
One-Shot Domain Incremental Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Domain incremental learning (DIL) has been discussed in previous studies on deep1

neural network models for classification. In practice, however, we may encounter2

a situation where we need to perform DIL under the constraint that the samples3

on the new domain are observed only infrequently. In this study, we consider the4

extreme case where we have only one sample from the new domain, which we call5

one-shot DIL (ODIL). In simulation experiments on ODIL, we observed that the6

accuracy on both the new domain and the original domain deteriorated even on7

applying existing DIL methods. We analyzed the reason for this problem through8

various investigations and discovered that the cause would be the statistics of the9

batch normalization layers. According to our analysis, we propose a new technique10

regarding these statistics and demonstrate the effectiveness of the proposed method11

in ODIL through experiments on open datasets.12

1 Introduction13

In recent years, deep learning has been widely used in image recognition, speech recognition, and14

natural language processing [18]. There is a need to update a trained neural network model so that15

the model can classify samples correctly on a new, untrained input distribution (domain) [6]. The16

additional training for the new domain is called domain incremental learning (DIL) [32]. In DIL, we17

assume that the input domains increase in each class, while the number of classes remains constant.18

We need to correctly classify inputs on both the new and original domains.19

In practice, although previous studies on DIL assume many samples from the new domain, we often20

face situations in which we have few samples from the new domain.1 Therefore, in this study, we21

explore one-shot DIL (ODIL), which is supposed to have only one sample from the new domain.22

Figure 1 shows an example of the new and original domains in ODIL, arranged using CIFAR10 [17].23

In this example, no truck images are included in the original 9-class data, and such images are not24

used in the first training. Suppose that one truck image is given and added to the automobile class25

as a new domain after the first training. We assume that the model obtained by the first training26

misclassifies the given truck image. Therefore, we attempt to update this model with the given truck27

image as the second training, so that the model classifies truck images into the automobile class.28

Previous studies proposed DIL methods with mechanisms to improve the accuracy on the new domain29

while maintaining the accuracy on the original domain. Examples of such DIL methods are Elastic30

Weight Consolidation (EWC) [16] and Gradient Episodic Memory (GEM) [21]. However, in our31

experiments simulating ODIL, we could not maintain the accuracy on the original domain even after32

applying EWC or GEM directly under the ODIL setting. Furthermore, though the goal of ODIL is to33

improve the accuracy on the new domain, it worsened in ODIL with EWC or GEM. We carefully34

investigated the reason for this deterioration and found that the statistics maintained in the batch35

normalization layers [13] are more drastically affected under the ODIL setting compared to the36

1In Appendix B, we give an example of situations in which we have few samples from the new domain.

Submitted to the Workshop on Distribution Shifts (DistShift@NeurIPS 2023). Do not distribute.

Figure 1: Example of the original domain and the new domain in one-shot domain incremental
learning (ODIL) with CIFAR10 [17]. In this example, trucks are added to the “automobile” class as
the new domain. However, only one sample is added.

general DIL setting. Therefore, in this paper, we propose a new technique regarding the statistics in37

the batch normalization layers to prevent the degradation of accuracy. We report the experimental38

results indicating that our technique is necessary even if we apply EWC or GEM under the ODIL39

setting. Note that the related work of our study is explained in Appendix A.40

2 Problem Description41

In this section, we define ODIL. Let X (⊆ Rd) be an input space. Let Y = {1, · · · ,K} be the set of42

classes, where K ∈ N is the number of classes. Let Dorig = {(xn, yn)}Nn=1 (xn ∈ X , yn ∈ Y; n =43

1, · · · , N) be a labeled dataset for classification, where xn ∼ porig(x|y = k)(k = 1, · · · ,K).44

In this work, fθ : X → Y parametrized by θ ∈ Θ(⊆ Rp) denotes a neural network model.45

We suppose that a neural network model fθ̂orig
(θ̂orig ∈ Θ) trained with Dorig is given. Under46

this premise, we suppose that a new labeled dataset Dnew is given. We assume that |Dnew| = 147

and represent Dnew = {(x0, y0)} (x0 ∈ X , y0 ∈ Y). The new sample (x0, y0) is based on the48

following assumptions: 1) The trained model fθ̂orig
misclassifies the new sample (x0, y0). 2) The49

sample (x0, y0) is not included in the original dataset Dorig. 3) x0 ∼ pnew(x|y = y0), where50

porig(x|y = y0) and pnew(x|y = y0) are not equivalent.51

We define ODIL as updating the trained model fθ̂orig
with Dnew to obtain a new model fθ̂new

(θ̂new ∈52

Θ) that can correctly classify the inputs on the new domain pnew(x|y = y0). Note that the model53

is required to maintain the classification accuracy on the original domain porig(x|y = k) as much54

as possible. As in previous studies [21, 4], we allow a subset M of the examples in the original55

data Dorig to be stored. We can use the subset M in ODIL to prevent the deterioration of the accuracy56

on the original domain.57

For example, in Fig. 1, the original domain contains classes other than trucks. The new domain58

contains only trucks. The given truck image corresponds to x0, and the label y0 represents the59

automobile class. We expect that the new model fθ̂new
will correctly classify the trucks as well as the60

other data. Most previous studies about DIL assumed that the domains expand in all classes. Unlike61

them, we assume that the domain increases in only one class because the new dataset contains only62

one sample.63

3 Method for ODIL64

3.1 Problems with Batch Normalization in ODIL65

EWC and GEM have mechanisms to improve accuracy on the new domain while maintaining66

accuracy on the original domain [16, 21]. Therefore, it is natural to expect that the same results can67

be achieved in ODIL as well. However, in experiments simulating ODIL, we could not maintain68

the accuracy on the original domain even when using EWC or GEM. Further, although ODIL was69

intended to improve the accuracy on the new domain, EWC and GEM actually worsened the accuracy70

of the new domain in ODIL, as shown in Table 1. Table 1 summarizes the test accuracy on the new71

