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Abstract

Scientific Information Extraction (ScilE) is an
important task and increasingly being applied
in biomedical searching to conceptualize and
epitomize knowledge triplets from scientific lit-
erature. Existing relation extraction methods
aim to extract explicit triplet knowledge from
documents, however they can hardly perceive
unobserved factual relations. Recent genera-
tive methods have more flexibility, but their
generated relations will encounter trustworthi-
ness problems. In this paper, we first propose a
novel Extraction-Contextualization-Derivation
(ECD) strategy to generate document-specific
and entity-expanded dynamic graph from a
shared static knowledge graph. Then, we in-
troduce an extensible Dual-Graph Resonance
Network (DGRN) which can generate richer
explicit and implicit relations under the guid-
ance of static and dynamic knowledge graphs.
Experiments conducted on a public PubMed
corpus validate the superiority of our method
against several state-of-the-art baselines'.

1 Introduction

As biomedical literature grows at an exponential
pace, it becomes increasingly labor-intensive for
researchers to curate the massive information and
consume their interested knowledge. For exam-
ple, PubMed is one of the most commonly used
searching biomedical publication databases, which
contains more than 34 million publications so far’.
Even with a focused research interest, such as on-
cology, it is still very time-consuming to filter out
noisy retrieval results and refine the rest in terms of
domain knowledge. To address this problem, Sci-
entific Information Extraction (ScilE) can extract
structured information (e.g., triplet) from scientific
articles, which has drawn great attention from Natu-
ral Language Processing (NLP) community (Gupta
and Manning, 2011; Viswanathan et al., 2021).
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Biomedical document: The skin is ... and causes cancerous
process, ... that aggravates ... skin cancer ... .

Method: Extractive method

Triples: <skin, cancerous, skin cancer> v

Method: Generative method

Triples: <skin, cancerous, skin cancer> v’
<skin, cancerous, throat cancer> X

Method: Knowledge Graph (KG) method

Triples: <melanoma, belongs to, skin cancer> v

Method: Generative method + KG

Triples: <skin, cancerous, skin cancer> v
<skin, cancerous, melanoma> v

Figure 1: Comparison among different methods. Enti-
ties and relations observed in the document are denoted
by red color, and unobserved ones are denoted by blue.
Correct/wrong triplets are labeled as check/cross marks.

Recent researches have made efforts on the ScilE
task and obtained substantial achievements. (Lee
et al., 2020) and (Beltagy et al., 2019) trained pre-
trained language models with a domain-specific
corpus for representation learning and downstream
task fine-tuning. (Ye et al., 2020) proposed a Con-
trastive triplet extraction with Generative Trans-
former (CGT) model which adopted transformers
as encoder and decoder within a contrastive learn-
ing framework. Despite some success, they ignore
that entities may do not appear in the same sentence
and have long-distance dependencies. To tackle re-
lation reasoning challenge, (Zeng et al., 2020b)
proposed a Graph Aggregation and Inference Net-
work (GAIN), which resorted to a mention-level
graph constructed from each document to leverage
latent logical reasoning paths and predict the rela-
tions among entities. However, with the increasing
demand for new biomedical knowledge acquisition,
existing extractive methods face a severe challenge
that they can hardly derivate new and factual knowl-
edge unobserved in the input document.

To enrich relation extraction results, we prefer
generative methods rather than extractive methods.
Unfortunately, existing generative methods may



produce unrelated triples and result in trustworthi-
ness problems (Zhang et al., 2020). For the exam-
ple in Figure 1, the generative method produces an
incorrect triplet <skin, cancerous, throat cancer>
because there exist no direct relation between en-
tities skin and throat cancer, while throat cancer
is generated based on trigger word “cancerous’.
Intuitively, biomedical knowledge graph becomes
a feasible choice, which provides prior knowledge
guidance (e.g., <melanoma, belongs to, skin can-
cer>) for the generative methods to produce reli-
able triplets (e.g., <skin, cancerous, melanoma>).
Although high-quality and large-scale biomedical
knowledge graphs have been studied extensively
and easily obtained (Wang et al., 2021), they can
not be directly applied to our method due to the
introduction of massive noise. An intuitive idea
is to derive a knowledge sub-graph for each input
document based on original large-scale knowledge
graph. Briefly, we refer to the original knowledge
graph as Static Graph and the derived knowledge
sub-graph as Dynamic Graph. The former encapsu-
lates massive biomedical prior knowledge and the
later characterizes document-related knowledge.
The dual-graph setting will ensure the generative
method generate richer and more reliable results.

