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Abstract

The widespread existence of wrongly-labeled
instances is a challenge to distantly supervised
relation extraction. Most of the previous works
use the features from the final output of the
encoder and are trained in a bag-level setting.
However, intermediate layers of BERT encode
arich hierarchy of linguistic information which
is helpful in identifying wrongly-labeled in-
stances. Besides, sentence-level training better
utilizes the information than bag-level training,
as long as combined with effective noise allevi-
ation. In this work, we design a novel instance
weighting mechanism integrated with the self-
distilled BERT backbone to enable denoised
sentence-level training. Our method aims to al-
leviate noise and prevent overfitting through dy-
namic adjustment of learning priorities during
self-distillation. Experiments on both held-out
and manual datasets indicate that our method
achieves state-of-the-art performance and con-
sistent improvements over the baselines.

1 Introduction

Distantly Supervised Relation Extraction (DSRE)
(Mintz et al., 2009) is designed to automatically
annotate the sentences mentioning the entity pairs,
which enables a significant way for constructing
large-scale datasets. However, distant supervision
(DS) works under an unrealistic assumption that
all sentences mentioning the same entity pair ex-
press the same relation. This introduces many noisy
(wrongly labeled) sentences into the dataset. To
tackle this challenge, previous works mostly adopt
the bag-level setting as shown at the top of Figure 1,
where the vector representations of sentences are
aggregated as the bag-level representation using
multi-instance learning (MIL) (Riedel et al., 2010),
and the prediction is thus produced from the bag
representation. The optimization is conducted at
the bag level to minimize the loss of bag prediction.
Only a small subset of previous works leverage
the sentence-level setting (Zhang et al., 2019b; Liu

et al., 2020a) as in the bottom of Figure 1, where
the sentence-level predictions are produced and
then aggregated into the bag prediction. In fact,
sentence-level training can directly optimize the
loss from each sentence, enabling better informa-
tion utilization than bag-level training. However,
sentence-level training is vulnerable to the noisy
sentences brought by DS, which limits its applica-
tion. Therefore, sentence-level training should be
combined with effective noise-alleviation mecha-
nisms to improve its robustness.
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Figure 1: The bag-level and sentence-level pipelines of
DSRE.

The encoders of DSRE models remain sim-
ple with Piecewise Convolutional Neural Network
(PCNN) (Zeng et al., 2015) and Recurrent Neu-
ral Network (RNN) (Zhou et al., 2016; Liu et al.,
2018) widely used for a long time. Most previous
works take the encoder as a black box and only
utilize its final output during training and inference.
However, when employing BERT (Devlin et al.,
2019) as the encoder, the intermediate layers can
encode a rich hierarchy of linguistic information of
the sentence (Jawahar et al., 2019). Inspired by the
idea of probing tasks (Adi et al., 2016; Conneau
et al., 2018), in this work we propose to append
an auxiliary classifier to each BERT layer and use
its output probabilities to probe whether this layer
captures the key features indicating the relation be-
tween the entity pair. Furthermore, if the relation



indicated by the instance can be well captured by
lower layers, i.e, the label relation has high proba-
bilities in their predictions, this instance should be
easy for the higher layers. Conversely, if the fea-
tures captured by lower layers are not sufficient to
predict the relation class, it may be a noisy instance
with a wrong label, or a hard one requiring higher
layers to handle. We can utilize these properties
to design an instance weighting mechanism that
can adjust the learning priorities of instances and
improve the effectiveness of training.

To achieve denoised sentence-level training, we
propose a novel Transitive Instance Weighting
(TIW) mechanism for self-distilled BERT. The
self-distilled BERT backbone is employe with
one student classifier appended to each probed
layer. Each student is trained using distillation
and instance weights generated by TIW. The goal
of TIW is to tackle noisy instances and allevi-
ate overfitting. There are two types of noisy
instances: false negative (NA relation) and false
positive (non-NA relations). We filter false nega-
tives with binary weights (0 or 1) based on the pre-
dictions of the previous student (peer). To tackle
false positives and prevent overfitting to shallow
features, the instance weight is determined by two
factors: the uncertainty (Liu et al., 2020b) term
and the soft confidence score, which are obtained
from the output probabilities of the teacher and
the previous peer. The uncertainty term is lever-
aged to prevent overfitting to easy instances, which
mostly contain shallow features. The soft confi-
dence score is used as the assessment of instance
difficulty, where easy and hard instances usually
have higher scores than noisy ones. During self-
distillation, each student receives information and
distillation from both the teacher and the previous
peer, enabling the alleviation of noise from the
teacher and knowledge transfer among students in
a transitive way. According to the experiments on
both held-out and manual datasets, our approach
achieves state-of-the-art performance and consis-
tent improvements over the teacher and the base-
lines. We also provide detailed ablation study to
explore the effects of the modules. Finally, we
analyse the errors that occurred and discuss the
limitations of our method.

