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Abstract

Scientific Information Extraction (SciIE) is an001
important task and increasingly being applied002
in biomedical searching to conceptualize and003
epitomize knowledge triplets from scientific lit-004
erature. Existing relation extraction methods005
aim to extract explicit triplet knowledge from006
documents, however they can hardly perceive007
unobserved factual relations. Recent genera-008
tive methods have more flexibility, but their009
generated relations will encounter trustworthi-010
ness problems. In this paper, we first propose a011
novel Extraction-Contextualization-Derivation012
(ECD) strategy to generate document-specific013
and entity-expanded dynamic graph from a014
shared static knowledge graph. Then, we in-015
troduce an extensible Dual-Graph Resonance016
Network (DGRN) which can generate richer017
explicit and implicit relations under the guid-018
ance of static and dynamic knowledge graphs.019
Experiments conducted on a public PubMed020
corpus validate the superiority of our method021
against several state-of-the-art baselines1.022

1 Introduction023

As biomedical literature grows at an exponential024

pace, it becomes increasingly labor-intensive for025

researchers to curate the massive information and026

consume their interested knowledge. For exam-027

ple, PubMed is one of the most commonly used028

searching biomedical publication databases, which029

contains more than 34 million publications so far2.030

Even with a focused research interest, such as on-031

cology, it is still very time-consuming to filter out032

noisy retrieval results and refine the rest in terms of033

domain knowledge. To address this problem, Sci-034

entific Information Extraction (SciIE) can extract035

structured information (e.g., triplet) from scientific036

articles, which has drawn great attention from Natu-037

ral Language Processing (NLP) community (Gupta038

and Manning, 2011; Viswanathan et al., 2021).039

1All the resources will be public once our work is accepted.
2https://pubmed.ncbi.nlm.nih.gov/about/

Biomedical document: The skin is … and causes cancerous
process, … that aggravates … skin cancer… .

Method: Extractive method
Triples: <skin, cancerous, skin cancer>
Method: Generative method
Triples: <skin, cancerous, skin cancer>

<skin, cancerous, throat cancer>
Method: Knowledge Graph (KG) method
Triples: <melanoma, belongs to, skin cancer>
Method: Generative method + KG
Triples: <skin, cancerous, skin cancer>

<skin, cancerous, melanoma>
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Figure 1: Comparison among different methods. Enti-
ties and relations observed in the document are denoted
by red color, and unobserved ones are denoted by blue.
Correct/wrong triplets are labeled as check/cross marks.

Recent researches have made efforts on the SciIE 040

task and obtained substantial achievements. (Lee 041

et al., 2020) and (Beltagy et al., 2019) trained pre- 042

trained language models with a domain-specific 043

corpus for representation learning and downstream 044

task fine-tuning. (Ye et al., 2020) proposed a Con- 045

trastive triplet extraction with Generative Trans- 046

former (CGT) model which adopted transformers 047

as encoder and decoder within a contrastive learn- 048

ing framework. Despite some success, they ignore 049

that entities may do not appear in the same sentence 050

and have long-distance dependencies. To tackle re- 051

lation reasoning challenge, (Zeng et al., 2020b) 052

proposed a Graph Aggregation and Inference Net- 053

work (GAIN), which resorted to a mention-level 054

graph constructed from each document to leverage 055

latent logical reasoning paths and predict the rela- 056

tions among entities. However, with the increasing 057

demand for new biomedical knowledge acquisition, 058

existing extractive methods face a severe challenge 059

that they can hardly derivate new and factual knowl- 060

edge unobserved in the input document. 061

To enrich relation extraction results, we prefer 062

generative methods rather than extractive methods. 063

Unfortunately, existing generative methods may 064
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produce unrelated triples and result in trustworthi-065