2

Table 1: Test accuracy on the original and new domains when |Dnew| = 1000 or |Dnew| = 1.

fθ̂orig

fθ̂new

CE CE+EWC CE+GEM
1000 1 1000 1 1000 1

pnew 0.6940 0.9410 0.5765 0.9390 0.5955 0.9960 0.7315
porig 0.9550 0.9420 0.4936 0.9434 0.4647 0.9306 0.9071

(a) Transition of the moving averages of the mean. (b) Transition of the moving averages of the variance.

Figure 2: Transition of the moving averages of the statistics at the batch normalization layer closest
to the input layer in ResNet18 [9]. We accumulated the moving averages of the statistics at every
forward propagation and plotted their sequences. Since the input is normalized in parallel for each
channel in the batch normalization layer, we computed the average for the channels.

domain pnew(x|y = y0) and the original domain porig(x|y = k)(k = 1, · · · ,K) in experiments72

simulating ODIL as shown in Fig. 1. We tried two cases, |Dnew| = 1 and |Dnew| = 1000. In the73

|Dnew| = 1 setting, we resampled data from Dnew with data augmentation [28] at each step of the74

optimization to increase the number of learnable samples for the new domain. The details of this data75

augmentation are explained in Appendix C. We used ResNet18 [9] as an image classifier. CE denotes76

the case where we performed optimization with simple cross-entropy loss. CE+EWC and CE+GEM77

are the same as CE except that EWC and GEM are applied, respectively. The setup of the experiments78

is explained in Appendix D. When |Dnew| = 1, the accuracy on both domains decreases after training79

with Dnew, in the case of CE and CE+EWC. This deterioration on both domains is a problem specific80

to ODIL as the deterioration on the new domain does not occur when |Dnew| = 1000.81

We carefully analyzed the cause of this problem and discovered that the cause lies in the statistics in82

the batch normalization layers. Figure 2 shows the transitions of the moving averages of the mean83

and variance of a batch normalization layer as fθ̂orig
is updated with Dnew. We chose an example84

in CE. We ran five trials with varying Dnew for each of the |Dnew| = 1000 and |Dnew| = 1 settings.85

We plotted all results of the five trials as the five lines in the figures. In Fig. 2a, the moving average86

of the mean shifts in more widely different directions over the five trials in |Dnew| = 1 than in87

|Dnew| = 1000. When |Dnew| = 1, for some trials, a positive moving average is obtained, while for88

others, a negative moving average is obtained. This variation is caused by the fact that the mean value89

is calculated under a strong influence of the single input x0. The mean value heavily influenced by90

the single input x0 causes the trainable weights and biases in the batch normalization layers to be91

updated in unexpected directions during training. Furthermore, in inference, the moving average92

that is heavily influenced by the single input x0 degrades the generalization ability. In Fig. 2b,93

the moving average of the variance shifts in the opposite direction between |Dnew| = 1000 and94

|Dnew| = 1. The moving average of the variance increases when |Dnew| = 1000, which is natural95

from the viewpoint that the number of domains increases. However, when |Dnew| = 1, the moving96

average of the variance decreases. This discrepancy is due to a lack of diversity in the new data in97

ODIL. This results in a reduced variance in the mini-batches, in turn causing the trainable weights98

and biases in the batch normalization layers to be updated in unexpected directions during training.99

Furthermore, in inference, the much smaller moving average of variance causes misclassification100

because the outputs of the batch normalization layers become much larger than the inputs. The lower101

accuracies in |Dnew| = 1 are due to the above problems. Although we have tried EWC and GEM,102

existing DIL methods other than EWC and GEM are also likely to show the same trend as long as103

3

Table 2: Test accuracy on the new and original domains in the baseline or proposed (CIFAR10)

fθ̂orig

fθ̂new

CE CE+EWC CE+GEM
baseline proposed baseline proposed baseline proposed

pnew 0.6940 0.5765 0.9595 0.5955 0.9420 0.7315 0.9485
±0.2297 ±0.0430 ±0.2614 ±0.0586 ±0.2287 ±0.0417

porig 0.9550 0.4936 0.9335 0.4647 0.9332 0.9071 0.9404
±0.1847 ±0.0440 ±0.2202 ±0.0192 ±0.2512 ±0.0250