Our contributions are summarized as follows:

* We apply self-distilled BERT to utilize the in-
termediate outputs and are the first to denoise
sentence-level DSRE with instance weights.

* We implement instance weights in a transi-
tive way to enable knowledge transfer among
students. The transitive instance weighting
alleviates noise and overfitting effectively.

* Experiment and analysis show that our
method achieves state-of-the-art performance
with good generalization and robustness.

2 Related Work

2.1 Distantly Supervised Relation Extraction

Distant supervision (DS) for relation extrac-
tion (Mintz et al., 2009) enables automatic an-
notation of large-scale datasets, but its strong as-
sumption introduces a large number of wrongly
labeled instances. Following Riedel et al. (2010),
various multi-instance learning methods are pro-
posed to denoise from noisy instances, and they
broadly fall into two categories: instance selec-
tion (Zeng et al., 2015; Qin et al., 2018; Feng
et al., 2018) and instance attention (Lin et al., 2016;
Yuan et al., 2019b,a; Ye and Ling, 2019). Apart
from multi-instance learning, many of the previ-
ous works try to improve the effectiveness of train-
ing. Liu et al. (2017) and Shang et al. (2020)
try to convert wrongly labeled instances to useful
information through relabeling. Huang and Du
(2019) proposes collaborative curriculum learning
for denoising. Hao et al. (2021) adopts adversarial
training to filter noisy instances in the dataset. Nev-
ertheless, the above approaches are trained with
bag-level loss, leading to lower utilization of syn-
tactic and semantic information. We leverage in-
stance weights for denoised sentence-level training
to boost performance and robustness.

2.2 Knowledge Distillation

Knowledge distillation (Hinton et al., 2015) is an
effective way to improve model generalization,
though it has difficulty in transferring knowledge
effectively (Stanton et al., 2021). By sharing some
parameters between teacher and students, self-
distillation (Zhang et al., 2019a) improves knowl-
edge transfer from teacher to students. Liu et al.
(2020b) applies self-distillation on BERT (Devlin
et al., 2019) to improve inference efficiency. In
our work, we employ self-distillation for extracting
information within intermediate layers and extend
self-distillation with transitive knowledge transfer
among the students to further alleviate the noise
from the teacher.



3 Methodology

Our model is illustrated in Figure 2. The backbone
of our model is the self-distilled BERT on the left,
with a teacher classifier on the top. Each student
contains a subencoder and an auxiliary classifier.
For example, the student 7 has a subencoder ending
with the 7th BERT layer and a classifier appended
to the 7th layer. The BERT encoder and teacher
classifier are fine-tuned on the dataset before dis-
tillation. As discussed in Jawahar et al. (2019),
the shallow layers may not be able to encode the
information needed for the DSRE task. Therefore,
TIW starts from layer L, which is empirically set
and will be called the head layer in the rest of the
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Figure 2: The overall framework of our model. Dotted
arrows indicate the generation of instance weight.

3.1 Self-Distilled BERT

BERT (Devlin et al., 2019) is a powerful
transformer-based pretrained network with broad
applications in natural language processing. How-
ever, previous BERT applications in DSRE (Alt
et al., 2019; Rao et al., 2022) fail to utilize the
information encoded by the intermediate layers,
which provides hierarchical views of the sentence
features, ranging from surface features, syntactic
features, to semantic features (Jawahar et al., 2019).
We apply auxiliary classifiers as in Figure 2 to ex-
tract the hierarchical features and utilize the output
probabilities to denoise from distant supervision.
For example, if the student & is able to output a high
probability for the label of the instance, it is the in-
dication that the subencoder ending with layer & is
able to capture the relation features of the instance.
Since the students’ subendocers share part of the
parameters (knowledge), we can assume that the

larger subencoders ending with higher layers also
can capture the relation features, meaning that the
instance is easy for student £ and its higher peers.
By sharing some transformer layers and parameters,
the self-distillation backbone promotes knowledge
sharing from teacher to student and from lower
students to higher ones.