Combining generative methods and knowledge
graphs into a unified framework is rarely studied
before, which poses a severe challenge for end-to-
end modeling especially in the biomedical com-
munity. Firstly, input document and knowledge
graphs are information complementary and they
should be fully interactively modeled under a uni-
fied framework. Secondly, multi-hop path reason-
ing on graphs should be utilized for deriving unob-
served factual relations. As a result, we propose a
novel and extensible Dual-Graph Resonance Net-
work (DGRN), which contributes in three ways:

e We propose a “Extraction-Contextualization-
Derivation (ECD)” three-step strategy, which can
derive a document-related dynamic graph from a
shared static graph via a dynamic graph generator.

o We further propose an end-to-end “Dual-Graph
Resonance Network (DGRN)” model to generate
observed and unobserved knowledge triplets by
jointly modeling input document and dual graphs.

e Extensive experiments conducted on a PubMed
corpus validates the effectiveness of our method.
All the resources will be publicly available, which
facilitates an in-depth study of the ScilE task.

2 Related Work

Existing ScilE work extract or generate knowledge
triplets from different parts of scientific publica-
tions, such as content (Luan et al., 2019; Augen-
stein et al., 2017), abstract, introduction and ci-
tation sentences (Nakov et al., 2004). The main-
stream approaches of the ScilE task generally in-
clude extractive, graph and generative models.
Extractive models have been extensively stud-
ied. (Wei et al., 2020; Beltagy et al., 2019) inte-
grated pretrained language models, like BERT (De-
vlin et al., 2018), into an encoder-decoder frame-
work for performance improvements. (Nayak and
Ng, 2020; Zhao et al., 2021) introduced a joint
learning framework to model connections between
relations and their corresponding entity pairs. Fur-
thermore, (Takanobu et al., 2019; Bai and Zhao,
2018) utilized a hierarchical structure which fea-
tured connections among different content layers
to perform the ScilE task. However, these methods
ignore fine-grained entity-level information inte-
gration and interaction, and they can not find un-
observed knowledge triplets and observed triplets
with long-range relations in the document.
Graph-based models can provide both depen-
dencies among entities and path reasoning poten-
tial for inference. (Zeng et al., 2020b) proposed a
mention-to-entity graph aggregation model which
can capture the relation of entities across sentences.
Instead of integrating graph structure into neural
network models. (Peng et al., 2017; Guo et al.,
2019; Xu et al., 2021; Huang et al., 2021) enhanced
the mention-to-entity graph paradigm by introduc-
ing multi-hop path reasoning and reconstructing
the graph based on the obtained path information.
Unfortunately, existing graph-based models can
not synthesize new domain knowledge.
Generative models are recently proposed to gen-
erate triplets flexibly from input documents. (Zeng
et al., 2018) proposed a CopyRE model to select
entities or relations via copy mechanism. (Zeng
et al., 2020a; Ye et al., 2020) further improved
this paradigm by introducing multi-task learning
and contrastive learning frameworks. Other genera-
tive models utilized additional information. (Zhang
et al., 2021) proposed a Knowledge-Graph (KG)-
enriched Abstract Meaning Representation (AMR)
framework which uses external information to en-
rich the AMR graph extracted from scientific pa-
pers. (Garg et al., 2021) leveraged transformers to
refine semantic embedding of a given text for better



generation. However, (Zhang et al., 2020) claimed
the factual correctness and trustworthiness prob-
lems of these methods which ignore prior knowl-
edge to ensure that generated knowledge triplets
are more reliable.

Although several studies have solved part of the
challenges, they can not compete with our method
which has made two efforts: (1) To utilize exter-
nal prior knowledge, we propose an innovative dy-
namic graph generation strategy; (2) To generate
rich knowledge triplets, we propose an end-to-end
Dual-Graph Resonance Network. Both the efforts
are rarely studied together to our best knowledge.

