
derived from incorrect data [3].

Intuitively, we can compute the mean of all provided values,
which would not be able to derive accurate aggregated results,
because it regards all values equally. An ideal approach should
have the capability to capture the difference in the quality of
values among different participating workers. However, the chal-
lenge is that the reliability level (referred to as weight) of each
worker is usually unknown as a prior. To address this challenge,
truth discovery [4], is an effective technique that can jointly
discover truthful information and estimate worker quality from
noisy or even conflicting crowdsourced sensory data, which has
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ttracted the interest of many researchers recently. It relies more
n workers who contribute high-quality answers to derive the
ggregated truth. Additionally, it usually consists of a truth ag-
regation phase and a weight estimation phase, and the server
teratively conducts these two phases until convergence.

Despite valuable truths that can potentially be obtained by
ruth discovery, uploading the raw values provided by each
orker without proper privacy protection might put an individ-
al’s privacy in jeopardy. For example, customers may not want
o share their account information to avoid potential financial
osses, the medical records of a patient should be clearly pro-
ected, and the scientific discoveries from an individual should
lso be carefully protected. Participating workers are willing to
ontribute real data to crowdsensing systems only after privacy
rotection.
Local differential privacy (LDP) [5] has recently emerged as

he de facto standard for individual privacy protection. It only
ollects randomized answers from each worker with a guarantee
f plausible deniability, which can be implemented in a simple
nd efficient way through adopting the Laplace mechanism [6]
or continuous inputs. Recently, the Laplace mechanism has been
sed by [6] to protect the continuous gradient information and
umerical information.
In this paper, we aim to infer the truth for each task with

igh utility under rigorous LDP. Several studies have explored
he problem of truth discovery under LDP, such as [7–12]. How-
ver, they are either designed specifically for discrete inputs
r only satisfy the weaker versions of LDP for continuous in-
uts. Although directly conducting non-private truth discovery
pproaches after adopting the Laplace mechanism over continu-
us inputs guarantees rigorous LDP, poor performance may result
ue to a lot of contained noise. The reasons can be explained as
ollows. First of all, this process may inject a lot of noise based
n the characteristics of the Laplace distribution. Specifically, the
njected noise for privacy protection sampled from the Laplace
istribution is random and unbounded, and this distribution de-
reases markedly sharply with respect to the x-axis, which is
likely to produce extreme injected noise even with a large privacy
budget ϵ. Moreover, existing studies [4,9] have shown that there
usually exists built-in Gaussian noise within the worker-provided
values, which has not been explored in sufficient detail and
may also have a negative effect on the aggregated truths under
rigorous LDP. It makes the problem investigated in this paper far
more challenging. To our best knowledge, we are not aware of
any other studies performed to date that can find the aggregated
truths with high utility while satisfying rigorous ϵ-LDP.

To fill this gap, in this paper, we present a novel solution
alled TESLA (Truth discovEry via probabilistic eStimation mall
nder rigorous Local differential privAcy) that can theoretically
nsure privacy, utility and complexity, which is. The key idea of
ESLA is to let injected noise for privacy protection and inherent
aussian noise only weakly negatively affect weight estimation
nd true aggregation. In TESLA, we estimate the supremum and
nfimum for each worker-provided noisy value to bound the
ontained noise to be in favor of both weight estimation and true
ggregation. We also estimate workers’ weight distributions by
ointly considering the above two types of noise to be beneficial
o weight estimation.

To mitigate the negative influence of these two types of noise
n truth aggregation, we first define a probability comparison
unction. Then, based on the defined probability comparison func-
ion, by leveraging the method of binary search, we design a
untime filtering mechanism (RFM) to obtain the supremum and
nfimum of the noisy values. Finally, given the supremum and
nfimum, we further develop a probabilistic fusion mechanism

PFM) to get the fused values. To mitigate negative influence of c

2

the above two kinds of noise on weight calculation, we design
a probabilistic weight mechanism (PWM), which will serve as
weight estimation of truth discovery. Specifically, we formulate
a constrained nonlinear programming problem by modeling the
mixed error distribution and derive an effective solution using the
Lagrange multipliers approach.

Overall, TESLA works as follows. A worker first adds Laplace
oise to his real values xi and uploads the noisy value x̃i to the

server. Then, the server invokes RFM and PFM successively to
obtain the fused value x̂i. Finally, the server conducts truth discov-
ery while adopting CRH (Conflict Resolution on Heterogeneous
data) [13], which is one of the most representative approaches, to
obtain the aggregated truth x̂∗ for each task, where PWM serves
s the weight estimation.
The key contributions are summarized as follows:
• We present a novel solution TESLA and give theoretical

nalysis of its utility, privacy and complexity. While being pro-
osed for task truth discovery under rigorous LDP for continuous
nputs, its idea is also applicable to other crowdsensing tasks
e.g., machine learning) while guaranteeing rigorous LDP.

• To mitigate the negative influence on truth aggregation,
e first design RFM to obtain the supremum and infimum of
he noisy values. Moreover, we develop PFM to obtain the fused
alues. Furthermore, we measure the performance of PFM in
erms of (α, β)-accuracy.

• To mitigate the negative influence on weight calculation, we
esign PWM, which serves as weight estimation of the potential
ruth discovery approach.

• Extensive experimental results over two real-world datasets
nd two synthetic datasets demonstrate the effectiveness and
fficiency of TESLA.

• We extend and verify TESLA for mean estimation and stan-
ard deviation calculation, which are two typical tasks for contin-
ous inputs under LDP. Moreover, we also extend it for multiple
achine learning tasks (e.g., logistic regression, support vector
achine (SVM), neural network) over another synthetic dataset.
xperimental results show that the extended solutions can also
btain good utility.
The rest of this paper is organized as follows. We discuss

elated work in Section 2. We describe the preliminaries in Sec-
ion 3. The details of TESLA are presented in Section 4. The
xperimental results are discussed and analyzed in Section 5.
inally, we summarize our work in Section 6.

. Related work

.1. Truth discovery approaches

Many studies have explored the problem of truth discovery.
i et al. [13] propose the CRH (Conflict Resolution on Heteroge-
eous data) approach by iteratively conducting weight estimation
nd truth aggregation until convergence. To improve the util-
ty of truth discovery for the long-tail data, they [4] devise a
ew weight estimation method through variance estimation. Xiao
t al. [14] further extend the approach in [4]. Meng et al. [15]
tilize the correlation between tasks to improve the utility of
ruth discovery. Wang et al. [16] focus on obtaining reliable truths
rom distributed data [16]. Ye et al. [17] adopt pattern discovery
or truth discovery.

There also exist studies which focus on special scenarios, such
s distributed data [16], text data [18] and time series data [19].
ang et al. [16] focus on obtaining reliable truths from dis-

ributed data [16]. Zhang et al. [18] devise an approach to get
eliable information from text data through truth discovery. Yao
t al. [19] focus on online truth discovery for time series data.
Since we focus on ordinary numerical data in the mobile

rowdsensing and CRH is the most representative approach,
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hich has been widely used for the non-private comparison by
he existing privacy-preserving truth discovery studies [7–9], we
lso adopt it for the non-private version in this paper.