Before distillation, we fine-tune the BERT en-
coder on DSRE as in Gao et al. (2021). The
structure of the embedding layer and BERT lay-
ers follow those in the previous works with the
number of transformer layers n = 12 and hidden
size dj, = 768.

Firstly, the input sentence is transformed
to a sequence of vector representations s =
[wy, w3, ..., wy] by the embedding layer, where
m is the maximum length of the sentence. Then,
BERT conducts layer-wise feature extraction with
the input s, the output of i, layer (1 < i < n)is
described as:

hi = BERT,(s) (1)

where BFE RT; refers to the subencoder containing
transformer layers from the first to the 4;,. The
teacher model is fine-tuned with a simple feedfor-
ward classifier:

z; = [hi(p1); hi(p2)] 2
FFN(hZ) = MQ(Mlxi —1—51) + by 3)
p' = softmax(FFN;(hy)) 4)

where M, € R%*dn and My € R™*% are
weight matrices and b; € R and by € R™ are
bias terms. p; and po are the positions of head
entity and tail entity respectively. [a : b] indicates
the concatenation of vectors a and b. x; is the
entity-aware sentence representation generated by
concatenating the hidden vectors of the entity pair.
n. is the number of classes and p’ is the output
probability of the teacher.
The student ¢ can be formulated as follows:

p; = softmax(FFN;(h;)) (5)

During distillation, the parameters of the teacher
model including the BERT encoder stay fixed and
only the student classifiers are updated.

3.2 Transitive Instance Weighting

The algorithm of TIW is shown in Algorithm 1,
where re2id(r) is a function that maps the relation



Algorithm 1 Transitive Instance Weighting

Input: DS label Y, teacher’s output probability p’ and students’ p* for the instance.
Output: The soft target p'9 and the instance weight w of the instance from the students .

1: Initialize w; < 1,p§g —pt
2: fori=14+1—>ndo

3. Compute the soft confidences of i, student: ¢! < pf - p'  ¢f < p§-ps_,

4: if ¢ > ¢ then pi? « p' else p.? < p¢

5: if Y = rel2id(NA) then > False Negative Filtering
6: if Y = argmaz;(p{_,(j)) then w; < 1 else w; < 0

7: else > Positive Weighting
8: Compute the uncertainty of soft target: u; < Z;ﬁl W

9: Compute instance weight: w; < max(c}, cf)u; ’

10: end if

11: end for

class r to its id for generating the one-hot label.
We adopt different weighting strategies for nega-
tive instances and positive instances. We conduct
false negative filtering (FNF) as in Lines 5-6 of
the algorithm. Since we have sufficient negative
instances in the dataset, it is acceptable to avoid
more false negatives at the cost of slight informa-
tion loss. Therefore, we assign 0 weight to all the
possible false negatives and 1 weight to the true
negatives. To correctly identify false negatives, we
adopt a dynamic approach that if the previous peer
agrees with distant supervision and also labels the
instance as NA, then we classify the instance as a
true negative. Otherwise, we assume it to be a false
negative that the DS label is unreliable.

In order to preserve more information for the
training of students, we use soft weights for the
positive instances. In Positive Weighting (PW),
the instance weight w; of student ¢ is determined
by two factors: uncertainty (normalized entropy
as in Liu et al. (2020b)) of the chosen soft target
and the soft confidence score, which is the maxi-
mum between the probabilities of making the same
prediction as the teacher ¢! and the previous peer
c;, i.e, the maximum Probability of Agreement
(PoA) with the two. PoA is computed as the dot
product of two probability distributions and can be
seen as the consistency between two models.

The uncertainty term is leveraged to prevent over-
fitting to shallow features in the dataset, especially
in easy instances. The instances have low uncer-
tainty values when well-fitted, so we discount their
weights with uncertainty terms to prevent overfit-
ting. The idea is that we hope the student tries to
learn more hard features instead of shallow ones.

