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ABSTRACT

Iterative feature space optimization involves systematically evaluating and adjust-
ing the feature space to improve downstream task performance. However, exist-
ing works suffer from three key limitations: 1) overlooking differences among
data samples leads to evaluation bias; 2) tailoring feature spaces to specific ma-
chine learning models results in overfitting and poor generalization; 3) requiring
the evaluator to be retrained from scratch during each optimization iteration sig-
nificantly reduces the overall efficiency of the optimization process. To bridge
these gaps, we propose a gEneralized Adaptive feature Space Evaluator (EASE)
to efficiently produce optimal and generalized feature spaces. This framework
consists of two key components: Feature-Sample Subspace Generator and Con-
textual Attention Evaluator. The first component aims to decouple the information
distribution within the feature space to mitigate evaluation bias. To achieve this,
we first identify features most relevant to prediction tasks and samples most chal-
lenging for evaluation based on feedback from the subsequent evaluator. These
identified feature and samples are then used to construct feature subspaces for next
optimization iteration. This decoupling strategy makes the evaluator consistently
target the most challenging aspects of the feature space. The second component
intends to incrementally capture evolving patterns of the feature space for effi-
cient evaluation. We propose a weighted-sharing multi-head attention mechanism
to encode key characteristics of the feature space into an embedding vector for
evaluation. Moreover, the evaluator is updated incrementally, retaining prior eval-
uation knowledge while incorporating new insights, as consecutive feature spaces
during the optimization process share partial information. Extensive experiments
on twelve real-world datasets demonstrate the effectiveness of the proposed frame-
work. Our code and data are publicly available 1.

1 INTRODUCTION

Iterative feature space optimization systematically evaluates and refines the feature space to enhance
downstream task performance (Jia et al., 2022). As depicted in Figure 1a, the optimization module
iteratively enhances the feature space based on the feedback from the evaluator. This optimization
process continues until the optimal feature space is identified. This approach has demonstrated
broad applicability and has been successfully adopted in various fields, including biology, finance,
and medicine (Zhu et al., 2023; Htun et al., 2023; Vommi & Battula, 2023).

Research in this domain has received significant attention (Zebari et al., 2020). Recursive optimiza-
tion methods focus on evaluating feature importance to progressively refine the feature space (Darst
et al., 2018; Priyatno et al., 2024). For instance, Escanilla et al. (2018) utilized sensitivity testing
with membership queries on trained models to recursively identify key features. To improve the ef-
ficiency of these recursive methods, evolutionary algorithms and reinforcement learning (RL) were
subsequently introduced, further accelerating the refinement process (Xiao et al., 2024; Wang et al.,
2024; Liu et al., 2021a). For example, Wang et al. (2022) employed three cascading agents to repli-
cate the feature engineering process typically performed by human experts, using RL to streamline
the exploration phase.

1
Https://anonymous.4open.science/r/EASE-1C51
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Figure 1: (a) Illustration of the iterative feature space optimization, where the optimization module
refines the feature space based on the feedback of the evaluator until the optimal one is identified.
(b) The feature spaces between consecutive iterations exhibit informational overlap.

But, existing approaches suffer from three key limitations: Limitation 1: Evaluation bias. These
methods do not account for variability between samples, which limits the evaluator’s ability to cap-
ture the full range of features of the space. As a result, the performance assessments become biased
and do not objectively reflect the quality of the feature space. Limitation 2: Non-generalizability.
Customizing the feature space by replacing the evaluator based on specific requirements limits its
ability to capture generalizable patterns. Consequently, the resulting feature space lacks flexibility
and cannot be effectively applied across diverse scenarios. Limitation 3: Training Inefficiency.
Retraining the evaluator from scratch at each iteration significantly increases computational de-
mands. This technical trait leads to a time-consuming process that hinders efficiency and scalability.

Thus, there is a vital need for a robust evaluation framework that can efficiently assess feature
space quality, enabling the creation of generalized and optimal feature spaces. This framework
should integrate seamlessly with iterative feature space optimization algorithms to enhance their
performance and efficiency. However, to accomplish this, there are two key technical challenges:

• Challenge 1: Complicated Feature Interactions. Within the feature space, complex
feature-feature interactions exist, which are important for understanding its characteris-
tics and enabling more effective refinement. But, how can we effectively capture such
complicated information as the guidance during the iterative optimization process?

• Challenge 2: Incremental Evaluator Updates. As illustrated in Figure 1b, the feature
spaces between consecutive iterations exhibit partial overlap. This overlap presents an op-
portunity to update the evaluator efficiently, rather than retraining it from scratch. But, how
can we incrementally update the parameters of the evaluator to ensure it retains essential
prior evaluation knowledge while simultaneously integrating new evaluation insights?