.2. Methods under Local Differential Privacy

Since the formulation of LDP [20], there are two lines along
he study of LDP, which are the LDP mechanisms and LDP-based
pplications, such as mean estimation. The studies of LDP mech-
nisms focus on designing novel LDP methods which can serve
s the basic building blocks for achieving LDP. The studies of
DP applications aim at adopting or improving the existing LDP
echanisms to collect certain data for the specific applications.
For LDP mechanisms, the popular randomized response [21]

ould be used for collecting binary attributes, which has been ex-
ended by Kairouz [22] to collect multiple attributes. Google [23]
ropose RAPPOR to collect users’ homepage distributions. Wang
t al. [24] propose an optimized local hashing method to mitigate
he negative impact of large domains. These excellent studies can
e used for collecting discrete data while we focus on continuous
nputs. Thus, they cannot be applied by our setting.

For LDP applications, Duchi [20] propose the first solution for
ean estimation. Following [20], T. Nguyên propose Harmony for
ean estimation and machine learning. Wang et al. [6] further
ropose hybrid mechanism HM for mean estimation and machine
earning to improve Harmony. Ye et al. [25] focus on estimat-
ng the frequency and mean for key–value data. Sun et al. [26]
ropose BiSample for handling the missing data under LDP. Li
t al. [27] propose to collect key–value data through distribution
stimation.
The well-established Laplace mechanism [28] can also be

dopted to guarantee to LDP [6]. Due to its high efficiency and
ffectiveness, we adopt it for adding noise. Moreover, we com-
are our TESLA with the state-of-the-art mean estimation and
achine learning approaches mentioned above to demonstrate

he generality of it.

.3. Truth discovery based on cryptography

Truth discovery based on cryptography has also been widely
tudied. For example, the proposed approaches in [15,29,30] focus
n not only the protection of workers’ sensory data but also their
eliability scores derived by the truth discovery approaches. [31]
im to alleviate the tremendous overhead incurred on the worker
ide. [32–34] completely remove the online requirement and
olerate workers offline at any stage. Zheng et al. [35] argue that
he inferred truths of the requester should also be kept private
nd propose a protocol to tackle this problem. Following [35],
ang et al. [36] propose a more comprehensive protocol based
n the data perturbation technology that can simultaneously
rotect the privacy of participants and truth results. Gao et al. [37]
chieve data aggregation with high accuracy while preventing the
eakage of both sensory data and tagged locations effectively. Liu
t al. [38] design and implement a real-time privacy-preserving
ramework for sensory data streams. Xu et al. [39] design an ap-
roach enabling any entity to verify the correctness of aggregated
esults returned from the server.

These excellent works are all orthogonal to our work as we
dopt LDP and do not involve any cryptography technologies.

.4. Truth discovery based on local differential privacy

There are two broad settings for truth discovery based on local
ifferential privacy, which are designed specifically for discrete
nswers and continuous answers according to the type of inputs.
3

Table 1
Summary and comparison.
Approaches Discrete

inputs
Continuous
inputs

Rigorous
LDP

Built-in
noise

[8,10] ✓ ✓
[12] ✓
[9,11] ✓ ✓
[7] ✓
TESLA ✓ ✓ ✓

For discrete answers, Li et al. [8] propose a two-layer approach,
which can get a better utility in most cases. Sun et al. [10] propose
a personalized incentive approach for binary-choice questions.
Wang et al. [12] attempt to obtain the truths based on local
attribute differential privacy under the assumption that only a
portion of attributes are sensitive. It is a weaker version of LDP
according to their statement.

For continuous answers, similar to [8], by adopting the Gaus-
sian mechanism, Li et al. [9] propose a similar approach, which
satisfies (ϵ, δ)-LDP with a certain probability. It is a weaker
version of LDP. Sun et al. [7] propose a perturbation approach
based on matrix factorization and try to perturb the latent factors
of per worker. However, with the assumption that any pair of
answer vectors differ by at most one cell, their approach satisfies
ϵ-cell LDP, which is a weaker version of LDP. To tackle incen-
tive problem, Sun et al. [11] propose a personalized incentive
approach. Due to the adoption of the Gaussian mechanism, their
approach satisfies ϵ-KL-LDP, which is still a weaker version of
LDP.

We summarize them and compare them with our TESLA solu-
ion in Table 1.

To sum up, existing studies are either designed specifically
or discrete inputs, or only satisfy the weaker versions of LDP
or continuous inputs. Although directly adopting the Laplace
echanism for continuous inputs guarantees rigorous LDP, it
ay result in unreliable results as the contained noise could be
xcessive large. The reasons can be explained as follows. Due to
he randomness and boundlessness of the Laplace distribution,
he injected noise for privacy protection is likely to be extremely
arge even with a large ϵ. Moreover, there exists the built-in
aussian noise within the worker-provided values, which may
lso have negative effect on the aggregated truths under LDP.
hus, all the above approaches may not get reliable utility for the
eal-world truth discovery under rigorous LDP with continuous
nputs. To our best knowledge, we are the first to tackle this
roblem while guaranteeing rigorous LDP.

. Preliminaries

In this section, we first describe the details about truth dis-
overy. Then, we provide the details of local differential privacy,
hich will be used to obfuscate worker-provided values. Finally,
he problem investigated in this paper is presented.

.1. Truth discovery

Truth discovery is an effective way to obtain reliable results
rom conflicting data. CRH [13] is one of the most representa-
ive approaches currently, and does not consider privacy protec-
ion throughout the procedure. In particular, CRH consists of the
ollowing two phases:

• Truth Aggregation: In this step, each worker’s weight is
ssumed to be known. Truth aggregation will be achieved by
eighted summation of the provided values:

∗

j =

∑M
i=1 wi · x

j
i∑M , (1)
i=1 wi
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here M is the total number of workers; i is the index of the ith
worker; xji is the real value provided by the ith worker for the jth
task; wi is the weight for the ith worker, and x∗

j is the aggregated
truth.

• Weight Estimation: In this step, the aggregated truths are
fixed. Weight estimation is conducted based on the difference
between the truths and the provided values:

wi = − ln

∑N
j=1 d

(
xji, x

∗

j

)
∑M

i=1
∑N

j=1 d
(
xji, x

∗

j

) , (2)

where N is the number of tasks and d(·) is a function that
measures the difference between the provided values and the
aggregated truths. Different truth discovery methods may adopt
various functions d(·), but the underlying principle is the same.

3.2. Local differential privacy

Local differential privacy (LDP) [5] is formally defined as fol-
lows.

Definition 1 (ϵ-Local Differential Privacy). Given a privacy budget
ϵ, a randomized algorithm A achieves ϵ-local differential privacy,
iff for any two tuples t and t ′ ∈ Dom (A), and for any possible
t̃ ∈ Range (A), we have

Pr
(
A (t) = t̃

)
≤ eε

× Pr
(
A
(
t ′
)

= t̃
)
,

where the probability is over the coin flips of A.
Typically, a classic mechanism for enforcing LDP is the Laplace

mechanism [6].

Theorem 1 (Laplace Mechanism). For any function f : D → Rn with
sensitivity ∆f , the algorithm

A (D) = f (D) + < Lap1 (λ) , . . . , Lapn (λ) >

satisfies ϵ-LDP, where Lapi (λ) is drawn i.i.d from a Laplace distribu-
tion with scale ∆f /ϵ. ∆f is used to measure the maximum change
in the outputs of a function when any individual’s value is changed.