Table 3: Test accuracy on the new and original domains in the baseline or proposed (RESISC45)

fθ̂orig

fθ̂new

CE CE+EWC CE+GEM
baseline proposed baseline proposed baseline proposed

pnew 0.1071 0.4250 0.8250 0.3893 0.8214 0.3643 0.7786
±0.1217 ±0.0862 ±0.1416 ±0.0868 ±0.1081 ±0.1020

porig 0.9580 0.9482 0.8912 0.9502 0.8879 0.9478 0.9294
±0.0096 ±0.0712 ±0.0166 ±0.0728 ±0.0083 ±0.0549

batch normalization layers are present in the model. Therefore, we propose to use fixed statistics in104

the batch normalization layers in ODIL, as detailed in the following section.105

3.2 Modifying Batch Normalization Statistics106

As explained in Section 3.1, the shifted statistics in the batch normalization layers degrade the107

accuracy on the new and original domains under the ODIL setting. Therefore, we modify the statistics108

as follows: 1) We do not update the moving averages of the statistics and we fix them to the values109

they had before training the new domain. 2) We use these constant moving averages for batch110

normalization when calculating forward and backward propagation during training. 3) We also use111

the constant moving averages in inference. These improvements avoid the unexpected shift of the112

statistics shown in Section 3.1.113

4 Experiments114

To investigate the effectiveness of the proposed method, we performed experiments on the image115

datasets CIFAR10 [17] and RESISC45 [5]. As experiments using CIFAR10, the example in Fig. 1 was116

adopted. In addition, as experiments using RESISC45, we adopted the example given by replacing117

“truck” with “airplane” and “automobile” with “airport” in Fig. 1. We used ResNet18 [9] as an image118

classifier. We trained the models in ODIL with the following two settings and calculated the test119

accuracy on both the new domain pnew(x|y = y0) and the original domain porig(x|y = k)(k =120

1, · · · ,K). baseline: In the batch normalization layers, the statistics are calculated from the inputs121

as usual. Simultaneously, the moving averages of the statistics are updated. proposed: As explained122

in Section 3.2, the batch normalization layers constantly use the moving averages obtained before123

training the new domain. These moving averages are not updated. Note that there is no difference124

between “baseline” and “proposed” other than the batch normalization layers. The setup of the125

experiments is explained in Appendix D. Additional experiments are shown in Appendix E.126

Tables 2 and 3 list the results of CIFAR10 and RESISC45, respectively. We calculated the median and127

standard deviation of the accuracies over 10 trials with varying Dnew (median±standard deviation).128

In the case of CIFAR10, some settings of the baseline degraded the accuracy on both the new and129

original domains through ODIL. However, the proposed method avoided the deterioration of accuracy130

and improved the accuracy on the new domain. The proposed method improved the accuracy not only131

on the new domain but also on the original domain in the experiments with CIFAR10. There is no132

example where the proposed method is worse than the baseline in Table 2. In the case of RESISC45,133

the baseline improved the accuracy on the new domain through ODIL; however, compared to the134

baseline, the proposed method achieved higher accuracy on the new domain. Although there is a135

trade-off between the accuracy on the new domain and that on the original domain, the decrease in136

the accuracy on the original domain is much smaller than the increase in the accuracy on the new137

domain.138

4

References139

[1] Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey. Defining benchmarks140

for continual few-shot learning. Workshop on Meta-Learning, 34th Conference on Neural Information141

Processing Systems (NeurIPS 2020), 2020.142

[2] Antreas Antoniou and Amos J Storkey. Learning to learn by self-critique. In Advances in Neural143

Information Processing Systems, volume 32. Curran Associates, Inc., 2019.144

[3] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-145

STAT’2010, pages 177–186, Heidelberg, 2010. Physica-Verlag HD.146

[4] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and SIMONE CALDERARA. Dark147

experience for general continual learning: a strong, simple baseline. In Advances in Neural Information148

Processing Systems, volume 33, pages 15920–15930. Curran Associates, Inc., 2020.149

[5] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark and150

state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.151

[6] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory152

Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks.153

IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385, 2022.154

[7] Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury. Fuzz testing based data155

augmentation to improve robustness of deep neural networks. In 2020 IEEE/ACM 42nd International156

Conference on Software Engineering (ICSE), pages 1147–1158, 2020.157

[8] Vibhor Gupta, Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff. Continual learning158

for multivariate time series tasks with variable input dimensions. In 2021 IEEE International Conference159

on Data Mining (ICDM), pages 161–170, 2021.160

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.161

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.162

[10] Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu Sebastian, and Abbas163

Rahimi. Constrained few-shot class-incremental learning. In Proceedings of the IEEE/CVF Conference on164

Computer Vision and Pattern Recognition (CVPR), pages 9057–9067, June 2022.165

[11] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier166

incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and167

Pattern Recognition (CVPR), June 2019.168

[12] YenChang Hsu, YenCheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning169

scenarios: A categorization and case for strong baselines. Continual Learning Workshop, 32nd Conference170

on Neural Information Processing Systems (NIPS 2018), 2018.171

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing172

internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, pages173

448–456, 2015.174

[14] Fahdi Kanavati and Masayuki Tsuneki. Partial transfusion: on the expressive influence of trainable batch175

norm parameters for transfer learning. In Proceedings of the Fourth Conference on Medical Imaging with176

Deep Learning, pages 338–353, 2021.177

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:178

1412.6980, 2017.179

[16] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu,180

Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia181

Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks.182

Proceedings of the National Academy of Sciences of the United States of America, 114(13):3521–3526,183

2017.184

[17] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical185

Report 0, University of Toronto, Toronto, Ontario, 2009.186

[18] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–444, 2015.187

[19] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online].188

Available: http: // yann. lecun. com/ exdb/ mnist , Accessed on July 21, 2023, 2, 2010.189

5

http://yann.lecun.com/exdb/mnist

[20] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization for190

practical domain adaptation. Workshop in International Conference on Learning Representations, 2017.191

