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Abstract
In the rapidly changing healthcare landscape, the
implementation of offline reinforcement learn-
ing (RL) in dynamic treatment regimes (DTRs)
presents a mix of unprecedented opportunities and
challenges. This position paper offers a critical
examination of the current status of offline RL in
the context of DTRs. We argue for a reassessment
of applying RL in DTRs, citing concerns such as
inconsistent and potentially inconclusive evalua-
tion metrics, the absence of naive and supervised
learning baselines, and the diverse choice of RL
formulation in existing research. Through a case
study with more than 17,000 evaluation experi-
ments using a publicly available Sepsis dataset,
we demonstrate that the performance of RL al-
gorithms can significantly vary with changes in
evaluation metrics and Markov Decision Process
(MDP) formulations. Surprisingly, it is observed
that in some instances, RL algorithms can be
surpassed by random baselines subjected to pol-
icy evaluation methods and reward design. This
calls for more careful policy evaluation and al-
gorithm development in future DTR works. Ad-
ditionally, we discussed potential enhancements
toward more reliable development of RL-based
dynamic treatment regimes and invited further dis-
cussion within the community. Code is available
at https://github.com/GilesLuo/ReassessDTR.

1. Introduction
The advent of machine learning in the medical field has
opened new avenues for treatment optimization (Cher-
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nozhukov et al., 2018; Myszczynska et al., 2020). Among
various machine learning techniques, reinforcement learn-
ing (RL) has steadily gained recognition as a transforma-
tive tool in healthcare (Coronato et al., 2020; Yu et al.,
2021), particularly within dynamic treatment regimes
(DTRs)(Chakraborty & Murphy, 2014). The core strength
of RL-DTRs is their ability to learn from patient responses
to treatments and adapt treatment plans accordingly, leading
to better patient outcomes. This adaptability is especially
valuable in healthcare, where patient conditions and treat-
ment responses are often diverse and can change over time.

Recent advancements in RL applied to DTRs, especially in
offline RL(Agarwal et al., 2020), have demonstrated promis-
ing potential to guide future treatment decisions without
direct environment interaction. For instance, Wu et al. in-
troduced a weighted dueling double deep Q-network with
embedded human expertise (WD3QNE), addressing domain
knowledge embedding. Luckett et al. explored V-learning
to estimate optimal DTRs in mobile health, addressing the
challenges of indefinite time horizons and high-frequency
decision-making. These studies highlight the diverse appli-
cations of offline RL in healthcare, from improving person-
alized treatment in chronic diseases to optimizing real-time
interventions in mobile platforms.

The application of RL in DTRs is not without its criticisms
(Jeter et al., 2019) (Gottesman et al., 2018), prompting a
thorough reassessment of its utility and necessity in this
field. One major issue is the lack of standardized evaluation
metrics. For example, Komorowski et al. use weighted
importance sampling; Raghu et al.; Raghu et al.; Peng et al.
use different variants of doubly robust off-policy evaluation
methods (Jiang & Li, 2016). Another approach involves
using direct methods (Mannor et al., 2007), yet this, too,
lacks uniformity across studies. The diversity of evaluation
techniques underscores the need for a consensus on bench-
mark metrics to facilitate meaningful comparisons in this
field. Furthermore, the diverse formulations of Markov deci-
sion processes (MDPs) and the lack of established baselines
make it challenging to gauge the treatment improvement
offered by RL approaches over traditional methods. Regard-
ing the state space, Komorowski et al. converted continuous
variables into discrete clusters, in contrast to Liu et al.;
Wang et al., who used continuous variables directly. In ac-
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tion space design, although discrete actions are commonly
employed, some studies, such as (Wang et al., 2022; Huang
et al., 2022) have explored continuous action spaces. For
reward, Komorowski et al. chose simplistic 90-day mortal-
ity for patient outcomes, whereas Raghu et al.; Raghu et al.;
Peng et al. integrated clinically validated risk scores into the
reward function, but with varying weights on reward com-
ponents. This diversity highlights systematic reevaluation
to enhance RL’s reliability and effectiveness in developing
treatment plans.

The position of this paper is that while RL holds signifi-
cant promise for optimizing DTRs in healthcare, there is
a critical need for a comprehensive reassessment of its
application. Previous studies (Gottesman et al., 2018; Tang
& Wiens, 2021) focused mainly on practical healthcare con-
cerns with respect to policy evaluation. However, we call
for a more thorough understanding of methodological incon-
sistencies, including variations in policy evaluation metrics,
the absence of standardized baselines for comparison, and
the diverse formulations of MDPs. The paper advocates for
the establishment of uniform standards and methodologies
to ensure that RL’s application is both scientifically rigorous
and practically applicable to healthcare.

Our paper presents a critical perspective on the effectiveness
and necessity of using RL in DTRs. Initially, we review fun-
damental concepts in offline RL and its application in DTRs.
We then review the literature in this domain, highlighting the
various policy evaluation methods used in different studies
and pointing out that the diversity often leads to significant
variability in performance among algorithms. Furthermore,
we compare basic baselines (e.g., random policies and su-
pervised learning) that a notable number of existing studies
omitted and found that RL algorithms can underperform
compared to these simple baselines, which raises a cause for
concern. Moving forward, we standardize our evaluation
method to focus on the impact of different reward designs,
demonstrating that varying rewards can lead to relatively
disparate performance. Through our critical analysis, we
offer several considerations to improve the reliability of
model development and evaluations in this field.

2. Background
This section provides the basic notation and conceptual
background necessary for applying offline RL to DTRs,
along with a common offline RL formulation for addressing
problems in DTR.

2.1. RL and Offline RL

RL is building upon Markov decision process (MDP) de-
noted as M = {S,A, P, r, γ} (Puterman, 2014), where S
is the state space, A is the action space, γ ∈ [0, 1) is the

discount factor, r : S × A → R and P : S × A → S)
are the reward and transition functions, respectively. The
value function is the expectation of future discounted to-
tal reward obtained by following a policy π : S → ∆(A),
vπ(s) = Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s] where Eπ means the
expectation under the policy π and the transition probabil-
ity. The corresponding action-value function is qπ(s, a) =
r(s, a) + γEs′∼P (·|s,a)[v

π(s′)]. The goal is to find an opti-
mal policy π∗ that maximizes the values ∀s ∈ S.

In an offline RL setting, our focus is on learning an opti-
mal policy for decision-making based on a pre-gathered
dataset, denoted as D = {si, ai, ri, s′i}

n−1
i=0 . This dataset

is assumed to be the result of actions taken according to
a specific behavior policy πD. One primary challenge in
offline RL is that πD may not thoroughly explore all pos-
sible actions, leading to potential overestimation of those
out-of-distribution actions. Acting greedily with respect to
such actions could be problematic (Fujimoto et al., 2019).

To address the challenge, a widely adopted method involves
restricting the learned policy π to be close to a baseline
policy πD, by incorporating a KL-divergence term into
the optimization objective: maxπ Es∼ρ[

∑
a π(a|s)q(s, a)−

τDKL(π(·|s)||πD(·|s))] with τ > 0. This formulation en-
sures that the optimized policy π is only supported where
πD is non-zero, effectively setting π(a|s) = 0 wherever
πD(a|s) = 0. This principle underlies numerous offline RL
strategies (Wu et al., 2019; Peng et al., 2020; Nair et al.,
2021; Brandfonbrener et al., 2021; Fujimoto & Gu, 2021).
Fujimoto & Gu introduce a behaviour cloning regulariza-
tion term, (π(s)−a)2. An alternative approach is in-sample
policy optimization, which aims to prevent the selection of
actions outside πD’s distribution. A more recent work (Xiao
et al., 2023) proposes an in-sample softmax to directly sam-
ple from support. We will later provide more details about
the algorithms used in our experiments.

2.2. Dynamic Treatment Regime

A Dynamic Treatment Regime (DTR) represents a sequence
of decision rules that guide treatment adaptations over time
based on an individual patient’s evolving conditions and
responses. An action (i.e., treatment) should take into ac-
count the patient’s current state, including medical history
and previous treatment responses, to recommend the next
best action. Offline RL is particularly suitable for DTR
because it allows the use of extensive historical healthcare
data to learn optimal treatment strategies without the need
for real-time experimentation in patients.

In this work, we use the intravenous vasopressor fluid (IV)
and vasopressor dosage regime task (Komorowski et al.,
2018) for sepsis treatment in the intensive care unit (ICU)
as a proof-of-position. The dataset is derived from the
Medical Information Mart for Intensive Care III (MIMIC-
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III) database (Johnson et al., 2016). The selection of patients
follows the sepsis-3 criteria (Singer et al., 2016), focusing
on the early stage of sepsis management up to 24 hours prior
to and 48 hours after the estimated onset of sepsis.

3. Problem Formulation in Offline RL for DTR
A DTR problem is typically modeled as a finite-time MDP
as introduced in Section 2.1:

States (s ∈ S): time-varying clinical variables that repre-
sent the medical condition of a patient. Particularly, this
paper considers continuous states to avoid introducing vari-
ance from clustering-based state discretization algorithms.

Actions (a ∈ A): actionable treatment decisions. This work
primarily focuses on discrete actions, as they are not only
more extensively studied in literature but also have a more
established theoretical foundation of policy evaluation.

Rewards (r): the outcome of an action taken in a particular
state, reflecting improvements or deterioration in the pa-
tient’s condition. Various factors can be taken into account
in the reward design, including the outcome of treatment,
the clinical risk score, and the abnormality of vital signs.

In our sepsis cohort, the curation and preprocessing of raw
data are mostly reproduced from Komorowski et al.’s work.
Data are binned into 4-hour intervals, with 46 observational
variables at each step. The dataset categorizes IV fluid and
vasopressor dosages into five classes (See Appendix B), re-
sulting in a 5 × 5 discrete action space. Additionally, we
employed a series of important modifications. First, we
change the treatment outcome from 90-day to in-hospital
mortality under clinical guidance to strengthen the correla-
tion between actions and outcomes. Secondly, we exclude
patients who have inconsistent time-series data1. Further-
more, we removed the ’input 4-hourly’ feature from the
observation space, as the feature is part of the action.

4. Diversity and Inconsistency of Policy
Evaluation Methods in RL-DTR

4.1. Challenges of Policy Evaluation in RL

Evaluating offline RL algorithms for DTRs is challenging
for several reasons: a) The dataset is fixed and observational,
meaning RL cannot be evaluated by interacting with the en-
vironment. b) Medical decision-making is complex, as
the effects of treatments may not be immediately apparent

1The original patient cohort included patients who lost track
of information in the middle of treatment trajectories. This means
that they omit the irregular sampling frequency and consider them
as consecutive time steps, which is not a common practice in
RL. Therefore, we remove patients who have missing information
within 4 hours during admissions.

and can be influenced by many confounding factors. c) Pa-
tients’ responses to treatments are inherently uncertain and
variable, making it difficult to assess the true effectiveness
of proposed treatment policies. These challenges make it
harder to evaluate offline RL algorithms in the context of
DTRs, compared to traditional RL settings.

Recent literature addresses the evaluation challenges in
DTR by a range of policy evaluation techniques. Notable
among these are Inverse Probability Weighting (IPW) (Liu
et al., 2017), Weighted Importance Sampling (WIS) (Ki-
dambi et al., 2020; Nambiar et al., 2023), the Direct Method
(DM)(Huang et al., 2022; Kondrup et al., 2023), and Doubly
Robust (DR)(Raghu et al., 2017; Wu et al., 2023; Wang
et al., 2018) estimators. These methods tried to tackle the
confounding variables and create a counterfactual estima-
tion based on historical data.

4.2. Existing Evaluation Methods in RL-DTR

An offline policy evaluation (OPE) aims to estimate a pol-
icy’s value V̂ π using a behavior policy πD. The Direct
Method (DM) directly approximates the value function by
constructing a model to predict the expected reward for each
state-action pair under the target policy. The DM estimator
for the policy value is formulated as:

V̂ π
DM = EπQ̂πD (s, a) (1)

where Q̂πD (s, a) is the estimated action-value function
under the behavior policy. Despite its straightforward ap-
proach, DM relies heavily on the model’s accuracy for es-
timating Q̂πD , making it susceptible to model misspecifi-
cation and bias due to the imbalanced nature of medical
data. Importance Sampling (IS)(Tokdar & Kass, 2010) ad-
justs returns from the behavior policy to approximate those
under the target policy. WIS mitigates IS’s high variance
by normalizing each weight by the sum of all weights be-
fore applying them to the returns. The WIS estimator is
expressed as:

V̂ π
WIS =

∑N
i=1[ρ

i
1:Ti

Gi]∑N
i=1 ρ

i
1:Ti

(2)

where ρi1:Ti
=
∏Ti

t=1
π(ai

t|s
i
t)

πD(ai
t|sit)

, and Gi =
∑Ti

t=1 γ
t−1rit.

Modifications such as bootstrapping (V̂ π
WISb

), ratio trun-
cation (V̂ π

WISt
), or a combination of both (V̂ π

WISbt
) can

further decrease variance. A comprehensive introduction is
available in Appendix C. The Doubly Robust (DR) estima-
tor(Jiang & Li, 2016) combines the IS with DM, iteratively
calculated per-trajectory estimation as:
V̂ Ti+1−t
DR = V̂ π(sit) + ηt(r

i
t + γV̂ H−t

DR − Q̂πe(sit, a
i
t))

Starting from t = H with V 0
DR := 0, this calculation pro-

ceeds in reverse order to derive V Ti

DR for patient i. The
overall estimate is then V̂ π

DR :=
∑N

i=1 V̂
Ti

DR. Refer to Ap-
pendix C for our implementation of the DR estimator.
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5. Reward Design Choices
This section examines reward design choices in RL for DTR
literature. We aim to underscore the importance of reward
structures in RL’s effectiveness and comparability in DTR.

5.1. Outcome-Based Reward

The initial reward design, (Komorowski et al., 2018), em-
ploys a straightforward reward setting: r = 0 for non-
terminal steps, r = +100 for patient survival or r = −100
for death at the final step. This binary approach oversimpli-
fies the complexity of medical scenarios and omits critical
factors such as the risk of deterioration, abnormality of the
critical signs, and the progression rate of the disease, all
of which significantly affect patient mortality. From an RL
perspective, this approach might lead to more challenging
issues such as credit assignment, sampling inefficiency and
learning variance due to sparse reward.

5.2. Risk-based Reward

Incorporating intermediate reward is shown to be beneficial
in goal-reaching RL (Zhai et al., 2022). In DTR applications,
intermediate rewards are generally represented by clinical
risk scores. Here we introduce two typical risk score-based
rewards in the RL-DTR literature.

5.2.1. ICU RISK-BASED REWARD

The Sequential Organ Failure Assessment (SOFA)
(Kajdacsy-Balla Amaral et al., 2005; Jones et al., 2009)
score, a commonly used critical care metric to quantify
the severity of a patient’s organ function or rate of failure,
has been used as a reward design in the literature (Raghu
et al.; Wang et al.). In addition to the SOFA score, lac-
tate levels are included in the reward calculation, as they
are biomarkers(Nguyen et al., 2004) for tissue hypoxia
and metabolic dysfunction. Represented SOFA score as
κ ∈ [0, 1, 2, ..., 24] and the value of lactate (mmol/L ) as v,
the reward is intricately defined as:

rit = c0(1κi
t=κi

t+1
· 1κi

t+1>0) + c1(κ
i
t+1 − κi

t)

+ c2 tanh(v
i
t+1 − vit) + 1t=Tiroutcome

(3)

where c0, c1, c2 is -0.025, -0.125, and -2, respectively.
routcome is 15 for an alive patient; otherwise -15. This
formula integrates both stability and changes in organ func-
tion (using the SOFA score) and metabolic alterations (using
lactate levels).