ness problems (Zhang et al., 2020). For the exam-066

ple in Figure 1, the generative method produces an067

incorrect triplet <skin, cancerous, throat cancer>068

because there exist no direct relation between en-069

tities skin and throat cancer, while throat cancer070

is generated based on trigger word “cancerous”.071

Intuitively, biomedical knowledge graph becomes072

a feasible choice, which provides prior knowledge073

guidance (e.g., <melanoma, belongs to, skin can-074

cer>) for the generative methods to produce reli-075

able triplets (e.g., <skin, cancerous, melanoma>).076

Although high-quality and large-scale biomedical077

knowledge graphs have been studied extensively078

and easily obtained (Wang et al., 2021), they can079

not be directly applied to our method due to the080

introduction of massive noise. An intuitive idea081

is to derive a knowledge sub-graph for each input082

document based on original large-scale knowledge083

graph. Briefly, we refer to the original knowledge084

graph as Static Graph and the derived knowledge085

sub-graph as Dynamic Graph. The former encapsu-086

lates massive biomedical prior knowledge and the087

later characterizes document-related knowledge.088

The dual-graph setting will ensure the generative089

method generate richer and more reliable results.090

Combining generative methods and knowledge091

graphs into a unified framework is rarely studied092

before, which poses a severe challenge for end-to-093

end modeling especially in the biomedical com-094

munity. Firstly, input document and knowledge095

graphs are information complementary and they096

should be fully interactively modeled under a uni-097

fied framework. Secondly, multi-hop path reason-098

ing on graphs should be utilized for deriving unob-099

served factual relations. As a result, we propose a100

novel and extensible Dual-Graph Resonance Net-101

work (DGRN), which contributes in three ways:102

• We propose a “Extraction-Contextualization-103

Derivation (ECD)” three-step strategy, which can104

derive a document-related dynamic graph from a105

shared static graph via a dynamic graph generator.106

• We further propose an end-to-end “Dual-Graph107

Resonance Network (DGRN)” model to generate108

observed and unobserved knowledge triplets by109

jointly modeling input document and dual graphs.110

• Extensive experiments conducted on a PubMed111

corpus validates the effectiveness of our method.112

All the resources will be publicly available, which113

facilitates an in-depth study of the SciIE task.114

2 Related Work 115

Existing SciIE work extract or generate knowledge 116

triplets from different parts of scientific publica- 117

tions, such as content (Luan et al., 2019; Augen- 118

stein et al., 2017), abstract, introduction and ci- 119

tation sentences (Nakov et al., 2004). The main- 120

stream approaches of the SciIE task generally in- 121

clude extractive, graph and generative models. 122

Extractive models have been extensively stud- 123

ied. (Wei et al., 2020; Beltagy et al., 2019) inte- 124

grated pretrained language models, like BERT (De- 125

vlin et al., 2018), into an encoder-decoder frame- 126

work for performance improvements. (Nayak and 127

Ng, 2020; Zhao et al., 2021) introduced a joint 128

learning framework to model connections between 129

relations and their corresponding entity pairs. Fur- 130

thermore, (Takanobu et al., 2019; Bai and Zhao, 131

2018) utilized a hierarchical structure which fea- 132

tured connections among different content layers 133

to perform the SciIE task. However, these methods 134

ignore fine-grained entity-level information inte- 135

gration and interaction, and they can not find un- 136

observed knowledge triplets and observed triplets 137

with long-range relations in the document. 138

Graph-based models can provide both depen- 139

dencies among entities and path reasoning poten- 140

tial for inference. (Zeng et al., 2020b) proposed a 141

mention-to-entity graph aggregation model which 142

can capture the relation of entities across sentences. 143

Instead of integrating graph structure into neural 144

network models. (Peng et al., 2017; Guo et al., 145

2019; Xu et al., 2021; Huang et al., 2021) enhanced 146

the mention-to-entity graph paradigm by introduc- 147

ing multi-hop path reasoning and reconstructing 148

the graph based on the obtained path information. 149

Unfortunately, existing graph-based models can 150

not synthesize new domain knowledge. 151

Generative models are recently proposed to gen- 152

erate triplets flexibly from input documents. (Zeng 153

et al., 2018) proposed a CopyRE model to select 154

entities or relations via copy mechanism. (Zeng 155

et al., 2020a; Ye et al., 2020) further improved 156

this paradigm by introducing multi-task learning 157

and contrastive learning frameworks. Other genera- 158

tive models utilized additional information. (Zhang 159

et al., 2021) proposed a Knowledge-Graph (KG)- 160

enriched Abstract Meaning Representation (AMR) 161

framework which uses external information to en- 162

rich the AMR graph extracted from scientific pa- 163

pers. (Garg et al., 2021) leveraged transformers to 164

refine semantic embedding of a given text for better 165
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generation. However, (Zhang et al., 2020) claimed166