Laplace mechanism is also composable [28], including the se-
quential composition property and the post-processing property.
In particular, they are:

Theorem 2 (Sequential Composition). Let A1, . . . , Ak be k opera-
tions, each achieves ϵi-LDP. A sequence of operations Ai(D) over
database D achieves (

∑
ϵi) -LDP.

Theorem 3 (Post-Processing). Let A be an operation that is ϵ-
LDP. Let B be an arbitrary operation acting on A. Then, composite
operation A ◦ B is also ϵ-LDP

3.3. Problem statement

Fig. 1 shows the investigated problem, which consists of four
types of entities: M workers, N tasks, a server and an initiator.
The server and M workers are interconnected through an internet
environment. Each worker has performed a portion of the tasks.
The server acts as a computing platform and conducts truth
discovery using the uploaded noisy values. Finally, the aggregated
truths are provided to the initiator.

Suppose the ith worker possesses a continuous value for the
jth task xji, where the value range of this task is

[
dj1, dj2

]
. The

goal of this study is to design a solution to enable the server
to obtain the noisy truth x̂∗

j from each worker’s noisy value x̃ji
under a rigorous LDP model. For ease of presentation, we assume
that all workers use the same privacy budget ϵ. During truth
 c

4

Fig. 1. Problem investigated.

iscovery, for any worker, an adversary could be the untrusted
erver, another worker or an outside attacker. Their objective is
o learn a worker’s true values.

Table 2 summarizes the notations that will be frequently used
n this paper.

. Our TESLA solution

.1. Overview of TESLA

A first-cut solution for obtaining the aggregated truths under
igorous LDP is to conduct CRH based on the uploaded noisy
alues directly after adding Laplace noise. However, this straw-
an solution suffers from poor data utility. The root cause is

hat it is likely to incur markedly contained noise even with a
arge ϵ. The reasons can be explained as follows. According to the
haracteristics of the Laplace distribution, the injected noise for
rivacy protection is randomly sampled and unbounded, and this
istribution drops markedly with respect to the x-axis. Moreover,
here exists built-in Gaussian noise within the worker-provided
alues, which may also have a negative effect on the aggregated
ruths under LDP and makes the problem investigated in this
aper far more challenging. Built-in Gaussian noise should also
e carefully addressed to improve the accuracy of the inferred
oisy truths.
To address these problems, we propose TESLA (Truth discovEry

ia probabilistic eStimation mall under rigorous Local differen-
ial privAcy), whose key idea is to let the injected noise for
rivacy protection and the built-in Gaussian noise only weakly
egatively affect the weight estimation and true aggregation. In
articular, we estimate the supremum and infimum for each
orker-provided noisy value to bound the noise. In particular, we
stimate the supremum and infimum for each worker-provided
oisy value to bound the contained noise. Based on the esti-
ated supremum and infimum, we can obtain a more accurate

used noisy value to take the place of the worker-provided value.
ubsequently, both weight estimation and true aggregation can
enefit from this fused value. Moreover, we estimate workers’
eight distributions by jointly considering the injected noise for
rivacy protection and the inherent Gaussian noise so as to be in
avor of weight estimation. In particular, we first design a runtime
iltering mechanism (RFM) to get the supremum and infimum of
he noisy values. Then, a probabilistic fusion mechanism (PFM)
o get the fused values. Finally, a probabilistic weight mechanism
PWM) is proposed, which serves as weight estimation of truth
iscovery.
Fig. 2 shows the overflow of TESLA. Specifically, TESLA mainly
onsists of the following phases:
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Table 2
List of frequently used notations.
Notation Definition

ϵ, ε The total privacy budget and the privacy budget for a task
M, N The total number of workers and tasks
Ni The number of tasks the ith worker has done
xij , xi The true value of the ith worker for the jth task and the true value of

the ith worker for a task
dj1 , dj2 The minimum value and maximum value for the jth task
d1 , d2 The minimum value and minimum value for a task
x̃ij , x̃i The noisy value of the ith worker for the jth task and the noisy value

of the ith worker for a task
dupper_ij , dlower_ij One of upper bound and lower bound for x̃ji
dupper_i , dlower_i One of upper bound and lower bound for x̃i of a task
dsup_ij , dinf _ij The least upper bound of a set of dupper_ij and the greatest lower bound

of a set of dlower_ij
dsup_i , dinf _i The least upper bound of a set of dupper_i and the greatest lower bound

of a set of dlower_i
x̂ij , x̂i The fused value for x̃ij and x̃i
x̂j∗ , x̂∗ The aggregated noisy truth for the jth task and the aggregated noisy

truth for a task
P(·), D The probability value and the two-dimensional integral interval
θ , ρ Server-specific comparison granularity and comparison probability
Fig. 2. Key steps of TESLA with their associated key techniques marked in blue.
m
a
i
a
w
a
i
a
a
o
t
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t
p
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Phase 1. Each worker obfuscates his value xi by adopting the
aplace mechanism using privacy budget ϵ

Ni
and sensitivity ∆f =

2 − d1, where Ni is the number of tasks the ith worker has done.
d2 and d1 are the maximum and minimum values for a certain
task respectively. Then, he uploads the noisy x̃i to the server.

Phase 2. The server invokes RFM to get dsup_i and dinf _i, and
invokes PFM to get the fused value x̂i. The details are presented
in Section 4.2 and Section 4.3, respectively.

Phase 3. Based on the fused value x̂i, the server conducts truth
discovery adopting CRH while using PWM as weight estimation,
which is elaborated in detail in Section 4.4. Then, the aggregated
truths are sent to the initiator.

In the following, we first provide a comprehensive analysis of
TESLA, including its utility, privacy and complexity, in Section 4.5.
Then, we present the details of TESLA about its extension for
mean estimation, standard deviation calculation and multiple
machine learning tasks in Section 4.6. Finally, we discuss TESLA
in Section 4.7 to distinguish it from existing studies.

4.2. Runtime filtering mechanism

In TESLA, two types of noise are contained in the uploaded
noisy values, which are the injected noise for privacy protection
and the inherent Gaussian noise.

Since the Laplace distribution introduces noise with the vari-
ance of 2λ2 (λ =

d2−d1
ϵ

), with the decreasing of privacy budget
ϵ, the noise variance increases in a quadratic way. Moreover, ac-
cording to the distribution characteristics of Laplace, the injected
 w

5

noise is unbounded, which is likely to cause great noise variance,
even if ϵ is large. Similarly, the error by built-in Gaussian noise
also increases in a quadratic way if the standard deviation is
adopted to represent the accuracy of workers in non-privacy
scenario [4]. Thus, we should mitigate the negative effect of
the above two types of noise on weight calculation and truth
aggregation together. For truth aggregation, we propose RFM and
PFM. For weight calculation, we propose PWM.

Before providing the details of RFM, we first introduce two
straightforward approaches.

