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ABSTRACT

We introduce a new model for multivariate probabilistic time series prediction, designed
to flexibly address a range of tasks including forecasting, interpolation, and their
combinations. Building on copula theory, we propose a simplified objective for the
recently-introduced transformer-based attentional copulas (TACTiS), wherein the num-
ber of distributional parameters now scales linearly with the number of variables instead
of factorially. The new objective requires the introduction of a training curriculum,
which goes hand-in-hand with necessary changes to the original architecture. We show
that the resulting model has significantly better training dynamics and achieves state-of-
the-art performance across diverse real-world forecasting tasks, while maintaining the
flexibility of prior work, such as seamless handling of unaligned and unevenly-sampled
time series. Code is made available at https://github.com/ServiceNow/TACTiS.

1 INTRODUCTION

Optimal decision-making involves reasoning about the evolution of quantities of interest over time, as
well as the likelihood of various scenarios (Peterson, 2017). In its most general form, this problem
amounts to estimating the joint distribution of a set of variables over multiple time steps, i.e., multivariate
probabilistic time series forecasting (Gneiting & Katzfuss, 2014). Although individual aspects of this
problem have been extensively studied by the statistical and machine learning communities (Hyndman
et al., 2008; Box et al., 2015; Hyndman & Athanasopoulos, 2018), they have often been examined in
isolation. Recently, an emerging stream of research has started to seek general-purpose models that can
handle several stylized facts of real-world time series problems, namely (i) a large number of time series,
(ii) arbitrarily complex data distributions, (iii) heterogeneous or irregular sampling frequencies (Shukla &
Marlin, 2020), (iv) missing data (Fang & Wang, 2020), and (v) the availability of deterministic covariates
for conditioning (e.g., holiday indicators), while being flexible enough to handle a variety of tasks, such
as forecasting and interpolation (Drouin et al., 2022).

Classical forecasting methods (Hyndman et al., 2008; Box et al., 2015; Hyndman & Athanasopoulos,
2018) often make strong assumptions about the nature of the data distribution (e.g., parametric forms) and
are thus limited in their handling of these desiderata. The advent of deep learning-based methods enabled
significant progress on this front and led to models that excel at a wide range of time series prediction
tasks (Torres et al., 2021; Lim & Zohren, 2021; Fang & Wang, 2020). Yet, most of these methods lack the
flexibility required to meet the aforementioned requirements. Recently, some general-purpose models have
been introduced (Tashiro et al., 2021; Drouin et al., 2022; Biloš et al., 2023; Alcaraz & Strodthoff, 2023),
but most of them only address a subset of the desiderata. One notable exception is Transformer-Attentional
Copulas for Time Series (TACTiS; Drouin et al., 2022), which addresses all of them, while achieving
state-of-the-art predictive performance. TACTiS relies on a modular copula-based factorization of the
predictive joint distribution (Sklar, 1959), where multivariate dependencies are modeled using attentional
copulas. These consist of neural networks trained by solving a specialized objective that guarantees their
convergence to mathematically valid copulas. While the approach of Drouin et al. (2022) is theoretically
sound, it requires solving an optimization problem with a number of distributional parameters that grows
factorially with the number of variables, leading to poor training dynamics and suboptimal predictions.
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In this paper, we build on copula theory to propose a simplified training procedure for attentional copulas,
solving a problem where the number of distributional parameters scales linearly, instead of factorially,
with the number of variables. Our work results in a general-purpose approach to multivariate time series
prediction that also meets all of the above desiderata, while having considerably better training dynamics,
namely converging faster to better solutions (see Fig. 1).
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Figure 1: TACTiS-2 outperforms TACTiS in (i)
density estimation (lower validation negative
log-likelihoods, NLL) and (ii) training compute
(fewer floating point operations, FLOPs) in real-
world forecasting tasks (see Sec. 5).

Contributions:

• We show that, while nonparametric copulas require special-
ized learning procedures (Prop. 1), the permutation-based
approach used in TACTiS (Drouin et al., 2022) is unneces-
sarily complex, and that valid copulas can be learned by
solving a two-stage problem whose number of parameters
scales linearly with the number of variables (Sec. 3.2);

• We build on these theoretical findings to propose TACTiS-2,
an improved version of TACTiS with a revised architecture
that is trained using a two-stage curriculum guaranteed to
result in valid copulas (Sec. 4);

• We empirically show that our simplified training procedure
leads to better training dynamics (e.g., faster convergence to
better solutions) as well as state-of-the-art performance on
a number of real-world forecasting tasks, while preserving
the high flexibility of the TACTiS model (Sec. 5);

2 PROBLEM SETTING

This work addresses the general problem of estimating the joint distribution of unobserved values at
arbitrary time points in multivariate time series. This setting subsumes classical ones, such as forecasting,
interpolation, and backcasting. Let X be a multivariate time series comprising of n, possibly related,
univariate time series, denoted as X def

= {X1, . . . ,Xn}. Each Xi
def
= [Xi1, . . . ,Xi,ℓi] is a random vector

representing ℓi observations of some real-valued process in time. We assume that, for any realization
xi

def
= [xi1, . . . , xi,ℓi] of Xi, each xij is paired with (i) a timestamp, tij ∈ R, with tij < ti,j+1, marking its

measurement time and (ii) a vector of non-stochastic covariates cij ∈ Rp that represents arbitrary additional
information available at each time step.

Tasks: We define our learning tasks with the help of a mask mij ∈ {0,1}, which determines if any Xij

should be considered as observed (mij = 1) or to be inferred (mij = 0). For example, a task that consists
in forecasting the last k time steps in X would be defined as mij = 0 for all i and j, s.t. ℓi − k < j ≤ ℓi
and mij = 1 otherwise. Similarly, a task that consists in interpolating the values of time steps k to p in X
could be defined by setting all mij = 0 for all i and j s.t. k ≤ j ≤ p and mij = 1 otherwise. Arbitrary,
more complex, tasks can be defined using this approach.

General Problem: We consider the general problem of estimating the joint distribution of missing values
(i.e., mij = 0), given the observed ones (mij = 1), the covariates, and the timestamps:

P
(
X(m)

∣∣∣ X(o),C(m),C(o),T(m),T(o)
)
, (1)

where X(m) = [X11, . . . ,X1,l1; . . . ;Xn1, . . . ,Xn,ln | mij = 0] is a random vector containing the d

random variables Xij corresponding to all missing values, X(o) is the same, but for observed values, and
C(m), C(o), T(m), T(o) correspond to identical partitionings of the covariates and timestamps, respectively.
In what follows, we estimate the joint probability density function (PDF) of Eq. (1) using a copula-based
density estimator gϕϕϕ(x1, . . . , xd), whose parametersϕϕϕ are conditioned on X(o),C(m),C(o),T(m),T(o).

2.1 COPULA-BASED DENSITY ESTIMATORS

A copula is a probabilistic object that allows capturing dependencies between d random variables indepen-
dently from their respective marginal distributions. More formally the joint cumulative distribution function
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(CDF) for any random vector of d variables X = [X1, . . . ,Xd], can be written as:

P(X1 ≤ x1, . . . ,Xd ≤ xd) = C
(
F1(x1), . . . , Fd(xd)

)
, (2)

where Fi(xi)
def
= P(Xi ≤ xi) is the univariate marginal CDF of Xi and C : [0,1]d → [0,1], the copula, is

the CDF of a multivariate distribution on the unit cube with uniform marginals (Sklar, 1959). Notably, if
all Fi are continuous, then this copula-based decomposition is unique.