[21] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learning. In192

Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.193

[22] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In International194

Conference on Learning Representations, 2017.195

[23] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In Proceedings196

of the 18th ACM international conference on Multimedia, pages 1485–1488, 2010.197

[24] SylvestreAlvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL: Incre-198

mental classifier and representation learning. In Proceedings of the IEEE Conference on Computer Vision199

and Pattern Recognition (CVPR), July 2017.200

[25] Xuhong Ren, Bing Yu, Hua Qi, Felix Juefei-Xu, Zhuo Li, Wanli Xue, Lei Ma, and Jianjun Zhao. Few-shot201

guided mix for dnn repairing. In 2020 IEEE International Conference on Software Maintenance and202

Evolution (ICSME), pages 717–721, 2020.203

[26] Pierre Sermanet and Yann LeCun. Traffic sign recognition with multi-scale convolutional networks. In204

The 2011 International Joint Conference on Neural Networks, pages 2809–2813, 2011.205

[27] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting206

with hard attention to the task. In Proceedings of the 35th International Conference on Machine Learning,207

pages 4548–4557, 2018.208

[28] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learning.209

Journal of Big Data, 6(60), 2019.210

[29] Jeongju Sohn, Sungmin Kang, and Shin Yoo. Arachne: Search-based repair of deep neural networks. ACM211

Trans. Softw. Eng. Methodol., 32(4), May 2023.212

[30] Domen Tabernik and Danijel Skočaj. Deep learning for large-scale traffic-sign detection and recognition.213

IEEE Transactions on Intelligent Transportation Systems, 21(4):1427–1440, 2020.214

[31] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-shot215

class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern216

Recognition (CVPR), June 2020.217

[32] Gido M. van de Ven and Andreas S. Tolias. Generative replay with feedback connections as a general218

strategy for continual learning. arXiv preprint arXiv: 1809.10635, 2018.219

[33] Moslem Yazdanpanah, Aamer Abdul Rahman, Muawiz Chaudhary, Christian Desrosiers, Mohammad220

Havaei, Eugene Belilovsky, and Samira Ebrahimi Kahou. Revisiting learnable affines for batch norm in221

few-shot transfer learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern222

Recognition (CVPR), pages 9109–9118, June 2022.223

[34] Bing Yu, Hua Qi, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, and Jianjun Zhao. DeepRepair: Style-224

guided repairing for deep neural networks in the real-world operational environment. IEEE Transactions225

on Reliability, pages 1–16, 2021.226

[35] Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and Yinghui Xu. Few-shot incremental learning227

with continually evolved classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision and228

Pattern Recognition (CVPR), pages 12455–12464, June 2021.229

[36] Hao Zhang and W.K. Chan. Apricot: A weight-adaptation approach to fixing deep learning models. In 2019230

34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 376–387,231

2019.232

[37] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing233

He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2021.234

[38] Stop sign. Available Online: https://en.wikipedia.org/wiki/Stop_sign, Accessed on January235

16, 2023.236

6

https://en.wikipedia.org/wiki/Stop_sign

A Related Work237

A.1 Continual Learning238

DIL is a part of continual learning [6]. There are three types of scenarios in continual learning: DIL,239

class incremental learning (CIL), and task incremental learning (TIL) [32]. In DIL, several datasets240

with different domains are observed over time. All the datasets have the same number of classes, and241

a new domain is added to each class as a new dataset is observed. Both the original and new domains242

must be classifiable by the training model.243

In CIL, each dataset that is observed over time contains an exclusive subset of the classes from a244

whole set of data [24, 11]. Therefore, the observation of a new dataset means the addition of new245

classes. The training model must classify all classes. Each time a new dataset is observed, the number246

of units in the output layer of neural network models is expanded for accommodating new classes.247

Note that this scenario assumes that different datasets have different domains.248

In TIL, the output spaces of all the datasets observed over time are disjoint [27, 8]. For example,249

consider the case where the original dataset deals with a 10-class classification problem, while the250

new dataset deals with a single output regression task [12]. Neural network models often have a251

multi-head output layer in TIL, wherein each head is responsible for a specific task. Note that in TIL,252

we assume that different datasets have different domains and different output distributions.253

A.2 Few-Shot Continual Learning254

Recent studies on computer vision discussed few-shot CIL (FCIL) [35, 10]. FCIL is similar to CIL255

except that it involves a limited number of training samples. In many cases, we assume that the first256

training dataset has a large sample size, while the subsequent datasets have smaller sizes [31]. The257

new dataset has new classes that are not included in the previous datasets. A training model must258

discriminate between the new and original classes, even though the new classes have few samples.259

Another study explored few-shot DIL [1]. The few-shot DIL called New Classes with Overwrite260

Settings in [1] is similar to ours. The difference lies in the number of classes in the new domain.261

In the earlier work [1], the number of classes in the new domain is the same as that in the original262

domain. In contrast, in the present work, the new domain contains only one class regardless of263

the number of classes in the original domain, and only one sample belongs to that one class. The264

meta-learning methods used in [1] assume that there are multiple classes and multiple samples in265

each domain. The Self-Critique and Adapt model (SCA) [2], which can achieve the best accuracy266

in [1], needs two datasets—a support set and a target set—for each domain. The two datasets must be267

different because the target set is used for validation. Hence, it is difficult to apply this method to our268