To address these challenges, we propose EASE, a gEneralized Adaptive feature Space Evaluator,
which can seamlessly integrate as a plugin into any iterative feature space optimization method for
enhanced feature space refinement. This framework contains two key components: Feature-Sample
Subspace Generator and Contextual Attention Evaluator. The first component aims to decouple the
information distribution within the feature space to mitigate evaluation bias. To achieve this, we ini-
tially employ the feature index optimizer to select the features most relevant to the prediction task.
Next, we use the sample index optimizer to identify the samples that present the greatest evaluation
challenges. Both the previous two steps were guided by feedback from the subsequent evaluator. Fi-
nally, we use the identified features and samples to construct feature subspaces for the next iteration
of feature space refinement. This decoupling strategy enables the evaluator to consistently target the
most challenging aspects of the feature space, thereby facilitating the comprehensive comprehen-
sion and establishing a robust foundation for objective evaluation. The second component intends
to incrementally capture the evolving patterns within the feature space for enhancing evaluation ef-
ficiency. Specifically, we employ a multi-head attention mechanism as the backbone to develop the
evaluator. The feature subspaces are sequentially fed into the evaluator to capture complex rela-
tionships, leveraging contextual information across subspaces. The evaluator utilizes shared model
weights across various feature subspaces. Moreover, since refined feature spaces across consecutive
optimization iterations often share overlapping information, we incrementally update the evaluator’s
parameters to retain prior evaluation knowledge while incorporating new insights from the evolv-
ing feature space. Finally, we apply EASE to iterative feature selection algorithms and conduct
extensive experiments on twelve real-world datasets to validate its superiority and effectiveness.
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2 RELATED WORK

Incremental Learning (IL). IL aims to acquire new knowledge without forgetting the knowledge
it has already learned (Zhu et al., 2021). IL is applied in scenarios such as dynamic environments
(Shieh et al., 2020; Read et al., 2012) and online learning (Shim et al., 2021). IL methods can
be divided into three categories: regularization, memory replay, and parameter isolation methods.
Regularization-based methods (e.g., Kirkpatrick et al. (2017); Li & Hoiem (2017)) prevent signifi-
cant changes in important parameters of previous tasks. Memory replay methods retain old task data
(Isele & Cosgun, 2018) or use generative models to simulate it (Shin et al., 2017), and then train
this data alongside new task data when learning new tasks. Parameter isolation methods achieve
task isolation by assigning independent model parameters to different tasks (e.g., Rajasegaran et al.
(2019); Serra et al. (2018)) or by expanding the network structure to accommodate new tasks (e.g.,
Moriya et al. (2018); Aljundi et al. (2017)). In this paper, we update the evaluator using the Elastic
Weight Consolidation (EWC) strategy (Kirkpatrick et al., 2017; Liu et al., 2021b). This approach
estimates the importance of model parameters for previous tasks and minimizes changes to these
important parameters when training on new tasks. This method significantly improves the training
efficiency.

Multi-Head Attention. The multi-head attention mechanism enhances representation capability by
simultaneously attending to different subspaces of the input data (Vaswani, 2017; Messaoud et al.,
2021). This technique is used in natural language processing (Vaswani, 2017; Sun et al., 2020) and
object detection (Dai et al., 2021) to capture complex patterns and dependencies. Unlike previous
works, we propose a weighted multi-head attention mechanism that shares weights to encode key
characteristics of the feature space into an embedding vector for the evaluation.

Feature Selection (FS). FS is widely used in high-dimensional fields (Nguyen et al., 2020), such
as bioinformatics (Pudjihartono et al., 2022) and finance (Arora & Kaur, 2020). Among these FS
methods, the wrapper method stands out for its ability to select features based directly on model
performance (Nouri-Moghaddam et al., 2021). Wrapper-based methods use the performance of the
downstream model as a criterion and employ iterative search to find the optimal feature subset (Liu
et al., 2023). The most representative wrapper method is Recursive Feature Elimination (RFE).
RFE iteratively trains the model and removes the least important features, gradually reducing the
feature set size until a specified criterion is met (Guyon et al., 2002). In this paper, we use FS as a
representative example of feature optimization to illustrate the subsequent technical details.

3 PROBLEM STATEMENT

This paper introduces a novel feature space evaluator to efficiently identify the optimal feature space.
The proposed evaluator can be seamlessly integrated into any iterative feature space optimization
algorithm. Formally, given a dataset D = ⟨F ,y⟩, where F represents the feature space and y
denotes the target label space, we first initialize the parameters ΘM of the evaluatorM based on D.
This initialization is achieved by minimizing the prediction error L. The learning objective can be
defined as:

argmin
ΘM
L(M(F ;ΘM),y). (1)

In the t-th optimization, we can get a new feature space ⟨F (t),y(t)⟩. We leverage the information
overlap between feature spaces from consecutive iterations to incrementally update Θ

(t)
M, enabling

efficient tracking of evolving patterns and providing an accurate evaluation of the feature space. The
learning process can be formulated as follows:

argmin
ΘM
L(M(F (t);Θ

(t)
M),y(t)) + λ∥Θ(t)

M −Θ
(t−1)
M ∥2, (2)

where λ is a regularization parameter that balances retaining prior evaluation knowledge with incor-
porating new insights from the updated feature space, and ∥ · ∥2 is L2 norm. The learning process
continues until either the maximum number of iterations is reached or the optimal feature space is
identified. The design and optimization of M represent the core contribution of this paper. For
clarity, key notations are summarized in Table 4 in the Appendix.