the factual correctness and trustworthiness prob-167

lems of these methods which ignore prior knowl-168

edge to ensure that generated knowledge triplets169

are more reliable.170

Although several studies have solved part of the171

challenges, they can not compete with our method172

which has made two efforts: (1) To utilize exter-173

nal prior knowledge, we propose an innovative dy-174

namic graph generation strategy; (2) To generate175

rich knowledge triplets, we propose an end-to-end176

Dual-Graph Resonance Network. Both the efforts177

are rarely studied together to our best knowledge.178

3 Dual-Graph Construction Method179

To equip the model with prior knowledge guidance,180

we first introduce a static biomedical knowledge181

graph based on public resources, and then generate182

a dynamic knowledge graph for each document.183

The construction process is depicted in Figure 2.184

3.1 Static Biomedical Knowledge Graph185

Large-scale biomedical knowledge graphs are re-186

cently constructed and made publicly available.187

(Wang et al., 2021) constructed a knowledge graph188

with 1.47 million triplets and 96,397 entities from189

multiple sources, such as PubMed, DrugCental etc.190

The public knowledge graph can provide massive191

biomedical prior knowledge and make the model192

more capable of deriving unobserved and factual193

triplets. It can be formulated as a shared static194

graph GS =
{
(ei, ri,j , ej)|ei, ej ∈ E , ri,j ∈ R

}
,195

where E and R represent a entity set and a relation196

set respectively. However, GS can not be directly197

used because it will introduce noisy information198

into generative models and result in reliable results.199

3.2 Dynamic Biomedical Knowledge Graph200

Inspired by (Viswanathan et al., 2021; Neumann201

et al., 2019), we let D = {Sabs, Sint, Scit} be a202

biomedical document, which consists of three most203

important sections, i.e., abstract, introduction and204

citance. Each section S∗ = {wi}N∗
i=1 refers to a205

sequence of words of length N∗. We aim to de-206

rive a sub-graph called Dynamic Graph automat-207

ically for each document under the prior knowl-208

edge guidance of the static graph GS . Note that209

we consider the three sections together when con-210

structing the sub-graph. Particularly, we propose211

a novel Extraction-Contextualization-Derivation212

(ECD) strategy which consists of three key steps:213

Extraction We first extract all the biomedical 214

entities from the document D and obtain an entity 215

(i.e., node) set E◦. Then, we retrieve pre-defined 216

relations from the static graph GS and produce an 217

edge set R◦. Finally, we can construct an initial dy- 218

namic graph G◦
D =

{
(ei, rij , ej)|ei, ej ∈ E◦, rij ∈ 219

R◦}, where ei denotes a head entity, ej is a tail en- 220

tity, rij denotes the relation. G◦
D will be expanded 221

to cover unobserved biomedical knowledge. 222

Contextualization Intuitively, we can choose 223

one-hop path expansion for contextualization be- 224

cause the directly connected entities are always sim- 225

ilar. However, such a simple expansion will bring 226

lots of noisy entities and relations, which pollutes 227

the dynamic graph. Instead, we propose a Dynamic 228

Graph Generator (DGG) which produces triplets 229

and expands G◦
D as GD =

{
(ei, ri,j , ej)|ei, ej ∈ 230

ED, ri,j ∈ RD

}
, where ED and RD denote the 231

expanded entity set and relation set respectively, 232

E◦ ⊆ ED and R◦ ⊆ RD. 233

Inspired by the masked language model (De- 234

vlin et al., 2018), we randomly mask entities in the 235

graph G◦
D and train a DGG to recover these masked 236

entities. The trained generator can detect the un- 237

observed triplets while avoiding introducing noise. 238

The training procedure are detailed as below: 239