5.2.2. EARLY WARNING RISK-BASED REWARD

We also present a reward function based on the National
Early Warning Score 2 (NEWS2) (Inada-Kim & Nsutebu,
2018) system to keep in line with the latest medical ap-

plications 2. We normalize NEWS2 to a range of [0,1],
representing the probability of mortality. routcome is set to -1
in the event of death and to 0 otherwise. The reward is then

rit = −rNEWS2 + 1t=Tiroutcome (4)
This normalization creates a consistent focus on mortality
and eliminates the need for tuning weights between different
reward components.

6. Baselines Comparisons
This section addresses the selection of baselines. Upon
reviewing the literature, we observed several inconsistencies:
1) the use of different baseline sets across studies, with
some lacking state-of-the-art (SOTA) offline RL algorithms;
2) the absence of naive baselines, such as random policy,
for essential sanity checks; 3) the omission of supervised
learning baselines. Consequently, this section outlines a set
of baselines that we consider appropriate for comparison.

Supervised learning baselines: Using Supervised Learning
(SL) algorithms as a benchmark is crucial to determining
RL’s benefits in DTR. Comparing RL with simpler SL algo-
rithms helps us understand if the complexities of RL lead to
better results. Although offline RL may not always perfectly
match clinicians’ actual decisions, its performance should
be close to real-world outcomes (as indicated by clinician
decisions in test data). We employ a Long-Short-Term Mem-
ory (LSTM) (Hochreiter & Schmidhuber, 1997) network to
minimize cross-entropy loss, a standard loss function for
classification tasks (see the Appendix C.4).

Naive baselines: We include random πr, zero-drug πmin,
max-drug πmax, and alternating policy πalt (elaborated in the
section D.1). While often neglected in RL-DTR research,
naive baseline comparison is vital for two reasons: 1) to
assess if naive baselines inadvertently outperform clinicians,
indicating potential flaws in evaluation metrics; 2) to es-
tablish a lower performance bond, providing a worst-case
scenario benchmark for algorithmic assessment.

Deep Q-Network (DQN): DQN(Mnih et al., 2015) inte-
grates neural networks to approximate the Q-function with
a target network and Experience Replay Buffer. Although
DQN was originally designed for online RL, one can easily
adapt it to the offline case where the replay buffer is fixed.
The objective function for DQN can be expressed as:

argmin
θ

ED

[(
r + γmax

a′
Qθ′(s′, a′)−Qθ(s, a)

)2]
(5)

where θ and θ′ are the parameters of the current and target
Q-networks, respectively.

Conservative Q-Learning (CQL): The primary objective

2Recent clinical studies (Sivayoham et al., 2021; Mellhammar
et al., 2019) indicates the possible advantage of using NEWS2
against SOFA score in managing sepsis.
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of CQL(Kumar et al., 2020) is to construct a conservative
estimate of the Q function, intentionally underestimating
the Q values. This is achieved by incorporating an addi-
tional regularization term into the standard Bellman update
equation. The loss function LCQL(θ) for CQL is given by:

LDQN(θ)−λED

[
log

∑
a

exp(Qθ(s, a))−Ea∼π(·|s)[Qθ(s, a)]

]
Here, λ is a regularization parameter, and LDQN (θ) is

DQN’s loss function.

Batch Constrained Q-Learning (BCQ): BCQ(Fujimoto
et al., 2019) ensures the action is in-distribution by introduc-
ing a Varational Auto-encoder (Sohn et al., 2015) structure.
The objective function for BCQ can be formulated as:

argmin
θ

ED

[(
r+γ max

a′∈Aϕ(s′)
Qθ′(s

′, a′)−Qθ(s, a)

)2
]

(6)

where Aϕ(s
′) denotes the set of actions similar to the train-

ing batch, generated by a VAE with parameters ϕ.

Implicit Q-Learning (IQL): IQL focuses on directly op-
timizing the Q-function without explicitly defining a pol-
icy(Kostrikov et al., 2022). This approach aims to improve
learning efficiency and stability. The update equation for
IQL can be written as:

argmin
θ

ED

[(
r + γEa′∼πθ

[Qθ′(s
′, a′)]−Qθ(s, a)

)2] (7)

Here, πθ denotes the implicit policy derived from the Q-
function parameterized by θ.

As the domain of offline RL rapidly evolves, newer algo-
rithms(Fujimoto & Gu, 2021; Xiao et al., 2023) are emerg-
ing as more advanced alternatives but are not reviewed here.

7. Experiments
This section presents empirical findings using the sepsis
dataset, illustrating the significant impact of varying policy
evaluation algorithms, metrics, and reward design. The
data set is divided into training, validation, and testing sets,
comprising 70%, 15%, and 15% of the data, respectively.
This partitioning adheres to the patient stratification method
detailed in Appendix B. For hyperparameter optimization,
grid search is performed in a unified search space. Please
see Appendix E.2 for any missing details. In addition to
the main result below, Appendix H provides the test set
performance using Outcome and SOFA reward in Table 10
and 11, with additional 35 experiments on subsets.

7.1. Overall Comparison Results

We compare naive baselines, supervised learning, and RL
(10 policies in total) on 9 metrics with 13 patient groups and
3 different reward designs, resulting in 17,550 evaluation
experiments. In addition to the performance comparison
in the overall test set, we stratified the test set according to

clinical outcome and risks, producing 12 subsets. Due to
space limitations, only selected figures and tables are shown
here, with complete results in Appendix H.

To compare the performance across different reward designs
and policy evaluation metrics in a straightforward way, we
used a measure called ”Number of Wins” (No. Wins). This
measure counts how many times one algorithm outperforms
all others. A win is counted when the algorithm is the best on
a metric for a particular patient group with a specific reward
setting. From our experiments, it is evident that the best
algorithm varies across settings; moreover, although some
algorithms achieve wins under policy evaluation methods
such as WIS and DR, they may still behave unreasonably,
i.e., deviating significantly from a doctor’s policy, as indi-
cated by metrics like RMSE or F1. We summarize the key
observations below.

Effectiveness of Naive Baselines: Surprisingly, the naive
baselines have wins over RL, SL, and even the doctor returns
in the overall test set, as shown in Figure 1a and Figure
1b. Intuitively, naive baselines should not win even once.
Table 1 reveals that the weight policy performed better than
all RL, SL, and even the doctor return in the overall test
set on WIS and WISt. However, this trend is inconsistent
with the result in Table 10, where RL algorithms generally
surpass naive baselines. These findings again support our
recommendation for including naive baselines as an easy
check to the reliability of OPE methods.

RL Performances Across Rewards: We observed signif-
icant differences in how RL algorithms perform with dif-
ferent rewards. For instance, DQN won the most on the
NEWS2 reward, while CQL won the most on the outcome
reward (see Figure 1b). Yet, on the SOFA reward, all RL
policies won less than SL, making it difficult to identify a
consistently performing superior algorithm across various
reward settings.

RL vs SL: When RL models outperform SL on OPE met-
rics, it is reasonable to anticipate that RL should also demon-
strate comparable performance to SL on supervised learning
metrics. However, our findings present a more complex
scenario. There are instances where RL’s superiority in
OPE metrics does not translate to better performance like
RMSE or F1 score (see Table 1’s DQN column), while we
also observe the opposite cases (see Table 1’s CQL column,
WIS, WISb and WISt rows). This discrepancy raises criti-
cal questions about the effectiveness and reliability of OPE
methods in evaluating RL models.

Comparison of DR and IS: Our analysis indicated that DR
either overestimates or underestimates IS (see Table 1 , and
Table 10, 11 in Appendix, and compare the DR row with
other importance sampling rows.), subject to the reward
setting. Instead of being doubly robust, our experiments
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metric alt max min random weight SL DQN CQL IQL BCQ

RMSEIV 763.89 861.51 645.83 671.39 645.83 557.81 ± 9.27 638.51 ± 8.63 541.67 ± 5.74 578.96 ± 10.06 626.2 ± 9.56
RMSEvaso 0.67 0.89 0.32 0.5 0.59 0.31 0.44 ± 0.07 0.3 ± 0.01 0.31 ± 0.01 0.31
WIS −4.58 −4.62 −4.58 −3.84 −3.78 −4.22 ± 0.41 −3.79 ± 0.01 −4.1 ± 1.43 −5.83 −4.58
WISb −5.43 −4.81 −5.76 −4.4 −4.73 −4.62 ± 0.17 −3.88 ± 0.73 −4.48 ± 0.77 −5.31 ± 0.06 −5.41 ± 0.17
WISt −4.58 −4.62 −4.58 −3.97 −3.78 −4.57 ± 0.62 −3.84 ± 0.11 −4.1 ± 1.43 −5.83 −4.58
WISbt −5.64 −4.69 −5.61 −4.5 −4.5 −4.68 ± 0.3 −3.87 ± 0.67 −4.38 ± 0.98 −5.27 ± 0.05 −5.55 ± 0.19
DR −0.54 −0.19 −1.55 −0.35 −0.3 −0.36 −0.14 ± 0.04 −0.71 ± 0.05 −0.51 ± 0.04 −1.54 ± 0.01
P.F1 0.2 0.02 0.2 0.2 0.0 0.31 ± 0.01 0.06 ± 0.02 0.33 ± 0.01 0.34 ± 0.01 0.23 ± 0.01
S.F1 0.19 0.02 0.19 0.19 0.0 0.3 ± 0.01 0.06 ± 0.02 0.32 ± 0.01 0.33 ± 0.01 0.22 ± 0.01
GD -4.39

Table 1. Comparison across policies on the test set using NEWS2 reward. The best and second-best algorithms are highlighted in
red and blue, respectively. RMSEIV and RMSEvaso mean the RMSE loss for the IV fluid treatment and vasopressor treatment. The
predicted action class is mapped to continuous values by taking the median of the bin, as detailed in Appendix B. P.F1 and S.F1 denote
the patient-wise F1 and sample-wise F1. The above denotation applies to all the following tables.

metric alt max min random weight SL DQN CQL IQL BCQ

RMSEIV 788.91 880.8 756.41 774.78 749.58 637.22 ± 10.04 734.32 ± 11.14 609.62 ± 11.74 645.67 ± 6.1 719.77 ± 12.57
RMSEvaso 0.54 0.85 0.27 0.47 0.56 0.25 0.4 ± 0.07 0.26 ± 0.01 0.25 ± 0.01 0.26
WIS −3.23 −3.51 −3.44 −3.14 −3.38 −3.01 ± 0.07 −2.85 ± 0.72 −1.9 ± 0.36 −2.98 ± 0.13 −3.44
WISb −3.33 −3.49 −3.41 −3.23 −3.4 −2.89 ± 0.06 −2.85 ± 0.5 −2.09 ± 0.19 −2.84 ± 0.02 −3.34 ± 0.02
WISt −3.23 −3.51 −3.44 −3.14 −3.38 −3.01 ± 0.07 −2.85 ± 0.72 −1.9 ± 0.36 −2.98 ± 0.13 −3.44
WISbt −3.29 −3.47 −3.42 −3.21 −3.41 −2.93 ± 0.05 −2.81 ± 0.49 −2.1 ± 0.24 −2.86 ± 0.05 −3.34 ± 0.05
DR −0.26 −0.05 −1.46 −0.39 −0.46 −0.41 ± 0.02 −0.13 ± 0.09 −0.48 ± 0.13 −0.43 ± 0.02 −1.27 ± 0.03
P.F1 0.25 0.02 0.25 0.25 0.0 0.31 ± 0.01 0.07 ± 0.02 0.33 ± 0.02 0.34 ± 0.02 0.27 ± 0.01
S.F1 0.24 0.02 0.24 0.24 0.0 0.29 ± 0.01 0.07 ± 0.02 0.31 ± 0.02 0.33 ± 0.02 0.25
GD -3.41

Table 2. Comparison across policies on subset “rate [−∞,−0.4] high variance” set using the NEWS2 reward. “rate [−∞,−0.4]”
refers the subgroup where patients are quickly out of risk of death, i.e., a large negative change rate of NEWS2 score. “high variance”
means that patient in this subgroup was observed with high fluctuation in terms of change rate of the risk of death.

suggest that the estimators in DR tend to dual ‘unrobust’
due to behavioral and value approximation error (further
discussion in Section 7.2.). This finding calls for a reassess-
ment of the robustness claims of DR methods in healthcare
contexts.

RL outperforms SL on particular patient cohorts: We
also found RL outperforms SL on both OPE metrics and su-
pervised learning metrics for specific patient subgroups. A
notable illustration can be seen in Table 2, particularly when
comparing the performance of SL with CQL. In this com-
parison, CQL outperforms SL across nearly all metrics and
achieves similar results to SL in the DR metric. This finding
highlights RL’s capacity to develop more effective treatment
strategies than SL for certain patient groups, demonstrating
its potential for individualized treatment solutions.

7.2. Understanding the Variance of Policy Evaluation

This section aims to offer an in-depth study of the causes of
variance in policy evaluation (or at least a portion of these
causes). Intuitively, the policy evaluation can be unreliable
when the behavioral policy or target value function does not
approximate well with the real one. We illustrate this point
of view by visualizing the inference probability/value of the
behavioral (π̂D)/value (Q̂π) estimators against their sample
losses.

7.2.1. VARIANCE FROM π̂D

A common assumption in OPE research is π̂D ≃ πD. We
challenged this assumption within the DTR setting by an-
alyzing testing samples with significant loss, as shown in
Figure 3. The variance in π̂D can be understood through
two critical observations:

Trajectories with small behavior probabilities determine
importance sampling: Importance sampling gives more
weight to the trajectory with large ratios, and large ratios
are more likely to be produced by trajectories with small
behavior probabilities on the denominator. Therefore, it is
critical for a π̂D to produce small probabilities correctly
since such large errors can severely distort OPE estimates
when paired with small probabilities.

Negative correlation between errors and inference prob-
abilities: Smaller probabilities, which contribute more to
the importance sampling, are often associated with higher
loss, indicating greater deviation (see Figure 3a).

7.2.2. VARIANCE FROM Q̂π

Quality of value approximation: The quality of learning
Q̂π depends on reward settings, which lead to inconsistent
DR policy estimation results (as discussed in Section 7.1)
This insight can be validated by Fig 3b, 3c and 3d across
three reward settings.

Large errors center around high Q estimates: Large
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Figure 1. Number of wins for each policy in the (overall) test set.
Wins are calculated based on the mean performance of 5 random
seeds. Alt, min, max, random, and weight policies are naive
baselines. This denotation applies to all the following figures.

errors are concentrated around high Q estimates for both
the Outcome reward ( ralive/death = ±100) and SOFA
reward(ralive/death = ±15) as shown in Figure 3 (b) and (c),
respectively). This suggests that the value estimator does
not adequately capture the termination reward (i.e., whether
the patient survives or dies). In contrast, the NEWS2 re-
ward does not exhibit this pattern, as its reward function is
smoother, ranging from -1 to 0, with -1 indicating death and
0 otherwise. The new experiments support our position of
reevaluating RL-DTR. Specifically, careful design of the re-
ward function is crucial not only for clinical meaningfulness
but also for facilitating learning value estimators for OPE.