The present work integrates into a stream of research seeking specific parametrizations of copula-based
density estimators for multivariate time series (Salinas et al., 2019; Drouin et al., 2022), namely,

gϕϕϕ
(
x1, . . . , xd

) def
= cϕc

(
Fϕ1

(
x1
)
, . . . , Fϕd

(
xd
))

× fϕ1

(
x1
)
× · · · × fϕd

(
xd
)
, (3)

whereϕϕϕ = {ϕ1, . . . , ϕd;ϕc}, with {ϕi}di=1 the parameters of the marginal distributions (with Fϕi and fϕi

the estimated CDF and PDF respectively) and ϕc the parameters of the copula density cϕc . The choice of
distributions for Fϕi

and cϕc
is typically left to the practitioner. For example, one could take Fϕi

to be the
CDF of a Gaussian distribution and cϕc

to be a Gaussian copula (Nelsen, 2007). The parameters can then
be estimated by minimizing the negative log-likelihood:

argmin
ϕϕϕ

− E
x∼X

log gϕϕϕ(x1, . . . , xd) . (4)

3 LEARNING NONPARAMETRIC COPULAS

Oftentimes, to avoid making parametric assumptions, one may take the cϕc
and Fϕi

components of the
estimator to be highly flexible neural networks (Wiese et al., 2019; Janke et al., 2021; Drouin et al., 2022).
While it is easy to constrain cϕc

to have a valid domain and codomain, this does not imply that its marginal
distributions will be uniform. Thus, as observed by Janke et al. (2021) and Drouin et al. (2022), a key
challenge is ensuring that the distribution cϕc

satisfies the mathematical definition of a copula (see Sec. 2.1).
We strengthen this observation by proving a new theoretical result, showing that solving Problem (4)
without any additional constraints can lead to infinitely many solutions where cϕc is not a valid copula:

Proposition 1. (Invalid Solutions) Assuming that all random variables X1, . . . ,Xd have continuous
marginal distributions and assuming infinite expressivity for {Fϕi

}di=1 and cϕc
, Problem (4) has infinitely

many invalid solutions wherein cϕc
is not the density function of a valid copula.

Proof. The proof, detailed in App. B.1, shows that one can create infinitely many instantiations of Fϕi
and

cϕc
where p(x1, . . . , xd) = gϕϕϕ(x1, . . . , xd), but the true marginals and the copula are entangled.

Hence, using neural networks to learn copula-based density estimators is non-trivial and requires more than
a simple modular parametrization of the model.

3.1 PERMUTATION-INVARIANT COPULAS

Recently, Drouin et al. (2022) showed that valid nonparametric copulas can be learned using a permutation-
based objective. Their approach considers a factorization of cϕc

based on the chain rule of probability
according to an arbitrary permutation of the variables π = [π1, . . . , πd] ∈ Π, where Π is the set of all d!
permutations of {1, . . . , d}. The resulting copula density, cϕπ

c
, can be written as:

cϕϕϕπ
c
(u1, . . . , ud)

def
= cϕπ

c,1
(uπ1

)× cϕπ
c,2
(uπ2

| uπ1
)× · · · × cϕπ

c,d

(
uπd

| uπ1
, . . . , uπd−1

)
, (5)

where uπk
= Fϕπk

(
xπk

)
, with Fϕπk

arbitrary marginal CDFs, and the cϕπ
c,i

are arbitrary distributions (e.g.,
histograms) on the unit interval with parameters ϕπ

c,i. There is, however, one important exception: the
density of the first variable in the permutation cϕπ

c,1
is always taken to be that of a uniform distribution

U[0,1] and thus cϕπ
c,1
(uπ1

) = 1. This choice, combined with solving the following problem, guarantees that,
at the minimum, all of the cϕπ

c
, irrespective of π, are equivalent and correspond to valid copula densities:

argmin
ϕ1,...,ϕd,ϕπ

c

− E
x∼X

E
π∼Π

log cϕπ
c

(
Fϕ1

(
x1
)
, . . . , Fϕd

(
xd
))

× fϕ1

(
x1
)
× · · · × fϕd

(
xd
)
, (6)
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where ϕπ
c

def
= {ϕπ

c,1, . . . ϕ
π
c,d}π∈Π are the parameters for each of the d! factorizations of the copula density

(see Drouin et al. (2022), Theorem 1).

Limitations: Obtaining a valid copula using this approach requires solving an optimization problem
with O(d!) parameters. This is extremely prohibitive for large d, which are common in multivariate time
series prediction (e.g., d = 8880 for the common electricity benchmark; Marcotte et al. (2023)). The
approach proposed in Drouin et al. (2022), consists of parametrizing a single neural network to outputϕϕϕΠ

and using a Monte Carlo approximation of the expectation on Π. However, such an approach has several
caveats, e.g., (i) the neural network must have sufficient capacity to produce O(d!) distinct values and
(ii) due to the sheer size of Π, only a minuscule fraction of all permutations can be observed in one training
batch, resulting in slow convergence rates. This is supported by empirical observations in Sec. 5.

3.2 TWO-STAGE COPULAS

In this work, we take a different approach to learning nonparametric copulas, one that does not rely on
permutations, alleviating the aforementioned limitations. Our approach builds on the following two-stage
optimization problem, whose properties have previously been studied in the context of parametric (Joe &
Xu, 1996; Andersen, 2005; Joe, 2005) and semi-parametric estimators (Andersen, 2005), and where the
number of parameters scales with O(d) instead of O(d!):

argmin
ϕc

− E
x∼X

log cϕc

(
Fϕ⋆

1
(x1), . . . , Fϕ⋆

d
(xd)

)
(7)

s.t. (ϕ⋆
1, . . . , ϕ

⋆
d) ∈ argmin

ϕ1,...,ϕd

− E
x∼X

log

d∏
i=1

fϕi
(xi). (8)

Hence, the optimization proceeds in two stages:

∠ Stage 1: Learn the marginal parameters, irrespective of multivariate dependencies (Eq. (8));

∠ Stage 2: Learn the copula parameters, given the optimal marginals (Eq. (7)).

Beyond obtaining an optimization problem that is considerably simpler, we show that any nonparametric
copula cϕc

learned using this approach is valid, i.e., that it satisfies the mathematical definition of a copula:

Proposition 2. (Validity) Assuming that all random variables X1, . . . ,Xd have continuous marginal
distributions and assuming infinite expressivity for {Fϕi}di=1 and cϕc , solving Problem (7) yields a solution
to Problem (4) where cϕc is a valid copula.

Proof. The proof builds on results from Sklar (1959) and is provided in App. B.2.

4 THE TACT IS-2 MODEL

Building on Sec. 3.2, we propose TACTiS-2, a model for multivariate probabilistic time series prediction
that inherits the flexibility of the Drouin et al. (2022) model while benefiting from a considerably simpler
training procedure, with faster convergence to better solutions. Figure 2 provides an overview of its
architecture. In essence, the main difference with TACTiS lies in the choice of the copula-based density
estimator (Sec. 3): rather than being permutation-invariant (Sec. 3.1), it is of the proposed two-stage type
(Sec. 3.2). This difference mandates changes to the architecture and the loss of the model, as well as
the introduction of a training curriculum, which we outline below. In what follows, we use θ to denote
parameters of neural networks, which are not to be confused with distributional parameters, denoted byϕϕϕ.

Dual Encoder: Whereas TACTiS relies on a single encoder to produce all parameters of the output
density, TACTiS-2 relies on two distinct encoders (EncθM and EncθC ) whose representations are used to
parametrize the marginal CDFs (Fϕi

) and the copula distribution (cϕc
), respectively. As in TACTiS, these

are transformer encoders that embed realizations of both observed X(o) and missing X(m) values, with the
missing values masked as in masked language models (Devlin et al., 2018)). Let xi refer to the realization
of a generic random variable (missing or observed) and mi, ci, and ti its corresponding mask, covariates,
and timestamp. The representations are obtained as:

zMi = EncθM (xi ·mi,ci,mi,pi) , zCi = EncθC(xi ·mi,ci,mi,pi) , (9)
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Figure 2: The TACTiS-2 architecture with the dual encoder and the decoder. The training curriculum (bottom right)
shows the proposed two-stage approach.

where information about the timestamp ti is incorporated in the process via an additive positional encoding
pi, which we take to be sinusoidal features as in Vaswani et al. (2017).

Decoder: As in TACTiS, the decoder estimates the conditional density of missing values X(m) (Eq. (1))
with a copula-based estimator structured as in Eq. (3). It consists of two modules, which are tasked with
producing the distributional parameters for (i) the marginal CDFs Fϕi , and (ii) the copula cϕc , respectively.
The modules are akin to those used in TACTiS but differ in that they only make use of their respective
encodings: zM and zC . For completeness, we outline them below.