Firstly, we mask 20% entities randomly from 240

G◦
D and label the masked entities E◦

+ as positive in- 241

stances, and label the remaining unmasked entities 242

E◦
− as negative instances, and E◦ = E◦

+ ∪ E◦
−. 243

Secondly, we let ei be the representation of any 244

entity ei ∈ E◦
− and ej be the representation of any 245

entity ej ∈ E◦
+. The initial entity representations 246

are obtained based on pre-trained language models, 247

like BERT and its variants (Devlin et al., 2018; Lee 248

et al., 2020). For each entity ej to be recovered, we 249

can calculate the selected probability based on an 250

attention mechanism as below: 251

p(ej |E◦
−) = δ

(
Dense

( ∑
ei∈E◦

−

αiei

))
αi = σ

(
[ei; ej ]W0

) (1) 252

where δ(·) is a sigmoid function, Dense(·) is a fully- 253

connected layer, [ ; ] denotes a vector concatenation 254

operation, σ(·) denotes the ReLU function and W0 255

represents a trainable weight matrix. 256

To train the DGG, we use the cross-entropy func- 257

tion to minimize the loss between the masked enti- 258

ties and their corresponding recovered probabilities: 259
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Figure 2: The DGRN architecture and Extraction-Contextualization-Derivation (ECD) strategy. Given any biomedi-
cal publication, the dynamic graph GD can be generated from the static biomedical graph GS via ECD strategy.
Then, both observed and unobserved triplets can be generated by the DGRN model with prior knowledge guidance.

260

LDGG =
1

|E◦
+|

∑
ej∈E◦

+

−log
(
p
(
ej |E◦

−
))

(2)261

Derivation In the derivation step, we feed the ini-262

tial dynamic graph G◦
D to the trained DGG which263

considers one-hop entities as positive instances264

and the initial entities E◦ as negative instances.265

Finally, we will choose those entities with high266

probabilities3 and produce the expanded entity set267

ED = E◦ ∪ {ej}≥Threshold and the expanded dy-268

namic graph GD.269

4 Dual-Graph Resonance Network270

In this section, we propose an innovative Dual-271

Graph Resonance Network (DGRN) which com-272

bines the dual graphs and generative method into273

a unified framework. The method is depicted in274

Figure 2, which consists of three modules: Text275

Encoder, Graph Encoder and Triplet Decoder.276

4.1 Text Encoder Module277

Given any document D, its consisted section278

S∗ is fed into a Bio-BERT (Lee et al., 2020)279

to produce token-level representations (Habs =280

{habs
i }, Hint = {hint

i } and Hcit = {hcit
i }) and281

3The hyper-parameter of Threshold is set as 0.5.

section-level representations (habs
CLS , hint

CLS and 282

hcit
CLS). (Viswanathan et al., 2021) found that ci- 283

tation sentences are more relevant to the document 284

topics in comparison with abstract and introduction. 285

Based on this, we opt for abstract-aware attention 286

to measure the importance of each token repre- 287

sentation hcit
i through a scoring function using a 288

feed-forward neural network: 289

αabs
i = softmax

(
(habs

CLS)
Tσ(W1h

cit
i + b1)

)
pabs−cit =

∑
i∈[1,Ncit]

αabs
i × hcit

i
(3) 290

Similarly, we also use introduction-aware atten- 291

tion to measure the importance of each token repre- 292

sentation hcit
i through a scoring function as below: 293

294

αint
i = softmax

(
(hint

CLS)
Tσ(W2h

cit
i + b2)

)
pint−cit =

∑
i∈[1,Ncit]

αint
i × hcit

i
(4) 295

where W∗ and b∗ are trainable model parameters, 296

pabs−cit and pint−cit represent the abstract-aware 297

citance representation and introduction-aware ci- 298

tance representation, respectively. Finally, we take 299

the average of the sum of the two vectors and obtain 300

the document representation pdoc as below: 301

pdoc =
1

2
(pabs−cit + pint−cit) (5) 302
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4.2 Graph Encoder Module303