Most previous works in knowledge distillation
directly use the teacher’s output probability as the
soft target. However, the teacher can constantly
make mistakes if trained with noisy data, as in
DSRE. Therefore, as in Line 4 of our algorithm,
instead of blindly following the output from the
teacher, each student except the first one chooses
between the teacher or the previous peer and fol-
lows the one that has higher consistency with itself,
i.e, the one that has higher PoA. This provides ad-
ditional referential probability distributions for the
students and helps them in alleviating the noise
from the teacher.

The maximum between the PoAs from the
teacher and the previous peer is the Soft Confi-
dence (SC) score which evaluates the difficulty
of the instance for the student. If the SC score is
high, the student successfully follows the idea of
the teacher or the peer, indicating that the instance
is easy to understand for the student.

The instance weight for iy, student (I < i < n)
is computed as the product of the SC score and the
uncertainty term. Note that during distillation, the
student is trained with both soft target distribution
and DS labels, as shown in Equation 7. We present
the discussions on the SC scores and losses of easy,
noisy and hard instances in the following.

Easy instances have high SC scores since they
are easy to fit. Easy instances are mostly well-fitted
by the teacher or the peer, so the optimizations
using soft labels and hard labels conform with each
other.

Noisy instances are mostly underfitted and very
hard to optimize because the wrong labels contra-
dict the knowledge learned from clean instances.



They also have low SC scores.

Hard instances are underfitted clean instances
with medium SC scores. However, they are easier
to fit than noisy ones since the soft labels and hard
labels also conform with each other.

Based on the above discussions, it is safe to say
that both easy and hard instances have larger SC
scores and faster optimizations than noisy ones.
The uncertainty term only takes effect when easy in-
stances are well-fitted and clean background knowl-
edge is established, so it will not lead to overfitting
to noisy instances.

From a global view, each student receives two in-
formation flows: the referential probabilities from
the teacher and the peer probabilities passed along
and updated transitively. Our model alleviates
noise from the teacher and distant supervision by
dynamically adjusting the learning priorities of the
instances. Compared with previous bag-level de-
noising mechanisms, our method can be combined
with sentence-level training, and thus can utilize
more information for better performance. Com-
pared with traditional knowledge distillation, our
method further alleviates the noise from the teacher.
In addition, we only need to add the auxiliary clas-
sifiers for distillation and don’t need to retrain the
model with high cost in time and effort. To sum up,
our method is both effective and efficient.

3.3 Optimization

The teacher model may overfit noisy instances dur-
ing fine-tuning. Therefore, we apply a dynamic
temperature 7 to the teacher in the following form:

i =14+ ~v(1 —u;) 6)

where 7 is a hyperparameter empirically set as 3.
The idea of 7 is to further smooth the well-fitted in-
stances to produce softer targets, thus can alleviate
noise and overfitting.

The loss function of our model follows the gen-
eral form of knowledge distillation with the in-
stance weight w for denoising:

L =Y wi(aKL:(p;,pf)+(1—a)CE(@p;,Y))

i=l

(N
where « is a hyper-parameter empirically set as 0.5.
K L;(p,q) computes the KL-divergence between
distributions p and ¢ with temperature 7 for the
teacher. Y is the label from distant supervision and
CE(p,Y) is the cross entropy loss with one-hot
label obtained from Y.

4 Experiments

In this section, the datasets, settings and hyperpa-
rameters are specified first. Then, we present the
performance of our model compared with previous
baselines and the teacher model. We also conduct
ablation study and error analysis to enable a deeper
understanding of the mechanisms.

4.1 Datasets and Settings

We use two datasets for evaluation, the widely used
held-out dataset NYT-10 (Riedel et al., 2010) and
recent manual dataset NYT-10m (Gao et al., 2021).
As a standard dataset for DSRE, NYT-10 is con-
structed by aligning the relations in Freebase (Bol-
lacker et al., 2008) with the New York Times corpus
(English). The training set includes sentences from
2005 to 2006, and the test set uses sentences from
2007. NYT-10m is a manual dataset constructed
also from New York Times corpus, with a human-
labeled test set and a new relation ontology. For
NYT-10, we divide the dataset into five parts for
cross-validation. For NYT-10m, we use the pro-
vided validation set. The details of the datasets are
shown in Table 1.

