
Answer When Needed, Forget When Not: Language Models Pretend to
Forget via In-Context Knowledge Unlearning

Anonymous ACL submission

Abstract

As large language models (LLMs) are ap-001
plied across diverse domains, the ability to002
selectively unlearn specific information has003
become increasingly essential. For instance,004
LLMs are expected to provide certain confi-005
dential information to authorized internal users,006
such as employees or trusted partners, while007
withholding it from external users, including008
the general public and unauthorized entities.009
In response to this challenge, we propose a010
novel method termed “in-context knowledge011
unlearning”, which enables the model to se-012
lectively forget information in test-time based013
on the query context. Our method fine-tunes014
pre-trained LLMs to enable prompt unlearn-015
ing of target knowledge within the context,016
while preserving other knowledge. Experi-017
ments on TOFU, AGE and RWKU datasets018
using Llama2-7B/13B and Mistral-7B models019
show that our method achieves up to 95% for-020
get accuracy while retaining 80% of unrelated021
knowledge, significantly outperforming base-022
lines in both in-domain and out-of-domain sce-023
narios. Further investigation of the model’s024
internal behavior revealed that while fine-tuned025
LLMs generate correct predictions in the mid-026
dle layers and maintain them up to the final027
layer, they make the decision to forget at the028
last layer, i.e. “LLMs pretend to forget”. Our029
findings offer valuable insight into the improve-030
ment of the robustness of the unlearning mech-031
anisms in LLM, setting a foundation for future032
research in the field. 1033

1 Introduction034

Large Language Models (LLMs), such as GPT-035

4 (OpenAI et al., 2024), have significantly trans-036

formed various sectors by providing advanced ca-037

pabilities in information processing and text gener-038

ation.039

1Code is available at https://anonymous.4open.
science/r/test-time-in-context-unlearning

Figure 1: Method overview. (1) Without unlearning,
LLMs output any answers to given inputs. (2) Some
prior unlearning methods (e.g.,Pawelczyk et al. (2023))
attempt to unlearn specific knowledge but may cause hal-
lucinations. (3) Our method enables LLMs to selectively
unlearn knowledge in a timely manner by inputting the
knowledge we want LLMs to forget in a prompt (e.g.,
«UNL»Paris«/UNL»). In contrast to In-context Unlearn-
ing (ICUL) (Pawelczyk et al., 2023), our method causes
no hallucination by outputting “forget” in response to a
question.

The widespread deployment of such models, 040

however, introduces complex challenges related 041

to privacy and the ethical use of information. In 042

particular, the indiscriminate supply of sensitive 043

or domain-specific information by LLMs raises 044

significant concerns, which requires mechanisms 045

for selective information handling based on the 046

user context (Das et al., 2024). To improve the 047

privacy and ethical use of LLMs, previous work 048

has explored several approaches, including differ- 049

ential privacy (Abadi et al., 2016), federated learn- 050

ing (Geyer et al., 2018), and knowledge distilla- 051

tion (Jiang et al., 2023b). Despite their contribu- 052

tions, these methods often compromise between 053
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privacy and model performance.054