ODIL.269

A.3 Neural Network Software Repair270

In our settings, a new sample from the new domain is assumed to be misclassified before training the271

new domain. Therefore, we consider ODIL as the process of repairing or debugging neural network272

models. Some studies have discussed neural network software repair in software engineering [36, 29].273

These studies aimed to reduce the number of misclassified samples by updating the weight parameters274

of a trained model. Note that the predictions of correctly classified samples cannot be changed when275

the weight parameters are updated. Some studies assumed 1000 samples as the number of samples276

to be repaired [34, 25]. Other studies set the number of samples to be repaired depending on the277

accuracy of a pre-trained model [36, 7]. Few studies discussed neural network software repair with278

limited training samples. In contrast, the present study considers the situation of only one additional279

class with only one sample. Therefore, our study is valuable not only for continual learning but also280

for neural network software repair.281

A.4 Transfer Learning282

Transfer learning [37] is similar to continual learning and neural network software repair. However,283

transfer learning differs from these techniques in that it allows us to forget the original data pattern.284

Some studies on transfer learning discussed batch normalization. Kanavati and Tsuneki [14] claimed285

that fine-tuning only the trainable weights and biases of the batch normalization layers yields286

7

performance similar to that achieved by fine-tuning all the weights of the neural network models.287

Meanwhile, Yazdanpanah et al. [33] showed that shifting and scaling normalized features by the288

weights and biases of the batch normalization layers is detrimental in few-shot transfer learning. They289

demonstrated that the removal of batch normalization weights and biases can have a positive impact290

on performance.291

In addition, a study explored not only trainable weights and biases but also the statistics that are292

computed by the inputs in the batch normalization layers. Li et al. [20] achieved a deep adaptation293

effect to the new domain by modulating the statistics from the source domain to the target domain in294

the batch normalization layers. In the present work, we proposed a technique different from that used295

in the earlier study [20] for the statistics in the batch normalization layers. We changed the setting of296

statistics in the batch normalization layers depending on the number of samples on the new domain.297

B Applications298

Our study contributes to many cases where samples from new domains are rarely observed over time,299

but the model must adapt to the new domains. For example, consider the traffic sign recognition300

requirements of self-driving cars. For classifying traffic signs into categories such as stop, one-way,301

and speed limit, based on images obtained from cameras, automatic classification is made possible by302

using neural network models trained on a dataset containing images of traffic signs [26, 30]. However,303

even if we train a large image dataset of traffic signs for this classification, we may encounter a new,304

unprecedented type of traffic sign that will be misclassified by the trained model in the test drives. In305

the category of stop signs, many different types of stop signs are in use [38]. Each time we find a306

new type of stop sign, we must update the trained model. In particular, even if there is only one stop307

sign in the world that looks like the one we found, we still need to update the model so long as the308

self-driving cars are using it. In addition, the updated model is expected to successfully recognize the309

same stop sign in different situations.310

C Algorithm for ODIL311

Algorithm 1: Our ODIL algorithm with improved batch normalization.
Input:M, Dnew = {(x0, y0)}, fθ̂orig

, L: loss function, ν: learning rate,
transform: the random operator of augmentation,
judge : Θ→ {True,False}: the judgment for termination of iteration

Output: fθ̂new

1 θ0 ← θ̂orig

2 t← 0
3 while judge(θt) = False do
4 Sample a mini-batch B fromM.
5 for m = 1, 2, · · · ,M do
6 zm ← transform(x0)
7 end
8 C ← {(z1, y0), (z2, y0), · · · , (zM , y0)}
9 B′ ← B ∪ C

10 Compute the forward and backward propagation of the loss L(θt;B′) with the proposed method in
Section 3.2.

11 θt+1 ← θt − ν∇θtL(θt;B′)
12 t← t+ 1
13 end
14 θ̂new ← θt

15 return fθ̂new

312

Algorithm 1 shows the details of our algorithm for ODIL. We assume that the neural network313

model fθ̂orig
trained on the original data Dorig is given, as in Section 2. In ODIL, the new domain314

pnew(x|y = y0) becomes the training target in addition to the original domain porig(x|y = k)(k =315

1, · · · ,K). However, we have only one sample on the new domain, denoted as (x0, y0). This makes316

training on the new domain difficult. Therefore, we apply data augmentation [28] to x0, as described317

in Lines 5-8 in Alg. 1. We replicate the new data x0 into M samples (M ∈ N) and transform them318

8

randomly and differently in each iteration.2 The vectors z1, z2, · · · , zM ∈ X denote the new samples319

obtained by transforming x0. We assume that the transformed samples z1, z2, · · · , zM belong to the320

same class y0 as x0. However, if all the samples in the mini-batches belong to the class y0, updating θ321

with these mini-batches may result in a model that classifies all the inputs into y0. To avoid this322

problem, we concatenate the mini-batch B, which is the mini-batch of M, with C = {(zm, y0)}Mm=1323

(Line 9).324

Then, in forward and backward propagation (Line 10), we perform batch normalization using the325

technique proposed in Section 3.2. The moving averages of the statistics are not updated. Note that326

we did not use the proposed technique in the experiments explained in Section 3.1, and used it as327

“proposed” in the experiments explained in Section 4. We continue the training iteration as long as328

a function “judge” returns “False” and stop it when “judge” returns “True” (Line 3). We define329