3 Dual-Graph Construction Method

To equip the model with prior knowledge guidance,
we first introduce a static biomedical knowledge
graph based on public resources, and then generate
a dynamic knowledge graph for each document.
The construction process is depicted in Figure 2.

3.1 Static Biomedical Knowledge Graph

Large-scale biomedical knowledge graphs are re-
cently constructed and made publicly available.
(Wang et al., 2021) constructed a knowledge graph
with 1.47 million triplets and 96,397 entities from
multiple sources, such as PubMed, DrugCental etc.
The public knowledge graph can provide massive
biomedical prior knowledge and make the model
more capable of deriving unobserved and factual
triplets. It can be formulated as a shared static
graph Gg = {(ei, rij,€ej)leiej € E,1i; € R}
where £ and R represent a entity set and a relation
set respectively. However, G g can not be directly
used because it will introduce noisy information
into generative models and result in reliable results.

3.2 Dynamic Biomedical Knowledge Graph

Inspired by (Viswanathan et al., 2021; Neumann
et al., 2019), we let D = {Sups, Sint, Scit} be a
biomedical document, which consists of three most
important sections, i.e., abstract, introduction and
citance. Each section S, = {wl}fil refers to a
sequence of words of length N,. We aim to de-
rive a sub-graph called Dynamic Graph automat-
ically for each document under the prior knowl-
edge guidance of the static graph Gg. Note that
we consider the three sections together when con-
structing the sub-graph. Particularly, we propose
a novel Extraction-Contextualization-Derivation
(ECD) strategy which consists of three key steps:

Extraction We first extract all the biomedical
entities from the document D and obtain an entity
(i.e., node) set £°. Then, we retrieve pre-defined
relations from the static graph GG and produce an
edge set R°. Finally, we can construct an initial dy-
namic graph G, = {(ei, rij,€5)|ei e € E° 15 €
RO}, where e; denotes a head entity, e; is a tail en-
tity, 7;; denotes the relation. G'7, will be expanded
to cover unobserved biomedical knowledge.

Contextualization Intuitively, we can choose
one-hop path expansion for contextualization be-
cause the directly connected entities are always sim-
ilar. However, such a simple expansion will bring
lots of noisy entities and relations, which pollutes
the dynamic graph. Instead, we propose a Dynamic
Graph Generator (DGG) which produces triplets
and expands G, as Gp = {(e;, i, €j)|ei e €
Ep,rij € RD}, where £p and Rp denote the
expanded entity set and relation set respectively,
E° g SD and R° Q RD.

Inspired by the masked language model (De-
vlin et al., 2018), we randomly mask entities in the
graph G'7, and train a DGG to recover these masked
entities. The trained generator can detect the un-
observed triplets while avoiding introducing noise.
The training procedure are detailed as below:

Firstly, we mask 20% entities randomly from

$ and label the masked entities £ as positive in-
stances, and label the remaining unmasked entities
£° as negative instances, and £° = £ U £°.

Secondly, we let e; be the representation of any
entity e; € £° and e; be the representation of any
entity e; € £7. The initial entity representations
are obtained based on pre-trained language models,
like BERT and its variants (Devlin et al., 2018; Lee
et al., 2020). For each entity e; to be recovered, we
can calculate the selected probability based on an
attention mechanism as below:

plejlE°) —5<Dense< 3 aiei)> N

eiEEi

o; = O'([el'; e]']WU>

where §(-) is a sigmoid function, Dense(-) is a fully-
connected layer, [ ; | denotes a vector concatenation
operation, o (-) denotes the ReLU function and W
represents a trainable weight matrix.

To train the DGG, we use the cross-entropy func-
tion to minimize the loss between the masked enti-
ties and their corresponding recovered probabilities:
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Figure 2: The DGRN architecture and Extraction-Contextualization-Derivation (ECD) strategy. Given any biomedi-
cal publication, the dynamic graph G p can be generated from the static biomedical graph G g via ECD strategy.
Then, both observed and unobserved triplets can be generated by the DGRN model with prior knowledge guidance.
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Derivation In the derivation step, we feed the ini-
tial dynamic graph G, to the trained DGG which
considers one-hop entities as positive instances
and the initial entities £° as negative instances.
Finally, we will choose those entities with high
probabilities® and produce the expanded entity set
Ep = E° U {€j}>Threshola and the expanded dy-
namic graph G p.