The concept of “test-time adaptation” (Liang055

et al., 2023) or “in-context learning” (Dong et al.,056

2024) offers a dynamic approach to model adap-057

tation, yet it fails to adequately address selective058

forgetting of sensitive information. For example,059

an LLM used within a corporate environment to060

streamline project management needs to retain sub-061

stantial industry-specific knowledge while being062

able to “forgetting” proprietary company data or063

sensitive information when accessed by unautho-064

rized external consultants. This scenario under-065

scores the critical need for a mechanism that en-066

ables LLMs to selectively forget or withhold sensi-067

tive information based on the query context with-068

out compromising their overall utility and perfor-069

mance.070

This paper introduces “in-context knowledge071

unlearning”, a novel approach designed to equip072

LLMs with the capability of selective forgetting073

in test-time, based on the query context. The074

overview of our method is given in Figure 1. We075

develop unlearning tokens that, when applied dur-076

ing inference, enable the model to selectively ig-077

nore information pertaining to specified domains.078

Through comprehensive experimentation, we val-079

idate the efficacy of our approach in facilitating080

domain-specific unlearning without compromising081

the model’s general performance. Specifically, we082

conducted experiments on the TOFU, AGE, and083

RWKU datasets (Maini et al., 2024; Annamoradne-084

jad and Annamoradnejad, 2022; Jin et al., 2024) us-085

ing Llama2-7B/13B and Mistral-7B models, show-086

ing that our method achieves up to 95% forget ac-087

curacy while retaining 80% unrelated knowledge,088

significantly outperforming baselines in both in-089

domain and out-of-domain scenarios.090

Moreover, further investigations into the model’s091

internal behavior revealed that while fine-tuned092

LLMs generate correct predictions in the middle093

layers and maintain them up to the final layer, they094

make the decision to forget only at the last layer,095

i.e., “LLMs pretend to forget”. This finding not096

only enriches our understanding of selective infor-097

mation handling in LLMs but also sets a founda-098

tion for future research to improve the robustness099

of models across sensitive and regulated domains.100

2 Related Work101

In-context Unlearning. Our method leverages102

in-context learning (ICL) for knowledge unlearn-103

ing. ICL enables LLMs to adapt to new tasks flex- 104

ibly by incorporating data in the context of input 105

sequence, rather than fine-tuning, which explicitly 106

updates weights (Brown et al., 2020a; Dong et al., 107

2023; Liu et al., 2023). Exploring the full capabili- 108

ties of ICL remains an active area of research, with 109

recent studies empirically investigating its poten- 110

tial by examining in-context example design (Garg 111

et al., 2022; Liu et al., 2022; Min et al., 2022; Liu 112

et al., 2023). 113

Pawelczyk et al. (2023) explored methods for 114

performing in-context unlearning. This study fo- 115

cuses on text classification tasks in which the la- 116

bels of specific instances are flipped to facilitate 117

in-context unlearning. However, this approach has 118

limitations as it primarily assesses unlearning in 119

terms of text classification ability rather than actual 120

knowledge. Furthermore, the method trains the 121

model to generate incorrect outputs, which is not 122

meant true forgetting. 123

In contrast, our study introduces unique char- 124

acteristics that address these issues. We specifi- 125

cally investigate knowledge unlearning within an 126

in-context learning framework. Moreover, by defin- 127

ing unlearning as the ability to “forget” we ensure 128

that our approach avoids merely generating errors 129

or irrelevant information, thereby achieving a more 130

effective and appropriate form of unlearning. 131

Comparison of Our Method with Prior Work 132

Table 1 compares our method with existing unlearn- 133

ing techniques. Test-time unlearning refers to the 134

process of selectively removing a specific concept 135

or knowledge from a trained model. Knowledge 136

unlearning refers to forgetting world knowledge, 137

e.g. “The capital of France is Paris”. 138

For example, Gradient Ascent (Golatkar et al., 139

2020) lacks test-time unlearning and only removes 140

global knowledge. ROME (Meng et al., 2022) 141

and Knowledge Sanitization (Ishibashi and Shi- 142

modaira, 2024) require separate training to un- 143

learn specific knowledge so that these methods 144

cannot perform test-time unlearning. While ICUL 145

(In-Context Unlearning) (Pawelczyk et al., 2023) 146

achieves test-time unlearning, it merely changes a 147

ground-truth label or word of target instance within 148

the in-context prompt, so this approach inevitably 149

outputs hallucinations. 150

Unlike existing methods, our approach achieves 151

test-time unlearning, knowledge unlearning, and 152

non-hallucination output simultaneously. In other 153

words, our approach addresses the prior limitations 154
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Table 1: Comparison of Unlearning Methods

Method Test-Time Unlearning Knowledge Unlearning Non-Hallucination Output

Gradient Ascent (Golatkar et al., 2020) × × ×
ROME (Meng et al., 2022) × ✓ ✓
Knowledge Sanitization (Ishibashi and Shimodaira, 2024) × ✓ ✓
ICUL (Pawelczyk et al., 2023) ✓ ✓ ×
Ours ✓ ✓ ✓