3
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Figure 2: Framework overview and parameter update for EASE. The framework comprises two key
components: the Feature-Sample Subspace Generator and the Contextual Attention Evaluator. The
first component aims to decouple the complex information within the feature space, enabling the
evaluator to focus on capturing the most challenging aspects for evaluation. The second component
is designed to comprehensively capture the characteristics of the feature space, ensuring fair and
accurate evaluation. By considering information overlap across consecutive iterations, the evaluator
incrementally updates its parameters, enhancing the efficiency of the overall optimization process.

4 METHODOLOGY

Framework Overview. Figure 2a shows the framework overview of EASE, which includes two key
components: 1) Feature-Sample Subspace Generator; and 2) Contextual Attention Evaluator. The
first component decouples the information distribution within the evolving feature space, aiming to
reduce the complexity for the subsequent evaluator in capturing the key characteristics of the feature
space. Specifically, in each optimization, guided by the evaluator, we first use the feature index op-
timizer to identify the most important features for the downstream prediction task. Then, the sample
index optimizer is used to discover samples that are challenging to evaluate. After that, we construct
fixed-length feature subspaces by applying a random combination strategy to the identified features
and samples. The second component aims to efficiently capture complex feature interactions within
the feature space to facilitate effective evaluation. In detail, we first input the multiple feature sub-
spaces constructed by the first component into the contextual attention evaluator to capture complex
interactions and encode them into an embedding vector. In addition, the embedding vector is used to
perform the evaluation task and the resulting prediction error is fed back to the previous component
as guidance. During this process, as illustrated in Figure 2b, considering the partial information
overlap between feature spaces in consecutive iterations, we incrementally update the evaluator’s
parameters to efficiently incorporate new evaluation insights.

4.1 FEATURE-SAMPLE SUBSPACE GENERATOR

Why is feature space decoupling important? During the iterative feature space optimization pro-
cess, complex feature interactions can obscure the underlying patterns. A comprehensive under-
standing of these interactions is crucial for an accurate and objective evaluation. By decoupling the
feature space, we can reduce the complexity of the learning task, allowing the evaluator to concen-
trate on the most challenging aspects, ultimately resulting in more effective and precise evaluations.

Feature Index Optimizer is designed to identify the features most relevant to the subsequent eval-
uation task. We derive the feature index subset based on the feature importance scores. Formally,
in the t-th iteration, given the feature space F (t) and the target variable y(t), the importance score
Score(fi) for each feature fi is calculated by assessing the impact of removing that feature on the
performance of the model. The importance score is computed as follows:

Score(fi) = L(M(F (t);Θ
(t)
M))− L(M(F (t) \ {fi};Θ(t)

M)). (3)

4
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Here, L(M(·;Θ(t)
M))) denotes the feature space evaluator that measures model performance, and

F (t) \ {fi} represents the feature space F (t) with feature fi omitted. This means that we can esti-
mate the Score(fi) by removing fi and observing the change in the loss. The loss function can be
tailored to the specific task. For classification, cross-entropy loss is commonly used, whereas for re-
gression, mean squared error is typically employed. Once the importance scores for all features have
been computed, they are ranked in descending order. The features with higher ranks are considered
to be the most significant contributors to the performance of the model. We select the best k features
based on their importance scores to identify the subset of the feature index f (t) = {f1,f2, · · · ,fk}
that is the most relevant to the evaluation task. This component can be replaced with any feature
selection module, allowing EASE to be compatible with any iterative feature selection algorithm.

Sample Index Optimizer aims to select the most challenging samples for the subsequent evalua-
tion task. The sample index subset is derived based on the evaluation error from the feature space
evaluator. Formally, in the t-th iteration, the feature space consists of n samples and a target variable
y. For the i-th sample xi, the prediction error is given by L(t−1)

i = ℓ(yi, ŷi), where ℓ denotes the
evaluation metric, yi is the target value, and ŷi is the prediction value. The sampling probability for

sample xi is defined as: P (X = xi) =
L(t−1)

i∑n
j=1 L(t−1)

j

, where P (X = xi) represents the likelihood

of selecting sample xi based on its relative prediction error. This ensures that samples with large
errors have a higher probability of being selected. To efficiently sample from this distribution, we
use the cumulative distribution function (CDF), which allows us to transform a uniformly distributed
random number into a sample from the desired probability distribution. The CDF is constructed as:
Ci =

∑i
k=1 pk =

∑i
k=1 P (X = xk), where Ci represents the cumulative sum of probabilities up

to the i-th sample. More specifically, in the weighted sampling process, we first generate a random
number r uniformly distributed in the interval [0, 1]. Next, we identify the first sample index i such
that the CDF satisfies Ci ≥ r, and select the corresponding sample xi. The process is repeated until
a new set of sample indices I(t) is collected. Using the CDF, the sampling process aligns with the
distribution of prediction errors, giving higher priority to samples with larger errors.