7.2.3. INVESTIGATING MODEL CALIBRATION FOR π̂D

Model calibration refines a model’s predictive probabilities
to match the actual outcome likelihoods, thereby ensuring
the model’s confidence reflects its empirical accuracy. We
investigated the influence of model calibration on behavior
policy and performance change in OPE. In this study, the
temperature scale (Guo et al., 2017) is used as the model cal-
ibrator. Implementation details and hyperparameter choice
for temperature scaling are provided in Appendix G.

Figure 4 shows the probability distribution before and af-
ter calibration. It can be seen that more probabilities are
distributed near 0 and 1 after calibration. As discussed in
Section 7.2.1, importance sampling gives small probabilities
more weight, and small probabilities can lead to extremely
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(b) Sum of No. wins on stratification groups under the three
respective reward settings.

Figure 2. A summed number of wins across patient subgroups
stratified by mortality risk rate of change. This figure presents
the cumulative performance of each algorithm, measured by the
No. win across 12 stratified subsets derived from the test set. Wins
are calculated for each algorithm within each subset across all
metrics and subsequently aggregated to reflect overall performance.
This approach allows for an assessment of the average algorithmic
efficacy in various subgroups of patients, stratified by changes in
mortality risk.

high losses, indicating that calibration may increase OPE
variance in this case. To further illustrate this point, we plot-
ted the importance ratio (i.e., ρi1:Ti

=
∏Ti

t=1
π(ai

t|s
i
t)

πD(ai
t|sit)

) of
the random policy πr in Figure 5. Large ratios became even
larger after calibration, which implies that model calibration
may increase the variance of OPE and should be applied
with caution. An additional 14 figures for baseline ratio
comparison are reported in the Appendix I.

To further investigate the impact of model calibration on
OPE, we ran OPE for all naive baselines using the calibrated
behavior policy. The results are presented in Tables 7, 8 and
9 in the Appendix G. Since we do not have access to the
ground truth reward estimates for the naive baselines, we
use the criterion ’higher than GD’ as a sanity check: If a
naive baseline can surpass the performance of clinicians
according to the OPE results, it suggests that the OPE
method may not be reliable. This is because we expect
clinicians who have extensive domain knowledge to gener-
ally outperform naive baselines. The results show that some
naive baselines can still surpass clinical experts, regardless
of reward design. This result again supports our position of
reevaluating DTR and indicates that model calibration may

7
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Figure 3. Behavioral and value estimator versus their losses on the testing set. The count in each bin is indicated by a colour bar,
transitioning from blue to red as the number increases. (a) depicts the behavioral loss (samples with a cross-entropy loss > 90th percentile
) versus the inference probability. (b), (c), and (d) show the direct method estimator loss (samples with L1 loss >90th percentile) on the
outcome, SOFA, and NEWS2 reward, respectively.
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Figure 4. Comparison of output probability between calibrated and uncalibrated π̂D . The plot shows a histogram of output probability
and the number of counts in the dataset with a logarithm scale on the y-axis on training, validation and test set, respectively. It is observed
that the frequencies of extreme probabilities (i.e., probabilities near 0 and 1) are higher after calibration.

not be universally helpful in DTR.

8. Consideration of RL for DTR
Building on our main findings from the previous sections,
here we outline several practical considerations that are
crucial when conducting experiments in RL for DTR.

SL as a baseline: Including SL as a baseline is crucial
for evaluating whether RL can outperform a supervised ap-
proach using both OPE and supervised learning metrics.
While comparing RL to SL is standard practice in the of-
fline RL community, it may not be common knowledge
to a broader audience. Therefore, we emphasize the im-
portance of including SL as a baseline when assessing RL
performance.

Benchmarking against simplicity: Naive baselines pro-
vide a clear and straightforward benchmark that any ad-
vanced model should surpass to justify its complexity. Ac-
cording to our experiments, these simple strategies can sur-
prisingly outperform complex RL models under certain con-
ditions. This highlights the importance of including these
simple strategies for sanity checks.

Data stratification towards equitable DTR: Data strat-
ification reveals the effectiveness of a policy on different
patient subgroups and helps to identify treatment learning

bias, ensuring equitable healthcare outcomes across patient
populations. A comparative analysis of Figure 1 and Figure
2 support this insight: On one hand, algorithms that excel
in the overall test set may not necessarily maintain their
superiority in stratified patient groups. On the other hand,
RL has the potential to derive improved policies from sub-
optimal offline data, and its effectiveness may be particularly
pronounced in specific patient groups. Stratifying data by
patient groups can be a valuable strategy to swiftly pinpoint
where RL provides the most benefit. This targeted approach
not only facilitates the identification of these advantages but
also allows for detailed examination and validation by med-
ical experts. Such a nuanced analysis could lead to more
personalized and effective treatment strategies, demonstrat-
ing the true potential of RL in healthcare. Our study used
episodic stratification based on the rate of change in NEWS2
scores. However, alternative stratification approaches, such
as initial state stratification, could also be considered for
future research.

Alternative OPE methods: Recent studies have introduced
more advanced methods for quantifying the dispersion or
variance of OPE (Thomas et al., 2015a;b; Gottesman et al.,
2020) and avoiding overfitting the importance-weighted re-
turn as an RL agent (Liu et al., 2022). While these methods
provide valuable insights into RL treatment decisions and
are encouraged to be used in future RL-DTR works, they do
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Figure 5. Importance ratio histogram of random policy > 99th percentile. The horizontal axis includes different datasets, where ’All’
means the test set and the rest are NEWS2 risk-stratified subsets, indexed by the ascending order of NEWS2 change rate. The calibrated
model contains more extremely large ratios > 99th percentile. Only ratio outliers (i.e., > 99th percentile) are plotted for visualization
convenience. To view the other 14 ratio plots for 5 baseline policies in 3 different reward settings, please see Appendix I.

not eliminate the impact of variance or reduce the variance
of policy evaluation. This highlights the need to develop
OPE methods specifically tailored to DTR. Another category
of OPE methods, that were proposed for resolving some
theoretical challenges such as convergence or stability, can
also be adapted for use in DTR environments. This group
includes algorithms such as least squared TD (Bradtke &
Barto, 1996), emphatic TD (Sutton et al., 2016), gradient
TD (Maei, 2011), and accelerated TD (Pan et al., 2017b;a).
These methods present opportunities for further investiga-
tion and development.

Behavioral model selection and calibration: Previous
work by Raghu et al. suggests that judicious selection and
calibration of the behavioral model can help mitigate vari-
ance in OPE. However, our experiments indicated that the
effectiveness of calibration may not be universal. We sug-
gest exploring a spectrum of models and calibration tech-
niques to identify the most suitable approach for the specific
DTR setting.

9. Discussions
Our work critically examines the application of offline RL
algorithms in DTRs, focusing on three key aspects: di-
versity in policy evaluation methods, variability in reward
definitions, and the absence of informative baselines. We
demonstrate that the comparative performance of RL algo-
rithms can vary significantly depending on these three fac-
tors through extensive empirical analysis using the medical
sepsis dataset. Additionally, we offer practical suggestions
to guide future research in this field. Moving forward, it is
essential to address these complexities with a more struc-

tured and standardized approach to fully realize the benefits
of RL in DTRs.

Future work and limitations. Our study has several lim-
itations that should be acknowledged and could be impor-
tant future work directions. First, while we validated our
position using the Sepsis dataset, future research could ex-
plore the generalizability of our findings across other rele-
vant datasets. Second, our work focuses on linear function
approximation and does not explore other representation
learning methods. Investigating locality-encouraging repre-
sentations could be beneficial (Engel et al., 2004; Gomes
& Krause, 2010; Schlegel et al., 2017; Pan et al., 2021), as
patients with highly similar conditions are likely to benefit
from similar treatments. Future research might also con-
sider exploring neural network-based representation learn-
ing methods, such as recurrent neural networks (RNN), or
studying causal effects (Raghu et al., 2018b; Zhang, 2020).

Third, this paper does not consider that multiple optimal
treatments might exist for a patient’s condition. Although
one might expect this to have a minor effect on policy eval-
uation, as it is counterintuitive for vastly different doses to
be simultaneously optimal for the same patient. However, it
could still impact algorithm comparison if an algorithm con-
sistently favors a certain type of mode. For instance, an SL
algorithm might fit the mode presented in the training data,
whereas an offline RL agent might learn a different mode.
To address this issue, specialized algorithms that can capture
multiple modes may be employed (Bishop, 1994; Pan et al.,
2020) to model a policy. Finally, we performed episodic
stratification based on the rate of change in NEWS2 scores,
while there are other interesting stratification approaches,
such as initial state stratification, to be explored.
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Impact Statement
Applying RL in high-stakes medical decision-making like
Sepsis carries significant implications for patient care and
treatment outcomes. While RL has the potential to revo-
lutionize personalized medicine by learning from patient
responses and adapting treatment plans accordingly, its de-
ployment in clinical settings must be approached with ut-
most caution.

This position paper critically examines the application of
RL in DTRs. Particularly, our critique highlights signifi-
cant challenges that must be addressed to prevent potential
harm. The inconsistent and potentially inconclusive evalua-
tion metrics present a clear risk: without robust assessment
frameworks, the deployment of RL in medical decision-
making could lead to suboptimal or even harmful treatment
recommendations. Furthermore, our call for incorporating
more baselines into the research of RL in DTRs underlines
the necessity for benchmarking against simpler baselines.
This is not only a matter of scientific rigor but also of ethical
responsibility, ensuring that the adoption of more complex
models is justified by demonstrable benefits to patient out-
comes.

It is the research community’s collective responsibility to
ensure that these technologies are introduced in a manner
that is safe, ethical, and ultimately beneficial to patient care.
The impact of RL in healthcare could be profound, but it
must be guided by a commitment not to harm, ensuring that
the leap forward does not come at the expense of patient
trust or safety.
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A. Appendix Content
• Appendix B: Data Description and Stratification.

• Appendix C: Details of off-policy evaluation methods and our implementation.

• Appendix D: Details of naive baselines.

• Appendix E: Model Implementation and training details.

• Appendix F: Supplementary materials for Section 7.2.

• Appendix G: Details of model calibration and the comparison between calibrated and uncalibrated models.

• Appendix H: Full results, including the testing result on Outcome and SOFA reward settings (2 tables), and the
respective performance on stratified patient groups (36 tables).

• Appendix I: Importance ratio histogram comparison between calibrated and uncalibrated behavior model on 3 reward
settings across 5 naive baselines.

B. Data Description
B.1. Patient Stratification

Patient stratification is a pivotal process in healthcare(Chen et al., 2006; Klein Klouwenberg et al., 2015), primarily due to
the heterogeneity of patient responses and outcomes. This practice is critical for ensuring that medical interventions are
tailored to the unique characteristics and needs of different patient groups. Despite its importance, many existing studies in
the field of RL-DTR overlook this crucial step prior to model development.

In our work, we address this gap by incorporating a simple yet effective patient stratification into our RL framework. We use
the NEWS2 score as a basis for stratifying patients, specifically focusing on their risk of mortality. This approach allows us
to train and evaluate our RL models on a cohort that is balanced in terms of mortality risk and outcome, thereby reducing
data selection bias.

We define our stratification process by considering the rate of change in NEWS2 scores during admission, which reflects
the speed of patient deterioration or recovery. Additionally, patients are categorized into two groups based on the standard
deviation (SD) of their NEWS2 score changes: those with high variance indicating a more fluctuated state and those
with low variance indicating a more stable deterioration/recovery, split by the SD median in the subgroup. The NEWS2
scores are segmented into distinct brackets [-0.4, -0.15, 0, 0.15, 0.4], and the variance is classified as either low or high. A
comprehensive data distribution plot is shown in Fig6.

For dataset split, we first divided all data into subgroups (2 outcomes, 6 NEWS2 score bins and 2 SD levels) and make sure
each group is (near) evenly distributed in the training, validation and test set for fair evaluations.

B.2. Action Discretization

The 2 drugs of interest is binned into 5 classes each to formulate a discrete aciton space. We keep the binning method
aligned with Komorowski et al.:

Action IV Fluids Vasopressor
Range Median Range Median

0 0 0 0 0
1 (0, 50] 40.0 (0, 0.08] 0.044
2 (50, 180] 93.75 (0.08, 0.22] 0.15
3 (180, 530] 315.35 (0.22, 0.45] 0.301
4 (530, ∞) 949.8 (0.45, ∞) 0.9

Table 3. Action Discretization Range and Median
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Figure 6. Data Stratification using change rate of NEWS2 score and admission outcome. The plot includes (top left) the distribution of
mean NEWS2 score, (top right) mean NEWS2 against SD , (middle left) distribution of NEWS2 rate of change , (middle right) NEWS2
rate of change mean against its SD , and (bottom) the distribution of mean NEWS2 score for each stratified fold. Stratified by the rate of
change of NEWS2, it is observed that patient of different deterioration/recovery speed distributed across all risk levels. The plot also
shows that the number of patients can significantly differ across risk stratification, supporting the need of RL evaluation on all subsets.
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Please note that the median for each bin is different from the material provided in https://static-content.
springer.com/esm/art%3A10.1038%2Fs41591-018-0213-5/MediaObjects/41591_2018_213_
MOESM1_ESM.pdf since we employed a series of modifications (See section 3) to improve medical soundness.

C. Equations and Implementations of Off-policy Evaluation Methods
C.1. Weighted Importance Sampling with Bootstrapping

The bootstrapped estimator in the context of RL involves resampling the dataset to generate multiple bootstrap samples.
The value estimate for each sample is calculated, with the final bootstrapped estimate being the average of these individual
estimates. Mathematically, the bootstrapped version of the Weighted Importance Sampling (WIS) estimator can be expressed
as:

V̂ π
WISb

=
1

B

B∑
b=1

(∑Nb

i=1 ρ
(b)
i G

(b)
i∑Nb

i=1 ρ
(b)
i

)
(8)

Here, B represents the number of bootstrap samples, Nb is the number of trajectories in the b-th bootstrap sample, ρ(b)i

denotes the importance sampling ratio for the i-th trajectory in the b-th sample, and G
(b)
i is the return for the i-th trajectory.

This can be simplified as:

V̂ π
WISb

= Eb∼B

[
V̂ π
WIS(b)

]
(9)

For our implementation, we set B = 100 and Nb = N for all b ∈ B.

C.2. Truncated Weighted Importance Sampling

Truncated Weighted Importance Sampling (WIS) involves limiting the influence of trajectories with disproportionately high
importance weights. This is achieved by truncating the importance weights at a specified threshold τ . The truncated WIS
estimator is given by:

V̂ π
WIStr

=

∑N
i=1 min(ρi, τ)Gi∑N
i=1 min(ρi, τ)

(10)

In our application, we select a truncation threshold of τ = 1.

C.3. Combined Weighted Importance Sampling with Bootstrapping and Truncation

This approach integrates the robustness of bootstrapping with the stability of truncation, offering a more reliable estimate.
The combined estimator is defined as:

V̂ π
WIStr,B

= Eb∼B

[
V̂ π
WIStr(b)

]
(11)

This revised section succinctly explains the implementation of different off-policy evaluation methods, ensuring the
mathematical expressions are consistent with the defined symbols and terms, and providing clarity in the methodology.

To complete the paragraph with the appropriate equations and coherent explanations, here is the revised section:

C.4. Implementation of Behavioral Cloning Policy

We implement a supervised learning approach using a Long Short-Term Memory (LSTM) neural network to approximate
the doctor’s policy, referred to as the behavioral policy. The neural network is trained on a combined set of training and
test data, and model selection is performed based on performance on a separate validation set. The training objective is to
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minimize the cross-entropy loss between the model’s predicted actions and the actions taken by the doctor over time. The
loss function can be formulated as:

LCE(π̂D, πD) = −Ea∼D log π̂D(a|s; θ) · a (12)

Here, θ represents the parameters of the LSTM network and yit is the actual action taken by the doctor at time t for patient
i. The model with the highest patient-wise F1 score on the validation set is selected as the best model. We prefer the F1
score over the Area Under the Receiver Operating Characteristic (AUROC) due to the latter’s potential to be misleading in
imbalanced datasets.