and offers a comprehensive solution to selective155

forgetting.156

3 Our Method157

3.1 In-context Knowledge Unlearning158

In the context of in-context knowledge unlearn-159

ing, a pretrained auto-regressive language model160

modifies its response to a query q by disregarding161

specific undesired information u. The response r is162

generated according to the conditional probability163

distribution:164

r ∼ Pθ(·|u, q), (1)165

where θ denotes the parameters of the model M,166

and u is the information intended to be forgotten.167

3.2 Unlearning Tokens168

We introduce unlearning tokens to enable selec-169

tive forgetting in LLM during inference. These170

tokens are implemented by encapsulating the tar-171

get information u with «UNL» and «/UNL». For172

example, to forget ‘Paris’, the input would be:173

«UNL»Paris«/UNL». This corresponds to the infor-174

mation to be forgotten u in Equation 1. The model175

is instructed to ignore the enclosed information176

during processing, effectively modifying its output177

distribution Pθ. To integrate these tokens, we fine-178

tune the model using methods such as Low-Rank179

Adaptation (LoRA), full model fine-tuning, or other180

parameter-efficient fine-tuning (PEFT) techniques,181

adjusting θ to recognize and respond to the unlearn-182

ing tokens.183

3.3 Loss Function184

The loss function for our in-context knowledge un-185

learning method is designed to selectively suppress186

specific information while retaining other useful187

knowledge. This loss function consists of two main188

components: Lforget and Lretain.189

190

1. Forgetting Loss (Lforget): This component is191

activated when the query q contains the informa-192

tion u targeted for unlearning. For example, when193

u is "Paris" and q is "Where is the Eiffel Tower194

located?". This loss encourages the model to effec- 195

tively suppress the targeted information: 196

Lforget(θ) = −
∑
i

logPθ(‘forgot’|ui, qi) (2) 197

Here, θ represents the model parameters, and Pθ is 198

the probability that the model outputs ‘forgot’ in 199

response to u. 200

201

2. Retention Loss (Lretain): This component ap- 202

plies when the query q does not include the un- 203

learning target u. For instance, when u is "Japan" 204

and q is "Where is the Eiffel Tower located?". This 205

loss aims to maintain the model’s normal response 206

capabilities: 207

Lretain(θ) = −
∑
i

logPθ(ri|ui, qi) (3) 208

where ri represents the tokens in the response to a 209

given query. 210

211

Total Loss: The final loss function is a combination 212

of these two components: 213

L(θ) = Lforget(θ) + Lretain(θ) (4) 214

By minimizing this loss function, the model learns 215

to balance the ability to selectively "forget" spec- 216

ified information with the ability to retain other 217

useful knowledge. This approach enables the LLM 218

to manage information appropriately based on the 219

context, effectively implementing in-context knowl- 220

edge unlearning. 221

4 Experiments 222

4.1 Models 223

• Llama2-7B/13B (Touvron et al., 2023): 224

Llama 2 is a family of large language mod- 225

els (LLMs) developed by Meta. Llama 2-7B 226

and Llama 2-13B are two variants with 7 bil- 227

lion and 13 billion parameters, respectively. 228

These models exhibit strong performance on 229

a wide range of natural language processing 230
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tasks, making them suitable for tasks such as231