We apply multi-layer Graph Convolutional Net-304

work (GCN) (Kipf and Welling, 2017) on the dy-305

namic graph GD to aggregate the features from306

neighbors to obtain node representation. For any307

entity ei at the l-th layer, the graph convolutional308

operation can be applied by the formula as below:309

e
(l+1)
i = σ

( ∑
ej∈Nei

W
(l)
3 e

(l)
j + b

(l)
3

)
(6)310

where Nei denotes the neighbors for the node ei,311

and W
(l)
3 and b

(l)
3 are trainable model parameters.312

In the initial stage, the e
(0)
i = 1

t−s+1

∑
i∈[s,t] h

∗
i313

indicates entity i ranges from t-th token to s-th314

token in any section S∗. Intuitively, the GCN layers315

can encapsulate rich topological information.316

4.3 Triplet Decoder Module317

The decoder is used to generate knowledge triplets.318

Given training data, the decoder can copy an en-319

tity from the graph GD as the head entity of the320

triplet, and then generate a relation for the triplet.321

Lastly, it can copy the tail entity from GD. Repeat322

this process, the decoder could generate multiple323

triplets. In time step t (1 ≤ t), we can calculate the324

decoder output ot and hidden state h′
t as follows:325

ot,h′
t = f(xt,h′

t−1) (7)326

where f(·) represents the RNN-based decoder func-327

tion, h′
t−1 indicates the hidden state of time step328

t−1, and xt is the input representation of time step329

t and defined as below:330

xt = [ot−1; ct]W4 (8)331

where ot−1 denotes the entity or relation represen-332

tation copied from dynamic graph in time step t−1,333

ct is the attention vector (Bahdanau et al., 2014)334

and W4 is a trainable weight matrix. In the initial335

step, input representation x0 = pdoc (see Eq. 5).336

Attention Vector. Entities and relations are gen-337

erated and treated differently based on their dif-338

ferent positions. In the time step t (t%3 = 0, 1)339

(generating head or tail), the attention vector ct is340

calculated by copying entities from the entity set341

ED by the following formula:342

ct =
∑

ei∈ED

βi × ei

βi = softmax
(
σ
(
[h′

t−1; ei]W5

)) (9)343

where h′
t−1 is the hidden state of the decoder in the 344

t− 1 time step, and W5 are trainable parameters. 345

In the time step t (t%3 = 2) (generating re- 346

lation), ct can be calculated by copying relations 347

from relation set RD by the following formula: 348

ct =
∑

rij∈RD

γi,j × ri,j

γi = softmax
(
σ
(
[h′

t−1; ri,j ;pi,j ]W6

)) (10) 349

where W6 are trainable parameters, ri,j is the re- 350

lation representation, pi,j is the representation of 351

edge between entity ei and ej via path reasoning. 352

Path Reasoning. In the dynamic graph GD, the 353

head entity and tail entity in a triplet are not always 354

directly connected. Thus, we introduce a path rea- 355

soning method that can model dependency among 356

entities with multi-hop distances in the graph. Sim- 357

ilar to (Zeng et al., 2020b), given the head entity 358

and tail entity, we can define the representation of 359

directed edge from entity ei to entity ej as below: 360

eij = σ(W7[ei; ej ] + b7) (11) 361

where W7 and b7 are trainable parameters, ei and 362

ej denote representations of entity ei and entity ej 363

respectively (see Eq. 6). 364

Based on the vectorized edge representation, the 365

path between head entity ei and tail entity ej pass- 366

ing through entity eo is represented as follow: 367

pi,j = [ei,o; eo,t; et,o; eo,j ] (12) 368

For computation efficiency, we choose one-hop 369

path, while it can be extended to multi-hop paths. 370

Entity Prediction. To copy a head/tail entity, we 371

calculate the confidence vector q = [q1, ..., q|ED|] 372

for all the entities in ED. We also apply a softmax 373

on q to obtain the probability distribution pentity = 374

[pentity1 , ..., pentity|ED| ] by the formulas as below: 375

qt = σ(otW8 + b8)