Feature Subspace Construction decouples the complex feature space into distinct portions to im-
prove the understanding of the subsequent evaluator for a fair evaluation. Thus, we introduce the
strategy for the construction of feature subspaces using the set of feature index f (t) and sample
index I(t). More specifically, we sample s sample indices from I(t) for q times using repeated sam-
pling to obtain various sub sample indices {I(t)1 , I(t)2 , · · · , I(t)q } with the same length. Next, we use
the obtained sample indices and f (t) to select the corresponding samples and features, constructing
various feature subspaces denoted as B(t) = {B(t)

1 ,B
(t)
2 , · · · ,B(t)

q }. The i-th feature subspace
B

(t)
i ∈ Rs×k, where s is the number of data samples and k is the number of features within B

(t)
i .

Through this process, we decouple the information distribution within the feature space, preserv-
ing the most important and challenging aspects for evaluation in B(t). The pseudo-code for feature
subspace construction is provided in Algorithm 1 in the Appendix for improving reproduciblity.

4.2 CONTEXTUAL ATTENTION EVALUATOR

To thoroughly capture the complicated interactions of the feature space, we design a contextual
attention evaluator leveraging a multi-attention mechanism. The learned feature subspaces B(t), are
sequentially fed into the evaluator to facilitate comprehensive information extraction. We use the
i-th feature subspace to illustrate the following calculation process. For clarity, we omit the (t)
notation for the i-th example.

More specifically, we begin by projecting Bi into three different spaces: the query Qi, key Ki,
and value Vi spaces. These projections are computed through linear transformations, which can be
defined as:

Qi = Bi ·WQ,Ki = Bi ·WK ,Vi = Bi ·WV , (4)
where WQ ∈ Rk×dk , WK ∈ Rk×dk , and WV ∈ Rk×dv are learned weight matrices; dk is the
dimensionality of the query and key spaces; dv denotes the dimensionality of the value space. Then,
we compute the attention weights by taking the dot product between the query and key matrices. To
ensure numerical stability and manageable gradient magnitudes during training, the result is scaled
by
√
dk and normalized using the softmax function. These attention weights are used to perform a

5
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weighted aggregation of the value matrix Vi ∈ Rs×dv , which can be formulated as:

Attention(Qi,Ki,Vi) = softmax
(
QiK

T
i√

dk

)
Vi. (5)

To comprehensively capture multiple facets of the feature subspace, we design multiple heads, each
with the same structure as described above. These heads generate different attention outputs from
different perspectives. The resulting attention outputs are then concatenated and passed through a
linear transformation to get B′

i ∈ Rs×dout , which can be formulated as

B′
i = concat(head1, head2, . . . , headh)WO, (6)

where h is the number of attention heads and WO ∈ R(h·dv)×dout is the output weight matrix.

After that, we concatenate B′
i and Bi to form a combined representation, which is then passed

through a fully connected layer to generate the prediction ŷi. This process can be formulated as
follows:

ŷi = FC(Concat(B′
i;Bi)). (7)

This concatenation allows the evaluator to retain both original and context enhanced feature infor-
mation for more effective prediction. When different feature subspaces are input into the evaluator,
the same structure is used, and the weights are shared across all subspaces. This ensures consistency
and promotes generalization by learning common patterns.

4.3 OPTIMIZATION

Pre-training. A well-initialized contextual attention evaluator provides a strong foundation for eval-
uation, allowing faster convergence and ensuring fair evaluation. To ensure an effective initialization
for the contextual attention evaluatorM, we pre-train it using the original feature space F as a foun-
dational basis. Rather than employing the feature index optimizer and sample index optimizer, we
construct the feature subspaces B(0) by randomly sampling the feature and sample indices. Then, we
subsequently input each feature subspace within B(0) into the evaluator to perform the prediction.
The optimization objective is to minimize the discrepancy between the predicted and actual values,
which can be formulated as:

Lintial =

s∑
i=1

Li(y
(0)
i , ŷ

(0)
i ), (8)

where y(0)
i is the associated target label space of B(0)

i ; ŷ(0)
i is the predicted target label space; and s

is number of feature space within B
(0)
i . After the model converges, the evaluator is initialized with

the parameters Θ(0)
M .

Incremental Update. In the iterative feature optimization framework, consecutive iterations often
exhibit partial overlap in feature space information. This motivates us to incrementally update the
parameters of the contextual attention evaluator M, enabling faster updates and accelerating the
entire feature space optimization process.