One possible approach, called Laplace filtering (LapFilter), is to
odel the injected noise as much as possible. Another possible
pproach, called Gaussian filtering (GauFilter), is to model the
nherent Gaussian noise as much as possible. Although LapFilter
nd GauFilter can achieve the proposed privacy goal as they
ork on noisy values, such approaches may not always lead to
satisfactory aggregated truth utility. The problem is that there

s the injected noise and inherent Gaussian noise simultaneously
fter adding Laplace noise. We observe that these two straw-man
pproaches represent two extremes of data filtering: LapFilter
nly considers the injected noise, while GauFilter only considers
he inherent Gaussian noise. This observation suggests the must
onsidering of these two types of noise together.
Given a noisy value x̃ provided by a worker, we design RFM

o get the fused value x̂. The main idea of RFM is to define a
robability comparison function according to the two types of
oise to obtain the supremum and infimum for x̃. In what follows,
e first state how to define the probability comparison function.
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x

et si and gi denote the injected noise and inherent Gaussian
oise, respectively, where si ∼ lap

(
d2−d1

ϵ

)
and gi ∼ N

(
µ, σ 2

)
.

Thus, we have:

xi = x̃i − si − gi.

Probability Comparison Function. Let v represent the value we
need to compare with to get the supremum and infimum. Thus,
we have:

P (xi ≤ v) = P
(
x̃i − si − gi ≤ v

)
= P

(
si + gi ≥ x̃i − v

) ,

where x̃i and v are known by the server, and P(·) is the probability
value. The above equation can be seen as a probability problem
about two-dimensional continuous variables (si, gi) in the plane
set D, which indicates integral interval, denoted by:

D =
{
(si, gi)|si + gi ≥ x̃i − v

}
.

Let f (si, gi) denote the joint probability density function of
(si, gi). Since the variables si and gi are independent from each
other, we have

P (xi ≤ v) =
∫∫

D f (si, gi) dsidgi
=
∫

+∞

−∞

(∫
+∞

−gi+x̃ji−v
f (si) f (gi) dsi

)
dgi

, (3)

where f (si) =
ε

2(d2−d1)
e−

|si|ε
d2−d1 and f (gi) =

1
√
2πσ

e−
(gi−µ)

2

2σ2 .
If P (xi ≤ v) ≥ ρ, we can claim that one of the upper bounds

or x̃i is v, where ρ is a server-specific probability. Similarly, if
(xi > v) ≥ ρ, we can claim that one of the lower bounds for

˜i is v. Note that, since Eq. (3) is monotonically increasing with
he lower bound of the integral, the value range of the integral
ith regard to ρ is [−gi − d2 + d1, −gi + d2 − d1]. Additionally,
he variance σ can be calculated based on the uploaded noisy
alues. According to the post-processing property of the Laplace
echanism (Theorem 3), it does not divulge privacy.
inary Search based Boundary Calculation. Next, we need to
et the supremum and infimum. To achieve this purpose, we
efine ρ-supremum and ρ-infimum as follows, where ρ is the
robability of confidence.

efinition 2 (ρ-Supremum).

sup_i = min
dupper_i

{
Pr
(
dupper_i ≤ v

)
≥ ρ

}
(4)

here v ∈ [ d1, d2] is the value we need to compare with, and
upper_i is the upper bound estimated from the noise value x̃i of
he ith worker. dsup_i is the least upper bound of a set of dupper_i.

efinition 3 (ρ-Infimum).

inf _i = max
dlower_i

{Pr (dlower_i ≥ v) ≥ ρ} (5)

here dlower_i is the lower bound estimated from the noise value
˜ of the ith worker. dinf _i is the greatest lower bound of a set of
lower_i.

We can vary v to obtain the possible upper bounds and lower
ounds. Then, we set the minimum upper bound and the maxi-
um lower bound as the supremum and infimum, respectively.
owever, since we are dealing with continuous values, there are
nfinite values of comparison granularity v. No matter how small
is, it will bring large information loss. Moreover, traversing all

he values in [d1, d2] may produce high computational cost. We
ind that we can utilize a binary search to control the comparison

ranularity v by setting the search stop condition θ .

6

Algorithm 1 shows the main steps of RFM. Specifically, we first
invoke a binary search to obtain the supremum (Lines 1–7). Then,
similarly, we get the infimum (Lines 8–14). Finally, we return
dsup_i and dinf _i (Line 15). It follows the same manner for other
orkers’ noisy values.
Parameters ρ and θ can be set empirically and experimentally

s setting them does not hinder privacy. Specifically, RFM takes a
ost-processing on the server side, and the workers only connect
ith the server when uploading the noisy values.

.3. Probabilistic fusion mechanism

After determining dsup_i and dinf _i, how to develop a fusion
mechanism under the truth discovery scenario still remains a
challenge. An intuitive method is to use the mean of the above
two to replace each noisy value x̃i. Let x̂i represent the fused value,
and we have:

x̂1i =
dsup_i + dinf _i

2
. (6)

However, in this way, it may bring great information loss.
According to the spike property of the Laplace distribution, it is

observed that the fusion utility can be improved by relying more
on supremum dsup_i or infimum dinf _i. Thus, we propose two types
of fusing methods:

x̂2i = dinf _i +
x̃i − dinf _i

dinf _i − dinf _i
·
(
x̃i − dinf _i

)
. (7)

ˆ
3
i = dinf _i −

x̃i − dinf _i
dinf _i − dinf _i

·
(
x̃i − dinf _i

)
. (8)

To better understand them, we give Example 1.

Example 1. Suppose xi = 3, x̃i = 2, dsup_i = 10 and dinf _i = 1.
Thus, we can get x̂1 = 5.5, x̂2 = 1.11 and x̂3 = 9.89. Clearly, x̂2 is
i i i i
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he best. In addition, when dsup_i = 3 and dinf _i = −6, we can get
ˆ1i = −1.5, x̂2i = −5.11 and x̂3i = 2.11.

Therefore, PFM works as follows. If x̂i − dinf _i ≤ dsup_i − x̂i,
hat is, p

(
xi ≤

dsup_i+dinf _i
2

)
≥ ρ, we use x̂2i ; otherwise, we use x̂3i .

n particular, p
(
xi ≤

dsup_i+dinf _i
2

)
is calculated by replacing v in

q. (3) with dsup_i+dinf _i
2 . In addition, if dinf _i = d1 or dsup_i = d2,

t may introduce excessive information loss, canceling out the
enefit of mitigating noise. In such a case, we do not conduct PFM.
Note that the methods in Eq. (7) and Eq. (8) can be viewed

s special cases of the method in Eq. (6) if x̂i exactly equals
he mean. Technically, we can adopt any complex fusion method
e.g., compressed sensing), but the idea is also the same as PFM.
lgorithm 2 shows the main steps of PFM.

To quantify the fused utility of PFM, we adopt the following
utility definition [9].

Definition 4 (α, β-Accuracy). Let β ∈ [0, 1] and α ≥ 0, a method
B satisfies (α, β)-accuracy if the following inequality holds:

Pr
[⏐⏐x̃ − B

(
x̃
)⏐⏐ ≥ α

]
≤ β.

Intuitively, this definition indicates that the fused utility is
larger than α with the probability at most β . Clearly, a smaller
α means better fusion utility under a certain β . Thus, we derive
the quantitative relationship before and after adopting PFM as the
following theorem.

Theorem 4. Utility of PFM. For a given β , the fused utility of PFM
can be found to be:

α =

√2
(

d2−d1
ε

)2
+ σ 2

β
.

roof. The fused utility of PFM can be written as

FM
(
x̃
)
− x̃ = x̂ − x̃ = η,

here η = s + g . In addition, s is the added Laplace noise, and g
is the inherent Gaussian noise.