“judge” as the function that returns “True” if the element corresponding to y0 in the softmax output330

of fθ(x0) is greater than a threshold δ ∈ [0, 1]. “judge” returns “False” if it is less than δ.331

When using EWC in general DIL, the loss for the new domain is computed only with new data [16].332

In ODIL, however, we compute the loss for the new domain with B′ in Alg. 1 to prevent the trained333

model from classifying all the inputs into y0. The Fisher information needed for EWC is computed334

with M. For GEM, we compute the loss for the new domain with B′, similar to EWC. The loss for335

the original domain is computed with a mini-batch B randomly sampled from M.336

D Details of Experiments337

D.1 Datasets338

Although we only show the results when we used CIFAR10 and RESISC45 in the main paper, we339

also show the results when we used MNIST [19] in Appendix E. CIFAR10 and MNIST classify340

images into 10 classes, while RESISC45 classifies images into 45 classes. Each image is assigned a341

label representing the class to which it belongs. To extract the datasets corresponding to the subset342

M(⊂ Dorig) and the new data Dnew = {(x0, y0)} from CIFAR10, MNIST, and RESISC45, we343

perform the following operations:344

Step 1. Randomly split a dataset into training, validation, and test datasets, which are denoted by345

D(train), D(val), and D(test), respectively.346

Step 2. Exclude one common class from each of the three datasets. The excluded datasets are347

denoted by D(train)
new , D(val)

new , and D(test)
new . The remaining datasets, which have 9 (or 44)348

classes, are denoted by D(train)
orig , D(val)

orig , and D(test)
orig . Let y′0 be the class label of samples349

included in the datasets D(train)
new , D(val)

new , and D(test)
new .350

Step 3. Change y′0 to one of the remaining 9 (or 44) classes. Let y0 be the class label after the351

change.352

Step 4. Suppose that D(train)
orig represent the original data Dorig on porig(x|y = k). These data are353

used for training to obtain the pre-trained model fθ̂orig
. Note that fθ̂orig

is a 9-class (or354

44-class) classifier.355

Step 5. Classify the samples in D(train)
new with fθ̂orig

, and extract the misclassified samples. The356

dataset containing the extracted samples is denoted by D′
new.357

Step 6. Randomly select one sample from D′
new. We assume that the selected sample is the given358

new data Dnew = {(x0, y0)} on pnew(x|y = y0).359

Step 7. Randomly select 1000 samples from the dataset D(train)
orig . We assume that the dataset360

including the selected samples is the subset M.361

Step 8. Run Alg. 1 with the given M, fθ̂orig
, and Dnew.362

While CIFAR10 and MNIST are originally 10-class classification problems, the above process reduces363

the number of classes by one to a 9-class classification problem. In the case of RESISC45, the number364

2The transformations methods are described in Appendix D

9

Table 4: Settings of the original and new domains in y0.

dataset Set 1 Set 2
y′
0 y0 y′

0 y0

CIFAR10 “truck” “automobile" “dog" “cat"
MNIST “9" “8" “1” “0”

RESISC45 “airplane” “airport” “overpass” “intersection”

of classes is reduced to 44. We set the new domain pnew(x|y = y0) by changing y′0, which is not365

included in these 9 (or 44) classes, to one of these classes. Table 4 lists the settings of y′0 and y0 in366

our experiments with CIFAR10, MNIST, and RESISC45. We adopted two settings per dataset, which367

are named Set 1 and Set 2. The results of Set 1 of CIFAR10 and RESISC45 are shown in Section 4.368

Other results are presented in Appendix E. In the experiments, we randomly selected 10 samples369

from D′
new in Step 6 and performed ODIL 10 times, assuming that each sample was the given new370

sample (x0, y0). Over the 10 trials, we calculated the median and standard deviation of the accuracy.371

Besides the new data Dnew and the original data Dorig, the following datasets were used in the372

experiments.373

• D(val)
orig is used for tuning the learning rate.374

• D(test)
new is used to calculate the test accuracy on the new domain pnew(x|y = y0).375

• D(test)
orig is used to calculate the test accuracy on the original domain porig(x|y = k).376

D(val)
new was not used to tune the learning rate because of the restriction that only one new data must be377

available for ODIL. Using the aforementioned datasets, we calculated the accuracy on the 9 (or 44)378

classes, excluding y′0.379

D.2 Setup for Model Training380

First Training. We followed Step 1 to Step 3 in Appendix D.1 and performed the first training381

with only the original data Dorig in Step 4. In this training, we used SGD [3] as the optimizer. The382

learning rate was scheduled by CosineAnnealing [22] from 0.1 to 0.0, and there were 200 epochs. The383

momentum was set to 0.9 and the weight decay was set to 0.0005. We used the same setup regardless384

of the new data size |Dnew|, DIL methods (CE, CE+EWC, or CE+GEM), and batch normalization385

(“baseline” or “proposed”). We used the same pre-trained model fθ̂orig
for all settings.386

Second Training in the |Dnew| = 1000 setting. For the |Dnew| = 1000 setting, we skipped Steps 5387

and 6 in Appendix D.1 and randomly selected 1000 samples from D(train)
new . We assumed that the388

dataset including the selected 1000 samples is the new data Dnew. We extracted the subset M as in389