Dataset Train (k) Test (k) Rel.
Sen. Fac. Sen. Fac.

held-out 522.6 184 1724 2.0 53

manual 417.9 17.1 9.7 3.9 25

Table 1: The statistics of datasets. Sen., Fac. and Rel.
indicate the numbers of sentences, relation facts and
relation types (including NA) respectively.

In the experiments, we use the bert-base-
uncased checkpoint with about 110M parameters
for initialization as in Han et al. (2019). We apply
the AdamW (Loshchilov and Hutter, 2017) opti-
mizer during distillation and fix the random seed
as 42. Apart from the hyperparameters previously
mentioned, the batch size is 32 and the learning
rate is 2e — 5. The maximum length of sentences
m is 128. The head layer L is set as layer 7 in our
experiments.

During the evaluation, we compare the Area Un-
der precision-recall Curve (AUC), the F1 score
and the mean of P@N (N=100, 200, 300), which
is denoted as P@M. Following the at-least-one
assumption (Riedel et al., 2010), we adopt ONE
strategy (Zeng et al., 2015) for bag-level evaluation,
which takes the maximum score for each relation to



generate bag-level predictions. We use the output
probabilities of the last student as the output of our
model during evaluation. In the appendix, we also
display the results from other students and results
using different settings of L.

4.2 Overall Performance

We compare the performance of our model against
that of the following baselines:

PCNN+ATT (Lin et al., 2016) proposes PCNN
with selective attention mechanism.

RESIDE (Vashishth et al., 2018) integrates side
information into Graph Convolution Networks to
improve relation extraction.

DISTRE (Alt et al., 2019) extends and fine-
tunes GPT on DSRE.

Intra+inter (Ye and Ling, 2019) combines intra-
bag attention with inter-bag attention to tackle the
noisy bags.

CIL (Chen et al., 2021) applies contrastive in-
stance learning to reduce noise from DS.

Teacher follows the implementation in Gao
et al. (2021), containing a BERT encoder and a
linear classifier.

Among the baselines, DISTRE and CIL use pre-
trained language models for initialization. CIL
adopts the BERT pretrained encoder with the
same setting as ours. The held-out dataset is the
mainstream for DSRE evaluation, but it contains
wrongly-labeled test instances leading to inaccu-
rate evaluation. The manual dataset provides an
accurate test set but is limited by its scale in gen-
eralization. Therefore, we use both of the datasets
for better evaluation.

4.2.1 Evaluation on Held-out Dataset

Model AUC Fl1 Pe@M
PCNN+ATT 33.8 40.7 71.1
RESIDE 41.5 457 794
DISTRE 422 48.6 66.8
Intra+inter 423 465 84.8
CIL 50.8 522 86.0
Teacher 50.6 522 83.6
Student 12 539 553 849

Table 2: The performance (%) of our model and the
baselines on the held-out dataset. The best scores
are marked as bold and the second best scores are
underlined.

Table 2 shows the experimental results on the

held-out dataset. We use the results reported in the
papers of previous work. We also plot the precision-
recall curves as in Figure 3.
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Figure 3: PR curves of the models on the held-out
dataset.

As shown in the results, our model achieves the
best AUC and F1 score among all the compared
methods. The P@M of our model is relatively
lower than bag-level methods, but still significantly
higher than the teacher model. We can see that
sentence-level training leads to a slight decline in
the precision of top predictions due to the existence
of noisy sentences but achieves better overall per-
formance on the test set because of its advantage in
information utilization. Our method further allevi-
ates noise and overfitting, achieving state-of-the-art
performance by only retraining the classifier with
self-distillation and instance weights.

4.2.2 Evaluation on Manual Dataset

Model AUC Fl1 P@M
PCNN+ATT 57.7 57.0 892
Intra+inter 53.6 535 918
CIL 60.2 58.8 91.7
Teacher 61.3 624 843
Student 12 63.9 638 90.8

Table 3: The performance (%) of our model and the
baselines on the manual dataset. The best scores are
marked as bold and the second bests are underlined.

Table 3 shows the experimental results on the
manual dataset. We use the original implementa-
tions of the methods to train and evaluate using
the manual dataset. The precision-recall curves are
plotted in Figure 4.
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Figure 4: PR curves of the models on manual dataset.