pentity = softmax(q)
(13) 376

where W8 and b8 are trainable parameters. We 377

select the entity with the highest probability as the 378

predicted entity and use its embedding to produce 379

the next time step input ct+1. Note that the tail 380

entity can not be the same as the head entity. 381

Relation Prediction. We will use a fully con- 382

nected layer to calculate a confidence vector q′ = 383

[q′1, ..., q
′
|RD|] of all the valid relations. Specifically, 384
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we apply a softmax on q′ to obtain the probability385

distribution prelation = [prelation1 , ..., prelation|RD| ] by386

the formulas as below:387

q′ = σ(otW9 + b9)

prelation = softmax(q′)
(14)388

where W9 and b9 are trainable parameters. We389

select the relation with the highest probability as390

the prediction relation and use its embedding to391

produce input ct+1 in the next time step.392

Objective Function. Our DGRN is trained with393

the negative log-likelihood loss function. Suppose394

Y = {y1, y2...yT } is the target result for triplets395

generation, the loss function is defined as:396

LSEQ =
1

T

T∑
t=1

−log
(
p(yt|y<t)

)
(15)397

where T is the maximum steps of the decoder,398

p(yt|y<t) denotes the conditional probability of399

target yt given previous output sequence y<t.400

There are two negative log-likelihood loss func-401

tions used for training our DGRN; one is DGG loss402

(see Eq. 2) and one is the seq2seq loss (see Eq. 15).403

We optimize LDGG and LSEQ iteratively. We use404

backpropagation to calculate the gradients of all the405

trainable parameters and update them with Adam406

optimizer (Loshchilov and Hutter, 2019).407

5 Experiments408

5.1 Datasets409

Following (Wang et al., 2021), we use their public410

triplet dataset built from multiple public datasets411

like DrugCental, PubMed etc. as the bases to con-412

struct our static biomedical knowledge graph. This413

dataset consists of 1,426,025 triplets, 41,078 enti-414

ties, and 27 relation types. Besides, we also con-415

struct a dataset with 32,330 biomedical publica-416

tions collected from PubMed, and split the dataset417

into training, development and testing sets with a418

split of 22,330/5,000/5,000. To create knowledge419

triplets for each training/development document,420

we follow (Xing et al., 2020) and retrieve biomed-421

ical concepts (Achakulvisut et al., 2020). For the422

testing set, we randomly remove 20% entities and423

the corresponding sentences from each document424

for evaluating the entity recovering ability.425

Human Agreement Test: To evaluate the426

quality of our dataset, we conduct human agree-427

ment tests on a randomly selected small-scale and428

human-annotated testing set. Specifically, we first429

randomly selected 50 documents and provide 8 430

triplets as label candidates for each document. Two 431

annotators with professional linguistics knowledge 432

participated in the annotation task and chose the 433

most appropriate triplets. The Kappa value of man- 434

ual annotation is 0.88. Besides, we conduct a paired 435

t-test between the best performance baseline and 436

our DGRN, the p-value (2.048) is less than the 437

significance level of 0.05. 438

5.2 Comparative Study 439

In Table 1, we compare our DGRN with several 440

state-of-the-art baselines which are grouped into 441

three types: (1-2) extractive models, (3-4) gener- 442

ative models, and (5-6) graph-based models. Ex- 443

tractive models can extract triplets directly from 444

documents based on sequence classification mod- 445

els. Generative models can generate triplets based 446

on the Seq2Seq framework. Graph-based models 447

usually use graph structure to assist with extractive 448

or generative models. 449

HRL is a hierarchical extraction paradigm which 450

approaches relation extraction via hierarchical re- 451