Step 7, and |M| = 1000. In Step 8, we updated fθ̂orig
by the Adam optimizer [15] with the fixed390

learning rate 10−5 and the number of iterations 100. The weight decay was set to 0.0001. In this391

setting, we did not adopt Alg. 1. We concatenated Dnew and M prior to training iterations and392

performed training on the concatenated dataset using the standard approach.393

Second Training in the |Dnew| = 1 setting. We followed Steps 5 and 6. We extracted the394

subset M as in Step 7, and |M| = 1000. In Step 8, we updated fθ̂orig
with the Adam optimizer.395

We calculated the accuracy of the validation set of the original domain for the fixed learning rate396

settings of 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, and 10−1. Then, we selected the settings that397

satisfied the constraint that the training iterations were terminated (“judge” returns “True”) within398

100 iterations. Moreover, we adopted the learning rate with the highest accuracy among the selected399

settings. The weight decay was set to 0.0001. For the transformations from x0 to z1, · · · , zM400

in Alg. 1, we used RandomRotation, RandomResizedCrop, RandomAffine, and RandomPerspective,401

which were implemented in Torchvision [23]. For “judge” in Alg. 1, we set δ = 0.99. In the402

experiments whose results are shown in the main paper, we set |B| = |C| = 32 when running Alg. 1.403

In the following section, we show additional results for a different setting.404

Note that we set the regularization term coefficient of EWC to 0.5 in the above two settings.405

10

E Additional Experiments406

We presented the results of Set 1 of CIFAR10 and RESISC45 in the main paper. In this section, we407

also show the results of Set 2 of CIFAR10 and RESISC45 and those of Sets 1 and 2 of MNIST [19].408

In addition, although in the main paper, we only showed the cases in the |B| = |C| = 32 setting, in409

this section, we also show the cases in the |B| = 63, |C| = 1 setting.410

Tables 5 and 6 show the results when we used CIFAR10. Some settings of the baseline degraded411

the accuracy on both the new and original domains through ODIL. However, the proposed method412

avoided the deterioration of accuracy and improved the accuracy on the new domain. A comparison413

of the proposed method with the baseline shows that the accuracy on the new domain increased by414

9%-38%, and the accuracy on the original domain increased by 0%-46%. The proposed method415

improved the accuracy not only on the new domain but also on the original domain in the experiments416

with CIFAR10. There is no example where the proposed method is worse than the baseline in Table 3.417

Tables 7 and 8 show the results when we used MNIST. The baseline improved the accuracy on the418

new domain through ODIL; however, compared to the baseline, the proposed method achieved higher419

accuracy on the new domain. A comparison of the proposed method with the baseline shows that the420

accuracy on the new domain increased by 0.8%-15% while maintaining the reduction in accuracy421

on the original domain below 0.6%. Although there is a trade-off between the accuracy on the new422

domain and that on the original domain, the decrease in the accuracy on the original domain is much423

smaller than the increase in the accuracy on the new domain.424

RESISC45 results show similar trends to MNIST. From Tables 9 and 10, a comparison of the proposed425

method with the baseline shows that the accuracy on the new domain increased by 37%-57% while426

maintaining the reduction in accuracy on the original domain below 7%. Similar to MNIST, the427

decrease in the accuracy on the original domain is much smaller than the increase in the accuracy on428

the new domain.429

Note that the difference between the baseline and the proposed method lies only in the statistics of the430

batch normalization layers. These results show that good accuracy can be achieved just by modifying431

the batch normalization statistics. As explained in Section 3.1, the statistics shift unexpectedly in the432

baseline, and avoiding this unexpected shift has a strong effect on the accuracy in ODIL. Moreover,433

from the results of CE, we can predict that other DIL methods with cross-entropy loss show the same434

trend.435

11

Table 5: Test accuracy on the new and original domains in the baseline or proposed method (Set 1 of
CIFAR10)

domain fθ̂orig
batch size

fθ̂new

CE CE+EWC CE+GEM
baseline proposed baseline proposed baseline proposed

pnew 0.6940
|B| = |C| = 32

0.5765 0.9595 0.5955 0.9420 0.7315 0.9485
±0.2297 ±0.0430 ±0.2614 ±0.0586 ±0.2287 ±0.0417

|B| = 63, |C| = 1
0.6895 0.9260 0.7815 0.9375 0.8015 0.9220
±0.1466 ±0.0425 ±0.1008 ±0.0456 ±0.0901 ±0.0452

porig 0.9550
|B| = |C| = 32

0.4936 0.9335 0.4647 0.9332 0.9071 0.9404
±0.1847 ±0.0440 ±0.2202 ±0.0192 ±0.2512 ±0.0250

|B| = 63, |C| = 1
0.9413 0.9424 0.9394 0.9414 0.9399 0.9431
±0.0054 ±0.0091 ±0.0070 ±0.0164 ±0.0062 ±0.0137

Table 6: Test accuracy on the new and original domains in the baseline or proposed method (Set 2 of
CIFAR10)

domain fθ̂orig
batch size

fθ̂new

CE CE+EWC CE+GEM
baseline proposed baseline proposed baseline proposed

pnew 0.7800
|B| = |C| = 32

0.7595 0.9335 0.7665 0.9330 0.8081 0.9240
±0.3077 ±0.0257 ±0.2721 ±0.0241 ±0.1010 ±0.0255