In the results, the bag-level methods still perform
better on top predictions, however, our method out-
performs them in AUC and F1 score by large mar-
gins. It shows that previous bag-level methods
overfit easy instances during training, leading to
the loss of overall generalization. Compared with
the teacher model, our method also achieves signif-
icant improvements, especially in P@M. It shows
that our method effectively alleviates the DS noise
in sentence-level training.

According to Gao et al. (2021), the performance
of the model may be inconsistent if evaluated in
both the held-out and manual datasets. Good per-
formance on the held-out set may indicate overfit-
ting to the bias from distant supervision. However,
our method achieves state-of-the-art performance
in both datasets, which further demonstrates its
effectiveness and robustness.

4.3 Ablation Study

Model AUC Fl1 PeM
Our method 53.9 553 849
a: - Un 52.5 532 86.1
b: - PW 51.9 525 84.8
c: - FNF 533 549 825
d: - TIW 52.1 52,6 84.6
e: Probe 50.6 52.5 80.0

Table 4: Ablation study of our method. The best results
are marked as bold and the second best are underlined.

As shown in Table 4, all the modules improve
the overall performance of our model. Detailed
discussions are given below:

a: removes uncertainty term and directly uses
SC score as positive weights. In this case, the easy

instances always have the largest weights during
distillation even though they are already well-fitted.
The model thus overfits shallow features, which is
verified by the high precision on top predictions
and the decline of overall performance.

b: removes PW and all the positive instances are
treated equally, including the noisy ones. In this
case, the model is heavily affected by noise and the
false negative filtering may be inaccurate, leading
to further declines in performance.

c: removes FNF. The false negative instances
only make up a small part of the dataset, so the ef-
fect of removing FNF is relatively small. However,
the noise from false negatives significantly reduces
P@M. We suspect that the fitting of false negatives
affects that of true positives. If a false negative fn
has similar syntactic and semantic features to a true
positive tp, fitting fn is similar to fitting ¢p using
an incorrect label.

d: removes TIW totally and all the instances are
weighted as 1. The label smoothness of knowl-
edge distillation is able to alleviate the noise from
distant supervision, so there is improvement in per-
formance over e. However, the teacher model is
trained with DS label and overfits noisy instances.
Without TIW, the noise from the teacher cannot be
effectively tackled.

e: is the probing result of 12th layer using the
DS label. It shows that without effective denoising
mechanisms, simply retraining the classifier does
not help in performance.

As shown in the ablation results and analysis, all
the modules play important roles in denoising from
distant supervision and combining them together
leads to the best performance.

4.4 Error Analysis

For accurate analysis of the errors of the model, we
use the test set of the manual dataset for statistical
discussions. Each positive label is considered an
item. The instances with multiple positive labels
are considered to have multiple items. We classify
the items based on the predictions of the teacher
and student, then count the number and percentage
of each class as in Table 5. The goal is to explore
where the errors of the student come from: a) from
the teacher, meaning that the knowledge from the
teacher is noisy and leads to the student’s errors,
or b) from the student itself, meaning that the
teacher gives correct knowledge but the student
fails to follow.



Sentence

Teacher Student

Carl Friedrich von Weizs&cker was born in Kiel, Germany, on June 28, 1912.

Ipeople/person/place_of_birth Ipeople/person/place_lived

Presented by Brooklyn College and the office of Borough President Marty Markowitz.

/business/person/company Ipeople/person/place_lived

e Prophet Muhammad, is often antagonistic.

Furthermore, the relationship between the central government, dominated by three small A
rab tribes living along the Nile, and Darfur’s Arabs, who claim a heritage going back to th

Ipeople/person/ethnicity Ipeople/person/place_of_birth

Figure 5: TCSI examples. The entities are underlined.

Class Num. of items Percentage (%)
BC 3,044 78.07

BI 742 19.03
TISC 94 2.41
TCSI 19 0.49

Table 5: Numbers and percentages of different classes
of items. BC stands for both correct, BI stands for both
incorrect, TISC stands for teacher incorrect, student
correct and TCSI stands for teacher correct, student
incorrect.

In the results, the student achieves slightly higher
(about 2%) accuracy than the teacher and shows
high fidelity with 97.1% of all predictions being
the same as the teacher. BI represents the student’s
errors caused by the errors from the teacher. TISC
indicates the student’s corrections on the errors
from the teacher and TCSI represents the errors
from the student itself. From the results, we can
conclude that almost all (about 97.5%) of the errors
come from the teacher, and the corrections made
by the student are much more than the errors made
by the student itself. This demonstrates the effec-
tiveness of our method in reducing the occurrence
of errors and the limitation that it requires a good
teacher for good performance.