(Marginals) The first module is a Hyper-Network (HNθM ) producing the parameters ϕi of Deep
Sigmoidal Flows (DSF) (Huang et al., 2018)1 that estimate each Fϕi

. The value ui, corresponding to the
probability integral transform of xi, is then obtained as

ϕi = HNθM

(
zMi

)
, ui = DSFϕi(xi). (10)

(Copula) The second module parametrizes a construct termed attentional copula. This corresponds to a
factorization of the copula density, as in Eq. (5), where each conditional is parametrized using a causal
attention mechanism (Vaswani et al., 2017). More formally, consider an arbitrary ordering of the missing
variables X(m) and let cϕc,i

(ui | u1
, . . . , ui−1) be the i-th term in the factorization. Parameters ϕc,i are

produced by attending to the zCj (see Eq. (9)) and uj (see Eq. (10)) for all observed tokens, denoted by

zC(o) and u(o), and for all missing variables that precede in the ordering, denoted by z
C(m)
1:i−1 and u

(m)
1:i−1:

Ki = KeyθC(z
C(o),z

C(m)
1:i−1,u

(o),u
(m)
1:i−1) Vi = ValueθC(z

C(o),z
C(m)
1:i−1,u

(o),u
(m)
1:i−1)

qi = QueryθC(z
C(m)
i ) ϕc,i = AttnθC(qi,Ki,Vi)

where AttnθC is an attention mechanism that attends to the keys Ki and values Vi using query qi, and
applies a non-linear transformation to the output. As in Drouin et al. (2022), we take each cϕc,i

to be a
histogram distribution with support in [0,1], but other choices are compatible with this approach.

Curriculum Learning: A crucial difference between TACTiS and TACTiS-2 lies in their training
procedure. TACTiS optimizes the cumbersome, permutation-based, Problem (6). In contrast, TACTiS-2 is
trained by maximum likelihood using a training curriculum, enabled by the use of a dual encoder, which
we show is equivalent to solving the two-phase Problem (7). See Fig. 2 for an illustration.

1The original Deep Sigmoidal Flow is modified such that it outputs values in [0,1].
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In the first phase, only the parameters θM for the marginal components are trained, while those for the
copula, θC, are skipped. This boils down to optimizing Problem (4) using a trivial copula where all
variables are independent (which we denote by cI):

argmin
θM

− E
x∼X

log

[
cI

(
Fϕ1

(x
(m)
1 ), . . . , Fϕnm

(x
(m)
d )

)
·

d∏
i=1

fϕi
(x

(m)
i )

]
, (11)

where each fϕi is obtained by differentiating Fϕi w.r.t. xi, an operation that is efficient for DSFs. Since by
definition cI(. . .) ≡ 1, this problem reduces to Problem (8).

In the second phase, the parameters learned for the marginal components θM are frozen and the parameters
for the copula components θC are trained until convergence. The optimization problem is hence given by:

argmin
θC

− E
x∼X

log

[
cϕc

(Fϕ⋆
1
(x

(m)
1 ), . . . , Fϕ⋆

d
(x

(m)
d )) ·

d∏
i=1

fϕ⋆
i
(x

(m)
i )

]
, (12)

which reduces to Problem (7), since {fϕ⋆
i
(. . .)}di=1 are constant. Hence, by Prop. 2, we have that, given

sufficient capacity, the attentional copulas learned by TACTiS-2 will be valid. We stress the importance of
the proposed learning curriculum, since by Prop. 1, we know that simply maximizing the likelihood w.r.t.
θM and θC is highly unlikely to result in valid copulas.

Sampling: Inference proceeds as in TACTiS: (i) sampling according to the copula density and (ii) applying
the inverse CDFs to obtain samples from Eq. (1). We defer to Drouin et al. (2022) for details.

5 EXPERIMENTS

We start by empirically validating the two-stage approach to learning attentional copulas (Sec. 5.1). Then,
we show that TACTiS-2 achieves state-of-the-art performance in a forecasting benchmark and that it can
perform highly accurate interpolation (Sec. 5.2). Finally, we show that TACTiS-2 outperforms TACTiS in
all aspects, namely accuracy and training dynamics, while preserving its high flexibility.

5.1 EMPIRICAL VALIDATION OF TWO-STAGE ATTENTIONAL COPULAS

Figure 3: The density of the
learned copula (contours)
closely matches that of the
ground truth (colors).

According to Prop. 2, TACTiS-2 should learn valid copulas. We empirically
validate this claim in a setting where the sample size, training time, and capacity
are finite. As in Drouin et al. (2022), we rely on an experiment in which data
is drawn from a bivariate distribution with a known copula structure. The
results in Fig. 3 show that, in this setting, TACTiS-2 recovers a valid copula
that closely matches the ground truth. See App. B.3 for experimental details
and additional results.

5.2 EVALUATION OF PREDICTIVE PERFORMANCE

We now evaluate the forecasting and interpolation abilities of TACTiS-2 in a
benchmark of five common real-world datasets from the Monash Time Series
Forecasting Repository (Godahewa et al., 2021): electricity, fred-md, kdd-cup, solar-10min, and
traffic. These were chosen due to their diverse dimensionality (n ∈ [107,826]), sampling frequencies
(monthly, hourly, and 10 min.), and prediction lengths (ℓi ∈ [12,72]). All datasets are detailed in App. C.1.

Evaluation Protocol: The evaluation follows the protocol of Drouin et al. (2022), which consists in a
backtesting procedure that combines rolling-window evaluation with periodic retraining. The estimated
distributions are scored using the Continuous Ranked Probability Score (CRPS; Matheson & Winkler,
1976), the CRPS-Sum (Salinas et al., 2019)—a multivariate generalization of the CRPS—and the Energy
score (Gneiting & Raftery, 2007), as is standard in the literature. We further compare some models using
the negative log-likelihood (NLL), which was found to be more effective in detecting errors in modeling
multivariate dependencies (Marcotte et al., 2023). Experimental details are provided in App. C.

Forecasting Benchmark: We compare TACTiS-2 with the following state-of-the-art multivariate
probabilistic forecasting methods: GPVar (Salinas et al., 2019), an LSTM-based method that parametrizes
a Gaussian copula; TempFlow (Rasul et al., 2021b), a method that parametrizes normalizing flows using
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Table 1: Mean CRPS-Sum values for the forecasting experiments. Standard errors are calculated using the Newey-West
(1987; 1994) estimator. Average ranks report the average ranking of methods across all evaluation windows and
datasets. Lower is better and the best results are in bold.

Model electricity fred-md kdd-cup solar-10min traffic Avg. Rank

Auto-ARIMA 0.077 ± 0.016 0.043 ± 0.005 0.625 ± 0.066 0.994 ± 0.216 0.222 ± 0.005 6.2 ± 0.3
ETS 0.059 ± 0.011 0.037 ± 0.010 0.408 ± 0.030 0.678 ± 0.097 0.353 ± 0.011 6.0 ± 0.2

TempFlow 0.075 ± 0.024 0.095 ± 0.004 0.250 ± 0.010 0.507 ± 0.034 0.242 ± 0.020 5.4 ± 0.2
SPD 0.062 ± 0.016 0.048 ± 0.011 0.319 ± 0.013 0.568 ± 0.061 0.228 ± 0.013 5.2 ± 0.3

TimeGrad 0.067 ± 0.028 0.094 ± 0.030 0.326 ± 0.024 0.540 ± 0.044 0.126 ± 0.019 5.0 ± 0.2
GPVar 0.035 ± 0.011 0.067 ± 0.008 0.290 ± 0.005 0.254 ± 0.028 0.145 ± 0.010 3.8 ± 0.2

TACTiS 0.021 ± 0.005 0.042 ± 0.009 0.237 ± 0.013 0.311 ± 0.061 0.071 ± 0.008 2.4 ± 0.2
TACTiS-2 0.020 ± 0.005 0.035 ± 0.005 0.234 ± 0.011 0.240 ± 0.027 0.078 ± 0.008 1.9 ± 0.2

Table 2: Mean NLL values for forecasting experiments and training FLOP counts. Standard errors are calculated
using the Newey-West (1987; 1994) estimator. Lower is better. Best results in bold. .

Model electricity fred-md kdd-cup solar-10min traffic

TACTiS NLL 11.028 ± 3.616 1.364 ± 0.253 2.281 ± 0.770 −2.572 ± 0.093 1.249 ± 0.080
FLOPs (×1016) 1.931 ± 0.182 1.956 ± 0.192 1.952 ± 0.208 0.174 ± 0.018 1.207 ± 0.517

TACTiS-2 NLL 10.674 ± 2.867 0.378 ± 0.076 1.055 ± 0.713 −4.333 ± 0.181 −0.358 ± 0.077
FLOPs (×1016) 0.623 ± 0.018 0.738 ± 0.022 0.324 ± 0.014 0.078 ± 0.005 0.289 ± 0.061

transformers; TimeGrad (Rasul et al., 2021a), an autoregressive model based on denoising diffusion; and
Stochastic Process Diffusion (SPD) (Biloš et al., 2023), the only other general-purpose approach which
models time series as continuous functions using stochastic processes as noise sources for diffusion. More-
over, we include the following classical forecasting methods, which tend to be strong baselines (Makridakis
et al., 2018a;b; 2022): ARIMA (Box et al., 2015) and ETS exponential smoothing (Hyndman et al., 2008).