Recall that the variance of added Laplace noise is D (s) =(
d2−d1

)2
, and the variance of inherent Gaussian noise is D(g)
ε

7

= σ 2, we can derive that,

D (η) = 2
(
d2 − d1

ε

)2

+ σ 2.

Therefore, from the Chebyshev’s inequality, we have

r
[⏐⏐x̃ − PFM

(
x̃
)⏐⏐ ≥ α

]
≤

2
(

d2−d1
ε

)2
+ σ 2

α2 .

Thus, for a given β , we have α =

√
2
(
d2−d1

ε

)2
+σ2

β
, which

indicates that the fused utility satisfies the

(
α,

2
(
d2−d1

ε

)2
+σ2

α2

)
-

ccuracy.

.4. Probabilistic weight mechanism

Inspired by Gaussian mixture model for modeling mixed error,
e can formally define the total error distribution as follows:

(x) =
1
2

·
1
2λ

e−
|x|
λ +

1
2

·
1

√
2πσ

e−
x2

2σ2 , (9)

where 2λ2 is the variance of the Laplace distribution and σ is the
tandard deviation of the Gaussian distribution.
An intuitive method is to directly apply the existing weight

stimation formula, as shown in Eq. (2), to estimate each worker’s
eight, where d(·) can be measured by Euclidean Distance or
anhattan Distance. However, due to the fact that this intuitive
eight estimation scheme does not consider the above two types
f noise, it will lead to inaccurate obtained weights. Since weight
lays the leading role in truth discovery, we may not get reliable
ggregated truths under rigorous LDP.
To address this issue, since the aggregated truth can be greatly

mproved by distinguishing high-quality workers from the others
nd relying on these identified high-quality workers, we design
WM by considering both types of noise to mitigate their negative
nfluence on weight estimation. The details of PWM are shown as
ollows.

Let x represent the value without noise and x̃ represent the
alue after adding Laplace noise locally, we have:

− x̃ ∼ p (x) .

The common principle of truth discovery is that a worker will
e assigned a higher weight if his provided values are closer to
he aggregated truths, and the provided values of this worker
ill be counted more in the aggregation phase if he has a higher
eight. Following this principle, we formulate a constrained non-

inear programming problem to obtain a new weight estimation
cheme, which will serve as the weight estimation of CRH.

∑M
i=1
∑N

j=1 wi

⎛⎝ 1
2λ e

−

⏐⏐⏐x̂ji−x̂∗j

⏐⏐⏐
λ +

1
2 ·

1
√
2πσ

e−

(
x̂ji−x̂∗j

)2
2σ2

⎞⎠ .

s.t. w2
i = 1

(10)

The above objective function measures the weighted distance
between the provided value x̂ji and the aggregated truth x̂∗

j . Specif-
ically, if a worker-provided value is far from the aggregated truth,
to minimize the total loss, it will be assigned a low weight. Thus,
the aggregated truth will be closer to the values from high-quality
workers. That is, PWM also exactly follows the general principle
of truth discovery.

Since an arbitrary norm on Rn is convex, non-negative sum-
mation is convex-preserving operations, and the formulated prob-
lem can be solved by the Lagrange multipliers approach.
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The Lagrangian of Eq. (10) is given as,

L (wi, λ) =

M∑
i=1

N∑
j=1

wi

⎡⎣ 1
2λ

e−

⏐⏐⏐x̂ji−x̂∗j

⏐⏐⏐
λ +

1
2

·
1

√
2πσ

e−

⏐⏐⏐x̂ji−x̂∗j

⏐⏐⏐2
2σ2

⎤⎦ ,

+ζ

(
M∑
i=1

w2
i − 1

)
here ζ is a Lagrange multiplier. Let the first-order derivative of

Lagrangian with respect to wi be 0, we can get:

ζwi =

N∑
j=1

⎛⎝ 1
2λ

e−

⏐⏐⏐x̂ji−x̂∗j

⏐⏐⏐
λ +

1
2

·
1

√
2πσ

e−

⏐⏐⏐x̂ji−x̂∗j

⏐⏐⏐2
2σ2

⎞⎠ . (11)

rom the constraint that w2
1 + · · · + w2

i + · · · + w2
M = 1, we can

erive that:

=

√∑M
i=1
∑N

j=1

⎡⎣ 1
2λ e

−

⏐⏐⏐x̂ji−x̂∗j

⏐⏐⏐
λ +

1
2 ·

1
√
2πσ

e−

⏐⏐⏐x̂ji−x̂∗j

⏐⏐⏐2
2σ2

⎤⎦
2

. (12)

y plugging Eq. (12) into Eq. (11), we can get:

i =

1
2λ e

−
|x̂i−x̂∗|

λ +
1
2 ·

1
√
2πσ

e−
|x̂i−x̂∗|

2

2σ2√∑M
i=1

[
1
2λ e

−
|x̂i−x̂∗|

λ +
1
2 ·

1
√
2πσ

e−
|x̂i−x̂∗|

2

2σ2

] , (13)

here λ =
d2j−d1j

ϵ
and σ can be calculated based on the uploaded

noisy values.

4.5. Analysis of TESLA

Privacy Guarantee. The following theorem establishes the pri-
vacy guarantee of TESLA.

Theorem 5. Our TESLA solution satisfies rigorous ϵ-LDP.

roof. In TESLA, the server needs to access each worker’s raw
data exactly once. That is, in Phase 1, each worker invokes the
aplace mechanism using privacy budget ϵ to generate his noisy
ata. ϵ is divided into ϵ

Ni
parts for each worker, where Ni is

the number of tasks the ith worker has done. By the sequential
composition property in Theorem 2, the noise addition operation
achieves ϵ-LDP. Note that, since the subsequent RFM and PFM
do not require the server to access any worker’s raw data, there
will not lead to any privacy risk or consume any privacy budget.
Additionally, to obtain the noisy truths, CRH is conducted on al-
ready locally differentially private outputs. In particular, they are
fused data generated by PFM. By the post-processing property in
Theorem 3, TESLA can guarantee rigorous ϵ-LDP for each worker.
This completes the proof.

Utility Analysis. We have the following utility theorem for TESLA.

heorem 6. The expected error of an aggregated truth before and
fter adopting TESLA satisfies the following inequality:[⏐⏐x∗

− x̂∗
⏐⏐] ≤

√
2

σ +
d2 − d1

.

π ε

8

Proof. Let E and E denote the error and expectation respectively.
We have,

E
[⏐⏐x∗

− x̂∗
⏐⏐]

= E
[⏐⏐⏐⏐∑M

i=1 wixi∑n
i=1 wi

−

∑M
i=1 Wi x̂i∑n
i=1 Wi

⏐⏐⏐⏐]
= E

[⏐⏐⏐⏐∑M
i=1 wixi

∑M
i′=1 Wi′−

∑M
i=1 wi

∑M
i′=1 Wi x̂i′∑M

i=1 wi
∑M

i′=1 Wi′

⏐⏐⏐⏐]
.