text generation, summarization, and transla-232

tion. We use chat configurations for Llama2-233

7B and Llama2-13B.234

• Mistral-7B (Jiang et al., 2023a): Mistral-7B235

is an open-source LLM with 7 billion param-236

eters developed by Mistral AI. This model237

is known for its high performance and low238

resource requirements, making it an attrac-239

tive option for developers with limited re-240

sources. Mistral-7B has demonstrated per-241

formance comparable to other open-source242

LLMs on a variety of language processing243

tasks and employs the instruct model configu-244

ration.245

4.2 Datasets246

Experiments are conducted using two main247

datasets:248

• TOFU Dataset (Maini et al., 2024): This249

dataset comprises 200 entries from “Real250

Authors”, a dataset consisting of questions251

about real-world authors, and 100 entries from252

“World Facts”, which includes questions about253

general world knowledge. The “Real Authors”254

dataset serves as the training set, while the255

“World Facts” dataset is used for validation,256

aiming to evaluate the models’ performance257

in out-of-domain contexts.258

• Age Dataset (Annamoradnejad and An-259

namoradnejad, 2022): The Original Age260

dataset contains structured information about261

the life, work, and death of over 1 million262

deceased famous individuals. From this, 180263

individuals are randomly sampled, and a set264

of 5 questions and answers (QAs) is created265

for each individual. This dataset is employed266

to further investigate the models’ ability to267

generalize selective forgetting across various268

contexts. It includes 600 training samples and269

300 validation samples.270

• RWKU Dataset (Jin et al., 2024): The271

Real-World Knowledge Unlearning (RWKU)272

dataset is a benchmark specifically designed273

for large language models (LLMs) to assess274

their ability to unlearn specific knowledge.275

It contains 200 real-world unlearning targets276

and 13,131 multilevel forget probes, including277

3,268 fill-in-the-blank probes, 2,879 question-278

answer probes, and 6,984 adversarial-attack279

probes. In our experiments, we used 20% 280

of the question-answer data as out-of-domain 281

data to evaluate the models’ performance in 282

unlearning specific knowledge while maintain- 283

ing overall functionality. 284

4.3 Compared Methods 285

In this paper, we compare our proposed method 286

with four other approaches capable of test-time 287

unlearning: 288

• Zero-shot Prompting: This method as our 289

baseline evaluation for in-context knowledge 290

unlearning using a hard prompt. The model is 291

directly instructed to disregard certain infor- 292

mation specified within the prompt, providing 293

a clear basis for comparison with more so- 294

phisticated unlearning methods. The specific 295

prompt format used to guide the model’s be- 296

havior regarding memory retention and dele- 297

tion is illustrated in Figure 4 of Appendix E. 298

• Few-shot Prompting (Brown et al., 2020b): 299

This method builds on the zero-shot approach 300

by incorporating examples from the training 301

data. In addition to the format shown in Fig- 302

ure 4, we randomly select and include five 303

samples from the training data in the prompt.It 304

is selected so that at least one data sample to 305

be forgotten is included. Detailed examples 306

of the few-shot prompts used can be found in 307

Figure 5 of the Appendix E. 308

• Gradient Ascent (Golatkar et al., 2020): 309

This method applies gradient ascent to the 310

data to be forgotten and gradient descent to 311

the data to be retained. To enable test-time 312

unlearning, we incorporate the «UNL» token 313

during training. 314

• ICUL (In-context Unlearning) (Pawelczyk 315

et al., 2023): This approach adds the data to 316

be forgotten at test-time to the context, along 317

with several instances of data to be retained. 318

In case the data are forgotten, the answer is 319

replaced with a randomly selected response 320

from the training data. Detailed examples 321

of the ICUL prompts used can be found in 322

Figure 6 of Appendix E 323

These methods provide a comprehensive compari- 324

son framework that allows us to evaluate the effec- 325

tiveness of our proposed in-context knowledge un- 326

learning technique against established and emerg- 327

ing approaches in the field. 328
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Table 2: Comparison of various unlearning methods across multiple tasks. The table includes ‘Forget’ and ‘Retain’
scores for the TOFU dataset in both in-domain and out-of-domain scenarios, as well as performance metrics for
additional tasks such as BoolQ, HellaSwag, WinoGrande, ARC-e, ARC-c, OBQA, and RACE-high.

Model Method
TOFU BoolQ HellaSwag WinoGrande ARC-e ARC-c OBQA RACE-highin-domain out-of-domain

Forget (↑) Retain (↑) Forget (↑) Retain (↑) (→) (→) (→) (→) (→) (→) (→)

LLaMA2 (7B)

Zero-Shot 0.00 0.00 0.00 0.00 79.8 57.8 66.5 73.9 44.2 33.2 43.6
Few-Shot 90.0 25.0 95.7 6.8 79.8 57.8 66.5 73.9 44.2 33.2 43.6
GA 0.00 0.00 0.00 0.00 63.2 56.1 64.4 39.6 29.7 31.8 32.3
ICUL 0.00 65.0 0.00 43.6 79.8 57.8 66.5 73.9 44.2 33.2 43.6
Ours 85.0 80.0 92.3 42.7 77.8 58.0 66.3 75.3 44.9 33.4 44.4

LLaMA2 (13B)

Zero-Shot 0.00 0.00 0.00 0.00 81.7 60.7 71.0 77.5 46.2 35.4 46.1
Few-Shot 100.0 10.0 96.6 1.7 81.7 60.7 71.0 77.5 46.2 35.4 46.1
GA 0.00 0.00 0.00 0.00 78.1 61.1 70.5 70.4 42.2 35.4 41.8
ICUL 0.00 90.0 0.00 56.4 81.7 60.7 71.0 77.5 46.2 35.4 46.1
Ours 100.0 80.0 89.7 44.4 79.8 60.8 70.6 78.3 48.4 35.6 45.2

Mistral (7B)

Zero-Shot 0.00 0.00 0.00 0.00 85.3 66.0 74.0 81.3 54.4 35.8 45.8
Few-Shot 35.0 40.0 9.4 36.8 85.3 66.0 74.0 81.3 54.4 35.8 45.8
GA 0.00 0.00 0.00 0.00 65.8 65.9 74.3 35.2 31.7 32.6 39.8
ICUL 0.00 5.0 0.00 8.5 85.3 66.0 74.0 81.3 54.4 35.8 45.8
Ours 90.0 75.0 46.2 74.4 83.5 65.5 72.0 82.2 55.5 35.6 45.1