The CRPS-Sum results are reported in Tab. 1. Clearly, TACTiS-2 shows state-of-the-art performance,
achieving the lowest values on 4 out of 5 datasets, while being slightly outperformed by TACTiS on
traffic. Looking at the average rankings, which are a good indicator of performance as a general-purpose
forecasting tool, we see that TACTiS-2 outperforms all baselines, with TACTiS being its closest competitor.
To further contrast these two, we perform a comparison of NLL and report the results in Tab. 2 and Fig. 1.
We observe that TACTiS-2 outperforms TACTiS, additionally with no overlap in the confidence intervals for
3 out of 5 datasets, including traffic. This is strong evidence that TACTiS-2 better captures multivariate
dependencies (Marcotte et al., 2023), which is plausible given the proposed improvements to the attentional
copula. The results for all other metrics are in line with the above findings and are reported in App. A.2.

0 1 2 3 4 5 6 7 8
FLOPs (× 10¹ )

12

11

10

9

8

7

6

5

4

Va
lid

at
io

n 
NL

L

TACTIS
TACTIS 2 - no curriculum
TACTIS 2

Figure 4: TACTiS-2 converges to better NLLs
using fewer FLOPs than TACTiS, as well as
an ablation that trains all parameters jointly
without the two-stage curriculum. Vertical bars
indicate the latest convergence point over 5 runs
with a maximum duration of three days.

Training Dynamics: As discussed in Sec. 3, the optimiza-
tion problem solved by TACTiS-2 is considerably simpler than
the one solved by TACTiS. We quantify this by measuring the
number of floating-point operations (FLOPs) required to train
until convergence in the forecasting benchmark (see Tab. 2).
From these results, it is clear that TACTiS-2 achieves greater
accuracies while using much less compute than TACTiS. As
additional evidence of improved training dynamics, we report
training curves that compare the NLL, on a validation set,
with respect to training FLOPs for TACTiS-2, TACTiS, and an
ablation of TACTiS-2 that does not use the two-stage curricu-
lum. Results for the kdd-cup dataset are reported in Fig. 4
and those for other datasets are available in App. A.3. From
these, we reach two conclusions: (i) TACTiS-2 converges
much faster to better solutions, (ii) the two-stage curriculum
is crucial TACTiS-2’s success.

Interpolation Performance: While both TACTiS and TACTiS-2 are capable of interpolation, the results
reported in Tab. 3 indicate that TACTiS-2 is much better at this task. This is illustrated in Fig. 5a, which
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Table 3: Mean NLL values for the interpolation experiments. Standard errors are calculated using the Newey-West
(1987; 1994) estimator. Lower is better and the best results are in bold.

Model electricity fred-md kdd-cup solar-10min traffic

TACTiS −0.159 ± 0.007 −0.119 ± 0.021 1.050 ± 0.045 −0.948 ± 0.089 0.825 ± 0.149
TACTiS-2 −0.189 ± 0.034 −0.250 ± 0.017 0.138 ± 0.043 −3.262 ± 0.186 −0.431 ± 0.063

TACTiS

TACTiS-2

5%-95% 10%-90% 25%-75% 50% Ground Truth

(a) Interpolation: TACTiS-2 (bottom) produces more accurate inter-
polation distributions than TACTiS (top) – example from kdd-cup.

Series 1

Series 2

5%-95% 10%-90% 25%-75% 50% Ground Truth

(b) TACTiS-2 correctly forecasts two unaligned/unevenly-sampled
series on the noisy sines dataset. Dashed bars indicate measurements.

Figure 5: An illustration of the flexibility of TACTiS-2.

shows an example in which TACTiS-2 produces a much more plausible interpolation distribution than
TACTiS. Additional examples are available in App. A.5.

Model Flexibility: Like TACTiS, the TACTiS-2 architecture supports heterogenous datasets composed
of unaligned series with uneven sampling frequencies. We illustrate this by replicating an experiment of
Drouin et al. (2022) which consists in forecasting a bivariate noisy sine process with irregularly-spaced
observations. The results in Fig. 5b show that TACTiS-2 faithfully performs forecasting in this setting,
preserving the flexiblity of TACTiS. Additional results on real-world datasets are available in App. D.1.

6 RELATED WORK

Deep Learning for Probabilistic Time Series Prediction: The majority of prior work in this field has
been geared toward forecasting tasks. Early work explored the application of recurrent and convolutional
neural networks to estimating univariate forecast distributions (Rangapuram et al., 2018; Shih et al., 2019;
Chen et al., 2020; de Bézenac et al., 2020; Yanchenko & Mukherjee, 2020). More relevant to the present
work are methods for multivariate forecasting, which we review in light of the desiderata outlined in Sec. 1.
Many such works lack the flexibility to model arbitrary joint distributions. For instance, DeepAR (Salinas
et al., 2020) uses an RNN to parametrize an autoregressive factorization of the joint density using a chosen
parametric form (e.g., Gaussian). Similarly, GPVar (Salinas et al., 2019) uses an RNN to parametrize a
low-rank Gaussian copula approximation of the joint distribution. Wu et al. (2020) rely on an adversarial
sparse transformer to estimate conditional quantiles of the predictive distribution but do not model the full
joint density. Other approaches relax such limitations, by enabling the estimation of arbitrary distributions.
For instance, TempFlow (Rasul et al., 2021b) uses RNNs and transformers (Vaswani et al., 2017) to
parametrize a multivariate normalizing flow (Papamakarios et al., 2021). TimeGrad (Rasul et al., 2021a)
models the one-step-ahead predictive joint distribution with a denoising diffusion model (Ho et al., 2020;
Sohl-Dickstein et al., 2015) conditioned on an RNN. However, all of the above lack the flexibility to handle
unaligned/unevenly-sampled series, missing data, and are limited to forecasting.

Recently, multiple works have made progress toward our desiderata. Among those, TACTiS (Drouin et al.,
2022), which we have extensively described, and SPD (Biloš et al., 2023), which uses stochastic processes
as noise sources during diffusion, are the only ones that satisfy all of them. An alternative approach,
CSDI (Tashiro et al., 2021), which relies on a conditional score-based diffusion model trained using a
self-supervised interpolation objective, supports both forecasting and interpolation. However, it cannot
learn from unaligned time series. Similarly, SSSD (Alcaraz & Strodthoff, 2023), a conditional diffusion
model that relies on structured state-space models (Gu et al., 2022) as internal layers, can perform both
forecasting and interpolation but does not support unaligned and unevenly-sampled time series.

Copulas for Probabilistic Forecasting: Copula-based models for multivariate forecasting have been
extensively studied in economics and finance (Patton, 2012; Größer & Okhrin, 2021), with applications
such as modeling financial returns and volatility (Bouyé & Salmon, 2009; Bouyé et al., 2008; Wang & Tao,
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2020). A common semiparametric approach consists of combining a parametric copula, e.g., Archimedean,
with nonparametric empirical estimates of the marginal CDFs (ECDFs). One notable example is the work
of Salinas et al. (2019), which combines ECDFs with an RNN that dynamically parametrizes a Gaussian
copula. A key limitation of such approaches is that ECDF estimates are only valid for stationary processes.
Moving away from this assumption, Wen & Torkkola (2019) propose to use neural networks to model
the CDFs in addition to a Gaussian copula. However, the choice of a Gaussian copula is still a strong
parametric assumption which we seek to avoid. Closer to our work are methods that relax such parametric
assumptions, such as Krupskii & Joe (2020); Mayer & Wied (2021); Toubeau et al. (2019); Drouin et al.
(2022). Toubeau et al. (2019) use the historical data to estimate a histogram-based nonparametric copula.
A key caveat to this approach is that it assumes that the historical data is independent and identically
distributed. Finally, the work most similar to ours is the nonparametric approach of Drouin et al. (2022),
which, as extensively described, we significantly simplify and improve upon.