C.5. Doubly Robust Estimator

The doubly robust estimator combines elements of both the direct method and importance sampling. For the direct method
component, we use a training dataset comprising both the training and test sets, with the validation set used for model
selection. The estimator for the direct method is updated using an offline ’SARSA’ approach, which can be represented as:

LDM = LMSE (r + γQ(s′, a′), Q(s, a)) (13)

The best model is chosen based on the minimum Temporal Difference (TD) error observed on the validation set. The
behavioral policy utilized is consistent with the one described in the previous section.

D. Baseline Details
D.1. Naive Baselines

The naive baselines apply action based on simple rules without considering the difference of states. To avoid zero in the
importance ratio, we set a small value to zeros when π(ai) = 0. For convenience, we denote this small value as ϵ1. The
probability of the rest action will receive a reduction of ϵ2 to guarantee that

∑
a π(a) = 1. Assume there are M actions in

the action space. We denote the first action a0 as zero drug, and the last action aM−1as max drug. The equations for each
baseline are given in Table 4.

Table 4. Equations for Naive Baselines
Policy Equation

Alt Policy πalt(a) =


0.5− ϵ2 if a = a0

0.5− ϵ2 if a = aM−1

ϵ1 otherwise

Max Policy πmax(a) =

{
1− ϵ2 if a = aM−1

ϵ1 otherwise

Min Policy πmin(a) =

{
1− ϵ2 if a = a0

ϵ1 otherwise
Random Policy πr(a) =

1
M

Weight Policy πw(a = aj) = pj , for j = 1, 2, ...,M

where p is the occurrence probability vector of all 25 actions present in the training set.
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p = [0.00144, 0.07288, 0.12563, 0.13930, 0.10696,

0.00178, 0.03407, 0.04142, 0.06409, 0.08265,

0.00173, 0.02256, 0.02194, 0.04831, 0.04838,

0.00184, 0.03228, 0.02171, 0.02993, 0.02659,

0.00221, 0.02637, 0.01584, 0.01834, 0.01162] (14)

E. Training and Hyperparameter Search
E.1. Network Structure

We employ a simplified model structure consisting of a single linear layer to minimize the influence of network architecture
on the convergence of our RL algorithms. This approach also eliminates the influence of training tricks for deep learning.
The input to this model is a flattened 3-frame observation window, which effectively utilizes patient data from the past 12
hours of admission, ensuring that the model has access to a relevant and recent history of patient states.

E.2. Hyperparameter Search

We conducted a comprehensive search for optimal hyperparameters, common to all RL algorithms used in this study. The
key hyperparameters and their respective search ranges are presented in Table 5.

Owner Hyperparameter Values

All

Seed [6311, 6890, 663, 4242, 8376]
learning rate [0.01, 0.001, 0.0001, 0.00001]

batch size [256]
n step [1]
γ [0.99]

BCQ unlikely action threshold [0.3, 0.5]
imitation logits penalty [0.02, 0.1, 0.5]

IQL

actor update frequency [1, 5]
quantile [0.7, 0.9]

β [0.7, 1.0]
τ [0.001]

CQL α [0.1, 0.5, 1.0]

Table 5. Summary of Hyperparameters and Their Values. The owner column shows where the hyperparameter was used. β is the
temperature parameter for policy loss calculation, τ is the coefficient for soft update of target networks, and α is the weight for the
conservative loss.

The seeds for the random number generator were chosen to avoid any intentional bias and ensure reproducibility. They were
generated using a standard random number generation process in Python.

F. Supplementary of ’Understanding the Variance of Policy Evaluation’
F.1. Behavioral Model and Value Estimation Error

Fig 7 shows the correlation between behavioral cloning loss w.r.t the inference probability for π̂D, and the correlation
between value approximation loss w.r.t the inference state-action value for Q̂π . It is supplementary to Section 7.2, showing
that the correlations exists not only in the testing set but in both the training and validation sets, independent of the reward
settings.

We want to explain further that the error of Q̂π and π̂D is not a consequence of ill model training. Our selected π̂D reaches
an F1 score of 0.7 on both OPE training set and validation set3. Similarly, we select the Q̂π that can best minimize the TD
error. Your provided text describes loss distribution trends in a model’s performance, contrasting behavior models and value

3”OPE training set’ here means a combined dataset of training and test set. ’Validation set’ still follows its original meaning. We avoid
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functions. To enhance clarity and logical flow, the text can be revised for more precise language, structured presentation of
the data, and improved coherence. Here is a refined version:

Figure 8 provides a visualization of loss distributions across samples, highlighting the predictive accuracy of both the
behavior model, denoted as π̂D, and the value functions, Q̂π . The behavior model generally predicts well across the majority
of samples but exhibits notably higher losses in a minority of cases. This pattern follows a logarithmic trend on a linear
exponential (y) scale, a characteristic often observed in imbalanced learning scenarios. For the value functions, the losses
distribute differently. Specifically, the loss distribution for the Outcome and SOFA rewards form Gaussian-shaped peaks
centered at 15 and 100, respectively. This distribution correlates with their termination rewards of ±15 and ±100. Such
peaks suggest that the value functions struggle to accurately predict outcomes when there is a significant discrepancy
between intermediate and termination rewards. In contrast, the NEWS2 score does not show this pattern, likely due to its
more gradual reward function.
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Figure 7. a), e) Cross entropy losses against inference probabilities in the training and validation set for π̂D . b), c), d), f), g), h) L1 losses
against Q estimates in the training and validation set on the 3 reward settings for Q̂π .

G. Model Calibration
We implemented temperature scaling (Guo et al., 2017) to calibrate the behavior model. Temperature scaling is a post-
processing technique that adjusts the model’s predicted probabilities to better match the observed probabilities, thereby
(potentially) improving the model’s calibration. We present the implementation details, OPE results, and a visual comparison
between the calibrated and uncalibrated models.

G.1. A brief Introduction to Temperature Scaling

Formally, let f(x) represent the logits output by a neural network for a given input x, and let P (y|x) denote the predicted
probability distribution over classes y, obtained by applying the softmax function. Temperature scaling introduces a
temperature parameter T > 0 to adjust this distribution as follows:

PT (y|x) = softmax
(
f(x)

T

)
(15)

Here, the softmax function is defined as softmax(zi) = ezi∑
j ezj

for logits zi, where the summation in the denominator
spans all class logits for the instance. The temperature T serves to ”soften” (T > 1) or ”sharpen” (T < 1) the probability
distribution, with T = 1 leaving the original predictions unchanged.

using the original training, validation and test set as RL for decoupling
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Figure 8. a), b), c) π̂D cross-entropy loss histogram on training, validation and test set. d), e), f) Q̂π L1 loss histogram on Outcome
reward, g), h), i), Q̂π L1 loss histogram on SOFA reward,j), k), l) Q̂π L1 loss histogram on NEWS2 reward.

The optimal value of T is typically determined through a calibration process on the validation dataset, aiming to minimize a
calibration-specific loss function. Here, we choose the Negative Log Likelihood (NLL). This optimization can be succinctly
expressed as:

T ∗ = argmin
T

Lcalib(PT (y|x), ytrue) (16)

where ytrue represents the true class labels in the validation dataset. We search hyperparameters to determine the best-
calibrated model (See Table 6).

learning rate [0.1, 0.05, 0.02, 0.01, 0.001, 5e-4, 1e-4, 5e-5, 1e-5]
batch size [512]

Table 6. Hyperparameter search for temperature scaling calibration on the behavior policy.

G.2. Comparing Calibrated and Uncalibrated Behavior Models on OPE

To further investigate the impact of model calibration on OPE, we ran OPE for all naive baselines using the calibrated
behavior policy. The results are presented in Tables 7, 8 and 9. Since we do not have access to the ground truth reward
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Figure 9. Comparison of output probability between calibrated and uncalibrated π̂D . The plot shows a histogram of output probability and
the number of counts in the dataset with a logarithm scale on the y-axis of the 12 stratified patient groups, where ’low var’ and ’high var’
mean low and high NEWS2 score variations, respectively.

estimates for the naive baselines, we use the criterion ’higher than GD’ as a sanity check: If a naive baseline can surpass
the performance of clinicians according to the OPE results, it suggests that the OPE method may not be reliable. This
is because we expect clinicians who have extensive domain knowledge to generally outperform naive baselines. The table
results show that some naive baselines can still surpass clinical experts, regardless of the reward design. This result again
supports our position of reevaluating DTR and indicates that model calibration may not be universally helpful in DTR.

Policy Name WIS WISb WISt WISbt DR
alt 84.29 79.54 84.29 72.97 -0.68

max -90.47 -74.67 -90.47 -77.09 -0.38
min 84.29 84.29 84.29 84.24 -0.91

random 86.0 85.48 84.3 82.87 -0.58
weight 86.87 63.98 86.87 57.87 -0.5
GD 61.54

Table 7. Outcome reward

WIS WISb WISt WISbt DR
13.34 12.28 13.34 11.42 -0.54
-9.44 -10.03 -9.44 -9.53 -0.3
13.34 12.86 13.34 12.93 -0.73
14.33 13.35 10.26 11.86 -0.41
16.43 11.24 16.43 9.96 -0.38

9.47

Table 8. SOFA reward

WIS WISb WISt WISbt DR
-4.57 -5.63 -4.57 -5.43 -0.56
-4.6 -4.85 -4.6 -4.63 -0.21

-4.57 -5.59 -4.57 -5.56 -1.49
-4.47 -4.77 -5.82 -5.09 -0.39
-3.78 -4.53 -3.78 -4.61 -0.35

-4.39

Table 9. NEWS2 reward

In conclusion, our analysis demonstrates that temperature scaling may not be sufficient to mitigate the challenges associated
with OPE in the presence of small probabilities. Researchers should be aware of the limitations and consider exploring
alternative OPE methods or implementing other calibration methods to obtain more reliable policy evaluations.
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H. Full Result
H.1. Full Result on Test set

metric alt max min random weight SL DQN CQL IQL BCQ

RMSEIV 763.89 861.51 645.83 671.39 645.83 556.48 ± 6.23 624.06 ± 17.85 616.71 ± 17.94 578.13 ± 6.14 620.74 ± 2.12
RMSEvaso 0.67 0.89 0.32 0.5 0.59 0.31 0.32 0.31 0.31 0.31
WIS 84.29 −89.05 84.29 86.8 86.87 86.66 ± 0.2 87.62 ± 3.34 89.37 ± 2.95 84.29 84.29
WISb 81.21 −75.94 84.05 84.35 54.6 85.05 ± 0.95 87.52 ± 1.33 88.26 ± 1.82 77.57 ± 6.87 84.52 ± 0.17
WISt 84.29 −89.05 84.29 86.64 86.87 86.3 ± 0.52 87.62 ± 3.34 89.37 ± 2.95 84.29 84.29
WISbt 79.85 −79.75 84.23 80.84 66.22 84.74 ± 0.99 87.6 ± 1.33 88.28 ± 1.74 75.85 ± 4.38 84.51 ± 0.16
DR −0.66 −0.38 −0.95 −0.58 −0.49 −0.54 ± 0.01 −0.35 ± 0.05 −0.51 ± 0.08 −0.54 ± 0.03 −0.95
P.F1 0.2 0.02 0.2 0.2 0.0 0.31 ± 0.01 0.2 0.24 0.32 ± 0.01 0.24 ± 0.01
S.F1 0.19 0.02 0.19 0.19 0.0 0.31 ± 0.01 0.2 0.24 0.32 ± 0.01 0.23 ± 0.01
GD 61.54

Table 10. Outcome all

metric alt max min random weight SL DQN CQL IQL BCQ

RMSEIV 763.89 861.51 645.83 671.39 645.83 536.36 ± 13.56 628.24 ± 16.8 582.33 ± 10.28 578.13 ± 6.14 627.97 ± 1.67
RMSEvaso 0.67 0.89 0.32 0.5 0.59 0.3 0.32 0.32 0.31 0.31
WIS 13.34 −12.25 13.34 16.26 16.43 15.49 ± 0.91 12.41 ± 0.72 13.84 ± 1.79 10.24 13.34
WISb 12.49 −11.3 12.86 14.19 9.52 13.78 ± 0.66 12.48 ± 0.78 11.85 ± 3.78 11.08 ± 0.62 12.97 ± 0.12
WISt 13.34 −12.25 13.34 15.86 16.43 14.36 ± 1.57 12.41 ± 0.72 13.84 ± 1.79 10.24 13.34
WISbt 12.19 −11.25 12.92 13.34 11.49 13.44 ± 0.87 12.27 ± 1.23 11.76 ± 3.49 10.73 ± 0.44 12.91 ± 0.03
DR −0.5 −0.27 −0.76 −0.38 −0.37 −0.35 ± 0.01 −0.25 ± 0.06 −0.37 ± 0.1 −0.36 ± 0.02 −0.76
P.F1 0.2 0.02 0.2 0.2 0.0 0.34 ± 0.01 0.17 ± 0.01 0.26 ± 0.02 0.32 ± 0.01 0.22
S.F1 0.19 0.02 0.19 0.19 0.0 0.33 ± 0.01 0.17 ± 0.01 0.26 ± 0.02 0.32 ± 0.01 0.21
GD 9.47

Table 11. SOFA all
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H.2. Full Result on Stratified Subsets

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 880.57 929.48 825.16 821.09 828.29 682.74 ± 8.09 802.31 ± 20.11 793.05 ± 13.33 719.46 ± 13.2 795.1 ± 5.0
RMSEvaso 0.71 0.87 0.2 0.44 0.55 0.19 ± 0.01 0.2 0.2 0.19 ± 0.01 0.18
WIS 93.3 86.87 90.77 86.87 86.87 89.34 ± 3.42 92.01 ± 1.46 92.72 ± 3.19 91.95 ± 1.68 91.74 ± 0.89
WISb 92.12 76.88 91.06 62.66 86.34 88.92 ± 2.47 91.35 ± 0.68 91.05 ± 0.68 90.11 ± 1.23 91.57 ± 0.73
WISt 93.3 86.87 90.77 86.87 86.87 89.34 ± 3.42 92.01 ± 1.46 92.72 ± 3.19 91.95 ± 1.68 91.74 ± 0.89
WISbt 92.32 74.96 90.89 72.06 87.75 89.43 ± 2.0 91.56 ± 0.76 90.97 ± 1.06 90.54 ± 0.78 91.59 ± 0.63
DR −0.22 −0.43 −0.73 −0.22 −0.22 −0.13 ± 0.12 −0.22 −0.3 ± 0.1 −0.07 ± 0.1 −0.55
P.F1 0.23 0.02 0.23 0.23 0.0 0.32 ± 0.02 0.23 ± 0.01 0.25 ± 0.01 0.36 ± 0.02 0.27 ± 0.01
S.F1 0.22 0.02 0.22 0.22 0.0 0.32 ± 0.02 0.22 ± 0.01 0.24 ± 0.01 0.35 ± 0.01 0.26 ± 0.01
GD 68.51