4.4 Evaluation329

To assess the effectiveness of our “in-context330

knowledge unlearning” method, we employ two331

primary metrics:332

• Forget: The proportion of instances where the333

model outputs “forgot”. A higher score indi-334

cates that the model is effectively “forgetting”335

the instructed information. Unlike previous336

studies (Ishibashi and Shimodaira, 2024), this337

metric directly assesses the model’s ability to338

acknowledge its intentional forgetting.339

• Retain: The proportion of questions the340

model correctly answers. A higher score sug-341

gests that the model is maintaining its essen-342

tial knowledge.343

These metrics were evaluated in two scenarios:344

• In-domain: The learning data (TOFU Real345

Authors, Age dataset, and RWKU) was di-346

vided into training and test sets using an 8:2347

ratio.348

• Out-of-domain: We evaluate on the world349

facts data from the TOFU dataset and RWKU350

dataset.351

This combination of metrics and scenarios allows352

us to comprehensively evaluate how effectively our353

method balances selective forgetting with knowl-354

edge retention.355

5 Result356

5.1 Performance Results357

Table 2 shows the results of our experiments in358

various unlearning methods and tasks. Our pro-359

posed method consistently outperforms baseline 360

approaches for both LLaMA2 and Mistral models. 361

For LLaMA2 (7B), we achieve ‘Forget’ and ‘Re- 362

tain’ scores of 85.0% and 80.0%, respectively for 363

in-domain data, significantly surpassing the zero- 364

shot baseline. Out-of-domain performance remains 365

strong with 92.3% ‘Forget’ and 42.7% ‘Retain’ 366

scores. Notably, our out-of-domain evaluations 367

are conducted using TOFU’s world facts dataset, 368

and additional results obtained with RWKU are 369

provided in the appendix D. LLaMA2 (13B) shows 370

even better results, particularly for in-domain sce- 371

narios, with perfect ‘Forget’ scores (100.0%) and 372

high ‘Retain’ scores (80.0%). 373

Mistral (7B) demonstrates comparable perfor- 374

mance, notably achieving high ‘Retain’ scores 375

(74.4%) in out-of-domain settings, indicating ro- 376

bust knowledge preservation during unlearning. 377

Our method maintains competitive performance 378

on standard NLP tasks such as BoolQ, HellaSwag, 379

and WinoGrande, with minimal degradation com- 380

pared to baseline models. This suggests that the 381

unlearning process does not significantly impact 382

the model’s general language-understanding capa- 383

bilities. Compared to other unlearning methods 384

such as Few-Shot Prompting, Gradient Ascent, and 385

In-Context Unlearning, our approach consistently 386

achieves a better balance between forgetting tar- 387

geted information and retaining general knowledge. 388

Crucially, our findings reveal that a naive ICUL or 389

simple prompting extension (Few-shot Prompting) 390

is insufficient for effective knowledge unlearning, 391

highlighting the importance of the more nuanced 392

strategies employed in our method. 393

These results demonstrate the effectiveness of 394
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our in-context knowledge-unlearning method in en-395

abling large language models to selectively forget396

information while maintaining overall performance397

across various NLP tasks.398

5.2 Comparison of Results Across Tuning399

Methods400

This section compares the results obtained us-401

ing three tuning methods: LoRA, full fine-tuning402

(FFT), and last-layer tuning (LLT). Performance403

metrics for the TOFU and Age datasets are shown404

in Table 3.405

The results indicate that LoRA tuning provides406

the most balanced performance across various eval-407

uation metrics, followed by full fine-tuning, with408

last-layer tuning showing the least performance.409

Specifically, LoRA tuning consistently achieves410

high “Forget” scores in both in-domain and out-of-411

domain scenarios, demonstrating its effectiveness412

in allowing the model to forget specified informa-413

tion while retaining other knowledge.414

LoRA’s superior performance can be attributed415

to its ability to efficiently adapt the model’s behav-416

ior without overfitting, as it updates a small number417

of task-specific parameters while preserving the418

model’s general knowledge.419

5.3 Analysis of Internal Behavior420

5.3.1 Logit Lens421

The logit lens was introduced by (nostalgebraist,422

2020), who found that when the hidden states at423

each layer of GPT-2 (Radford et al., 2019), are424

decoded with the unembedding matrix (projection425

matrix in the final layer), the resulting distributions426

converge roughly monotonically to the final answer.427

The logit lens is computed as:428

logitlens(hl) = Softmax(LN(hl)Wu) (5)429

Here, LN stands for Layer Normalization, Wu is430

the unembedding matrix, and Softmax is the soft-431

max function applied to convert logits into proba-432

bilities.433

Figure 2a illustrates the results from the434

logit lens when the input is “<s>[INST]435

«UNL»Paris«/UNL» Where would you find436

the Eiffel Tower? [/INST]”, which is a437

question related to the unlearning word. Figure438

2b shows the results for the input “<s>[INST]439

«UNL»Japan«/UNL» Where would you find the440

Eiffel Tower? [/INST]”, a question unrelated441

to the unlearning word. From these figures, it is442

apparent that the internal state outputs the token 443

“Paris” at the “INST” token stage for both inputs. 444

However, the decision to output the token “forgot” 445

is made in the final layer upon encountering the “]” 446

token. 447

Figures 3a and 3b represent average probabilities 448

of putting the “forgot” token and the answer token 449

when questions related to the unlearning word are 450

entered using the world facts dataset. These fig- 451

ures show that the “forgot” token is produced more 452

frequently in the final layer when the question is 453

relevant, while the answer token is more likely pro- 454

duced in the final layer when the “INST” token is 455

input. 456

In contrast, Figures 3c and 3d present average 457

probabilities for scenarios where the input ques- 458

tions are not related to the unlearning word. In 459

these cases, the probability of outputting the “for- 460

got” token in the final layer is significantly reduced, 461

while the probability of outputting the answer token 462

increases at the last output of the final layer. 463

5.3.2 Internal Answer Score 464

The internal answer score quantifies the degree 465

to which an answer token is retained through the 466

layers of a transformer model, such as GPT-2, when 467

analyzed through the logit lens. This metric is 468

particularly useful for examining the stability of 469

the model’s internal representation at its depth. 470

Formally, the internal answer score is defined as 471

follows: 472

Internal_Answer_Score 473

=
L∑
l=1

δ(answer_token, argmax(logitlens(hl)))