Copulas in Machine Learning: Beyond time series, copulas have been applied to various machine
learning problems, such as domain adaptation (Lopez-Paz et al., 2012), variational inference (Tran et al.,
2015; Hirt et al., 2019), learning disentangled representations (Wieser et al., 2018), dependency-seeking
clustering (Rey & Roth, 2012), and generative modeling (Sexton et al., 2022; Tagasovska et al., 2019;
Wang & Wang, 2019). Hence, we emphasize that our proposed transformer-based nonparametric copulas
are applicable beyond time series and review two closely related works. First, Janke et al. (2021) propose
an approach to learning nonparametric copula that uses a generative adversarial network (Goodfellow et al.,
2014) to learn a latent distribution on the unit cube. This distribution is then transformed into a valid copula
distribution using its ECDFs. As opposed to our approach, which is fully differentiable, their reliance on
ECDFs leads to a non-differentiable objective that must be approximated during training. Second, Wiese
et al. (2019) use normalizing flows to parametrize both the marginals and the copulas, resulting in an
approach that is fully differentiable. However, they focus on the bivariate case and rely on vine copulas to
extend their approach to multivariate copulas, something that our approach does not require.

7 DISCUSSION

This work introduces TACTiS-2, a general-purpose model for multivariate probabilistic time series pre-
diction, combining the flexibility of transformers with a new approach to learning attention-based non-
parametric copulas. TACTiS-2 establishes itself as the new state-of-the-art model for forecasting on several
real-world datasets, while showing better training dynamics than its predecessor, TACTiS. This superior
performance is mainly due to its simplified optimization procedure, which ultimately allows it to reach
better solutions, in particular better copulas. TACTiS-2’s performance is further enhanced by the use of a
dual-encoder that learns representations specialized for each distributional component.

There are multiple ways in which TACTiS-2 could be improved. For example, it would be interesting to
incorporate inductive biases specific to time series data into the architecture, e.g., using Fourier features
to learn high-frequency patterns (Woo et al., 2022), and auto-correlation mechanisms in the attention
layers (Wu et al., 2021). Next, TACTiS-2 is limited to working with continuous data due to its usage
of normalizing flows for the marginal distributions. This limitation could be addressed by building on
prior work (Tran et al., 2019; Ziegler & Rush, 2019) to adapt the normalizing flows to work with discrete
distributions. Finally, it is important to note that, as for all related work (Wiese et al., 2019; Drouin et al.,
2022; Janke et al., 2021), the nonparametric copulas learned by TACTiS-2 are valid in the limit of infinite
data and capacity. As future work, it would be interesting to study the convergence properties of these
approaches to valid copulas in settings with finite samples and non-convex optimization landscapes.

Beyond the scope of this work, there are interesting settings in which the capabilities of TACTiS-2 could
be studied further. The proposed form of fully decoupling the marginal distributions and the dependency
structure could be especially useful in handling distribution shifts, which are common in real-world time
series (Yao et al., 2022; Gagnon-Audet et al., 2023). Such a decoupling allows changes in either the
marginal distributions or the dependency structure or both these factors to be understood separately in
scenarios of distribution shift, allowing to adapt the model appropriately. Next, it would be interesting
to study large-scale training of TACTiS-2 on several related time series from a specific domain, where
marginal distributions can be trained for each series, while the attentional copula component can be shared.
Finally, it would be interesting to exploit the flexibility of TACTiS-2 for multitask pretraining, where
the model is jointly trained on multiple probabilistic prediction tasks such as forecasting, interpolation
and imputation, and can be used as a general-purpose model downstream. Such extensions to TACTiS-2
constitute exciting directions towards foundation models (Bommasani et al., 2021) for time series.
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A METRICS AND ADDITIONAL RESULTS

A.1 METRIC DEFINITIONS

CRPS: The Continuous Ranked Probability Score (Matheson & Winkler, 1976; Gneiting & Raftery,
2007) is a univariate metric used to assess the accuracy of a forecast distribution X, given a ground-truth
realization x∗:

CRPS(x∗,X)
def
= 2

∫ 1

0

(
1
[
F−1(q)− x∗

]
− q

) (
F−1(q)− x∗

)
dq, (13)

where F(x) is the cumulative distribution function (CDF) of the forecast distribution, and 1[x] is the
Heaviside function. We follow previous authors in normalizing the CRPS results using the mean absolute
value of the ground-truth realizations of each series, before taking the average over all series and time steps.
Since the CRPS is a univariate metric, it fully ignores the quality of the multivariate dependencies in the
forecasts being assessed.

CRPS-Sum: The CRPS-Sum (Salinas et al., 2019) is an adaptation of the CRPS to take into account
some of the multivariate dependencies in the forecasts. The CRPS-Sum is the result of summing both the
forecast and the ground-truth values over all series, before computing the CRPS over the resulting sums.

Energy Score: The Energy Score (ES) (Gneiting & Raftery, 2007) is a multivariate metric. For a
multivariate forecast distribution X and ground-truth realisation x∗, it is computed as:

ES(x∗,X)
def
= E

x∼X
|x− x∗|β2 − 1

2
E

x∼X
x′∼X

|x− x′|β2 , (14)

where |x|2 is the Euclidean norm and 0 < β ≤ 2 is a parameter we set to 1.
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NLL: The Negative Log-Likelihood (NLL) is a metric that directly uses the forecast probability distribu-
tion function (PDF) instead of sampling from it. In the case of a continuous distribution with PDF p(x)
and a ground-truth realisation x∗, the NLL is as follow:

NLL(x∗, p(x))
def
= − log p(x∗). (15)

We normalize the NLL results by dividing it by the number of dimensions of the forecast.

Standard Error Computation: In all of our metric results, the standard errors (indicated by ±) are com-
puted using the Newey-West (1987; 1994) estimator. This estimator takes into account the autocorrelation
and heteroscedasticity that are inherent to the sequential nature of our backtesting procedure, leading to
wider standard errors than those computed using the assumption that the metric values for each backtesting
period are independent. In particular, we use the implementation from the R sandwich package (Zeileis
et al., 2020), with the Bartlett kernel weights, 3 lags, and automatic bandwidth selection.

A.2 RESULTS ON ALTERNATIVE FORECASTING METRICS

Table 4: CRPS means: Averaged across all backtest sets. Standard errors are calculated using the Newey-West (1987;
1994) estimator. Average ranks report the average ranking of methods across all evaluation windows and datasets.
Lower is better and the best results are in bold.

Model electricity fred-md kdd-cup solar-10min traffic Avg. Rank

ETS 0.094 ± 0.014 0.050 ± 0.011 0.560 ± 0.028 0.844 ± 0.119 0.437 ± 0.012 6.5 ± 0.2
Auto-ARIMA 0.129 ± 0.015 0.052 ± 0.005 0.477 ± 0.015 0.636 ± 0.060 0.310 ± 0.004 5.7 ± 0.2

TempFlow 0.109 ± 0.024 0.110 ± 0.003 0.451 ± 0.005 0.547 ± 0.036 0.320 ± 0.015 5.6 ± 0.2
TimeGrad 0.101 ± 0.027 0.142 ± 0.058 0.495 ± 0.023 0.560 ± 0.047 0.217 ± 0.015 5.2 ± 0.3

SPD 0.099 ± 0.016 0.058 ± 0.011 0.465 ± 0.005 0.585 ± 0.050 0.283 ± 0.007 5.1 ± 0.3
GPVar 0.067 ± 0.010 0.086 ± 0.009 0.459 ± 0.009 0.298 ± 0.034 0.213 ± 0.009 4.1 ± 0.1

TACTiS 0.052 ± 0.006 0.048 ± 0.010 0.420 ± 0.007 0.326 ± 0.049 0.161 ± 0.009 2.2 ± 0.1
TACTiS-2 0.049 ± 0.006 0.043 ± 0.006 0.413 ± 0.007 0.256 ± 0.029 0.162 ± 0.010 1.6 ± 0.2

Table 5: Energy score means: Averaged across all backtest sets. Standard errors are calculated using the Newey-West
(1987; 1994) estimator. Average ranks report the average ranking of methods across all evaluation windows and
datasets. Lower is better and the best results are in bold.