4 Dual-Graph Resonance Network

In this section, we propose an innovative Dual-
Graph Resonance Network (DGRN) which com-
bines the dual graphs and generative method into
a unified framework. The method is depicted in
Figure 2, which consists of three modules: 7ext
Encoder, Graph Encoder and Triplet Decoder.

4.1 Text Encoder Module

Given any document D, its consisted section
S, is fed into a Bio-BERT (Lee et al., 2020)
to produce token-level representations (H®* =
{h?bs}’ Hint — {hznt} and Hcit — {hflt}) and

3The hyper-parameter of Threshold is set as 0.5.

section-level representations (hacb]f g9 hz(% g and

h&it o). (Viswanathan et al., 2021) found that ci-
tation sentences are more relevant to the document
topics in comparison with abstract and introduction.
Based on this, we opt for abstract-aware attention
to measure the importance of each token repre-
sentation h¢’ through a scoring function using a
feed-forward neural network:

To(Wih§" + by))
x h¢it )

adbs = softmax((hcg’f s)

abs—cit __ abs
P = Z Q;

1€[1,Neit

Similarly, we also use introduction-aware atten-
tion to measure the importance of each token repre-
sentation h§" through a scoring function as below:

o = softmax ((h{!} ¢)

TO'(Wghqit + bg))
T o xhgt @

ZE[l,Nmt]

1nt czt

where W, and b, are trainable model parameters,
ps—cit and p™™—¢ represent the abstract-aware
citance representation and introduction-aware ci-
tance representation, respectively. Finally, we take
the average of the sum of the two vectors and obtain

the document representation p?°© as below:

pdoc _ %(pabs—cit + pint—cit) (5)



4.2 Graph Encoder Module

We apply multi-layer Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2017) on the dy-
namic graph G p to aggregate the features from
neighbors to obtain node representation. For any
entity e; at the [-th layer, the graph convolutional
operation can be applied by the formula as below:

o T WO ) @
EjENei

where /\/'eL denotes the neighbors for the node e;,

and Wél) and bgl) are trainable model parameters.
In the initial stage, the ego) = ﬁ 2 icsg By
indicates entity ¢ ranges from ¢-th token to s-th
token in any section S,. Intuitively, the GCN layers

can encapsulate rich topological information.

4.3 Triplet Decoder Module

The decoder is used to generate knowledge triplets.
Given training data, the decoder can copy an en-
tity from the graph Gp as the head entity of the
triplet, and then generate a relation for the triplet.
Lastly, it can copy the tail entity from Gp. Repeat
this process, the decoder could generate multiple
triplets. In time step ¢ (1 < t), we can calculate the
decoder output o, and hidden state h} as follows:

o, hi = f(x¢, hy_;) (7

where f(-) represents the RNN-based decoder func-
tion, h}_, indicates the hidden state of time step
t—1, and x; is the input representation of time step
t and defined as below:

Xt = [Ot—l; Ct]W4 (8)

where o;_1 denotes the entity or relation represen-
tation copied from dynamic graph in time step t — 1,
¢; is the attention vector (Bahdanau et al., 2014)
and Wy is a trainable weight matrix. In the initial
step, input representation X = p9°° (see Eq. 5).

Attention Vector. Entities and relations are gen-
erated and treated differently based on their dif-
ferent positions. In the time step ¢ (t%3 = 0,1)
(generating head or tail), the attention vector ¢; is
calculated by copying entities from the entity set
Ep by the following formula:

=Y Pixe

e;i€Ep 9)
i = softmax (O‘ ([hi_y; ei]Wg}))

where h}_, is the hidden state of the decoder in the
t — 1 time step, and W are trainable parameters.
In the time step ¢ (t%3 = 2) (generating re-
lation), ¢; can be calculated by copying relations
from relation set R p by the following formula:

C= Y Vg XTij
TZ'J'E’RD

7; = softmax (a (5 iy Pi,j]W6)>

(10)

where Wy are trainable parameters, r; ; is the re-
lation representation, p; ; is the representation of
edge between entity e; and e; via path reasoning.
Path Reasoning. In the dynamic graph G p, the
head entity and tail entity in a triplet are not always
directly connected. Thus, we introduce a path rea-
soning method that can model dependency among
entities with multi-hop distances in the graph. Sim-
ilar to (Zeng et al., 2020b), given the head entity
and tail entity, we can define the representation of
directed edge from entity e; to entity e; as below:

€ = O'(W7[ei; ej] + by) (11)

where W7 and by are trainable parameters, e; and
e; denote representations of entity e; and entity e;
respectively (see Eq. 6).