(6)

474

where L denotes the total number of layers in the 475

model, and hl represents the hidden state at layer l. 476

The function δ(a, b) is the Kronecker delta, which 477

is equal to 1 if a = b and 0 otherwise. 478

A high internal answer score indicates that the 479

answer token is consistently identified as the most 480

probable token by the logit lens across multiple lay- 481

ers, suggesting a strong preservation of this token 482

in the model’s internal narrative. Conversely, a low 483

internal answer score implies that the token is less 484

frequently identified, indicating potential shifts in 485

the model’s internal focus or understanding as it 486

processes input. 487

Table 4 shows the internal answer scores for var- 488

ious models and tuning methods across the TOFU 489
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Table 3: Performance metrics for TOFU and Age datasets, comparing the effectiveness of different tuning methods
(LoRA Tuning, Full Fine-Tuning, and Last Layer Tuning) across in-domain and out-of-domain scenarios.

Model Method
TOFU Age

in-domain out-of-domain in-domain out-of-domain
Forget (↑) Retain (↑) Forget (↑) Retain (↑) Forget (↑) Retain (↑) Forget (↑) Retain (↑)

LLaMA2(7B)
LoRA Tuning 95.0 85.0 85.5 44.4 93.0 63.0 32.5 60.7
Full Fine Tuning 55.0 75.0 64.1 52.1 100.0 65.7 10.3 42.7
Last Layer Tuning 80.0 45.0 99.1 5.1 98.3 50.3 82.9 6.8

LLaMA2(13B)
LoRA Tuning 100.0 95.0 94.9 31.6 100.0 61.3 23.1 47.9
Full Fine Tuning 100.0 95.0 90.6 51.3 100.0 64.3 10.3 59.0
Last Layer Tuning 95.0 80.0 92.3 19.7 99.3 54.7 41.9 38.5

Mistral(7B)
LoRA Tuning 95.0 80.0 68.4 70.1 100.0 65.0 14.5 65.0
Full Fine Tuning 90.0 10.0 94.9 29.1 100.0 53.0 20.5 14.5
Last Layer Tuning 100.0 45.0 74.4 30.8 98.3 58.3 82.9 21.4

(a) Logit lens visualization for a query containing forget sample. (b) Logit lens visualization for a query without forget sample.

Figure 2: (a) Logit lens when a question is related to the unlearning word. “<s>[INST] «UNL»Paris«/UNL» Where
would you find the Eiffel Tower? [/INST]” (b) Logit lens when a question is not related to the unlearning
word. “<s>[INST] «UNL»Japan«/UNL»Where would you find the Eiffel Tower? [/INST]”

and Age datasets. LoRA tuning and full fine-tuning490

generally maintain higher internal answer scores491

than last-layer tuning, especially in out-of-domain492

scenarios. This suggests that these methods better493

preserve relevant information while selectively for-494

getting the targeted content. The last layer tuning495

consistently shows very low internal answer scores,496

indicating a more aggressive forgetting mechanism.497

These results support our observation that LLMs498

"pretend to forget" rather than completely erasing499

information, as evidenced by the nonzero internal500

answer scores in most cases. This behavior demon-501

strates the models’ ability to balance selective for-502

getting with knowledge retention, which is crucial503

for effective in-context knowledge unlearning.504

6 Discussion505

6.1 Acquisition of In-Context Knowledge506

Unlearning Ability507

Through the application of fine-tuning, we have508

successfully endowed Large Language Models509

Table 4: Internal Answer Scores for TOFU and Age
datasets

Model Method TOFU Age
in-domain out-of-domain in-domain out-of-domain

LLaMA2(7B)
LoRA Tuning 0.03 0.14 0.23 0.34
Full Fine Tuning 0.04 0.24 0.20 0.36
Last Layer Tuning 0.00 0.00 0.00 0.00

Mistral(7B)
LoRA Tuning 0.02 0.26 0.19 0.35
Full Fine Tuning 0.06 0.42 0.21 0.38
Last Layer Tuning 0.00 0.05 0.00 0.00

(LLMs) with the capability for in-context knowl- 510

edge unlearning. This achievement is particularly 511

noteworthy, given that the baseline approach, utiliz- 512

ing hard prompts, did not display such a capability. 513

Our methodology enables LLMs to learn the abil- 514

ity to selectively forget, or “unlearn”, information 515

both within their trained domains (in domain) and 516

beyond (out of domain). 517

6.2 Large Language Models Pretend to Forget 518

Our investigation of the internal workings of LLMs 519

reveals an interesting behavior: rather than truly 520

forgetting information, LLMs appear to “pretend to 521

7



(a) ‘forgot’ token probability across layers for forget samples. (b) ‘answer’ token probability across layers for forget samples.