Model electricity fred-md kdd-cup solar-10min traffic Avg. Rank
×104 ×105 ×103 ×102 ×100

Auto-ARIMA 44.59 ± 8.56 8.72 ± 0.81 18.76 ± 3.31 19.42 ± 3.37 4.10 ± 0.05 6.7 ± 0.2
TempFlow 10.25 ± 2.03 20.16 ± 0.74 3.30 ± 0.28 4.25 ± 0.16 4.59 ± 0.25 6.1 ± 0.3

ETS 7.94 ± 0.93 7.90 ± 1.88 3.60 ± 0.24 4.74 ± 0.17 4.98 ± 0.07 5.7 ± 0.2
TimeGrad 9.69 ± 2.62 19.87 ± 7.23 3.30 ± 0.19 4.31 ± 0.23 3.38 ± 0.11 4.7 ± 0.3

SPD 8.90 ± 1.18 8.94 ± 1.82 3.13 ± 0.24 3.68 ± 0.31 3.94 ± 0.10 4.4 ± 0.3
GPVar 6.80 ± 0.62 11.43 ± 1.60 3.18 ± 0.20 2.60 ± 0.10 3.57 ± 0.10 3.9 ± 0.2

TACTiS 5.42 ± 0.57 8.18 ± 1.83 2.93 ± 0.22 2.88 ± 0.23 3.10 ± 0.13 2.7 ± 0.3
TACTiS-2 4.91 ± 0.52 6.72 ± 0.10 2.81 ± 0.19 2.37 ± 0.14 3.36 ± 0.27 1.9 ± 0.2

A.3 TRAINING DYNAMICS

We now look deeper into the training dynamics of TACTiS-2. Figs. 6 and 7 compare the validation NLL
with respect to the number of FLOPs performed during training on the kdd-cup and solar-10min
datasets respectively. We present such an analysis for TACTiS, TACTiS-2, and we further consider an
ablation of TACTiS-2 where the proposed two-stage curriculum (see Sec. 4) is not used. Instead, all the
model parameters are trained jointly to minimize the NLL, in a single stage. In doing so, the resulting
attentional copulas are absolutely not guaranteed to be valid (Prop. 1). Such an ablation study allows us to
understand if the increased performance and efficiency come from the architecture of TACTiS-2 or the
two-stage curriculum itself.
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From the results, it is clear that TACTiS-2 converges in much fewer FLOPs and to better likelihoods,
compared to TACTiS. Notably, TACTiS-2 achieves better performance at any given FLOP budget. TACTiS-
2 without the curriculum goes to slightly better negative-log-likelihoods than TACTiS, but requires more
FLOPs to reach convergence. This suggests that, in addition to producing valid copulas, the modular
architecture of TACTiS-2 and its two-stage curriculum, help it achieve better performance and efficiency.
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Figure 6: FLOPs consumed vs validation negative log-likelihood on the kdd-cup dataset. The results are means of 5
seeds; the shaded region shows the standard error between the seeds. The dashed vertical lines on each curve indicate
the latest point of convergence over the 5 seeds with a maximum training duration of three days.
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Figure 7: FLOPs consumed vs validation negative log-likelihood on the solar-10min dataset. The results are means
of 5 seeds; the shaded region shows the standard error between the 5 seeds. The dashed vertical lines on each curve
indicate the latest point of convergence over the 5 seeds with a maximum training duration of three days.
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A.4 QUALITATIVE RESULTS ON FORECASTING

Figs. 8 and 9 show a few examples forecasts by TACTiS-2 on the solar-10min and electricity
datasets, respectively. These were picked as examples of particularly good forecasts.

Ground Truth
50%
5%-95%
10%-90%
25%-75%

Figure 8: Example forecasts by TACTiS-2 on the solar-10min dataset, along with the historical ground truth.
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Ground Truth
50%
5%-95%
10%-90%
25%-75%

Figure 9: Example forecasts by TACTiS-2 on the electricity dataset, along with the historical ground truth.

A.5 QUALITATIVE RESULTS ON INTERPOLATION

TACTIS TACTIS

TACTIS-2 TACTIS-2

Ground Truth
50%
5%-95%
10%-90%
25%-75%

Figure 10: Example interpolations by TACTiS (top) and TACTiS-2 (bottom) on the kdd-cup dataset, along with the
context provided to the model.

Fig. 10 and Fig. 11 show a few examples of interpolations for the kdd-cup dataset, comparing TACTiS
and TACTiS-2. Fig. 12 and Fig. 13 show a few examples of interpolations for the solar-10min dataset,
comparing TACTiS and TACTiS-2. All these examples were picked randomly.
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Figure 11: More example interpolations by TACTiS (top) and TACTiS-2 (bottom) on the kdd-cup dataset, along with
the context provided to the model.
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Figure 12: Example interpolations by TACTiS (top) and TACTiS-2 (bottom) on the solar-10min dataset, along with
the context provided to the model.
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Figure 13: More example interpolations by TACTiS (top) and TACTiS-2 (bottom) on the solar-10min dataset, along
with the context provided to the model.
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B THEORY AND PROOFS

B.1 PROOF OF PROPOSITION 1

Proposition 1. (Invalid Solutions) Assuming that all random variables X1, . . . ,Xd have continuous
marginal distributions and assuming infinite expressivity for {Fϕi

}di=1 and cϕc
, Problem (4) has infinitely

many invalid solutions wherein cϕc is not the density function of a valid copula.

Proof. Consider a joint distribution over n continuous random variables X1, . . . ,Xn with CDF
P(x1, . . . , xn). According to Sklar’s theorem (Sklar, 1959), we know that the joint CDF factorizes
as:

P(x1, . . . , xn) = C⋆ (F⋆
1 (x1), . . . , F

⋆
n(xn)) ,

where C⋆ and F⋆
i are the true underlying copula and marginal distributions of P , respectively. Further,

since all Xi are continuous, this factorization is unique.

Now, consider Problem (4). Without loss of generality, the proof considers the joint CDF instead of
the PDF that appears in the main text. This problem can be solved by finding ϕ1, . . . , ϕd, ϕc, such
that P(X1, . . . ,Xd) = Cϕc

(Fϕ1
(x1) . . . , Fϕn

(xn)). In what follows, we show that, assuming infinite
expressivity for Cϕc

and the Fϕi
, there are infinitely such solutions where Cϕc

is not a valid copula.

Let Fϕi : R → [0,1] be an arbitrary strictly monotonic increasing function from the real line to the unit
interval. The ground truth CDFs F⋆

i are an example of such functions, but infinitely many alternatives
exist, e.g., Fϕi(xi) = sigmoid(α · xi), where α ∈ R>0. Then, given any such parametrization of Fϕi and
assuming infinite expressivity for Cϕc

, take

Cϕc
(u1, . . . , un) = C⋆

(
F⋆
1 (F

−1
ϕ1

(u1)), . . . , F
⋆
n(F

−1
ϕn

(un))
)
,

Due to the invertibility of strictly monotonic functions, this yields a valid solution for Problem (4):

Cϕc (Fϕ1(x1) . . . , Fϕn(xn)) = C⋆ (F⋆
1 (x1), . . . , F

⋆
n(xn)) = P(x1, . . . , xn).

Let us now proceed by contradiction to show that, in general, such a Cϕc
is not a valid copula. Assume

that Cϕc
is a valid copula and, without loss of generality, that Fϕ1

≠ F⋆
1 . Then, by definition, all univariate

marginals of Cϕc
should be standard uniform distributions and thus,

Cϕc
(1, . . . , ui, . . . ,1) = ui.

Therefore, we have that:

u1 = Cϕc
(u1,1, . . . ,1) = C⋆

(
F⋆
1 (F

−1
ϕ1

(u1)),1, . . . ,1
)
= F⋆

1 (F
−1
ϕ1

(u1)),

since C⋆ is also a valid copula. However, we know that Fϕ1 ≠ F⋆
1 and thus we arrive at a contradiction.

Hence, without further constraints on Fϕi
and Cϕc

, such as the approaches presented in Secs. 3.1 and 3.2,
one can obtain arbitrarily many solutions to Problem (4), where Cϕc is not a valid copula.

B.2 PROOF OF PROPOSITION 2

Proposition 2. (Validity) Assuming that all random variables X1, . . . ,Xd have continuous marginal
distributions and assuming infinite expressivity for {Fϕi

}di=1 and cϕc
, solving Problem (7) yields a solution

to Problem (4) where cϕc
is a valid copula.