Table 12. Outcome sub rate ∈ [−∞,−0.4] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 788.91 880.8 756.41 774.78 749.58 637.96 ± 8.04 729.93 ± 14.25 700.73 ± 25.47 648.47 ± 8.58 719.53 ± 5.46
RMSEvaso 0.54 0.85 0.27 0.47 0.56 0.24 ± 0.02 0.27 0.27 0.27 ± 0.01 0.26
WIS 23.66 26.75 −8.29 88.59 −94.02 88.64 87.46 ± 13.66 94.02 ± 1.51 89.36 ± 1.52 29.48 ± 34.13
WISb 14.77 24.94 −0.78 44.85 −39.81 90.85 ± 0.16 83.92 ± 14.47 92.61 ± 0.85 90.81 ± 0.78 33.48 ± 22.12
WISt 23.66 26.75 −8.29 88.59 −94.02 88.64 87.46 ± 13.66 94.02 ± 1.51 89.36 ± 1.52 29.48 ± 34.13
WISbt 26.13 23.87 −0.81 50.99 −13.95 90.43 ± 0.42 84.03 ± 14.76 93.13 ± 1.1 90.28 ± 0.75 30.69 ± 20.3
DR −0.12 0.0 −0.3 −0.27 −0.4 −0.06 ± 0.08 −0.03 ± 0.07 0.0 −0.11 ± 0.02 −0.12
P.F1 0.25 0.02 0.25 0.25 0.0 0.33 ± 0.02 0.24 ± 0.02 0.28 ± 0.01 0.35 ± 0.01 0.27 ± 0.01
S.F1 0.24 0.02 0.24 0.24 0.0 0.31 ± 0.02 0.23 ± 0.02 0.26 ± 0.01 0.33 ± 0.03 0.26 ± 0.01
GD 78.97

Table 13. Outcome sub rate ∈ [−∞,−0.4] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 732.68 849.88 620.73 649.77 620.52 531.04 ± 6.78 599.25 ± 17.6 584.99 ± 13.05 557.24 ± 7.32 599.44 ± 2.38
RMSEvaso 0.6 0.87 0.2 0.44 0.55 0.19 ± 0.01 0.2 0.19 0.2 ± 0.01 0.19
WIS 84.29 −87.75 84.29 −94.09 −73.02 −83.9 ± 7.91 84.64 ± 0.75 89.57 ± 3.58 61.66 ± 32.53 84.52 ± 0.21
WISb 84.51 −54.45 84.36 −33.01 −43.75 −24.56 ± 13.79 84.4 ± 0.08 84.5 ± 0.29 64.9 ± 25.17 84.76 ± 0.45
WISt 84.29 −87.75 84.29 −94.09 −73.02 −83.91 ± 7.92 84.64 ± 0.75 89.57 ± 3.58 61.62 ± 32.57 84.52 ± 0.21
WISbt 84.41 −76.1 84.3 −15.19 −38.84 −20.09 ± 12.61 84.39 ± 0.11 84.44 ± 0.22 63.09 ± 28.61 84.78 ± 0.39
DR −0.33 −0.04 −0.67 −0.18 −0.13 −0.07 ± 0.02 −0.06 ± 0.04 −0.13 ± 0.07 −0.08 ± 0.02 −0.67
P.F1 0.21 0.01 0.21 0.21 0.0 0.32 ± 0.01 0.21 ± 0.01 0.23 ± 0.01 0.33 ± 0.02 0.25
S.F1 0.21 0.01 0.21 0.21 0.0 0.32 ± 0.01 0.21 0.23 ± 0.01 0.32 ± 0.02 0.25 ± 0.01
GD 67.49

Table 14. Outcome sub rate ∈ [−0.4,−0.15] low std

I. Importance Ratio Histogram of Naive Baselines
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metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 820.25 887.4 770.94 771.37 767.21 661.62 ± 8.98 745.14 ± 22.99 709.98 ± 19.82 675.19 ± 6.55 738.97 ± 2.38
RMSEvaso 0.82 1.03 0.65 0.74 0.81 0.64 ± 0.01 0.65 0.64 0.64 ± 0.01 0.64
WIS 84.29 84.29 84.29 88.63 85.02 88.62 ± 0.01 89.24 ± 3.67 91.67 ± 0.59 87.94 ± 2.25 84.29
WISb 84.04 69.52 84.84 86.01 86.88 88.25 ± 1.19 89.04 ± 3.6 89.94 ± 0.39 88.07 ± 1.34 85.4 ± 0.59
WISt 84.29 84.29 84.29 88.63 85.02 88.62 ± 0.01 89.24 ± 3.67 91.67 ± 0.59 87.94 ± 2.25 84.29
WISbt 83.92 67.52 81.18 88.22 86.39 88.04 ± 0.99 88.85 ± 3.57 89.59 ± 0.37 87.66 ± 1.73 84.86 ± 0.73
DR −0.55 −0.45 −0.67 −0.28 −0.26 −0.27 ± 0.01 −0.22 ± 0.08 −0.26 ± 0.12 −0.33 ± 0.06 −0.67
P.F1 0.2 0.02 0.2 0.2 0.0 0.29 ± 0.02 0.2 ± 0.02 0.23 ± 0.01 0.3 ± 0.01 0.23
S.F1 0.19 0.03 0.19 0.19 0.0 0.29 ± 0.02 0.18 ± 0.02 0.22 ± 0.01 0.29 ± 0.01 0.21
GD 68.67

Table 15. Outcome sub rate ∈ [−0.4,−0.15] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 688.63 833.0 457.4 532.53 486.77 408.54 ± 9.26 443.51 ± 7.56 442.82 ± 2.72 428.3 ± 8.78 438.72 ± 1.4
RMSEvaso 0.67 0.89 0.26 0.48 0.58 0.25 0.26 0.26 0.26 0.25 ± 0.01
WIS 84.29 −90.44 84.29 −84.32 −84.21 84.3 92.01 ± 1.19 90.24 ± 2.64 84.29 ± 0.05 84.29
WISb 34.74 −35.59 71.32 −60.3 −62.77 84.21 ± 0.37 90.89 ± 0.74 86.12 ± 7.18 83.42 ± 2.45 81.81 ± 4.11
WISt 84.29 −90.44 84.29 −84.32 −84.21 84.32 ± 0.05 92.01 ± 1.19 90.24 ± 2.64 83.84 ± 1.0 84.29
WISbt 40.39 −37.48 64.83 −68.6 −62.39 84.22 ± 0.78 91.06 ± 0.79 85.71 ± 8.78 82.2 ± 5.04 81.1 ± 6.22
DR −0.51 −0.15 −0.97 −0.3 −0.18 −0.28 ± 0.03 −0.23 ± 0.12 −0.36 ± 0.09 −0.21 ± 0.05 −0.97
P.F1 0.22 0.01 0.22 0.22 0.0 0.32 0.22 0.28 ± 0.01 0.34 0.27 ± 0.01
S.F1 0.21 0.01 0.21 0.21 0.0 0.32 0.21 ± 0.01 0.27 ± 0.01 0.33 ± 0.01 0.26 ± 0.01
GD 65.86

Table 16. Outcome sub rate ∈ [−0.15, 0] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 765.09 867.74 669.04 696.63 662.95 571.17 ± 6.95 646.22 ± 19.11 636.61 ± 18.79 597.7 ± 6.59 642.96 ± 2.08
RMSEvaso 0.66 0.87 0.28 0.48 0.57 0.26 ± 0.01 0.28 0.27 ± 0.01 0.27 ± 0.01 0.27
WIS 84.29 −86.87 84.29 84.29 84.2 84.29 85.88 ± 3.52 89.31 ± 3.79 84.29 84.29
WISb 51.74 −50.46 83.73 68.07 68.21 66.15 ± 4.7 85.84 ± 0.92 87.91 ± 3.06 48.93 ± 8.66 84.55 ± 0.33
WISt 84.29 −86.87 84.29 84.29 84.2 84.29 85.88 ± 3.52 89.31 ± 3.79 84.29 84.29
WISbt 52.42 −43.31 83.83 63.38 63.12 65.74 ± 8.39 85.6 ± 0.65 86.94 ± 1.69 47.17 ± 9.39 84.48 ± 0.16
DR −0.7 −0.36 −0.85 −0.46 −0.3 −0.46 ± 0.02 −0.32 ± 0.11 −0.4 ± 0.11 −0.52 ± 0.05 −0.85
P.F1 0.2 0.02 0.2 0.2 0.0 0.31 ± 0.02 0.2 ± 0.01 0.23 0.33 ± 0.01 0.25
S.F1 0.19 0.02 0.19 0.19 0.0 0.31 ± 0.02 0.19 ± 0.01 0.23 0.32 ± 0.01 0.24
GD 64.19

Table 17. Outcome sub rate ∈ [−0.15, 0] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 756.44 875.08 576.23 624.74 597.18 541.54 ± 8.98 561.71 ± 10.18 562.25 ± 10.25 555.25 ± 12.44 559.56 ± 1.79
RMSEvaso 0.6 0.87 0.13 0.44 0.54 0.13 0.13 0.13 0.15 ± 0.01 0.12
WIS 91.35 −68.28 91.35 84.29 84.29 87.58 ± 1.96 91.35 91.35 86.2 ± 4.71 91.35
WISb 86.25 −10.25 80.9 75.39 75.64 86.06 ± 1.04 90.0 ± 1.06 89.88 ± 0.77 85.69 ± 0.54 88.8 ± 1.21
WISt 91.35 −68.28 91.35 84.29 84.29 87.64 ± 1.95 91.35 91.35 86.07 ± 4.83 91.35
WISbt 84.24 −11.44 80.24 72.66 74.64 86.5 ± 0.97 90.14 ± 1.0 89.85 ± 0.55 85.86 ± 0.94 88.38 ± 1.6
DR −0.51 −0.21 −0.99 −0.85 −0.85 −0.31 ± 0.06 −0.41 ± 0.11 −0.7 ± 0.26 −0.31 ± 0.09 −0.87 ± 0.23
P.F1 0.2 0.01 0.2 0.2 0.0 0.29 ± 0.02 0.2 ± 0.01 0.24 0.31 ± 0.02 0.24 ± 0.01
S.F1 0.19 0.01 0.19 0.19 0.0 0.29 ± 0.02 0.2 ± 0.01 0.24 0.31 ± 0.01 0.24 ± 0.01
GD 60.64

Table 18. Outcome sub rate ∈ [0, 0.15] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 760.98 834.61 628.74 637.52 628.39 530.49 ± 8.58 605.18 ± 20.02 587.38 ± 22.11 559.66 ± 7.59 601.25 ± 2.88
RMSEvaso 0.7 0.88 0.3 0.49 0.58 0.29 ± 0.01 0.3 0.3 0.29 ± 0.01 0.29
WIS 84.29 −84.26 84.29 84.29 84.29 84.29 ± 0.01 89.92 ± 3.21 86.19 ± 3.46 83.45 ± 1.89 84.72 ± 0.39
WISb 84.6 −47.35 84.58 47.19 79.95 77.89 ± 6.35 89.05 ± 3.03 86.03 ± 1.7 72.98 ± 16.41 84.95 ± 0.36
WISt 84.29 −84.26 84.29 84.29 84.29 84.29 89.92 ± 3.21 86.19 ± 3.46 83.07 ± 2.74 84.72 ± 0.39
WISbt 84.68 −58.99 84.57 52.31 73.77 80.23 ± 2.9 89.87 ± 2.85 85.97 ± 1.38 72.25 ± 17.75 84.93 ± 0.35
DR −0.71 −0.37 −1.02 −0.67 −0.55 −0.69 ± 0.03 −0.56 ± 0.15 −0.73 ± 0.15 −0.7 ± 0.08 −0.92 ± 0.1
P.F1 0.17 0.02 0.17 0.17 0.0 0.3 ± 0.01 0.17 ± 0.02 0.2 ± 0.01 0.3 ± 0.01 0.2 ± 0.01
S.F1 0.17 0.02 0.17 0.17 0.0 0.3 ± 0.01 0.16 ± 0.02 0.2 ± 0.01 0.3 ± 0.01 0.19
GD 59.33

Table 19. Outcome sub rate ∈ [0, 0.15] high std
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metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 736.69 853.28 581.25 616.67 592.53 497.49 ± 11.07 560.83 ± 15.47 561.57 ± 14.77 519.75 ± 18.49 559.81 ± 2.82
RMSEvaso 0.6 0.87 0.24 0.46 0.57 0.23 ± 0.01 0.24 0.24 0.23 ± 0.01 0.23
WIS −92.24 −92.27 87.46 −88.64 −84.29 84.32 ± 0.15 84.32 ± 0.06 88.32 ± 3.11 84.72 ± 0.99 87.48 ± 0.08
WISb −21.8 −28.01 88.38 −79.87 −80.21 84.5 ± 0.38 85.71 ± 0.7 88.67 ± 1.14 83.33 ± 2.44 88.81 ± 0.31
WISt −92.24 −92.27 87.46 −88.64 −84.29 84.32 ± 0.15 84.32 ± 0.06 88.32 ± 3.11 84.72 ± 0.99 87.48 ± 0.08
WISbt −14.44 −33.15 88.22 −81.18 −76.28 84.24 ± 0.66 85.53 ± 0.54 88.52 ± 1.53 82.99 ± 2.66 88.79 ± 0.49
DR −0.85 −0.65 −1.15 −0.99 −0.93 −0.99 ± 0.01 −0.56 ± 0.06 −0.8 ± 0.19 −1.06 ± 0.07 −1.09 ± 0.07
P.F1 0.2 0.01 0.2 0.2 0.0 0.34 ± 0.01 0.2 ± 0.01 0.27 ± 0.01 0.34 ± 0.01 0.24 ± 0.01
S.F1 0.18 0.01 0.18 0.18 0.0 0.33 ± 0.01 0.2 ± 0.02 0.27 ± 0.01 0.33 ± 0.01 0.24
GD 57.54

Table 20. Outcome sub rate ∈ [0.15, 0.4] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 782.93 832.02 699.16 694.47 686.84 594.95 ± 8.31 668.62 ± 28.5 653.72 ± 18.89 624.3 ± 16.96 672.05 ± 2.09
RMSEvaso 0.62 0.85 0.25 0.45 0.54 0.24 ± 0.01 0.25 0.25 0.24 ± 0.01 0.23
WIS 93.07 −84.29 40.12 −36.02 −84.51 84.2 ± 0.09 89.58 ± 3.95 92.2 ± 1.69 82.16 ± 4.71 40.17 ± 0.03
WISb 66.26 −32.94 35.96 −22.56 −73.83 79.76 ± 2.53 89.41 ± 2.37 90.54 ± 0.5 74.85 ± 9.66 37.09 ± 5.96
WISt 93.07 −84.29 40.12 −36.02 −84.51 84.2 ± 0.09 89.58 ± 3.95 92.2 ± 1.69 82.16 ± 4.71 40.17 ± 0.03
WISbt 59.8 −29.34 36.47 −24.04 −76.8 79.8 ± 2.69 89.84 ± 2.51 90.52 ± 0.72 74.11 ± 9.32 37.15 ± 2.23
DR −0.98 −0.46 −1.12 −0.83 −0.8 −0.7 ± 0.05 −0.29 ± 0.07 −0.46 ± 0.14 −0.83 ± 0.09 −0.76 ± 0.13
P.F1 0.17 0.02 0.17 0.17 0.0 0.29 ± 0.02 0.17 ± 0.01 0.2 ± 0.01 0.28 ± 0.02 0.2
S.F1 0.16 0.02 0.16 0.16 0.0 0.28 ± 0.02 0.16 ± 0.01 0.2 ± 0.01 0.28 ± 0.02 0.19
GD 45.82