Specifically, in the t-th iteration, we begin by calculating the Fisher information to assess the
importance of parameters based on the previous learning iteration. Given the feature subspaces
B(t−1) = {B(t−1)

1 , · · · ,B(t−1)
q }, the Fisher information for the j-th parameter θj in the parameter

set Θ(t−1)
M of the contextual attention evaluator is computed as:

G(θ(t−1)
j ) =

1

s

s∑
i=1

(∇θj log p(y
(t−1)
i | B(t−1)

i ;Θ
(t−1)
M )2, (9)

where G(θ(t−1)
j ) measures the importance of θj based on its contribution to the evaluation task in the

t − 1 iteration. The term ∇θj
log p(y

(t−1)
i | B(t−1)

i ;Θ
(t−1)
M ) represents the logarithmic likelihood

gradient with respect to θj for conducting evaluation. A higher value of G(θ(t−1)
j ) indicates that

θj is crucial to perform an evaluation of B(t−1) (Grosse & Martens, 2016). After that, we impose
constraints on parameter updates during the training of feature subspaces B(t). The objective is to

6
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prevent forgetting shared evaluation knowledge during parameter updates while incorporating new
evaluation insights. The final loss function in the t-th iteration is defined as:

Lfinal(Θ
(t)
M) = LB(t)(Θ

(t)
M) +

λ

2

∑
j

G(θ(t−1)
j )

(
θ
(t)
j − θ

(t−1)
j

)2

, (10)

where LB(t)(Θ
(t)
M) represents the prediction loss for the current feature subspaces B(t); θ(t)

j and

θ
(t−1)
j are the value of the j-th parameter from the parameter set of Θ(t)

M and Θ
(t−1)
M respectively;

λ is a regularization factor that balances incorporating new evaluation knowledge with preserving
shared knowledge. During the optimization procedure, we minimize Lfinal(Θ

(t)
M) to allow the con-

textual attention evaluator to efficiently capture the dynamics of the feature space, promoting faster
convergence and more stable learning.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct extensive experiments on 14 publicly available datasets from
UCI (Public, 2024b), OpenML (Public, 2024c) and Kaggle (Public, 2024a), consist-
ing of 6 classification tasks and 6 regression tasks. A statistical overview of these
datasets is presented in Table 1. In this table, ’C’ denotes dataset used for clas-
sification tasks and ’R’ indicates datasets employed for represents regression tasks.

Table 1: Summary of the datasets.

Dataset R/C Samples Features Classes Source

openml 607 R 1000 51 – OpenML
openml 616 R 500 51 – OpenML
openml 620 R 1000 26 – OpenML
openml 586 R 1000 26 – OpenML
airfoil R 1503 6 – OpenML
bike share R 10886 12 – OpenML
wine red C 999 12 6 UCI
svmguide3 C 1243 22 2 OpenML
wine white C 4898 12 7 OpenML
spectf C 267 45 2 UCI
spam base C 4601 58 2 OpenML
mammography C 11183 7 2 OpenML
spam base C 4601 58 2 OpenML
AmazonEA C 32769 9 2 Kaggle
Nomao C 34465 118 2 UCI

Evaluation Metrics. We use Mean Abso-
lute Error (MAE), Root Mean Squared Error
(RMSE), and R-squared (R2) to evaluate the
performance of regression tasks. Specifically,
R2 = 1 −

∑n
i=1(yi−ŷi)

2∑n
i=1(yi−ȳ)2 , where yi and ŷi re-

spectively represent the true label and predicted
label of xi, and n is the number of samples. We
use Accuracy, Precision, Recall, and F1 score to
evaluate the performance of classification tasks.

Baseline Algorithms. We apply EASE to two
iterative feature selection frameworks to vali-
date its effectiveness and generalization capa-
bility: (i) RFE (Guyon et al., 2002) iteratively
eliminates the least important features from the
original set until a stopping criterion is met. (ii)
FLSR (Zhao et al., 2020) uses a single rein-
forced agent to perform feature selection with a restructured decision strategy. (iii) SDAE (Has-
sanieh & Chehade, 2024) is a state-of-the-art algorithm designed to select features used in unlabeled
datasets without compromising information quality.

Additionally, we employ six widely-used ML algorithms as feature space evaluators during the it-
erative optimization process to compare their experimental performance against EASE: (1) Linear
Regression / Logistic Regression (LR): Linear Regression (Su et al., 2012) models a linear relation-
ship between the features and labels. Logistic Regression (Nusinovici et al., 2020) classifies data
by linearly combining input features and applying a logistic function to the result. LR refers to lin-
ear regression for regression tasks and logistic regression for classification tasks. (2) Decision Tree
(DT): (Kim & Upneja, 2014) is a tree-like structure method, used to classify or predict data through
some rules. (3) Gradient Boosting Decision Tree (GBDT): (Li et al., 2023) builds an ensemble of de-
cision trees sequentially to minimize errors. (4) Random Forest (RF): (Khajavi & Rastgoo, 2023) is
an ensemble learning method that constructs multiple decision trees. (5) Extreme Gradient Boosting
(XGB) (Asselman et al., 2023) combines the strengths of gradient boost with regularization tech-
niques. In the testing phase, we use RF in all cases to report the performance of the refined feature
space, as the model is stable and helps mitigate bias caused by the downstream model. For more ex-
perimental details, we have provided hyperparameters and environmental settings in Appendix C.1
to improve the reproducibility of our work.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Overall performance comparison. The best results are highlighted in bold, and the second-
best results are underlined. (↑ indicates that a higher value of the metric corresponds to better
performance, while ↓ denotes that a lower value of the metric indicates better performance.)