Since
∑M

k=1 akbk
∑M

k′=1 ck′ =
∑M

k=1
∑M

k′=1 akbkck′ , we have,

E
[⏐⏐x∗

− x̂∗

i

⏐⏐]
= E

[⏐⏐⏐⏐∑M
i=1

∑M
i′=1 wiWi′ xi−

∑M
i=1

∑M
i′=1 wiWi′ x̂i′∑M

i=1
∑M

i′=1 wiWi′

⏐⏐⏐⏐] .

Moreover, since E [|X + Y |] ≤ E [|X |] + E [|Y |], we have,

E
[⏐⏐x∗

− x̂∗

i

⏐⏐]
≤

∑M
i=1

∑M
i′=1 wiWi′ E[|xi−x̂i′ |]∑n
i=1

∑n
i′=1 wiWi′

=

∑M
i=1

∑M
i′=1 wiWi′ E[|gi+si|]∑n

i=1
∑n

i′=1 wiWi′

≤

∑M
i=1

∑M
i′=1 wiWi′ (E[|gi|]+E[|si|])∑M
i=1

∑M
i′=1 wiWi′

.

Furthermore, since E [|gi|] =

√
2
π
σ and E [|si|] =

d2−d1
ε

, we
ave
E
[⏐⏐x∗

− x̂∗

i

⏐⏐]
≤

∑M
i=1

∑M
i′=1 wiWi′

(√
2
π σ+

d2−d1
ε

)
∑M

i=1
∑M

i′=1 wiWi′

≤

∑M
i=1

∑M
i′=1

(√
2
π σ+

d2−d1
ε

)
M2

=

√
2
π
σ +

d2−d1
ε

.

Complexity. For communication complexity, the server merely
communicates with each worker when he uploads the noisy value
x̃. Since there are M works and N tasks, the total communication
complexity is O(MN).

For time complexity, there are four parts of computation.
The first is adding noise locally. Since there are M works and
N tasks, it leads to totally O(MN). The second is invoking RFM.
ecall that the server needs to get dsup_i and dinf _i for each noisy

value through twice binary search, and there are d2−d1
θ

values
to be compared with the server-specific comparison granular-
ity. Since the complexity of binary search is O(log Q ), where
Q is the amount of values to be sorted, RFM takes a total of
2O
[
log
(

d2−d1
θ

)]
. The third is invoking PFM. Since there are MN

alues to be processed, and one comparison operation taking
(1) is required for each processing, PFM uses a total of O(MN).

The fourth is conducting truth discovery using Eq. (13) and Eq. (1).
According to [15], it consumes a total of n·O (2MN), where n is the
number of iterations. Thus the total time complexity is 2O(MN)
+ 2MN·O

[
log
(

d2−d1
θ

)]
+ n·O(2MN).

In general, it indicates that the communication complexity and
computation complexity of TESLA is linear w.r.t. the number of
observations. It is easy to implement and use in real practice,
which makes it a good choice in practical applications.

4.6. Extending TESLA for other data analysis tasks

Since TESLA relies only on the properties of Laplace noise to
satisfy LDP, it is independent of the potential truth discovery
approaches. We use TESLA only to obtain a better version of the
noisy values, and extend it to various data analysis tasks where
continuous values should be protected.
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We extend TESLA for mean estimation and standard deviation
calculation, which are two typical tasks for continuous values
under rigorous LDP. Specifically, we compute the mean with our
fused values, and compare it with several state-of-the-art meth-
ods. We compute the standard deviation by using the computed
mean and our fused values.

We extend TESLA to various machine learning tasks, such as
support vector machine (SVM), neural network, logistic regres-
sion and bayesian network. In particular, we use the filtered
values to conduct tasks or calculate the required distribution.

Note that, we also verify whether the idea of TESLA can be used
to improve the existing studies.

4.7. Discussion of TESLA

Existing studies are either designed specifically for discrete
inputs, or only satisfy the weaker versions of LDP for contin-
uous inputs. Although directly adopting for continuous inputs
guarantees rigorous LDP, it may result in unreliable results as
the contained noise could be excessively large. To demonstrate
the superiority of TESLA, we present the properties of it that
distinguish it from existing approaches. It takes a post-processing
approach on the server side by elaborating the inherent noise and
the injected noise. In particular, first, the workers perturb their
true data with the Laplace mechanism and send it to the server.
Then, the server runs the following three procedures: (1) esti-
mating the supremum and infimum of the perturbed value from
each worker using proposed RFM; (2) estimating each worker’s
true values by fusing the corresponding estimated supremum and
infimum using the proposed PFM; and (3) estimating workers’
weight distributions using the proposed PWM.

Our TESLA solution is different from existing approaches
mainly in the following aspects:

• Non-trivial solution under Rigorous LDP. Since the weak
versions of LDP have a higher probability of be attacked, it is
important to have rigorous LDP. Intuitively, we may process
the discrete data into continuous data and adopt existing LDP
approaches for discrete data to achieve rigorous LDP. However,
the utility could be very poor even if we adopt different en-
coding methods, which has also been proven by [7]. The reason
is that the value of each worker may fluctuate marginally near
the aggregated truth, and no matter what encoding methods are
adopted, it will bring great information loss. Moreover, too small
coding granularities will lead to large domain problems in LDP [6].
Furthermore, intuitively, we may add Laplace noise instead of
using the Gaussian mechanism to achieve rigorous LDP. Due to
the randomness and boundlessness of the Laplace distribution, it
will result in unreliable results. Thus, we can only resort to more
accurate noisy values. Therefore, these factors jointly derive the
interrelated solution in this paper.

• Built-in noise. For the first time, we explore the built-
in noise that widely exists in various crowdsensed data under
rigorous LDP, which was systematically overlooked in the recent
studies.

• Stronger Privacy with Excellent performance by the only
cost of time. We know that privacy and utility have certain trade-
off, that is. Thus, we need to sacrifice some utility to achieve
stronger privacy. In this submission, we achieve stronger privacy
while showing improved utility. As shown in the procedures of
TESLA, the only cost is time. Specifically, the server spends most
of the time on estimating the supremum and infimum by RFM. Al-
though such estimations require more computation on the server
side, they are still efficient as the computational complexity is
linearly related to the amount of data according to the discussion
about complexity. Moreover, in practice, it is reasonable to as-
sume that the server has strong computing power to perform the
9

estimations. Furthermore, we notice that the number of values is
normally not unreasonably large due to crowdsensing economic
budget. Besides, having a more powerful machine and making
use of distributed computing can further improve the runtime.
As such, we believe that our solution can provide an acceptable
trade-off for real-world deployments.

• Easy Extension for Other Truth Discovery Scenarios. In
TESLA, we can usually get a good estimated value on the premise
of knowing the noise distribution. Thus, we can easily extend it
to other scenarios [40,41]. For <location, data> scenario [42], since
there usually exist certain correlations between the location and
data, it may lead to the disclosure of private data as the private
data could be inferred by the correlated non-private data [43,44].
For example, the air quality in one place is excellent, the air
quality in other places is poor. If only the location is protected,
the attacker can infer the location information according to the
air quality level, which result in privacy disclosure [45]. Therefore,
both location and data need to be protected. Intuitively, we may
directly add noise to both location and data, which may destroy
the correlation between them and negatively affect the utility of
truth discovery. We have noticed that in location-based service,
a series of excellent achievements can be used for Ref. [46–48].
For example, we may learn from [46], and generate a series of
interrelated false requests for each worker’s data. Then these false
requests are fused in a certain way (such as weighted average).
Next, a method similar to RFM is used for filtering, and a method
similar to PFM is used to redesign for weight updates. Finally,
we submit the noisy <location, data> to the server for truth value
discovery. Additionally, in some scenarios, what tasks have been
done may be also sensitive. We may carry out scheme design in
combination with [41,42].