Table 21. Outcome sub rate ∈ [0.15, 0.4] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 828.61 828.61 626.63 642.26 637.93 553.92 ± 13.64 596.82 ± 30.51 595.55 ± 32.69 537.16 ± 6.65 596.26 ± 4.61
RMSEvaso 0.87 0.87 0.4 0.53 0.62 0.29 ± 0.03 0.38 ± 0.01 0.38 ± 0.01 0.33 ± 0.02 0.36 ± 0.04
WIS 94.8 −89.68 93.72 −92.49 −90.44 −21.63 ± 25.99 94.25 ± 1.16 93.72 −53.63 ± 20.54 93.72
WISb 71.67 −90.58 84.53 −91.33 −91.33 −12.25 ± 18.16 71.45 ± 13.1 89.53 ± 2.77 −25.64 ± 7.78 89.86 ± 1.19
WISt 94.8 −89.68 93.72 −92.49 −90.44 −21.63 ± 25.99 94.25 ± 1.16 93.72 −53.63 ± 20.54 93.72
WISbt 71.72 −90.15 90.31 −90.64 −91.15 −10.64 ± 13.05 73.56 ± 16.71 91.28 ± 1.72 −22.53 ± 19.15 90.54 ± 3.49
DR −1.92 −1.61 −2.05 −2.49 −1.78 −2.28 ± 0.04 −1.22 ± 0.08 −1.53 ± 0.08 −2.21 ± 0.09 −1.74 ± 0.19
P.F1 0.23 0.03 0.23 0.23 0.02 0.32 ± 0.02 0.23 ± 0.01 0.26 ± 0.01 0.34 ± 0.02 0.26
S.F1 0.23 0.03 0.23 0.23 0.02 0.3 ± 0.02 0.23 ± 0.01 0.26 ± 0.01 0.32 ± 0.02 0.26
GD 23.02

Table 22. Outcome sub rate ∈ [0.4,∞] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 1131.35 1108.49 1131.35 1090.9 1100.26 952.83 ± 9.14 1106.01 ± 22.44 1032.13 ± 14.06 950.08 ± 7.98 1085.45 ± 4.58
RMSEvaso 0.21 0.86 0.21 0.45 0.54 0.21 0.21 0.2 ± 0.01 0.21 ± 0.01 0.18 ± 0.01
WIS 90.0 3.99 89.54 −68.14 −83.06 92.27 ± 0.01 90.65 ± 2.48 95.1 92.31 ± 0.29 90.27 ± 0.91
WISb 81.32 −0.46 70.64 −20.11 −50.82 91.54 ± 0.71 80.52 ± 7.96 91.62 ± 2.23 91.83 ± 0.43 88.1 ± 1.72
WISt 90.0 3.94 89.54 −85.19 −83.06 92.07 ± 0.41 90.65 ± 2.48 95.1 92.63 ± 1.01 90.27 ± 0.91
WISbt 72.37 −3.14 83.27 −47.0 −68.58 90.96 ± 1.05 74.47 ± 11.5 92.32 ± 1.75 91.54 ± 0.91 85.09 ± 2.4
DR −2.66 −2.05 −2.82 −2.05 −1.99 −2.05 −1.93 ± 0.17 −2.25 ± 0.4 −2.25 ± 0.25 −2.65 ± 0.15
P.F1 0.26 0.02 0.26 0.26 0.0 0.35 ± 0.02 0.25 ± 0.02 0.26 ± 0.01 0.4 ± 0.04 0.33 ± 0.01
S.F1 0.25 0.02 0.25 0.25 0.0 0.34 ± 0.02 0.25 ± 0.01 0.26 ± 0.01 0.39 ± 0.03 0.32 ± 0.01
GD 28.41

Table 23. Outcome sub rate ∈ [0.4,∞] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 880.57 929.48 825.16 821.09 828.29 656.94 ± 10.21 804.13 ± 10.32 722.12 ± 41.74 720.14 ± 13.87 803.12 ± 7.26
RMSEvaso 0.71 0.87 0.2 0.44 0.55 0.18 ± 0.01 0.21 0.2 0.19 ± 0.01 0.19 ± 0.01
WIS 15.08 16.43 14.47 16.43 16.43 16.43 16.43 16.19 ± 0.5 16.43 14.59 ± 0.15
WISb 14.88 12.73 14.52 11.31 16.4 15.21 ± 0.24 15.01 ± 0.49 14.87 ± 0.44 14.97 ± 0.53 14.65 ± 0.06
WISt 15.08 16.43 14.47 16.43 16.43 16.43 16.43 16.09 ± 0.51 16.43 14.59 ± 0.15
WISbt 14.82 12.12 14.63 13.15 16.75 15.07 ± 0.17 15.1 ± 0.42 14.91 ± 0.42 14.91 ± 0.14 14.66 ± 0.03
DR −0.22 −0.22 −0.32 −0.22 −0.22 −0.01 ± 0.02 −0.22 −0.28 ± 0.09 −0.02 ± 0.03 −0.3 ± 0.14
P.F1 0.23 0.02 0.23 0.23 0.0 0.38 ± 0.02 0.16 ± 0.02 0.26 ± 0.01 0.36 ± 0.02 0.25 ± 0.01
S.F1 0.22 0.02 0.22 0.22 0.0 0.37 ± 0.01 0.15 ± 0.02 0.25 ± 0.01 0.35 ± 0.01 0.24 ± 0.01
GD 11.09

Table 24. SOFA sub rate ∈ [−∞,−0.4] low std
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metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 788.91 880.8 756.41 774.78 749.58 608.58 ± 16.25 734.77 ± 21.49 661.93 ± 14.83 648.47 ± 8.58 729.71 ± 3.49
RMSEvaso 0.54 0.85 0.27 0.47 0.56 0.24 ± 0.02 0.27 ± 0.01 0.26 0.27 ± 0.01 0.26 ± 0.01
WIS 1.45 4.98 −4.14 14.24 −12.51 14.24 14.59 ± 0.87 14.52 ± 0.81 14.24 ± 0.01 0.69 ± 6.55
WISb 0.09 4.73 −2.51 7.71 −4.69 12.38 ± 1.57 13.64 ± 0.28 14.08 ± 0.69 13.4 ± 0.67 2.25 ± 4.11
WISt 1.45 4.98 −4.14 14.24 −12.51 14.24 14.59 ± 0.87 14.52 ± 0.81 14.24 ± 0.01 0.69 ± 6.55
WISbt 2.14 4.55 −2.64 8.67 −0.84 12.62 ± 2.77 13.59 ± 0.31 14.1 ± 0.39 13.67 ± 0.43 2.27 ± 2.96
DR −0.09 0.0 −0.35 0.0 −0.18 −0.0 ± 0.01 −0.04 ± 0.08 0.0 −0.01 ± 0.02 −0.21 ± 0.08
P.F1 0.25 0.02 0.25 0.25 0.0 0.34 ± 0.02 0.18 ± 0.01 0.27 ± 0.01 0.35 ± 0.01 0.27
S.F1 0.24 0.02 0.24 0.24 0.0 0.33 ± 0.02 0.17 ± 0.01 0.26 ± 0.01 0.33 ± 0.03 0.25
GD 12.68

Table 25. SOFA sub rate ∈ [−∞,−0.4] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 732.68 849.88 620.73 649.77 620.52 513.03 ± 17.23 604.3 ± 14.72 556.43 ± 16.69 556.7 ± 6.58 605.62 ± 1.0
RMSEvaso 0.6 0.87 0.2 0.44 0.55 0.18 ± 0.01 0.2 0.2 0.2 ± 0.01 0.19
WIS 13.56 −10.69 13.55 −15.24 −12.41 −6.77 ± 7.5 13.1 ± 0.27 13.84 ± 0.06 8.73 ± 5.08 13.63 ± 0.18
WISb 13.57 −7.14 13.56 −4.9 −8.29 −2.04 ± 4.06 13.28 ± 0.15 13.87 ± 0.11 9.39 ± 4.08 13.57 ± 0.14
WISt 13.56 −10.69 13.55 −15.24 −12.41 −6.77 ± 7.5 13.1 ± 0.27 13.84 ± 0.06 8.73 ± 5.08 13.63 ± 0.18
WISbt 13.49 −9.88 13.52 −1.86 −7.61 −1.62 ± 3.65 13.24 ± 0.14 13.85 ± 0.09 9.11 ± 4.52 13.55 ± 0.12
DR −0.27 −0.07 −0.7 −0.07 −0.1 −0.04 ± 0.02 −0.09 ± 0.04 −0.18 ± 0.1 −0.05 ± 0.03 −0.69 ± 0.02
P.F1 0.21 0.01 0.21 0.21 0.0 0.35 ± 0.01 0.17 ± 0.01 0.26 ± 0.03 0.33 ± 0.02 0.23
S.F1 0.21 0.01 0.21 0.21 0.0 0.34 ± 0.01 0.17 ± 0.01 0.26 ± 0.03 0.32 ± 0.02 0.23 ± 0.01
GD 10.65

Table 26. SOFA sub rate ∈ [−0.4,−0.15] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 820.25 887.4 770.94 771.37 767.21 638.76 ± 14.54 746.47 ± 26.15 685.1 ± 16.71 675.19 ± 6.55 747.52 ± 2.79
RMSEvaso 0.82 1.03 0.65 0.74 0.81 0.63 0.64 0.65 0.64 ± 0.01 0.64
WIS 12.0 11.61 12.0 17.13 12.88 17.09 ± 0.05 14.89 ± 1.23 12.46 ± 1.55 14.58 ± 2.22 12.0
WISb 11.46 10.32 11.0 15.43 13.01 15.87 ± 0.29 14.64 ± 1.03 12.22 ± 1.99 14.23 ± 1.4 11.36 ± 0.25
WISt 12.0 11.61 12.0 17.13 12.88 17.09 ± 0.05 14.89 ± 1.23 12.46 ± 1.55 14.58 ± 2.22 12.0
WISbt 11.38 9.96 10.53 15.78 12.97 15.74 ± 0.26 14.68 ± 0.9 12.17 ± 1.96 14.15 ± 1.45 11.35 ± 0.28
DR −0.51 −0.39 −0.68 −0.31 −0.27 −0.3 ± 0.01 −0.17 ± 0.06 −0.21 ± 0.1 −0.3 ± 0.02 −0.68
P.F1 0.2 0.02 0.2 0.2 0.0 0.32 ± 0.01 0.17 0.26 ± 0.02 0.3 ± 0.01 0.21 ± 0.01
S.F1 0.19 0.03 0.19 0.19 0.0 0.31 ± 0.01 0.16 0.25 ± 0.02 0.29 ± 0.01 0.2
GD 10.62

Table 27. SOFA sub rate ∈ [−0.4,−0.15] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 688.63 833.0 457.4 532.53 486.77 390.13 ± 15.74 451.62 ± 3.96 416.64 ± 11.45 428.5 ± 8.67 445.05 ± 1.22
RMSEvaso 0.67 0.89 0.26 0.48 0.58 0.25 0.27 0.26 0.26 0.26
WIS 13.34 −9.01 13.34 −14.1 −14.12 9.74 ± 0.45 12.86 ± 0.97 13.87 ± 1.76 11.65 ± 1.61 13.34
WISb 7.17 −2.14 11.83 −9.45 −10.28 10.83 ± 0.49 12.21 ± 0.65 12.72 ± 2.69 11.65 ± 1.21 12.43 ± 1.26
WISt 13.34 −9.01 13.34 −14.1 −14.12 11.08 ± 1.27 12.86 ± 0.97 13.87 ± 1.76 11.9 ± 1.79 13.34
WISbt 7.84 −2.32 10.89 −10.12 −10.21 11.53 ± 0.44 12.24 ± 0.63 12.57 ± 3.02 11.92 ± 1.45 12.5 ± 1.33
DR −0.46 −0.14 −0.72 −0.17 −0.15 −0.14 ± 0.02 −0.13 ± 0.04 −0.35 ± 0.19 −0.15 ± 0.03 −0.72
P.F1 0.22 0.01 0.22 0.22 0.0 0.34 ± 0.01 0.19 ± 0.01 0.28 ± 0.01 0.34 0.23 ± 0.01
S.F1 0.21 0.01 0.21 0.21 0.0 0.34 ± 0.01 0.19 ± 0.01 0.28 ± 0.01 0.33 ± 0.01 0.22 ± 0.01
GD 10.11

Table 28. SOFA sub rate ∈ [−0.15, 0] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 765.09 867.74 669.04 696.63 662.95 551.05 ± 9.71 650.28 ± 19.61 605.84 ± 15.26 597.7 ± 6.59 652.23 ± 1.63
RMSEvaso 0.66 0.87 0.28 0.48 0.57 0.25 0.28 ± 0.01 0.28 0.27 ± 0.01 0.27
WIS 12.06 −21.32 12.06 10.24 13.4 10.24 12.71 ± 1.65 13.03 ± 0.7 10.24 12.06
WISb 5.79 −13.27 11.83 8.56 10.92 7.87 ± 0.48 12.58 ± 0.82 12.66 ± 0.81 3.81 ± 1.28 11.89 ± 0.19
WISt 12.06 −21.32 12.06 10.24 13.4 10.24 12.71 ± 1.65 13.03 ± 0.7 10.24 12.06
WISbt 5.98 −11.51 11.98 8.09 10.1 8.19 ± 1.45 12.63 ± 1.02 12.75 ± 0.95 3.4 ± 1.44 11.99 ± 0.09
DR −0.4 −0.19 −0.61 −0.33 −0.31 −0.34 ± 0.02 −0.11 ± 0.03 −0.29 ± 0.17 −0.38 ± 0.04 −0.58 ± 0.02
P.F1 0.2 0.02 0.2 0.2 0.0 0.33 ± 0.01 0.17 0.26 ± 0.02 0.33 ± 0.01 0.22
S.F1 0.19 0.02 0.19 0.19 0.0 0.32 ± 0.01 0.17 0.26 ± 0.02 0.32 ± 0.01 0.21
GD 9.84

Table 29. SOFA sub rate ∈ [−0.15, 0] high std
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metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 756.44 875.08 576.23 624.74 597.18 524.0 ± 20.68 567.79 ± 7.77 549.11 ± 17.14 555.3 ± 4.66 563.58 ± 0.81
RMSEvaso 0.6 0.87 0.13 0.44 0.54 0.13 0.13 ± 0.01 0.13 0.15 ± 0.01 0.12
WIS 12.98 −7.35 12.98 12.14 12.14 12.49 ± 0.47 13.51 ± 1.17 13.61 ± 1.22 12.93 ± 0.84 12.98
WISb 12.67 0.77 11.6 11.92 11.57 12.06 ± 0.51 12.29 ± 0.57 12.2 ± 0.25 12.57 ± 0.75 12.09 ± 0.36
WISt 12.98 −7.35 12.98 12.14 12.14 12.58 ± 0.51 13.51 ± 1.17 13.61 ± 1.22 12.95 ± 0.81 12.98
WISbt 12.39 0.55 11.54 11.45 11.51 12.24 ± 0.53 12.29 ± 0.54 12.3 ± 0.43 12.6 ± 0.75 12.11 ± 0.33
DR −0.47 −0.19 −0.86 −0.64 −0.68 −0.35 ± 0.05 −0.26 ± 0.16 −0.43 ± 0.12 −0.37 ± 0.04 −0.78 ± 0.1
P.F1 0.2 0.01 0.2 0.2 0.0 0.31 ± 0.02 0.17 ± 0.01 0.25 ± 0.01 0.31 ± 0.02 0.22
S.F1 0.19 0.01 0.19 0.19 0.0 0.31 ± 0.02 0.17 ± 0.01 0.24 ± 0.01 0.31 ± 0.01 0.21 ± 0.01
GD 9.18