Proof. Let p(x1, . . . , xd) be the joint density of X = [X1, . . . ,Xd]. According to Sklar (1959), we know
that the density can be written as:

p(x1, . . . , xd) = cϕ⋆
c

(
Fϕ⋆

1

(
x1
)
, . . . , Fϕ⋆

d

(
xd
))

× fϕ⋆
1

(
x1
)
× · · · × fϕ⋆

d

(
xd
)
, (16)

where Fϕ⋆
i

and fϕ⋆
i

are the ground truth marginal CDF and PDF of Xi, respectively, and cϕ⋆
c

is the PDF of
the ground truth copula. Further, since all Fϕ⋆

i
are continuous, we know that cϕ⋆

c
is unique.
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The proof proceeds in two parts: (i) showing that the marginals learned by solving Problem (8) will match
the ground truth (Fϕ⋆

i
, fϕ⋆

i
), and (ii) showing that, given those true marginals, solving Problem (7) will lead

to a copula that matches cϕ⋆
c
, which is valid by definition.

Part 1 (Marginals): Let us recall the nature of Problem (8):

argmin
ϕ1,...,ϕd

− E
x∼X

log

d∏
i=1

fϕi(xi).

Now, notice that this problem can be rewritten as d independent optimization problems:

argmin
ϕi

− E
x∼X

log fϕi(xi),

which each consists of minimizing the expected marginal negative log-likelihood for one of the d random
variables. Given that the NLL is a strictly proper scoring rule (Gneiting & Raftery, 2007), we know that it
will be minimized if and only if fϕi

= fϕ⋆
i
. Since we assume infinite expressivity for fϕi

, we know that
such a solution can be learned and thus, solving Problem (8) will recover the ground truth marginals.

Part 2 (Copula): Let us now recall the nature of Problem (7), which assumes that the true marginal
parameters ϕ⋆

1, . . . , ϕ
⋆
d are known:

argmin
ϕc

− E
x∼X

log cϕc

(
Fϕ⋆

1
(x1), . . . , Fϕ⋆

d
(xd)

)
.

Let U = [U1, . . . ,Ud] be the random vector obtained by applying the probability integral transform to the
Xi, i.e., Ui = Fϕ⋆

i
(Xi). By construction, the marginal distribution of each Ui will be uniform. Problem (7)

can be rewritten as:
argmin

ϕc

− E
u∼U

log cϕc
(u1, . . . , ud) ,

which corresponds to minimizing the expected joint negative log-likelihood. Again, since the NLL is
a strictly proper scoring rule, it will be minimized if and only if cϕc

= cϕ⋆
c
. Since we assume infinite

expressivity for cϕc
, we know that such a solution can be learned and thus, solving Problem (7) will recover

the ground truth copula, which is valid by definition.

Finally, since solving Problem (8) yields the true marginals, and solving Problem (7) based on the solution
of Problem (8) recovers the true copula, we have that the combination of both solutions yields p(x1, . . . , xd)
(see Eq. (16)) and thus they constitute a valid solution to Problem (4).

B.3 EXAMPLE OF VALID AND INVALID DECOMPOSITIONS

To illustrate Props. 1 and 2, we use the TACTiS decoder2 to fit a two-dimensional hand-crafted distribution.
The target distribution is built from a copula which is an equal mixture of two Clayton copulas, with
parameters θ = 9.75 and θ = −0.99; and from marginals which are a Gamma distribution with parameter
α = 1.99 and a Double Weibull distribution with parameter c = 3.

As was previously shown in Fig. 3, Fig. 14 shows that the attentional copula and the flows can accurately
reproduce the target distribution copula and marginals, when trained using the procedure outlined in Sec. 3.2.
This is the expected result according to Prop. 2.

Fig. 15 shows the opposite situation: an attentional copula and flows that together accurately reproduce the
target distribution, but individually are very far from the target copula and marginals. This is an example of
an invalid copula as described in Prop. 1.

2We slightly modified the attentional copula architecture by removing the forced U[0,1] distribution from the first
variable being sampled. This was to allow the attentional copula to be able to learn any distribution on the unit cube.
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Figure 14: Example of a two-dimensional distribution being accurately split into its constituent copula and marginals
using an attentional copula and flows. (top left) Probability Densities of the target distribution (colors) and of the
reconstructed distribution (white contours). (top right) Probability Density of the target distribution copula (colors)
and of the attentional copula (white contours). (bottom) Probability Densities of each variable marginal distributions
(dashed lines) and of the flows (solid lines).
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Figure 15: Example of a two-dimensional distribution being inaccurately split into its constituent copula and marginals
using an attentional copula and flows. (top left) Probability Densities of the target distribution (colors) and of the
reconstructed distribution (white contours). (top right) Probability Density of the target distribution copula (colors)
and of the attentional copula (white contours). (bottom) Probability Densities of each variable marginal distributions
(dashed lines) and of the flows (solid lines).
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C EXPERIMENTAL DETAILS

C.1 DATASETS

Table 6: Datasets used in the paper. Table reproduced from Drouin et al. (2022) with permission.

Short name Monash name Frequency Number of series Prediction length

electricity Electricity Hourly Dataset 1 hour 321 24
fred-md FRED-MD Dataset 1 month 107 12
kdd-cup KDD Cup Dataset (without Missing Values) 1 hour 270 48
solar-10min Solar Dataset (10 Minutes Observations) 10 minutes 137 72
traffic Traffic Hourly Dataset 1 hour 862 24

We reuse the same datasets used by (Drouin et al., 2022) in their forecasting benchmark. Tab. 6 describes
the datasets used in the paper for reference.

C.2 TRAINING PROCEDURE

Compute used All models in the paper are trained in a Docker container with access to a Nvidia
Tesla-P100 GPU (12 GB of memory), 2 CPU cores, and 32 GB of RAM. Due to sampling and NLL
evaluation requiring more memory due to being done without bagging, they were done with computing
resources with more available memory as needed.

Batch size The batch size was selected as the largest power of 2 between 1 and 256 such that the GPU
memory requirement from the training loop did not go above the available memory.

Training loop Each epoch of the training loop consists of training the model using 512 batches from the
training set, followed by computing the NLL on the validation set. We stop the training when any of these
conditions are reached:

• We have reached 72 hours of training for a model without the two-stage curriculum,
• We have reached 36 hours of training for a single stage of the curriculum,
• Or we did not observe any improvement in the best value of the NLL on the validation set for 50

epochs.

We then return the version of the model that reached the best value of the NLL on the validation set.

For SPD, following Biloš (2023), in the absence of NLL, we use the loss function of the model i.e. the
squared difference between the predicted and true noise.

Validation set During hyperparameter search, we reserve from the end of the training set a number of
timesteps equal to 7 times the prediction length. The validation set is then built from all prediction windows
that fit in this reserved data. During backtesting, we also remove this amount of data from the training set
(except for fred-md where only remove a number equal to the prediction length), but the validation set is
built from the 7 (or single for fred-md) non-overlapping prediction window we can get from this reserved
data.

Interpolation For the interpolation experiments, we always use a centered interpolation window: we
keep an equal amount of observed timesteps immediately before and immediately after the prediction
window. Since we do not have access to the data that happens after the last backtesting prediction window,
we instead shift all backtesting prediction windows by the length of the posterior observed data length. All
parts of the training set which overlap these backtesting prediction windows are also removed, to prevent
any information leakage during training.

C.3 HYPERPARAMETER SEARCH PROTOCOL

The metric values for Auto-ARIMA, ETS, GPVar, TempFlow, and TimeGrad are taken from Drouin et al.
(2022). We refer the reader to Drouin et al. (2022) for details on how the protocol used for hyperparameter
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search for these models, but one important detail is that it used CRPS-Sum as the target to minimize. In
theory, this should bias the comparison based on CRPS-Sum (Tab. 1) in their favor.

For TACTiS, and TACTiS-2, we use Optuna (Akiba et al., 2019) to minimize the NLL on the validation
set. Note that we use the same validation set for the NLL evaluation and the early stopping during
hyperparameter search. For each dataset and model, we let Optuna run for 6 days, using 50 training runs in
parallel.

For SPD, following Biloš (2023), in the absence of NLL, we used the same protocol as for TACTiS and
TACTiS-2 but we minimized the loss function of the model, the squared difference between the predicted
and true noise.

For the interpolation experiments, we do not perform a separate hyperparameter search and instead reuse
the hyperparameters found for forecasting.