• Easy Extension for Other Data Analysis Tasks. Due to the
post-processing property of TESLA, it in the field of LDP is some-
what like the role of homomorphic encryption in SMC (Secure
Multi-party Computation) [30]. Actually, almost all the privacy
protection scenario dealing with continuous data can adopt our
idea or even solution directly. Indeed, we have performed various
comparative experiments for its applicability, which are shown in
Section 5.4.

5. Experiments

In this section, we first evaluate TESLA and its core building
blocks, including RFM, PFM and PWM, by varying the privacy bud-
get ϵ over two real-world datasets to verify their effectiveness.
Then, we further evaluate the core building blocks by varying dif-
ferent parameters, such as the number of worker-provided values
M , the server-specific comparison granularity θ and the server-
specific comparison probability ρ. Next, we verify TESLA by mean
estimation and standard deviation calculation over a synthetic
dataset, which are two typical tasks for continuous inputs under
LDP. Finally, we extend TESLA for various machine learning tasks
over another large-scale generated synthetic dataset.

5.1. Experimental setup

Datasets. We use two real-world datasets and two synthetic
datasets to comprehensively evaluate TESLA.

• Adult Content: It [7], Adu for short, is collected from thou-
sands of websites about their received scores, which range from
1 to 5. There are 89,796 claims from 825 workers on 11,040 tasks.

• Weather: It [13], Wea for short, contains the statistics of
weather data from 30 cities in the United States from Jan. 28,
2010 to Feb. 4, 2010. Following the common sense [49], we
consider the information from Accuweather.com to be the ground
truths. There are 16,038 claims from 1920 workers on 1740 tasks.

http://accuweather.com
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Fig. 3. Performance Comparison over Adu.
• Synthetic dataset 1: We generate 1000 values in [1,10], to
create Syn1 and set its ground truth to be 5.5 for evaluation.
Similar to [7], for each worker, his answer is generated by adding
the Gaussian noise N (5.5, σ 2

i ) to the ground truth, where σi is
decided by the worker’s quality. We define three types of work-
ers: high-quality workers with σi = 1, middle-quality workers
with σi = 5 and low-quality workers with σi = 10. We randomly
choose 20% of the workers to be high-quality workers, 60% of the
workers randomly to be middle-quality workers, and the rest to
be low-quality workers.

• Synthetic dataset 2: It, Syn2 for short, contains 250,000
records, each of which contains 30 attributes, and the threshold
range of each attribute is 20, where the last attribute has 8 values
and is represented as 8 categories.

Evaluation Metrics and Baselines. For the utility measure of
truth discovery, we adopt the commonly used MAE Change (Mean
Absolute Error Change) [7], which measures the deviation be-
tween the noisy truths and the real truths, where a smaller value
indicates better performance. Moreover, we also consider the
running time of TESLA as another evaluation metric. For the utility
measure of classification tasks in machine learning, we adopt
the commonly used accuracy Acc, where a higher value indicates
better performance. For the utility measure of bayesian network
task in machine learning, we adopt the commonly used total
variation distance TVD [50], which measures the noisy marginal
and noise-free marginal. The smaller, the better.

For the baselines, we compare TESLA with several state-of-
the-art approaches. Specifically, we compare it with TDDis (Truth
Discovery for DIScrete inputs) [8], TDCon (Truth Discovery for
CONtious inputs) [9], PairTD (Pair inputs for Truth Discovery) [11],
BinTD (Binary inputs for Truth Discovery) [10], NullTD (Null pri-
vacy for Truth Discovery) [7]. Note that, since TDDis and BinTD are
designed for discrete inputs, we discretize the continuous data
10
to fit them. Moreover, we also compare TESLA with the designed
approaches HamTD and EucTD, where CRH is conducted based on
the uploaded noisy values when d(·) in Eq. (2) is measured by
Hamming Distance or Euclidean Distance respectively.

For machine learning and mean estimation, we compare the
variant of TESLA with the state-of-the-art Harmony [51], HM (Hy-
brid Mechanism) [6] and CKV (Collecting Key–Value data) [27].

We implement all approaches in Python 3.7. All experiments
are conducted on an Intel i5-5200U 2.20 GHz laptop.

5.2. Performance comparison

Impact of ϵ. Figs. 3(a) and 4(a) show the performance of TESLA
when varying ϵ. We have the following observations. TESLA out-
performs all competitors in all cases. This is because it mitigates
the negative influence of the noise contained in the uploaded
noisy values. Note that, TDCon, NullTD and PairsTD only guarantee
the weaker versions of LDP. Even with these privacy relaxations,
TESLA still significantly outperforms them.

Effectiveness of RFM. We compare RFM with LapFilter and
GauFilter, which only consider the injected the Laplace noise
or the inherent Gaussian noise respectively. Moreover, we also
include NoFilter to show the utility improvement after filtering.
Figs. 3(b) and 4(b) show the results. We have the following
observations. First, the methods considering filtering the noisy
values, significantly outperform NoFilter. There are two types of
noise in the noisy values. By limiting the scale of the noise, the
utility can be improved. Second, RFM always performs the best
when ϵ gradually enlarges. This is because by utilizing the defined
probability comparison function, we can limit the scale of the
noise to some extent.

Effectiveness of PFM. To verify the effectiveness of PFM, we
compare it with four baselines, which are NoFusion, AvgFusion,
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Fig. 4. Performance Comparison over Wea.
upFusion and InfFusion. For NoFusion, the server directly conducts
RH on the noisy values. For AvgFusion, the server adopts the
cheme in Eq. (6) to filter the noisy values. For InfFusion and
upFusion, the server adopts the schemes in Eq. (7) and Eq. (8)
respectively.

Figs. 3(c) and 4(c) show the results. We have the following
bservations. First, the methods considering fusing the obtained
upremum (dsup_i) and infimum (dinf _i), significantly outperform
oFusion. Second, InfFusion and SupFusion perform better than
vgFusion. This is because, in most cases, the true value is closer
o supremum or infimum, and AvgFusion cannot preserve suffi-
ient information, which inevitably leads to poor performance.
hird, PFM always performs the best when ϵ gradually increases.
he reason is by adaptively relying more on the supremum or
nfimum, information loss can be reduced as much as possible.
ffectiveness of PWM. To verify the effectiveness of PWM, we
ompare it with four baselines, which are HamWM, EucWM,
apWM and GuaWM. For HamWM and EucWM, they use Ham-
ing Distance and Euclidean Distance for d(·) in Eq. (2) respec-

ively. For LapWM and GuaWM, they set the noise distribution in
q. (9) as the Laplace distribution and the Gaussian distribution
espectively.