inforcement learning (Takanobu et al., 2019). 452

CASREL is a cascade binary tagging framework, 453

which models relations as functions that map sub- 454

jects to objects in a sentence, which naturally han- 455

dles the overlapping problem (Wei et al., 2020). 456

CopyRE is a Seq2Seq model with copy mecha- 457

nism, which can jointly extract relational facts from 458

sentences of any class (Normal, EntityPairOverlap 459

and SingleEntiyOverlap). (Zeng et al., 2018). 460

CopyMTL is a multi-task learning framework 461

equipped with copy mechanism to allow the model 462

to predict multi-token entities (Zeng et al., 2020a). 463

GAIN is Graph Aggregation-and-Inference Net- 464

work to better cope with document-level relation 465

extraction, which features double graphs in differ- 466

ent granularity (Zeng et al., 2020b). 467

AGGCN is Attention Guided Graph Convolu- 468

tional Network, a soft-pruning approach, that au- 469

tomatically learns how to selectively attend to the 470

relevant sub-structures useful for the relation ex- 471

traction task. (Guo et al., 2019). 472

5.3 Experimental Settings 473

We choose Bio-Bert (Lee et al., 2020) as our 474

text encoder and implement DGRN with Pytorch, 475

DGL (Wang et al., 2019) and SciSpacy (Neumann 476

et al., 2019). The hyper-parameter settings are de- 477

tailed in Table 2. We choose commonly used preci- 478

sion, recall and F1-score as the evaluation metrics. 479

6



Model Model Type P R F1

HRL Extractive 61.17 21.81 32.22
CASREL Extractive 71.12 32.94 44.71

CopyRE Generative 54.73 25.72 35.01
CopyMTL Generative 56.91 29.64 39.11

GAIN Extractive+Graph 56.01 21.43 31.81
AGGCN Extractive+Graph 61.43 33.91 44.43

DGRN Generative+Graph 73.77∗ 39.69∗ 51.61∗

Table 1: Comparison among different models. Super-
script * indicates statistical significance at p < 0.05 level
compared to the best performance of baselines.

GCN for Dual-Graph DGRN Training
Parameter Value Parameter Value

Number of layers 1, 2, 3 learning rate 10−3, 10−5

emb size 100 dropout 0.2, 0.5, 0.8
hidden size 808 batch_size 10, 20, 50

weight decay 10−3

Table 2: The experimental settings of our method. The
best parameter settings are highlighted.

All the methods run on a server configured with 4480

Tesla P100 GPUs, 32 CPUs, and 64G memory.481

5.4 Comparative Results482

The experimental results are displayed in Table 1.483

We can find that DGRN outperforms the best base-484

line (CASREL) with 15.43% improvement in F1 be-485

cause CASREL can not produce unobserved knowl-486

edge triplets. Compared with Precision, Recall is a487

more important metric for generative models which488

easily generate noisy information and pollute the489

generated knowledge triplets. Thus, the genera-490

tive models perform better in Recall, but they can491

not compete with extractive methods in Precision.492

Meanwhile, the graph-based models, especially493

AGGCN, achieve promising performance, which494

indicates that graphs can provide important topol-495

ogy information for extracting knowledge triplets.496

Our DGRN performs best because it utilizes topol-497

ogy information of dual-graphs to guide knowledge498

triplet generation, meanwhile avoiding noise dis-499

turbance. This again validates its effectiveness.500

5.5 Ablation Study501

Different configurations of our ECD strategy will502

influence model performance greatly. Extract only503

uses the initial graph. Extract+Text considers text504

modeling additionally. Extract+Context+Text505

considers one-hop path expansion by adding up to506

20 entities. DGRN is our fully configured model.507

The experimental results are displayed in Table 3.508

From Table 3, we can find Extract+Text out-509

Model ECD Step P R F1

Extract 1 47.07 23.02 30.91
Extract+Text 1 59.03 40.46 48.01
Extract+Context+Text 1,2 41.17 20.81 27.78
DGRN (Full) 1,2,3 73.77 39.69 51.61

Table 3: Ablation study on dynamic graph generation.