Dataset R/C Metrics EASE LR DT GBDT RF XGB

openml 607 R
MAE ↓ 0.271 ± 0.028 0.342 ± 0.058 0.290 ± 0.020 0.277 ± 0.017 0.301 ± 0.025 0.278 ± 0.023
RMSE ↓ 0.344 ± 0.036 0.439 ± 0.070 0.374 ± 0.019 0.352 ± 0.018 0.398 ± 0.041 0.345 ± 0.027
R2 ↑ 0.873 ± 0.025 0.805 ± 0.087 0.847 ± 0.033 0.863 ± 0.010 0.835 ± 0.026 0.863 ± 0.026

openml 616 R
MAE ↓ 0.302 ± 0.039 0.315 ± 0.035 0.365 ± 0.011 0.321 ± 0.044 0.367 ± 0.037 0.323 ± 0.014
RMSE ↓ 0.389 ± 0.048 0.404 ± 0.054 0.469 ± 0.023 0.418 ± 0.063 0.466 ± 0.038 0.406 ± 0.022
R2 ↑ 0.840 ± 0.035 0.833 ± 0.028 0.799 ± 0.039 0.826 ± 0.044 0.791 ± 0.039 0.837 ± 0.016

openml 620 R
MAE ↓ 0.297 ± 0.017 0.371 ± 0.083 0.304 ± 0.014 0.302 ± 0.027 0.313 ± 0.015 0.298 ± 0.011
RMSE ↓ 0.372 ± 0.021 0.476 ± 0.100 0.476 ± 0.100 0.380 ± 0.033 0.395 ± 0.016 0.383 ± 0.022
R2 ↑ 0.861 ± 0.014 0.780 ± 0.072 0.852 ± 0.013 0.848 ± 0.031 0.846 ± 0.007 0.855 ± 0.021

openml 586 R
MAE ↓ 0.277 ± 0.011 0.313 ± 0.057 0.294 ± 0.024 0.291 ± 0.024 0.283 ± 0.020 0.281 ± 0.021
RMSE ↓ 0.357 ± 0.019 0.405 ± 0.074 0.368 ± 0.033 0.373 ± 0.033 0.369 ± 0.025 0.361 ± 0.027
R2 ↑ 0.875 ± 0.015 0.818 ± 0.062 0.862 ± 0.033 0.861 ± 0.022 0.862 ± 0.022 0.872 ± 0.010

mammography C

Accuracy ↑ 0.989 ± 0.003 0.978 ± 0.004 0.984 ± 0.004 0.987 ± 0.002 0.985 ± 0.005 0.985 ± 0.002
Precision ↑ 0.947 ± 0.042 0.837 ± 0.036 0.976 ± 0.021 0.949 ± 0.018 0.947 ± 0.010 0.953 ± 0.024
F1 ↑ 0.818 ± 0.041 0.653 ± 0.035 0.713 ± 0.095 0.803 ± 0.041 0.757 ± 0.034 0.736 ± 0.028
Recall ↑ 0.831 ± 0.043 0.603 ± 0.029 0.651 ± 0.078 0.733 ± 0.045 0.685 ± 0.035 0.662 ± 0.024

spectf C

Accuracy ↑ 0.825 ± 0.041 0.737 ± 0.028 0.781 ± 0.049 0.795 ± 0.055 0.815 ± 0.057 0.766 ± 0.033
Precision ↑ 0.631 ± 0.248 0.467 ± 0.209 0.643 ± 0.237 0.466 ± 0.147 0.459 ± 0.117 0.482 ± 0.197
F1 ↑ 0.543 ± 0.054 0.454 ± 0.068 0.512 ± 0.077 0.478 ± 0.079 0.473 ± 0.058 0.450 ± 0.033
Recall ↑ 0.515 ± 0.092 0.518 ± 0.036 0.542 ± 0.038 0.522 ± 0.044 0.514 ± 0.028 0.509 ± 0.018

AmazonEA C

Accuracy ↑ 0.963 ± 0.003 0.941 ± 0.004 0.944 ± 0.002 0.943 ± 0.002 0.944 ± 0.003 0.942 ± 0.003
Precision ↑ 0.782 ± 0.199 0.670 ± 0.246 0.772 ± 0.245 0.489 ± 0.001 0.872 ± 0.199 0.611 ± 0.195
F1 ↑ 0.500 ± 0.001 0.488 ± 0.005 0.489 ± 0.003 0.490 ± 0.002 0.489 ± 0.003 0.488 ± 0.003
Recall ↑ 0.503 ± 0.001 0.501 ± 0.002 0.502 ± 0.002 0.502 ± 0.001 0.502 ± 0.001 0.501 ± 0.002