Figs. 3(d) and 4(d) show the results. Our findings are two-fold.
irst, the methods considering the noise significantly outperform
amWM and EucWM. The reason lies in that, by modeling the
oise for the uploaded noisy values, we can reduce the neg-
tive impact of noisy values on truth aggregation and weight
stimation. Second, PWM always performs best when ϵ grad-

ually increases. This is because the above two types of noise
exist simultaneously in the uploaded values, and considering
them together can make the potential truth discovery approaches
(e.g., CRH) more robust against noise to the maximum extent.
11
5.3. Effect of different parameters

Impact ofM . Fig. 5(a)shows the results when varying the number
of workers M . It witnesses a sharp drop of the MAE Change
while decreasing M . The reason is that CRH can estimate workers’
weights better when more information is available.
Impact of θ and ρ. Figs. 5(b) and 5(c) show the results when
varying the server-specific comparison granularity θ and server-
specific comparison probability ρ. We have the following obser-
vations. First, a smaller θ means better performance. The reason
is that with a small θ , the server can get tighter supremum and
infimum, which can mitigate information loss due to privacy
protection as much as possible. Second, the range of ρ in Eq. (3)
is [0.3159, 0.6840] according to our analysis in subsection for
RFM. We thus empirically set ρ = 0.51 as it always produces a
relatively good performance. The reason is as follows. When ρ is
too small, almost all the values will be fused, which leads to large
information loss. When ρ is too large, the obtained supremum
and infimum are close to the numerical boundaries d1 and d2,
which will lead to greater fusion error. Third, the results change
significantly, which indicates that RFM is easy to be trained. It is
very important for practical deployment.
Efficiency of TESLA. Figs. 5(d), 5(e), 5(f) and 5(g) depict the exe-
cution time, where NoPriv represents the running time of CRH on
the original values. Note that, since the adopted Scipy library may
be non-convergent when computing a double integral, it requires
nearly 3800s for TESLA. This comparison is meaningless due to
the limitation of Python itself. We can use other programming
languages to solve this problem. Hence, we only consider the
injected Laplace noise in Eq. (3) (denoted by TESLA∗) to test the
time cost varying ϵ, θ , ρ and M . We can observe that the running
time after perturbation is a little larger than that on original
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alues, and the running time changes little when ϵ varies. How-
ver, obviously, the running time is still acceptable. Moreover,
he running time decreases when θ and ρ increases. Besides,
he running time varying M is approximately linear, which is
onsistent with our complexity analysis. This guarantees practical
eployment of TESLA on large-scale crowdsourcing applications.
urthermore, the complexity analysis of TESLA also confirms its

scalability.
Impact on Weight Estimation. We randomly choose 5 workers
to show the impact of TESLA on Weight Estimation before and
after adopting TESLA. Fig. 5(h) shows the results, where NFW is
the noise-free weight and NW is the noisy weight. We find that
the weights from these two methods are approximately the same.
The reason is noise-free values are obtained as far as possible
to some extent. Since weight plays the leading role in truth
discovery, we can expect the desirable performance using TESLA.

.4. Performance on other data analysis tasks

mpact on Mean. We compare the generalized method TESLA−,
hich does not conduct PWM in TESLA, for mean estimation with

the state-of-the-art methods Harmony [51] and HM [6]. HarT is a
variant of [6] Harmony when preprocessing data using RFM and
PFM, and the same for HMT of HM. Fig. 6(a) and 6(b) shows the
12
results when varying ϵ and M . It can be observed that HarT and
HMT are always closer to NoPriv especially when ϵ and M are
small. It demonstrates the effectiveness of the idea of TESLA as the
quality of inputs is fundamentally improved. Moreover, there are
obvious upward trends and the performance gap shrinks while
enlarging ϵ and M . Thus, the idea of TESLA is more announced
with small ϵ and M .
Impact on Standard Deviation. To eliminate the effect of ran-
domness, we also test the calculation of standard deviation (Std)
when varying ϵ and M , and the results are shown in Figs. 6(c)
and 6(d). We calculate Std while the mean and each value are
calculated by TESLA−, and our method is denoted by TESLA#. We
have the similar observations with mean estimation, and the
reasons are the same.

Table 3 shows the results about different machine learning
tasks on Syn2 dataset. Due to space limitation, we only com-
pare TESLA+ with HM and CKV, which are the state-of-the-art
method for machine learning under LDP. In particular, Bayes is
bayes network, which is measured by TVD; NN and LR are neural
network and logistic regression respectively, which, as well as
SVM, are measured by Acc. We set different privacy budgets and
data volumes for reporting the results, and have the following
observations.

First, it can be seen that HM or CKV can be improved by
+
TESLA , as HMT performs better than HM and CKV. Second, the
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Table 3
Acc (%) and TVD (%) of machine learning tasks over Syn2.
Tasks Methods ϵ = 8 ϵ = 5 ϵ = 4 ϵ = 2

100% 50% 100% 50% 100% 50% 100% 50%

Bayes
TESLA+ 79.115 77.532 75.324 71.814 74.568 72.856 72.156 70.526
CKV 80.135 78.625 76.526 73.362 75.136 73.456 73.214 71.421
HM 81.258 79.332 78.116 75.236 76.452 74.152 74.325 72.321
HMT 83.366 80.784 80.532 77.145 77.856 75.235 75.541 73.452

NN
TESLA+ 85.051 82.133 83.232 78.942 81.263 76.456 79.325 77.562
CKV 85.256 82.568 83.756 79.154 82.123 77.452 80.132 78.145
HM 86.256 83.260 84.112 82.165 83.357 78.123 81.235 79.112
HMT 88.166 85.623 85.652 83.845 84.421 79.236 82.356 80.156

LR
TESLA+ 83.388 81.790 79.214 76.720 78.135 75.153 76.135 75.132
CKV 84.561 82.156 80.516 77.421 79.256 76.524 77.235 76.523
HM 85.361 83.140 81.325 78.235 80.423 77.358 78.541 77.512
HMT 87.147 85.231 83.561 80.265 81.236 78.254 79.154 78.541

SVM
TESLA+ 83.568 81.804 81.568 79.168 80.154 77.235 78.325 76.162
CKV 83.896 82.165 81.886 79.352 81.352 78.132 79.421 77.341
HM 84.220 82.725 82.425 80.326 82.145 79.521 80.132 78.642
HMT 86.541 85.006 84.562 80.524 83.256 80.135 81.236 79.741
s
c
i

performance does not drop as quickly with decreasing data vol-
ume compared with the privacy budget. The reason can be ex-
plained as follows. More data contains more effective informa-
tion, and the benefits of capturing more effective information
outweigh the advantage of less noise. Third, there are obvious
upward trends while enlarging ϵ and M .

. Conclusion

In this paper, we focus on inferring truth effectively under rig-
rous local differential privacy for continuous inputs. We present
13
a novel solution, called TESLA. Overall, TESLA in the field of LDP is
omewhat similar to the role of homomorphic encryption in se-
ure multi-party computation. In TESLA, to mitigate the negative
nfluence of noise on truth aggregation, we design RFM and PFM
to obtain the filtered values. To mitigate the negative influence
of noise on weight estimation, we design PWM to model the
mixed error distribution. We provide the theoretical analysis of
TESLA’s utility, privacy and complexity. While being proposed for
truth discovery under LDP, its idea is also applicable to other
crowdsensing tasks (e.g. machine learning) while guaranteeing
rigorous LDP.
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