Table 30. SOFA sub rate ∈ [0, 0.15] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 760.98 834.61 628.74 637.52 628.39 512.98 ± 13.95 608.05 ± 19.71 559.49 ± 24.66 559.66 ± 7.59 609.53 ± 2.49
RMSEvaso 0.7 0.88 0.3 0.49 0.58 0.28 ± 0.01 0.3 0.3 0.29 ± 0.01 0.29
WIS 9.59 −14.02 9.59 11.62 13.11 11.62 11.46 ± 1.78 12.59 ± 0.87 11.6 ± 0.06 10.01 ± 0.93
WISb 10.52 −8.8 10.56 6.07 12.14 9.9 ± 0.98 12.07 ± 1.31 12.33 ± 0.64 9.34 ± 0.92 10.58 ± 0.44
WISt 9.59 −14.02 9.59 11.62 13.12 11.62 11.46 ± 1.77 12.38 ± 0.52 11.57 ± 0.12 10.01 ± 0.93
WISbt 10.7 −10.69 10.54 7.03 11.17 10.31 ± 0.33 11.89 ± 1.49 12.13 ± 0.35 9.1 ± 1.35 10.56 ± 0.45
DR −0.45 −0.33 −0.82 −0.42 −0.42 −0.36 ± 0.03 −0.49 ± 0.2 −0.5 ± 0.24 −0.37 ± 0.07 −0.82
P.F1 0.17 0.02 0.17 0.17 0.0 0.34 ± 0.01 0.15 ± 0.01 0.25 ± 0.02 0.3 ± 0.01 0.18 ± 0.01
S.F1 0.17 0.02 0.17 0.17 0.0 0.34 ± 0.01 0.15 ± 0.01 0.25 ± 0.02 0.3 ± 0.01 0.17
GD 9.04

Table 31. SOFA sub rate ∈ [0, 0.15] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 736.69 853.28 581.25 616.67 592.53 480.48 ± 15.3 568.16 ± 11.04 520.1 ± 15.18 519.96 ± 17.85 566.24 ± 1.92
RMSEvaso 0.6 0.87 0.24 0.46 0.57 0.22 ± 0.01 0.24 0.24 0.23 ± 0.01 0.23
WIS −16.39 −16.4 14.4 −17.91 −14.87 11.49 ± 0.63 15.15 ± 0.28 15.27 ± 0.02 12.65 ± 0.85 14.41
WISb −5.02 −5.66 14.2 −15.01 −14.46 11.46 ± 0.81 14.68 ± 0.33 14.76 ± 0.04 11.51 ± 1.8 13.99 ± 0.06
WISt −16.39 −16.4 14.4 −17.91 −14.87 11.49 ± 0.63 15.15 ± 0.28 15.27 ± 0.02 12.65 ± 0.85 14.41
WISbt −3.9 −6.52 14.14 −15.0 −13.38 11.45 ± 0.83 14.65 ± 0.36 14.76 ± 0.14 11.62 ± 1.7 14.01 ± 0.12
DR −0.49 −0.32 −0.65 −0.61 −0.46 −0.47 ± 0.01 −0.26 ± 0.02 −0.37 ± 0.15 −0.5 ± 0.04 −0.65
P.F1 0.2 0.01 0.2 0.2 0.0 0.36 ± 0.01 0.18 ± 0.01 0.28 ± 0.02 0.35 ± 0.02 0.21 ± 0.01
S.F1 0.18 0.01 0.18 0.18 0.0 0.35 ± 0.01 0.18 ± 0.01 0.28 ± 0.01 0.33 ± 0.01 0.2 ± 0.01
GD 8.56

Table 32. SOFA sub rate ∈ [0.15, 0.4] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 782.93 832.02 699.16 694.47 686.84 573.43 ± 13.11 670.46 ± 30.69 635.01 ± 10.67 623.91 ± 15.84 680.34 ± 2.92
RMSEvaso 0.62 0.85 0.25 0.45 0.54 0.22 ± 0.01 0.25 0.24 0.24 ± 0.01 0.23
WIS 15.85 −13.08 7.84 −5.98 −13.33 15.43 ± 0.55 13.43 ± 1.56 15.28 ± 1.25 14.15 ± 1.2 7.84
WISb 11.61 −6.02 7.13 −4.04 −12.1 13.74 ± 1.13 13.43 ± 0.87 14.53 ± 0.75 11.91 ± 1.81 7.5 ± 0.79
WISt 15.85 −13.08 7.84 −5.98 −13.33 15.43 ± 0.55 13.43 ± 1.56 15.28 ± 1.25 14.15 ± 1.2 7.84
WISbt 10.6 −5.53 7.35 −4.23 −12.44 13.61 ± 1.0 13.5 ± 1.05 14.48 ± 0.78 11.67 ± 1.9 7.42 ± 0.21
DR −0.94 −0.4 −0.94 −0.53 −0.56 −0.51 ± 0.01 −0.3 ± 0.12 −0.53 ± 0.14 −0.52 ± 0.04 −0.85 ± 0.09
P.F1 0.17 0.02 0.17 0.17 0.0 0.31 ± 0.01 0.14 ± 0.01 0.23 ± 0.02 0.29 ± 0.02 0.18
S.F1 0.16 0.02 0.16 0.16 0.0 0.31 ± 0.01 0.14 ± 0.01 0.23 ± 0.02 0.28 ± 0.02 0.17
GD 7.19

Table 33. SOFA sub rate ∈ [0.15, 0.4] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 828.61 828.61 626.63 642.26 637.93 516.24 ± 10.8 601.13 ± 29.95 563.64 ± 20.54 537.16 ± 6.65 605.02 ± 7.26
RMSEvaso 0.87 0.87 0.4 0.53 0.62 0.27 ± 0.02 0.39 ± 0.02 0.39 ± 0.02 0.34 ± 0.01 0.38 ± 0.01
WIS 14.88 −15.5 14.54 −14.88 −22.55 −6.23 ± 8.93 14.16 ± 0.21 14.62 ± 0.38 −7.97 ± 9.23 14.54
WISb 10.74 −15.99 12.7 −14.89 −18.7 −2.08 ± 4.19 9.72 ± 3.4 13.47 ± 0.54 −4.49 ± 1.9 13.54 ± 0.3
WISt 14.88 −15.5 14.54 −14.88 −22.55 −6.23 ± 8.93 14.16 ± 0.21 14.62 ± 0.38 −7.97 ± 9.23 14.54
WISbt 10.76 −15.92 13.69 −15.33 −19.14 −1.93 ± 4.64 9.96 ± 4.61 13.87 ± 0.44 −3.58 ± 3.76 14.0 ± 0.3
DR −1.1 −0.87 −1.47 −1.45 −0.88 −1.35 ± 0.06 −1.3 ± 0.02 −1.05 ± 0.02 −1.64 ± 0.09 −1.44 ± 0.06
P.F1 0.23 0.03 0.23 0.23 0.02 0.31 ± 0.03 0.19 ± 0.02 0.26 ± 0.01 0.34 ± 0.02 0.24
S.F1 0.23 0.03 0.23 0.23 0.02 0.29 ± 0.01 0.2 ± 0.02 0.26 ± 0.01 0.32 ± 0.02 0.24 ± 0.01
GD 2.48

Table 34. SOFA sub rate ∈ [0.4,∞] low std
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metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 1131.35 1108.49 1131.35 1090.9 1100.26 928.45 ± 15.0
1087.4
± 30.34 996.8 ± 34.24 950.08 ± 7.98 1086.09 ± 7.96

RMSEvaso 0.21 0.86 0.21 0.45 0.54 0.21 ± 0.01 0.21 0.2 0.21 ± 0.01 0.18 ± 0.01
WIS 12.2 0.64 11.9 −9.46 −13.74 13.48 ± 0.01 15.43 ± 0.15 13.78 ± 1.78 13.61 ± 0.29 11.99 ± 0.21
WISb 11.49 −0.25 9.89 −2.63 −8.99 13.13 ± 0.24 12.56 ± 3.55 11.1 ± 2.11 13.31 ± 0.4 12.32 ± 0.5
WISt 12.2 0.63 11.9 −11.9 −13.74 13.39 ± 0.16 15.43 ± 0.15 13.78 ± 1.78 13.71 ± 0.63 11.99 ± 0.21
WISbt 9.75 −0.63 11.76 −6.56 −11.61 13.06 ± 0.32 12.09 ± 4.65 10.44 ± 2.47 13.42 ± 0.59 11.83 ± 0.43
DR −2.05 −1.69 −2.99 −1.65 −1.63 −1.6 ± 0.02 −1.72 ± 0.29 −1.64 ± 0.34 −1.68 ± 0.09 −2.78 ± 0.12
P.F1 0.26 0.02 0.26 0.26 0.0 0.37 ± 0.02 0.19 ± 0.1 0.29 ± 0.05 0.4 ± 0.04 0.29 ± 0.01
S.F1 0.25 0.02 0.25 0.25 0.0 0.36 ± 0.02 0.18 ± 0.1 0.28 ± 0.05 0.39 ± 0.03 0.28 ± 0.01
GD 3.92

Table 35. SOFA sub rate ∈ [0.4,∞] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 880.57 929.48 825.16 821.09 828.29 683.96 ± 3.08 811.24 ± 26.66 653.9 ± 6.87 706.65 ± 13.36 798.7 ± 10.64
RMSEvaso 0.71 0.87 0.2 0.44 0.55 0.2 0.39 ± 0.09 0.18 ± 0.01 0.19 ± 0.01 0.19 ± 0.01
WIS −1.78 −3.78 −3.04 −3.78 −3.78 −3.78 −3.32 ± 1.03 −2.12 ± 0.94 −2.8 ± 0.75 −2.92 ± 0.27
WISb −2.25 −3.78 −2.93 −3.23 −3.59 −3.14 ± 0.09 −2.99 ± 0.18 −2.46 ± 0.56 −2.84 ± 0.35 −2.85 ± 0.08
WISt −1.78 −3.78 −3.04 −3.78 −3.78 −3.78 −3.32 ± 1.03 −2.12 ± 0.94 −2.8 ± 0.75 −2.92 ± 0.27
WISbt −2.14 −3.87 −2.99 −3.35 −3.61 −3.18 ± 0.08 −3.04 ± 0.56 −2.36 ± 0.66 −2.83 ± 0.37 −2.93 ± 0.27
DR −0.49 −0.46 −1.08 −0.35 −0.29 −0.37 −0.29 ± 0.02 −0.62 ± 0.12 −0.5 ± 0.04 −0.95 ± 0.07
P.F1 0.23 0.02 0.23 0.23 0.0 0.32 ± 0.02 0.07 ± 0.04 0.37 ± 0.01 0.4 ± 0.03 0.25 ± 0.02
S.F1 0.22 0.02 0.22 0.22 0.0 0.31 ± 0.02 0.07 ± 0.04 0.36 ± 0.01 0.39 ± 0.02 0.24 ± 0.02
GD -3.23

Table 36. NEWS2 sub rate ∈ [−∞,−0.4] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 732.68 849.88 620.73 649.77 620.52 528.34 ± 16.69 615.53 ± 13.8 511.36 ± 7.79 559.08 ± 5.67 604.78 ± 7.09
RMSEvaso 0.6 0.87 0.2 0.44 0.55 0.2 0.37 ± 0.09 0.18 ± 0.01 0.21 ± 0.01 0.19
WIS −5.08 −5.06 −5.12 −4.02 −4.08 −3.92 ± 0.07 −2.11 ± 1.17 −3.96 ± 1.46 −4.12 ± 0.18 −4.28
WISb −4.77 −4.08 −4.81 −4.11 −4.3 −3.7 ± 0.25 −2.42 ± 0.54 −3.56 ± 0.94 −4.09 ± 0.48 −4.37 ± 0.05
WISt −5.08 −5.06 −5.12 −4.02 −4.08 −3.92 ± 0.07 −2.11 ± 1.17 −3.96 ± 1.46 −4.12 ± 0.19 −4.28
WISbt −4.77 −4.61 −4.87 −4.02 −4.37 −3.82 ± 0.06 −2.5 ± 0.54 −3.55 ± 1.04 −4.09 ± 0.47 −4.35 ± 0.05
DR −0.52 −0.05 −1.55 −0.18 −0.15 −0.2 −0.12 ± 0.04 −0.64 ± 0.12 −0.4 ± 0.1 −1.55
P.F1 0.21 0.01 0.21 0.21 0.0 0.33 ± 0.01 0.07 ± 0.02 0.34 ± 0.01 0.35 ± 0.01 0.24 ± 0.01
S.F1 0.21 0.01 0.21 0.21 0.0 0.32 ± 0.01 0.07 ± 0.02 0.34 ± 0.01 0.34 ± 0.01 0.24 ± 0.01
GD -4.13

Table 37. NEWS2 sub rate ∈ [−0.4,−0.15] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 820.25 887.4 770.94 771.37 767.21 667.05 ± 15.28 752.73 ± 4.24 639.54 ± 5.5 668.83 ± 7.44 744.04 ± 13.4
RMSEvaso 0.82 1.03 0.65 0.74 0.81 0.64 0.71 ± 0.04 0.64 0.63 ± 0.01 0.64
WIS −8.81 −3.48 −8.81 −5.15 −5.28 −4.27 ± 0.18 −1.49 ± 0.75 −4.43 ± 0.73 −4.06 ± 0.32 −8.81
WISb −7.33 −4.26 −7.24 −4.99 −4.57 −4.21 ± 0.2 −1.63 ± 0.44 −4.47 ± 0.56 −4.05 ± 0.3 −7.2 ± 0.41
WISt −8.81 −3.48 −8.81 −5.15 −5.28 −4.27 ± 0.18 −1.49 ± 0.75 −4.43 ± 0.73 −4.06 ± 0.32 −8.81
WISbt −7.12 −4.22 −7.45 −5.01 −4.81 −4.2 ± 0.22 −1.61 ± 0.4 −4.52 ± 0.5 −4.07 ± 0.3 −7.28 ± 0.3
DR −0.64 −0.38 −1.46 −0.34 −0.19 −0.36 −0.09 ± 0.02 −0.61 ± 0.03 −0.47 ± 0.03 −1.33 ± 0.09
P.F1 0.2 0.02 0.2 0.2 0.0 0.28 ± 0.01 0.05 ± 0.02 0.3 ± 0.01 0.31 ± 0.02 0.22 ± 0.01
S.F1 0.19 0.03 0.19 0.19 0.0 0.28 ± 0.01 0.05 ± 0.02 0.3 ± 0.01 0.31 ± 0.02 0.21 ± 0.01
GD -4.49