|B| = 63, |C| = 1
0.7740 0.9050 0.7305 0.9035 0.8075 0.8985
±0.0771 ±0.0110 ±0.0526 ±0.0260 ±0.0663 ±0.0223

porig 0.9672
|B| = |C| = 32

0.9363 0.9528 0.9360 0.9522 0.9556 0.9556
±0.2308 ±0.0267 ±0.2210 ±0.0259 ±0.0313 ±0.0201

|B| = 63, |C| = 1
0.9544 0.9580 0.9580 0.9587 0.9532 0.9584
±0.0051 ±0.0023 ±0.0057 ±0.0204 ±0.0051 ±0.0041

Table 7: Test accuracy on the new and original domains in the baseline or proposed method (Set 1 of
MNIST)

domain fθ̂orig
batch size

fθ̂new

CE CE+EWC CE+GEM
baseline proposed baseline proposed baseline proposed

pnew 0.1021
|B| = |C| = 32

0.7671 0.8826 0.8414 0.8930 0.7800 0.8677
±0.1880 ±0.0715 ±0.1454 ±0.0611 ±0.1108 ±0.0688

|B| = 63, |C| = 1
0.7522 0.8251 0.7190 0.8746 0.7507 0.8593
±0.2107 ±0.0832 ± 0.1416 ±0.0778 ±0.1017 ±0.0863

porig 0.9962
|B| = |C| = 32

0.9940 0.9904 0.9953 0.9903 0.9958 0.9909
±0.0203 ±0.0046 ±0.0068 ±0.0050 ±0.0043 ±0.0035

|B| = 63, |C| = 1
0.9959 0.9921 0.9959 0.9917 0.9957 0.9928
±0.2806 ± 0.0026 ±0.0013 ±0.0022 ±0.0019 ±0.0047

Table 8: Test accuracy on the new and original domains in the baseline or proposed method (Set 2 of
MNIST)

domain fθ̂orig
batch size

fθ̂new

CE CE+EWC CE+GEM
baseline proposed baseline proposed baseline proposed

pnew 0.0555
|B| = |C| = 32

0.8639 0.9313 0.8656 0.9256 0.8819 0.9198
±0.0763 ±0.1016 ± 0.1085 ±0.0972 ±0.1008 ±0.0968

|B| = 63, |C| = 1
0.9110 0.9194 0.8863 0.9167 0.8903 0.9022
±0.0692 ±0.1089 ±0.0847 ±0.0783 ±0.0751 ± 0.0676

porig 0.9951
|B| = |C| = 32

0.9933 0.9931 0.9931 0.9932 0.9936 0.9937
±0.0049 ±0.0056 ±0.0377 ±0.0055 ±0.0015 ±0.0026

|B| = 63, |C| = 1
0.9946 0.9936 0.9941 0.9937 0.9941 0.9941
±0.0005 ±0.0010 ±0.0004 ±0.0026 ±0.0011 ±0.0008

12

Table 9: Test accuracy on the new and original domains in the baseline or proposed method (Set 1 of
RESISC45)

domain fθ̂orig
batch size

fθ̂new

CE CE+EWC CE+GEM
baseline proposed baseline proposed baseline proposed

pnew 0.1071
|B| = |C| = 32

0.4250 0.8250 0.3893 0.8214 0.3643 0.7786
±0.1217 ±0.0862 ±0.1416 ±0.0868 ±0.1081 ±0.1020

|B| = 63, |C| = 1
0.2750 0.7179 0.2750 0.7179 0.3321 0.7393
±0.1067 ±0.1433 ±0.0637 ±0.1433 ±0.1187 ±0.1559

porig 0.9580
|B| = |C| = 32

0.9482 0.8912 0.9502 0.8879 0.9478 0.9294
±0.0096 ±0.0712 ±0.0166 ±0.0728 ±0.0083 ±0.0549

|B| = 63, |C| = 1
0.9515 0.9403 0.9539 0.9402 0.9546 0.9410
±0.0117 ±0.0117 ±0.0023 ±0.0117 ±0.0231 ±0.0124

Table 10: Test accuracy on the new and original domains in the baseline or proposed method (Set 2
of RESISC45)

domain fθ̂orig
batch size

fθ̂new

CE CE+EWC CE+GEM
baseline proposed baseline proposed baseline proposed

pnew 0.0429
|B| = |C| = 32

0.1500 0.7179 0.1393 0.7179 0.1429 0.5786
±0.0584 ±0.1591 ±0.0776 ±0.1591 ±0.0616 ±0.1512

|B| = 63, |C| = 1
0.0429 0.5250 0.0500 0.5250 0.0929 0.4714
±0.0450 ±0.1475 ±0.0421 ±0.1475 ±0.0463 ±0.1187

porig 0.9584
|B| = |C| = 32

0.9505 0.9265 0.9481 0.9265 0.9499 0.9356
±0.0105 ±0.0455 ±0.0118 ±0.0456 ±0.0108 0.0217

|B| = 63, |C| = 1
0.9535 0.9388 0.9543 0.9389 0.9563 0.9425
±0.0025 ±0.0172 ±0.0022 ±0.0171 ±0.0006 ±0.0113

13

	Introduction
	Problem Description
	Method for ODIL
	Problems with Batch Normalization in ODIL
	Modifying Batch Normalization Statistics

	Experiments
	Related Work
	Continual Learning
	Few-Shot Continual Learning
	Neural Network Software Repair
	Transfer Learning

	Applications
	Algorithm for ODIL
	Details of Experiments
	Datasets
	Setup for Model Training

	Additional Experiments