(c) ‘forgot’ token probability across layers for retain samples. (d) ‘answer’ token probability across layers for retain samples.

Figure 3: Logit lens analysis of ‘forgot’ and ‘answer’ token probabilities in unlearning scenarios. Subplots show
average probabilities across all layers for the last five input tokens in the World Facts dataset, comparing (a,b)
forget samples and (c,d) retain samples. (a,c) depict ‘forgot’ token probabilities, while (b,d) show ‘answer’ token
probabilities.

forget”. Analysis shows that the decision to output522

a “forgot” token or an “answer” token is made only523

in the final layer of the model. For input received524

before this layer, the model internally generates525

“answer” token, suggesting a deliberate omission of526

information rather than its erasure. This behavior527

indicates a sophisticated level of information han-528

dling by LLMs, where they maintain the integrity529

of their internal knowledge while presenting an530

external appearance of forgetting.531

7 Conclusion532

In this study, we introduced and explored the con-533

cept of “in-context knowledge unlearning” within534

the framework of Large Language Models (LLMs)535

through the use of fine-tuning. Our findings demon- 536

strate that this approach not only enables LLMs to 537

dynamically “forget” or selectively disregard infor- 538

mation in test-time, but also uncovers a nuanced 539

behavior of LLMs: where they “pretend to forget” 540

rather than actually eliminating the information 541

from their knowledge base. The ability of LLMs 542

to learn to “unlearn” in both in-domain and out- 543

of-domain scenarios without compromising their 544

overall performance represents a significant step 545

forward in the search for more ethically responsi- 546

ble and privacy-conscious AI technologies. This 547

capability is crucial for applications where sensi- 548

tive or confidential information must be managed 549

with great care, such as in the healthcare, legal, and 550

educational sectors. 551
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8 Limitations552

Our in-context knowledge unlearning method faces553

two main limitations:554

• Application to Closed Models: The method555

is difficult to apply to closed models acces-556

sible only via APIs (e.g., GPT-3, ChatGPT).557

These models do not allow modifications to558

their architecture or training procedure, which559

are necessary to implement our unlearning560

tokens and loss functions. For example, we561

cannot add the «UNL» tokens or fine-tune the562

model to recognize them in such closed sys-563

tems.564

• Lack of Internal Behavior Analysis: For565

closed models, we cannot analyze the inter-566

nal unlearning process. This prevents us from567

observing how the model’s internal represen-568

tations change during the unlearning process,569

as we did with the logit lens analysis for open570

models like LLaMA2 and Mistral. Conse-571

quently, we cannot verify if the “pretend to572

forget” occurs in closed models or optimize573

the unlearning process for better performance.574

These limitations highlight the challenges in im-575

plementing and fully understanding our approach576

in environments with limited model transparency577

and configurability, particularly in widely-used578

commercial AI systems.579
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A Hyperparameter805

Details are provided in Table 5.806

Table 5: Training hyperparameters used in the model
configuration.

Parameter Value
Number of training epochs 1
Batch size 4
Gradient accumulation steps 1
Optimizer adamw
Learning rate 2× 10−4

Weight decay 0.001
Maximum gradient norm 0.3
Warmup ratio 0.03
LR scheduler type constant

B Total Computation for Experiments807

We executed the experiments mainly by running808

the training for each model using eight NVIDIA809

A100 (40GB) GPUs, with each training session810

lasting approximately 10 minutes per model.811

C License812

C.1 Model813

• Llama2: Meta license814

• Mistral: Apache 2.0 license815

C.2 Dataset 816

• TOFU Dataset: MIT License 817

• Age Dataset: CC BY-NC-SA 4.0 818

• RWKU Dataset: CC BY-NC-SA 4.0 819

D Additional Results 820

This section presents additional results evaluating 821

the out-of-domain subsets of the TOFU and Age 822

datasets on the RWKU dataset, shown in Table 6. 823

Additionally, we provide results for models trained 824

on the RWKU dataset and evaluated for out-of- 825

domain performance using TOFU’s world facts, 826

shown in Table 7. 827

E Prompt Examples 828

<s>[INST]
<<SYS >>
## Rules
- You will forget any event described

after the <<UNL >> token and will not
be able to answer any questions

related to that event.
- If there is no <<UNL >> token , please

act normally.
<</SYS >>
<<UNL >>{ unlearning word}<</UNL >>{query}
[/INST]

Figure 4: Zero Shot Prompt
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Table 6: Forget and Retain scores for TOFU and Age datasets tested on RWKU (out-of-domain).