Nomao C

Accuracy ↑ 0.952 ± 0.005 0.942 ± 0.002 0.944 ± 0.004 0.940 ± 0.003 0.941 ± 0.003 0.937 ± 0.001
Precision ↑ 0.947 ± 0.004 0.940 ± 0.004 0.941 ± 0.003 0.937 ± 0.002 0.936 ± 0.003 0.935 ± 0.002
F1 ↑ 0.936 ± 0.007 0.927 ± 0.003 0.930 ± 0.005 0.924 ± 0.004 0.926 ± 0.004 0.922 ± 0.002
Recall ↑ 0.922 ± 0.006 0.916 ± 0.003 0.920 ± 0.006 0.914 ± 0.006 0.917 ± 0.005 0.911 ± 0.002
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Figure 3: Time complexity comparison of different feature space evaluators across various datasets.

5.2 EXPERIMENTAL RESULTS

5.2.1 OVERALL COMPARISON

This experiment aims to answer: Can EASE accurately assess feature space quality to produce an
effective feature space? We choose RFE for iterative FS and adopt EASE as the feature space evalu-
ator. To compare the performance difference, we replace the evaluator with LR, DT, GBDT, RF and
XGB respectively. We report the testing performance of the refined feature space using RF. Table 2
and Appendix C.2 shows the comparison results in terms of different evaluation metrics according
to the task type. We can find that EASE outperforms other baselines in most cases. For classi-
fication, EASE can improve by approximately 3% compared to other baselines. For regression,
EASE demonstrates the most superior performance. The underlying driver is that our information
decoupling strategy and context-aware evaluator, which allow the evaluator to focus on the most
challenging aspects of the feature space. This results in a fairer evaluation, leading to a more effec-
tive refinement strategy and ultimately producing a more optimized feature space. In summary, this
experiment shows that EASE effectively evaluates feature space quality for better feature spaces.
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Figure 4: Comparison of prediction performance between original and EASE refined feature spaces.
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Figure 5: Comparison of refinement performance of feature space evaluators within FLSR.

5.2.2 EFFICIENCY COMPARISON

This experiment aims to answer: Is EASE more efficient compared to other feature space evalua-
tors? We compare the training time of EASE with other feature space evaluators, including GBDT,
RF, and XGB. Figure 3 shows the comparison results in terms of cumulative time. An interesting
observation is that using EASE can significantly reduce the cumulative time costs compared to other
baselines. A potential reason is that our incremental parameter update strategy enables the feature
space evaluator to quickly capture evolving patterns in the feature space, thereby accelerating the
feature optimization process. Additional experiments comparing time complexity across different
datasets are provided in Figure C.3 in the Appendix. To sum up, this experiment demonstrates that
EASE can efficiently assess feature space quality, thanks to its adaptive parameter update strategy.

5.2.3 THE EFFECTIVENESS OF EASE FOR FEATURE SPACE REFINEMENT

This experiment aims to answer: Is the quality of the feature space refined by EASE superior to
the original feature space? We compare the prediction performance between the original feature
space and the space refined by EASE using various downstream predictors, including LR, DT,
GBDT, and RF. Figure 4 shows the comparison results in terms of Accuracy and MAE according to
the task type. We find that the feature space produced by EASE outperforms the original in most
cases across various predictors. In particular, the refinement by EASE outperforms the original
feature space by 20% on the spectf dataset. This observation suggests that incorporating EASE into
the iterative feature space optimization framework provides effective guidance for obtaining a better
feature space. Additionally, the contextual attention evaluator comprehensively captures the intrinsic
traits of the feature space, leading to robust performance across various datasets and predictors.

5.2.4 EASE’S PERFORMANCE IN DIFFERENT ITERATIVE FRAMEWORKS

This experiment aims to answer: Is EASE generalizable and applicable across different iterative
feature space optimization algorithms? We apply EASE to a reinforced feature selection framework
FLSR. To develop controlling groups, we replace the feature space evaluator within FLSR with LR,
DT, GBDT, and RF, respectively. Figure 5 shows the comparison results across different datasets in
terms of accuracy and performance standard deviation. We observe that EASE beats other baselines
across various datasets. Especially, EASE improve the accuracy more than 5% in all situations. This
observation highlights the strong generalizability and applicability of EASE. The underlying driver
is that the feature index optimizer of EASE offers flexibility, allowing it to adapt to various iterative
feature optimization frameworks. In summary, this experiment demonstrates that EASE exhibits
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Table 3: Comparison of different EASE variants in terms of Accuracy or MAE. The best results
are highlighted in bold, and the second-best results are underlined. (↑ indicates that a higher value
of the metric corresponds to better performance, while ↓ denotes that a lower value of the metric
indicates better performance.)