Based on the vectorized edge representation, the
path between head entity e; and tail entity e; pass-
ing through entity e, is represented as follow:

Pi; = [€i0)€0t; €105 €0 ] (12)
For computation efficiency, we choose one-hop
path, while it can be extended to multi-hop paths.

Entity Prediction. To copy a head/tail entity, we
calculate the confidence vector q = [q1, ..., g5 ]
for all the entities in £p. We also apply a softmax
on q to obtain the probability distribution pe™*t¥ =

[pintity, - pfgglty} by the formulas as below:
qt = 0(0,Wg + bg) (13)
p"t% — softmax(q)

where Wy and bg are trainable parameters. We
select the entity with the highest probability as the
predicted entity and use its embedding to produce
the next time step input c;41. Note that the tail
entity can not be the same as the head entity.
Relation Prediction. We will use a fully con-
nected layer to calculate a confidence vector ' =
),y q"RD ‘] of all the valid relations. Specifically,



we apply a softmax on g’ to obtain the probability
distribution prelatzon = [pqelatmn7 ___,p‘gezlgt‘zon] by

the formulas as below:

q = o(0;Wy + by)

relation

14
p = softmax(q’) (19

where Wy and by are trainable parameters. We
select the relation with the highest probability as
the prediction relation and use its embedding to
produce input ¢4 in the next time step.
Objective Function. Our DGRN is trained with
the negative log-likelihood loss function. Suppose
Y = {y1,y2...yr} is the target result for triplets
generation, the loss function is defined as:

T

1
Lspq =7 ) ~log(p(yily<t))
t=1

15)

where 7' is the maximum steps of the decoder,
p(y¢|y<¢) denotes the conditional probability of
target y; given previous output sequence y«¢.
There are two negative log-likelihood loss func-
tions used for training our DGRN; one is DGG loss
(see Eq. 2) and one is the seq2seq loss (see Eq. 15).
We optimize Lpaa and Lsgq iteratively. We use
backpropagation to calculate the gradients of all the
trainable parameters and update them with Adam
optimizer (Loshchilov and Hutter, 2019).

5 Experiments

5.1 Datasets

Following (Wang et al., 2021), we use their public
triplet dataset built from multiple public datasets
like DrugCental, PubMed etc. as the bases to con-
struct our static biomedical knowledge graph. This
dataset consists of 1,426,025 triplets, 41,078 enti-
ties, and 27 relation types. Besides, we also con-
struct a dataset with 32,330 biomedical publica-
tions collected from PubMed, and split the dataset
into training, development and testing sets with a
split of 22,330/5,000/5,000. To create knowledge
triplets for each training/development document,
we follow (Xing et al., 2020) and retrieve biomed-
ical concepts (Achakulvisut et al., 2020). For the
testing set, we randomly remove 20% entities and
the corresponding sentences from each document
for evaluating the entity recovering ability.
Human Agreement Test: To evaluate the
quality of our dataset, we conduct human agree-
ment tests on a randomly selected small-scale and
human-annotated testing set. Specifically, we first

randomly selected 50 documents and provide 8
triplets as label candidates for each document. Two
annotators with professional linguistics knowledge
participated in the annotation task and chose the
most appropriate triplets. The Kappa value of man-
ual annotation is 0.88. Besides, we conduct a paired
t-test between the best performance baseline and
our DGRN, the p-value (2.048) is less than the
significance level of 0.05.

5.2 Comparative Study

In Table 1, we compare our DGRN with several
state-of-the-art baselines which are grouped into
three types: (1-2) extractive models, (3-4) gener-
ative models, and (5-6) graph-based models. Ex-
tractive models can extract triplets directly from
documents based on sequence classification mod-
els. Generative models can generate triplets based
on the Seq2Seq framework. Graph-based models
usually use graph structure to assist with extractive
or generative models.