Model ECD Step P R F1

Extract 1 45.61 19.97 27.78
Extract+Text 1 51.53 37.62 43.50
Extract+Context+Text 1,2 39.01 19.22 25.75
DGRN (Full) 1,2,3 73.19 39.98 51.71

Table 4: Robustness study on dynamic graph generation
with training instances containing more than 10 triplets.

performs Extract because text provides rich con- 510

text. Extract+Context+Text performs the worst 511

because a simple expansion strategy introduces 512

noisy entities/relations from the static knowledge 513

graph. Our fully configured DGRN considers all 514

the necessary components and achieves the best re- 515

sult, which again validates the effectiveness of our 516

Extraction-Contextualization-Derivation strategy. 517

5.6 Robustness Study 518

Compared with short document, complex long doc- 519

uments are more challenging for SciIE. Besides, 520

the number of triplets contained in each document 521

will affect the model’s performance greatly. Thus, 522

we choose the training instances with more than 10 523

triplets and build a new training set. The experi- 524

mental results are displayed in Table 4. 525

From Table 4, we find that complex documents 526

lead to dramatic performance degradation of the 527

in-perfect models. However, our fully configured 528

DGRN is not affected because document content 529

and generated dynamic graph can complement each 530

other. This validates the robustness of our method. 531

5.7 Masking Study 532

The percentage of masking nodes on the dynamic 533

graph will affect the model performance greatly. 534

To validate the masking efficiency, we mask differ- 535

ent percentages of nodes for DGG training. The 536

experimental results are presented in Table 5. 537

From Table 5, we can find the model perfor- 538

Model Mask Precision Recall F1-score

DGRN (Full)

10% 64.07 38.71 48.26
15% 61.87 37.22 46.48
20% 61.21 37.01 46.12
25% 57.41 31.63 40.79

Table 5: Results on different percent of masked entities.
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Figure 3: The exemplar generation results of baseline models (CASREL, CopyMTL, AGGCN) and DGRN.

mance is optimal when 10% of entities are masked539

from the dynamic graph. This is because the dy-540

namic graph is extracted from a document, and the541

scale of most constructed graphs are very small,542

which includes 10 to 20 nodes in most cases. Thus,543

masking small percentages of nodes can help the544

DGG to learn more ontological information.545

5.8 Case Study546

To better understand the effectiveness of our model,547

we randomly choose an example and compare with548

three best performed baselines. The experimen-549

tal results are displayed in Figure 3. We can find550

CASREL is the best performed baseline, however551

it fails to identify the relation between “insulin”552

and “insulin secretion”. CopyMTL and AGGCN553

ignore essential relations and they can not detect554

the entity “insulin secretion”. As comparison,555

DGRN successfully generates the unobserved en-556

tity “GPX1 (gene)” and all the triplets with two557

vital unobserved triplets, such as “<GPX1, RE-558

SEMBLES_GrG, ENPP1>” and “<GPX1, INTER-559

ACTS_GiG, insulin>”, which validates its better560

inference ability and superior performance.561

6 Conclusions & Future Work562

In this paper, we discuss the challenges of existing563

extractive and generative methods, and make two564

efforts. First, we first propose a novel Extraction-565

Contextualization-Derivation (ECD) strategy to 566

generate document-specific dynamic graph from a 567

static knowledge graph. Then, we propose an ex- 568

tensible Dual-Graph Resonance Network (DGRN) 569

to generate richer triplets under the guidance of 570

dual-graphs. Extensive experiments validate the 571

effectiveness of our proposed method. 572

In the future, we will study heterogeneous graph 573

simplification (Wu et al., 2019) and sub-graph min- 574

ing (Jiang et al., 2020) techniques to further im- 575

prove the performance of our DGG model. 576

Limitations 577

The limitation of this work includes two aspects. 578

First, while the biomedical knowledge graph can 579

be very large, graph pre-training will be expensive 580

and challenging (i.e., 336 hours on 4 Tesla P100 581

GPUs for this study). Meanwhile, the required 582

knowledge-base can also be different for different 583

domains (e.g., cancer and mRNA). Unfortunately, 584

the static bio-graph used in this work didn’t define 585

the domain boundaries, which may bring noise 586

disturbance. To address this issue, we utilize the 587

static graph as the teacher forcing for the decoder 588

which may degrade the modeling performance. 589

Second, considering limited computational re- 590

sources, we chose one-hop expansion for the dy- 591

namic graph generator, which will ignore some 592

useful long-distance relations. 593
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