C.4 SELECTED HYPERPARAMETERS

In this section, we present the possible values for the hyperparameters during the hyperparameter search
for TACTiS, TACTiS-2, and SPD, together with their optimal values as found by Optuna. Tabs. 7 to 9
present the hyperparameters which are restricted to finite sets of values for TACTiS, TACTiS-2, and SPD,
respectively. Tab. 10 shows the optimal values for the learning rate parameters, which were allowed to be
in the [10−6,10−2] continuous range.

Table 7: Possible hyperparameters for TACTiS. e, f, k, s, and t respectively indicate the optimal hyperparameters for
electricity, fred-md, kdd-cup, solar-10min, and traffic.

Hyperparameter Possible values

Model Encoder transformer embedding size (per head)
and feed-forward network size

4, 8, 16, 32et, 64fs, 128, 256k, 512

Encoder transformer number of heads 1k, 2f, 3s, 4, 5, 6t, 7e

Encoder number of transformer layers pairs 1k, 2, 3s, 4, 5eft, 6, 7
Encoder input embedding dimensions 1t, 2e, 3, 4s, 5, 6, 7fk

Encoder time series embedding dimensions 5t, 8, 16e, 32k, 48s, 64, 128, 256f, 512
Decoder DSF number of layers 1t, 2, 3f, 4, 5es, 6, 7k

Decoder DSF hidden dimensions 4, 8, 16fs, 32, 48e, 64, 128, 256, 512kt

Decoder MLP number of layers 1e, 2ft, 3, 4, 5, 6, 7ks

Decoder MLP hidden dimensions 4, 8k, 16, 32e, 48, 64f, 128t, 256, 512s

Decoder transformer number of layers 1k, 2f, 3e, 4, 5, 6t, 7e

Decoder transformer embedding size (per head) 4s, 8, 16, 32, 48f, 64ek, 128t, 256, 512
Decoder number transformer heads 1e, 2, 3, 4ks, 5, 6ft, 7
Decoder number of bins in conditional distribution 10, 20ft, 50s, 100e, 200k, 500

Data Normalization Standardizationefkst

History length to prediction length ratio 1, 2ks, 3eft

Training Optimizer Adamefkst

Weight decay 0efks, (10−5), (10−4), (10−3)t

Gradient clipping (103)efkst, (104)
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Table 8: Possible hyperparameters for TACTiS-2. e, f, k, s, and t respectively indicate the optimal hyperparameters for
electricity, fred-md, kdd-cup, solar-10min, and traffic.

Hyperparameter Possible values

Model Marginal CDF Encoder transformer embedding size (per head)
and feed-forward network size

4, 8st, 16, 32k, 64, 128e, 256, 512f

Marginal CDF Encoder transformer number of heads 1, 2, 3e, 4ft, 5s, 6k, 7
Marginal CDF Encoder number of transformer layers pairs 1f, 2s, 3e, 4kt, 5, 6, 7
Marginal CDF Encoder input encoder layers 1, 2, 3, 4fk, 5, 6s, 7et

Marginal CDF Encoder time series embedding dimensions 5fks, 8e, 16t, 32, 48, 64, 128, 256, 512
Attentional Copula Encoder transformer embedding size (per
head) and feed-forward network size

4k, 8fst, 16e, 32, 64, 128, 256, 512

Attentional Copula Encoder transformer number of heads 1, 2e, 3f, 4t, 5s, 6k, 7
Attentional Copula Encoder number of transformer layers pairs 1, 2s, 3k, 4t, 5ef, 6, 7
Attentional Copula Encoder input encoder layers 1s, 2k, 3, 4, 5t, 6, 7ef

Attentional Copula Encoder time series embedding dimensions 5, 8fk, 16, 32, 48s, 64t, 128, 256e, 512
Decoder DSF number of layers 1, 2s, 3, 4kt, 5, 6f, 7e

Decoder DSF hidden dimensions 4, 8, 16t, 32, 48ef, 64, 128k, 256s, 512
Decoder MLP number of layers 1, 2ef, 3ks, 4, 5, 6t, 7
Decoder MLP hidden dimensions 4, 8, 16kst, 32, 48f, 64, 128e, 256, 512
Decoder transformer number of layers 1, 2t, 3s, 4k, 5, 6, 7ef

Decoder transformer embedding size (per head) 4, 8, 16s, 32e, 48kt, 64f, 128, 256, 512
Decoder transformer number of heads 1k, 2, 3, 4tf, 5, 6s, 7e

Decoder number of bins in conditional distribution 10, 20e, 50fks, 100t, 200, 500
Data Normalization Standardizationefkst

History length to prediction length ratio 1t, 2es, 3fk

Training Phase 1 Optimizer Adamefkst

Weight decay 0est, (10−5)k, (10−4), (10−3)f

Gradient clipping (103)efst, (104)k

Training Phase 2 Optimizer Adamefkst

Weight decay 0skt, (10−5), (10−4)ef, (10−3)

Gradient clipping (103)es, (104)fkt

Table 9: Possible hyperparameters for SPD. e, f, k, s, and t respectively indicate the optimal hyperparameters for
electricity, fred-md, kdd-cup, solar-10min, and traffic. The choice of possible hyperparameters was
discussed with the authors (Biloš, 2023).

Hyperparameter Possible values

Model type 'discrete'efkst, 'continuous'
noise 'normal'efks, 'ou', 'gp't

num layers 1, 2efs, 3kt

num cells 20fkt, 40s, 60e

dropout rate 0k, 0.001tf, 0.01es, 0.1
diff steps 25, 50, 100efkst

beta schedule 'linear', 'quad'efkst

residual layers 4, 8e, 16fkst

residual channels 4, 8, 16efkst

scaling Falseks, Trueeft

Data History length to prediction length ratio 1efkst

Training Optimizer Adamefkst

Weight decay 0s, (10−5)ek, (10−4)ft, (10−3)

Gradient clipping (101), (102), (103)k, (104)efst
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Table 10: Optimal learning rate as obtained by our hyperparameter search procedure.

Model electricity fred-md kdd-cup solar-10min traffic

TACTiS 7.4× 10−5 2.7× 10−4 9.2× 10−5 8.0× 10−5 2.8× 10−3

TACTiS-2 Phase 1 5.0× 10−5 1.7× 10−3 2.3× 10−5 1.8× 10−3 2.5× 10−3

TACTiS-2 Phase 2 2.2× 10−4 1.9× 10−3 9.4× 10−4 7.0× 10−4 6.7× 10−4

SPD 8.9× 10−4 5.6× 10−3 2.7× 10−3 3.1× 10−3 4.4× 10−3

D ADDITIONAL RESULTS

D.1 DEMONSTRATION OF MODEL FLEXIBILITY IN REAL-WORLD DATASETS

We present empirical results on real-world datasets verifying the ability of TACTiS-2 to work with uneven
and unaligned data. The datasets used in these experiments are derived from real-world datasets with
aligned and evenly sampled observations. To create uneven sampling, for each series we independently
follow a process where if we keep the observation at timestep t, then the next kept observation will be
at timestep t+ δ, with δ randomly chosen from 1, 2, or 3. To create unalignment, we randomly choose
the sampling frequency for each series from: i) the original frequency, ii) half the original frequency, and
iii) a quarter of the original frequency in the dataset. The datasets resulting from such corruptions are
faithful to real-world scenarios. We follow the same protocol as described in Sec. 5, except that we use a
single backtest timestamp for evaluation. Tab. 11 and Tab. 12 compare the ability of TACTiS and TACTiS-2
to perform forecasting with uneven and unaligned data respectively on the two datasets with the largest
forecast horizon. It can be seen that the ability of TACTiS-2 to work with uneven and unaligned data is
much more pronounced than that of TACTiS.

Table 11: Mean NLL values for the forecasting experiments on uneven data. Results are over 5 seeds. Lower is better
and the best results are in bold.

Model kdd-cup solar-10min

TACTiS 2.858 ± 0.476 1.001 ± 0.783
TACTiS-2 1.866 ± 0.230 0.261 ± 0.011

Table 12: Mean NLL values for the forecasting experiments on unaligned data. Results are over 5 seeds. Lower is
better and the best results are in bold.

Model kdd-cup solar-10min

TACTiS 1.527 ± 0.072 −0.038 ± 0.220
TACTiS-2 0.722 ± 0.163 −3.218 ± 0.249
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