Table 38. NEWS2 sub rate ∈ [−0.4,−0.15] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 688.63 833.0 457.4 532.53 486.77 405.15 ± 3.15 463.11 ± 10.85 398.49 ± 8.64 444.65 ± 15.04 443.3 ± 6.13
RMSEvaso 0.67 0.89 0.26 0.48 0.58 0.26 0.41 ± 0.09 0.25 ± 0.01 0.26 0.25 ± 0.01
WIS −4.56 −4.6 −4.56 −5.59 −5.59 −5.12 ± 1.03 −2.31 ± 1.41 −3.61 ± 1.39 −4.15 ± 0.58 −4.56
WISb −4.65 −4.28 −4.69 −5.11 −5.31 −4.33 ± 0.81 −2.57 ± 1.1 −3.68 ± 0.8 −4.12 ± 0.57 −4.58 ± 0.08
WISt −4.56 −4.6 −4.56 −5.59 −5.59 −3.65 ± 0.37 −2.31 ± 1.41 −3.61 ± 1.39 −4.16 ± 0.57 −4.56
WISbt −4.53 −4.36 −4.68 −5.12 −5.32 −3.56 ± 0.22 −2.55 ± 0.95 −3.62 ± 0.82 −4.13 ± 0.57 −4.57 ± 0.11
DR −0.31 −0.1 −1.65 −0.13 −0.08 −0.15 −0.11 ± 0.05 −0.77 ± 0.1 −0.33 ± 0.08 −1.61 ± 0.03
P.F1 0.22 0.01 0.22 0.22 0.0 0.32 0.07 ± 0.02 0.35 ± 0.01 0.35 ± 0.02 0.25 ± 0.02
S.F1 0.21 0.01 0.21 0.21 0.0 0.32 0.07 ± 0.02 0.34 ± 0.01 0.34 ± 0.03 0.24 ± 0.02
GD -4.3

Table 39. NEWS2 sub rate ∈ [−0.15, 0] low std
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metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 765.09 867.74 669.04 696.63 662.95 577.93 ± 4.79 661.56 ± 8.96 555.14 ± 10.07 595.76 ± 7.32 649.09 ± 9.58
RMSEvaso 0.66 0.87 0.28 0.48 0.57 0.26 ± 0.01 0.4 ± 0.08 0.25 0.27 ± 0.01 0.27 ± 0.01
WIS −4.15 −8.69 −4.15 −5.83 −3.16 −5.83 −4.94 ± 1.2 −3.13 ± 1.14 −5.83 −4.15
WISb −4.81 −7.2 −4.56 −5.53 −4.13 −5.66 ± 0.43 −4.4 ± 0.17 −3.42 ± 0.85 −6.18 ± 0.32 −4.49 ± 0.09
WISt −4.15 −8.69 −4.15 −5.83 −3.16 −5.83 −4.94 ± 1.2 −3.14 ± 1.17 −5.83 −4.15
WISbt −4.68 −6.85 −4.55 −5.39 −4.61 −5.62 ± 0.24 −4.41 ± 0.26 −3.39 ± 0.93 −6.23 ± 0.26 −4.53 ± 0.06
DR −0.6 −0.24 −1.58 −0.43 −0.37 −0.44 −0.14 ± 0.05 −0.7 ± 0.11 −0.53 ± 0.04 −1.58
P.F1 0.2 0.02 0.2 0.2 0.0 0.31 ± 0.01 0.05 ± 0.02 0.32 ± 0.02 0.33 ± 0.02 0.23 ± 0.01
S.F1 0.19 0.02 0.19 0.19 0.0 0.31 ± 0.01 0.05 ± 0.02 0.32 ± 0.02 0.32 ± 0.02 0.22 ± 0.01
GD -4.72

Table 40. NEWS2 sub rate ∈ [−0.15, 0] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 756.44 875.08 576.23 624.74 597.18 539.36 ± 6.94 580.52 ± 10.06 525.81 ± 17.46 568.77 ± 18.09 562.86 ± 4.54
RMSEvaso 0.6 0.87 0.13 0.44 0.54 0.13 0.36 ± 0.11 0.12 ± 0.03 0.16 ± 0.01 0.12
WIS −3.82 −4.69 −3.82 −5.01 −5.01 −3.19 ± 0.24 −2.14 ± 1.5 −2.58 ± 0.89 −2.97 ± 0.4 −3.8 ± 0.03
WISb −4.25 −4.61 −4.32 −4.24 −4.2 −3.19 ± 0.17 −2.49 ± 0.99 −3.54 ± 0.72 −3.1 ± 0.45 −3.99 ± 0.24
WISt −3.82 −4.69 −3.82 −5.01 −5.01 −3.3 ± 0.21 −2.14 ± 1.5 −2.58 ± 0.89 −3.05 ± 0.5 −3.8 ± 0.03
WISbt −4.34 −4.29 −4.28 −4.33 −4.15 −3.27 ± 0.14 −2.48 ± 0.92 −3.62 ± 0.63 −3.19 ± 0.34 −4.05 ± 0.26
DR −0.39 −0.04 −1.6 −0.39 −0.35 −0.4 ± 0.01 −0.11 ± 0.07 −0.69 ± 0.17 −0.51 ± 0.05 −1.6
P.F1 0.2 0.01 0.2 0.2 0.0 0.29 ± 0.01 0.07 ± 0.03 0.31 ± 0.02 0.32 ± 0.01 0.23 ± 0.01
S.F1 0.19 0.01 0.19 0.19 0.0 0.29 ± 0.02 0.07 ± 0.03 0.31 ± 0.01 0.32 ± 0.01 0.23 ± 0.01
GD -4.41

Table 41. NEWS2 sub rate ∈ [0, 0.15] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 760.98 834.61 628.74 637.52 628.39 531.23 ± 12.54 621.36 ± 11.52 524.17 ± 15.77 563.13 ± 7.26 606.27 ± 6.74
RMSEvaso 0.7 0.88 0.3 0.49 0.58 0.29 0.42 ± 0.07 0.28 ± 0.01 0.3 ± 0.01 0.29 ± 0.01
WIS −4.93 −3.75 −4.93 −5.36 −4.92 −5.36 −3.69 ± 1.36 −2.92 ± 1.32 −4.9 ± 1.19 −4.93
WISb −5.03 −3.98 −4.75 −5.81 −5.04 −4.77 ± 0.17 −3.35 ± 0.93 −2.96 ± 0.27 −5.24 ± 0.64 −4.8 ± 0.11
WISt −4.93 −3.75 −4.93 −5.36 −4.92 −5.36 −3.52 ± 1.17 −2.92 ± 1.32 −4.9 ± 1.19 −4.93
WISbt −5.15 −4.11 −4.84 −5.52 −4.99 −4.79 ± 0.13 −3.3 ± 0.97 −2.94 ± 0.26 −5.16 ± 0.61 −4.82 ± 0.04
DR −0.63 −0.22 −1.48 −0.55 −0.46 −0.57 −0.14 ± 0.07 −0.81 ± 0.17 −0.62 ± 0.04 −1.37 ± 0.09
P.F1 0.17 0.02 0.17 0.17 0.0 0.31 ± 0.01 0.05 ± 0.01 0.32 ± 0.01 0.34 ± 0.01 0.19 ± 0.01
S.F1 0.17 0.02 0.17 0.17 0.0 0.3 ± 0.01 0.05 ± 0.01 0.32 ± 0.01 0.33 ± 0.01 0.19 ± 0.01
GD -4.84

Table 42. NEWS2 sub rate ∈ [0, 0.15] high std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 736.69 853.28 581.25 616.67 592.53 497.22 ± 10.48 577.53 ± 9.49 490.24 ± 12.7 528.45 ± 21.15 564.83 ± 8.02
RMSEvaso 0.6 0.87 0.24 0.46 0.57 0.23 0.4 ± 0.08 0.22 0.23 ± 0.01 0.23
WIS −4.65 −4.65 −4.4 −6.55 −7.49 −3.98 ± 0.21 −2.61 ± 1.5 −3.43 ± 0.86 −3.99 ± 0.42 −4.4
WISb −4.16 −5.16 −4.14 −6.48 −6.91 −3.88 ± 0.19 −2.71 ± 0.69 −3.41 ± 0.58 −3.93 ± 0.43 −4.0 ± 0.08
WISt −4.65 −4.65 −4.4 −6.55 −7.49 −3.98 ± 0.21 −2.61 ± 1.5 −3.43 ± 0.86 −3.99 ± 0.42 −4.4
WISbt −4.09 −5.07 −4.14 −6.38 −6.85 −3.87 ± 0.19 −2.83 ± 0.82 −3.4 ± 0.64 −3.92 ± 0.44 −4.03 ± 0.13
DR −0.7 −0.21 −1.69 −0.29 −0.39 −0.3 ± 0.01 −0.1 ± 0.07 −0.81 ± 0.13 −0.64 ± 0.08 −1.61 ± 0.06
P.F1 0.2 0.01 0.2 0.2 0.0 0.33 ± 0.02 0.06 ± 0.02 0.36 ± 0.01 0.35 ± 0.01 0.23 ± 0.01
S.F1 0.18 0.01 0.18 0.18 0.0 0.32 ± 0.01 0.06 ± 0.02 0.34 ± 0.01 0.33 ± 0.02 0.22 ± 0.01
GD -4.6

Table 43. NEWS2 sub rate ∈ [0.15, 0.4] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 782.93 832.02 699.16 694.47 686.84 594.05 ± 9.74 685.2 ± 9.89 584.59 ± 7.08 620.18 ± 15.98 675.9 ± 11.12
RMSEvaso 0.62 0.85 0.25 0.45 0.54 0.24 ± 0.01 0.37 ± 0.07 0.22 ± 0.01 0.25 ± 0.01 0.23
WIS −1.94 −6.0 −4.4 −6.75 −7.23 −5.26 ± 0.11 −1.58 ± 0.93 −2.69 ± 1.68 −5.13 ± 0.3 −4.4
WISb −3.26 −5.35 −4.73 −6.34 −6.53 −4.68 ± 0.34 −1.84 ± 0.29 −3.09 ± 1.3 −4.75 ± 0.47 −4.52 ± 0.1
WISt −1.94 −6.0 −4.4 −6.75 −7.23 −5.26 ± 0.11 −1.58 ± 0.93 −2.69 ± 1.68 −5.13 ± 0.3 −4.4
WISbt −3.65 −5.35 −4.64 −6.34 −6.71 −4.82 ± 0.22 −1.87 ± 0.32 −3.08 ± 1.27 −4.79 ± 0.43 −4.57 ± 0.04
DR −0.74 −0.22 −1.54 −0.47 −0.51 −0.48 ± 0.01 −0.22 ± 0.12 −0.85 ± 0.11 −0.64 ± 0.08 −1.36 ± 0.05
P.F1 0.17 0.02 0.17 0.17 0.0 0.28 ± 0.01 0.05 ± 0.01 0.3 ± 0.01 0.32 ± 0.01 0.19 ± 0.01
S.F1 0.16 0.02 0.16 0.16 0.0 0.28 ± 0.01 0.05 ± 0.01 0.29 ± 0.01 0.31 ± 0.01 0.18 ± 0.01
GD -4.7

Table 44. NEWS2 sub rate ∈ [0.15, 0.4] high std
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metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 828.61 828.61 626.63 642.26 637.93 553.35 ± 10.35 602.95 ± 21.97 514.44 ± 7.44 530.38 ± 16.37 603.67 ± 9.18
RMSEvaso 0.87 0.87 0.4 0.53 0.62 0.28 ± 0.02 0.5 ± 0.07 0.29 ± 0.01 0.35 ± 0.02 0.38 ± 0.02
WIS −1.5 −4.3 −1.65 −3.82 −6.8 −3.22 ± 0.16 −3.84 ± 0.9 −1.65 −3.2 ± 0.27 −1.65
WISb −2.35 −4.58 −2.69 −4.0 −5.43 −3.03 ± 0.18 −3.89 ± 0.57 −1.82 ± 0.07 −3.0 ± 0.29 −2.13 ± 0.31
WISt −1.5 −4.3 −1.65 −3.82 −6.8 −3.22 ± 0.16 −3.84 ± 0.9 −1.65 −3.2 ± 0.27 −1.65
WISbt −2.36 −4.56 −2.7 −4.16 −5.66 −3.02 ± 0.15 −3.9 ± 0.59 −1.79 ± 0.09 −2.99 ± 0.25 −2.06 ± 0.28
DR −0.54 −0.36 −1.13 −0.45 −0.54 −0.47 ± 0.02 −0.08 ± 0.02 −0.61 ± 0.33 −0.78 ± 0.14 −1.03 ± 0.13
P.F1 0.23 0.03 0.23 0.23 0.02 0.31 ± 0.01 0.04 ± 0.01 0.33 ± 0.04 0.37 ± 0.02 0.26 ± 0.01
S.F1 0.23 0.03 0.23 0.23 0.02 0.3 ± 0.01 0.04 ± 0.02 0.31 ± 0.03 0.34 ± 0.02 0.25 ± 0.01
GD -4.25

Table 45. NEWS2 sub rate ∈ [0.4,∞] low std

metric alt max min random weight imitation dqn cql iql bcq

RMSEIV 1131.35 1108.49 1131.35 1090.9 1100.26 959.1 ± 10.09 1095.13 ± 12.04 932.83 ± 10.43 943.02 ± 3.75 1092.54 ± 18.52
RMSEvaso 0.21 0.86 0.21 0.45 0.54 0.21 ± 0.01 0.38 ± 0.07 0.19 ± 0.02 0.21 ± 0.01 0.19 ± 0.01
WIS −2.72 −2.56 −2.89 −5.71 −4.33 −1.53 −1.39 ± 0.52 −1.66 ± 0.66 −1.54 ± 0.01 −2.68 ± 0.11
WISb −2.32 −2.74 −2.66 −4.26 −4.27 −1.87 ± 0.06 −1.71 ± 0.33 −1.76 ± 0.14 −1.88 ± 0.1 −2.33 ± 0.09
WISt −2.72 −2.56 −2.89 −6.16 −4.33 −1.61 ± 0.04 −1.54 ± 0.66 −1.67 ± 0.66 −1.84 ± 0.21 −2.68 ± 0.11
WISbt −2.64 −2.78 −2.57 −4.81 −4.34 −1.93 ± 0.08 −1.79 ± 0.41 −1.83 ± 0.22 −2.06 ± 0.09 −2.4 ± 0.12
DR −0.78 −0.2 −1.97 −0.96 −0.47 −0.95 ± 0.01 −0.13 ± 0.09 −0.57 ± 0.18 −0.82 ± 0.04 −1.89 ± 0.07
P.F1 0.26 0.02 0.26 0.26 0.0 0.35 ± 0.02 0.04 ± 0.02 0.38 ± 0.02 0.4 ± 0.04 0.31 ± 0.03
S.F1 0.25 0.02 0.25 0.25 0.0 0.34 ± 0.03 0.04 ± 0.04 0.37 ± 0.02 0.39 ± 0.03 0.3 ± 0.03
GD -3.79

Table 46. NEWS2 sub rate ∈ [0.4,∞] high std
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Figure 10. Importance ratio histogram of random policy > 99th percentile on Outcome reward.
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Figure 11. Importance ratio histogram of min policy > 99th percentile on Outcome reward.
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Figure 12. Importance ratio histogram of max policy > 99th percentile on Outcome reward.
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Figure 13. Importance ratio histogram of alt policy > 99th percentile on Outcome reward.
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Figure 14. Importance ratio histogram of weight policy > 99th percentile on Outcome reward.
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Figure 15. Importance ratio histogram of random policy > 99th percentile on SOFA reward.
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Figure 16. Importance ratio histogram of min policy > 99th percentile on SOFA reward.
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Figure 17. Importance ratio histogram of max policy > 99th percentile on SOFA reward.
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Figure 18. Importance ratio histogram of alt policy > 99th percentile on SOFA reward.
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Figure 19. Importance ratio histogram of weight policy > 99th percentile on SOFA reward.
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Figure 20. Importance ratio histogram of min policy > 99th percentile on NEWS2 reward.
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Figure 21. Importance ratio histogram of max policy > 99th percentile on NEWS2 reward.
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Figure 22. Importance ratio histogram of alt policy > 99th percentile on NEWS2 reward.
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Figure 23. Importance ratio histogram of weight policy > 99th percentile on NEWS2 reward.
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