HRL is a hierarchical extraction paradigm which
approaches relation extraction via hierarchical re-
inforcement learning (Takanobu et al., 2019).

CASREL is a cascade binary tagging framework,
which models relations as functions that map sub-
jects to objects in a sentence, which naturally han-
dles the overlapping problem (Wei et al., 2020).

CopyRE is a Seq2Seq model with copy mecha-
nism, which can jointly extract relational facts from
sentences of any class (Normal, EntityPairOverlap
and SingleEntiyOverlap). (Zeng et al., 2018).

CopyMTL is a multi-task learning framework
equipped with copy mechanism to allow the model
to predict multi-token entities (Zeng et al., 2020a).

GAIN is Graph Aggregation-and-Inference Net-
work to better cope with document-level relation
extraction, which features double graphs in differ-
ent granularity (Zeng et al., 2020b).

AGGCN is Attention Guided Graph Convolu-
tional Network, a soft-pruning approach, that au-
tomatically learns how to selectively attend to the
relevant sub-structures useful for the relation ex-
traction task. (Guo et al., 2019).

5.3 Experimental Settings

We choose Bio-Bert (Lee et al., 2020) as our
text encoder and implement DGRN with Pytorch,
DGL (Wang et al., 2019) and SciSpacy (Neumann
et al., 2019). The hyper-parameter settings are de-
tailed in Table 2. We choose commonly used preci-
sion, recall and F1-score as the evaluation metrics.



Model | ModelType | P | R | F1 Model | ECDStep | P | R | F1
HRL Extractive 61.17 21.81 32.22 Extract 1 47.07 | 23.02 | 3091
CASREL Extractive 71.12 32.94 4471 Extract+Text 1 59.03 | 40.46 | 48.01
- Extract+Context+Text 1,2 41.17 | 20.81 | 27.78
CopyRE Generative 473 1 2572 1 3501 DGRN (Full) 123 | 73.77 | 39.69 | 51.61
CopyMTL Generative 56.91 29.64 39.11
GAIN Extractive+Graph | 56.01 2143 | 31.81 . ; ; ;
AGGCN ‘ Extractive+Graph ‘ 5143 ‘ 3301 ‘ 14.43 Table 3: Ablation study on dynamic graph generation.
DGRN | Generative+Graph | 73.77° | 39.69" | 51.61" Model | ECDStep | P | R | FI
. ' Extract 1 45.61 | 19.97 | 27.78
Table 1: Comparison among different models. Super- Extract+Text 1 51.53 | 37.62 | 43.50
script * indicates statistical significance at p < 0.05 level Extract+Context+Text 12 39.01 | 19.22 | 25.75
DGRN (Full) 1,2,3 73.19 | 39.98 | 51.71

compared to the best performance of baselines.

GCN for Dual-Graph | DGRN Training
Parameter | Value | Parameter | Value
Number of layers | 1,2,3 | learning rate 1073%,107°

emb size 100 dropout 0.2,0.5,0.8
hidden size 808 batch_size 10, 20, 50
weight decay 1073

Table 2: The experimental settings of our method. The
best parameter settings are highlighted.

All the methods run on a server configured with 4
Tesla P100 GPUs, 32 CPUs, and 64G memory.

5.4 Comparative Results

The experimental results are displayed in Table 1.
We can find that DGRN outperforms the best base-
line (CASREL) with 15.43% improvement in F1 be-
cause CASREL can not produce unobserved knowl-
edge triplets. Compared with Precision, Recall is a
more important metric for generative models which
easily generate noisy information and pollute the
generated knowledge triplets. Thus, the genera-
tive models perform better in Recall, but they can
not compete with extractive methods in Precision.
Meanwhile, the graph-based models, especially
AGGCN, achieve promising performance, which
indicates that graphs can provide important topol-
ogy information for extracting knowledge triplets.
Our DGRN performs best because it utilizes topol-
ogy information of dual-graphs to guide knowledge
triplet generation, meanwhile avoiding noise dis-
turbance. This again validates its effectiveness.