Model Method
TOFU Age

in-domain out-of-domain in-domain out-of-domain
Forget (↑) Retain (↑) Forget (↑) Retain (↑) Forget (↑) Retain (↑) Forget (↑) Retain (↑)

LLaMA2 (7B)

Zero-Shot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Few-Shot 90.0 25.0 92.0 0.38 90.0 2.00 93.2 1.74
GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ICUL 0.00 65.0 0.00 0.18 0.00 10.7 0.00 24.0
Ours 85.0 80.0 74.0 25.3 93.0 63.0 28.4 0.00

LLaMA2 (13B)

Zero-Shot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Few-Shot 100.0 10.0 96.5 0.69 83.0 0.33 92.5 3.65
GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ICUL 0.00 90.0 0.00 27.4 0.00 16.7 0.00 44.3
Ours 100.0 80.0 88.7 20.1 100 61.3 8.16 3.82

Mistral (7B)

Zero-Shot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Few-Shot 35.0 40.0 36.5 17.0 29.7 11.7 28.1 20.0
GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ICUL 0.00 5.00 0.00 4.34 0.00 1.33 0.00 2.43
Ours 90.0 75.0 50.2 44.8 100 65.0 3.82 7.30

Table 7: Forget and Retain scores for RWKU datasets tested on TOFU (out-of-domain).

Model Method
RWKU

in-domain out-of-domain
Forget (↑) Retain (↑) Forget (↑) Retain (↑)

LLaMA2 (7B)

Zero-Shot 0.00 0.00 0.00 0.00
Few-Shot 88.9 6.60 83.8 2.56
GA 0.00 0.00 0.00 0.00
ICUL 0.00 44.4 0.00 18.2
Ours 99.7 66.7 83.8 24.8

LLaMA2 (13B)

Zero-Shot 0.00 0.00 0.00 0.00
Few-Shot 94.8 6.08 96.6 2.56
GA 0.00 0.00 0.00 0.00
ICUL 0.00 53.3 0.00 57.3
Ours 99.1 72.6 99.1 18.8

Mistral (7B)

Zero-Shot 0.00 0.00 0.00 0.00
Few-Shot 28.6 24.0 12.0 29.9
GA 0.00 0.00 0.00 0.00
ICUL 0.00 11.1 0.00 7.69
Ours 99.5 62.7 92.3 43.6

12



<s>[INST] <<SYS >>
## Rules
- You will forget any event described

after the <<UNL >> token and will not
be able to answer any questions

related to that event and say '
forgot ' only.

- If there is no <<UNL >> token , please
act normally.

- Output only the answer.

## format
<<UNL >>{ unlearning word}<</UNL >> {

question} {answer}
<</SYS >>

<<UNL >>Pablo Neruda <</UNL >> Which author
wrote the classic novel 'Don

Quixote '? [/INST] Miguel de
Cervantes </s>

<s>[INST] <<UNL >>Edgar Allan Poe <</UNL >>
Which author is known for writing

the novel 'Frankenstein '? [/INST]
Mary Shelley </s>

<s>[INST] <<UNL >> N g g wa Thiong 'o<</
UNL >> Which Kenyan author wrote '
Weep Not , Child '? [/INST] forgot </s
>

<s>[INST] <<UNL >>Terry Pratchett <</UNL >>
Who is the prolific British fantasy
author of 'Discworld ' series? [/

INST] forgot </s>

<s>[INST] <<UNL >>Robert A. Heinlein <</
UNL >> Who wrote the science fiction
novel 'Dune '? [/INST] Frank Herbert
</s>

<s>[INST] <<UNL >>E.B. White <</UNL >> Who
wrote the famous children 's book '
Charlotte 's Web '? [/INST]

Figure 5: Few Shot Prompt Example

<s>[INST] <<UNL >>Alice Walker <</UNL >>
Who is the author of 'To Kill a
Mockingbird '? [/INST] Harper Lee </s
>

<s>[INST] <<UNL >>Gabriel Garcia Marquez
<</UNL >> What Chilean author penned
'The House of the Spirits '? [/INST]
Isabel Allende </s>

<s>[INST] <<UNL >>John Milton <</UNL >>
Which poet wrote the epic 'Paradise
Lost '? [/INST] Naguib Mahfouz </s>

<s>[INST] <<UNL >>Isabel Allende <</UNL >>
What Chilean author penned 'The
House of the Spirits '? [/INST] Jack
Kerouac </s>

<s>[INST] <<UNL >>Eugene O'Neill <</UNL >>
Who is the author of the play 'A
Streetcar Named Desire '? [/INST]
Tennessee Williams </s>

<s>[INST] <<UNL >>E.B. White <</UNL >> Who
wrote the famous children 's book '
Charlotte 's Web '? [/INST]

Figure 6: ICUL Prompt Example
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