For further analysis of the student’s errors, we
inspect the 7CSI items and select some represen-
tative ones for discussions as in Figure 5. Most
of the instances with place_of_birth relation are
correctly classified and the first example should
be an easy instance in the form, yet misclassified
by the student as place_lived. We observe several
similar items and suspect that long and uncommon
names like Carl Friedrich von Weizsdcker some-
times confuse the student to make conservative
predictions, which is the more common relation
place_lived. The second example, however, con-
fuses the student with a compound noun Brooklyn
College. Brooklyn appears very often in the dataset
in the form of location, making the student believe

that Brooklyn College is a location rather than an
organization. The third example is mostly related
to ambiguity, where the word Arab may refer to
the Arab people (ethnic group) or the Arab world
(location). The latter two examples indicate that
the lack of entity-related information may lead to
inconsistency between the student and the teacher.
The first example shows that the student may be
confused to lose focus on key phrases like was
born in, which may be solved by combining with
word-level attention in the future.

5 Conclusions and Limitations

In this paper, we propose a novel transitive in-
stance weighting mechanism integrated with a self-
distilled BERT structure to denoise from sentence-
level training of DSRE. We employ the self-
distilled backbone to utilize more information and
achieve better efficiency. We use the instance
weights generated through careful utilization of
the knowledge from the teacher and the peers to
tackle the challenges of noisy instances, overfitting
to shallow features and noise from the teacher. The
experiment results show that our method improves
the general resistance to DS noise and prevents
overfitting from harming its generalization, thus
can achieve state-of-the-art performance and con-
sistent improvements over the baselines on both
the held-out and manual datasets.

However, our work still has some limitations.
Firstly, Since our model is built on the basis of
the teacher-student network, the performance of
the student is highly affected by the teacher. If
the teacher provides too much noisy information,
our instance weighting mechanism might not work.
Secondly, in some cases, the student fails to fol-
low the correct predictions from the teacher due
to ambiguity, lack of information or word-level
noise, which indicates that further extension of
our method is plausible. Finally, we haven’t ex-
plored other instance weighting methods in this
paper. There might be better solutions yet to be
discovered.
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A Hyperparameter Analysis

There are two key hyperparameters in our experi-
ments, the student selected and the head layer L.
In our best model, we select the last student (12th)
for evaluation and set layer 7 as the head layer.

Comparison Between Teacher and Student
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Figure 6: PR curves of the students and auxiliary classi-
fiers of the teacher on the held-out dataset.

As shown in Figure 6, the higher students(> 9)
improve significantly over the teacher. The last stu-
dent performs the best and the students from 9th to
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11th also achieve comparable performances. Lower
layers of BERT encode shallower features and the
instance weighting in lower students is more af-
fected by noise, so the performances of 7th and
8th students show little advantage over the teacher.
With knowledge passed and noise alleviated student
by student, the performance gradually improves.

Setting AUC Fl1 P@M

L=11 534 551 828
L=10 535 549 83.6

L=9 536 550 84.0
L=8 537 551 84.7
L=7 539 553 849
L=6 538 553 848
L=5 537 551 84.6
L=3 535 550 847
L=2 535 549 84.6
L=1 534 549 845

Table 6: Results of using different head layer L settings.
The best results are marked as bold.

To study the effect of head layer L, we run exper-
iments with L from 1 to n. In Table 6, we present
the results where L. = 7 achieves the best perfor-
mance. For L > 7, the head layer is too close to
the top, and TIW filters fewer false negatives. So
the P@M declines quickly, which is similar to the
effect of removing FNF as in Table 4. For L < 7,
the lower layers of BERT are not able to encode
sufficient information for accurate relation extrac-
tion, so the lower students are not able to provide
reliable instance weights, leading to the transfer
of some noise among students. Though other set-
tings are less effective than the best, their perfor-
mances still dominate the baselines. The above
results show that our method is not dependent on
the empirical settings of hyperparameters and fur-
ther demonstrate the effectiveness and robustness
of our method.
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