5.5 Ablation Study

Different configurations of our ECD strategy will
influence model performance greatly. Extract only
uses the initial graph. Extract+Text considers text
modeling additionally. Extract+Context+Text
considers one-hop path expansion by adding up to
20 entities. DGRN is our fully configured model.
The experimental results are displayed in Table 3.
From Table 3, we can find Extract+Text out-

Table 4: Robustness study on dynamic graph generation
with training instances containing more than 10 triplets.

performs Extract because text provides rich con-
text. Extract+Context+Text performs the worst
because a simple expansion strategy introduces
noisy entities/relations from the static knowledge
graph. Our fully configured DGRN considers all
the necessary components and achieves the best re-
sult, which again validates the effectiveness of our
Extraction-Contextualization-Derivation strategy.

5.6 Robustness Study

Compared with short document, complex long doc-
uments are more challenging for ScilE. Besides,
the number of triplets contained in each document
will affect the model’s performance greatly. Thus,
we choose the training instances with more than 10
triplets and build a new training set. The experi-
mental results are displayed in Table 4.

From Table 4, we find that complex documents
lead to dramatic performance degradation of the
in-perfect models. However, our fully configured
DGRN is not affected because document content
and generated dynamic graph can complement each
other. This validates the robustness of our method.

5.7 Masking Study

The percentage of masking nodes on the dynamic
graph will affect the model performance greatly.
To validate the masking efficiency, we mask differ-
ent percentages of nodes for DGG training. The
experimental results are presented in Table 5.
From Table 5, we can find the model perfor-

Model | Mask | Precision | Recall | Fl-score
10% 64.07 38.71 48.26

15% 61.87 37.22 46.48

DGRN(Ful) | 9. | 6121 | 3701 | 4612
25% 57.41 31.63 40.79

Table 5: Results on different percent of masked entities.
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Figure 3: The exemplar generation results of baseline models (CASREL, CopyMTL, AGGCN) and DGRN.

mance is optimal when 10% of entities are masked
from the dynamic graph. This is because the dy-
namic graph is extracted from a document, and the
scale of most constructed graphs are very small,
which includes 10 to 20 nodes in most cases. Thus,
masking small percentages of nodes can help the
DGG to learn more ontological information.

5.8 Case Study

To better understand the effectiveness of our model,
we randomly choose an example and compare with
three best performed baselines. The experimen-
tal results are displayed in Figure 3. We can find
CASREL is the best performed baseline, however
it fails to identify the relation between “insulin”
and “insulin secretion”. CopyMTL and AGGCN
ignore essential relations and they can not detect
the entity “insulin secretion”. As comparison,
DGRN successfully generates the unobserved en-
tity “GPXI (gene)” and all the triplets with two
vital unobserved triplets, such as “<GPXI, RE-
SEMBLES_GrG, ENPPI>" and “<GPX1, INTER-
ACTS _GiG, insulin>", which validates its better
inference ability and superior performance.

6 Conclusions & Future Work

In this paper, we discuss the challenges of existing
extractive and generative methods, and make two
efforts. First, we first propose a novel Extraction-

Contextualization-Derivation (ECD) strategy to
generate document-specific dynamic graph from a
static knowledge graph. Then, we propose an ex-
tensible Dual-Graph Resonance Network (DGRN)
to generate richer triplets under the guidance of
dual-graphs. Extensive experiments validate the
effectiveness of our proposed method.

In the future, we will study heterogeneous graph
simplification (Wu et al., 2019) and sub-graph min-
ing (Jiang et al., 2020) techniques to further im-
prove the performance of our DGG model.

Limitations

The limitation of this work includes two aspects.
First, while the biomedical knowledge graph can
be very large, graph pre-training will be expensive
and challenging (i.e., 336 hours on 4 Tesla P100
GPUs for this study). Meanwhile, the required
knowledge-base can also be different for different
domains (e.g., cancer and mRNA). Unfortunately,
the static bio-graph used in this work didn’t define
the domain boundaries, which may bring noise
disturbance. To address this issue, we utilize the
static graph as the teacher forcing for the decoder
which may degrade the modeling performance.

Second, considering limited computational re-
sources, we chose one-hop expansion for the dy-
namic graph generator, which will ignore some
useful long-distance relations.
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