Dataset R/C Metric EASE EASE−FC EASE−IT EASE−PT

openml 607 R MAE ↓ 0.271 ± 0.028 0.289 ± 0.028 0.343 ± 0.021 0.313 ± 0.035
openml 616 R MAE ↓ 0.302 ± 0.039 0.339 ± 0.035 0.435 ± 0.038 0.561 ± 0.082
openml 620 R MAE ↓ 0.297 ± 0.017 0.520 ± 0.018 0.383 ± 0.018 0.318 ± 0.017
openml 586 R MAE ↓ 0.277 ± 0.011 0.348 ± 0.016 0.276 ± 0.014 0.364 ± 0.005
airfoil R MAE ↓ 0.337 ± 0.009 0.751 ± 0.029 0.712 ± 0.028 0.362 ± 0.004
bike share R MAE ↓ 0.033 ± 0.001 0.035 ± 0.002 0.034 ± 0.001 0.034 ± 0.001
wine red C Accuracy ↑ 0.637 ± 0.018 0.589 ± 0.055 0.539 ± 0.043 0.539 ± 0.028
svmguide3 C Accuracy ↑ 0.846 ± 0.034 0.817 ± 0.032 0.828 ± 0.014 0.833 ± 0.010
wine white C Accuracy ↑ 0.578 ± 0.017 0.557 ± 0.019 0.576 ± 0.014 0.552 ± 0.011
spam base C Accuracy ↑ 0.939 ± 0.008 0.918 ± 0.016 0.928 ± 0.007 0.931 ± 0.003
mammography C Accuracy ↑ 0.989 ± 0.003 0.981 ± 0.004 0.985 ± 0.004 0.986 ± 0.003
spectf C Accuracy ↑ 0.825 ± 0.041 0.815 ± 0.065 0.756 ± 0.064 0.781 ± 0.041

strong adaptability to iterative feature space optimization frameworks and excellent generalizability
across different optimization algorithms. We Additionally test the effectiveness of EASE and applied
it to the state-of-the-art FS algorithm. The detailed results are provided in Appendix C.9.

5.2.5 THE IMPACT OF EACH TECHNICAL COMPONENT

This experiment aims to answer: How does each technical component in EASE impact its perfor-
mance? We investigate the effects of pre-training, incremental training, and feature-sample sub-
space construction in EASE. We develop EASE−PT , EASE−IT , and EASE−FC by removing the
pre-training, incremental training, and feature-sample subspace construction steps from EASE re-
spectively. Table 3 shows the comparison results among different EASE variants. We observe that
EASE outperforms EASE−PT , highlighting the importance of the pre-training step in providing
a strong foundation for objective evaluation. Additionally, EASE surpasses EASE−IT , indicating
that the incremental parameter updating mechanism effectively captures the evolving patterns of
feature space optimization, leading to an improved feature space. Moreover, EASE outperforms
EASE−FC , showing that the information decoupling strategy reduces comprehension complexity,
allowing for better capture of feature space characteristics and leading to improved evaluation and
feature space quality. We also compare the time complexity of each component in Appendix C.6. In
conclusion, this experiment reflects that each component in EASE is indispensable and significant.

For additional experiments and case studies, please refer to the Appendix, which further demonstrate
the superiority, efficiency, and generalization capability of EASE.

6 CONCLUSION

In this paper, we propose a generalized adaptive feature space evaluator EASE for iterative feature
space optimization. EASE consists of two key components: feature-sample subspace generator and
contextual attention evaluator. The first component decouples the complex information within the
feature space to generate diverse feature subspaces by the cooperation of the feature index optimizer
and sample index optimizer. This enhances the ability of the subsequent evaluator to capture the most
challenging information for more accurate feature space evaluation. The second component captures
the intrinsic complexity of feature-sample interactions using a weight-sharing contextual-attention
evaluator to ensure fair and accurate evaluation. Considering the information overlap across consec-
utive iterations, we incrementally update the evaluator’s parameters to retain past knowledge while
incorporating new insights. This allows the evaluator to efficiently capture the evolving patterns
of the feature space. Extensive experimental results have demonstrated that EASE has achieved
superior performance compared to other baselines. In addition, EASE exhibits strong adaptability,
generalization, and robustness in various iterative feature optimization frameworks. In the future,
we will focus on further enhancing the generalization capability of EASE to enable it to effectively
handle distribution shifts and perform robustly across different types of datasets.
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A TABLE OF NOTATIONS

We provide key notations in Table 4 to enhance the comprehension of the EASE methodology.
Among these notations, t represents the t-th optimization of the feature space algorithm.

Table 4: Notations for EASE.

Notations Interpretation

M(t) Model of EASE.
Θ

(t)
M Parameter of EASE.

F (t) Feature space.
L(M(·),y) Prediction loss.

f (t) Feature index subset.
I(t) Sample index set.
B(t) Feature subspaces.
Gt(θj) Fisher information for parameter θj .
Lfinal(Θ

(t)
M) The final loss includes the incremental loss and prediction loss.

B ALGORITHMS OF EASE

Algorithm 1 is the pseudo-code for feature subspace construction based on the feature space F (t)

and the sample loss L(t−1)
i from the previous iteration. Specifically, we first obtain an optimized

feature index subset f (t) by Feature Index Optimizer. Then, a sampling probability distribution
pi and CDF Ci are constructed. Next, n samples are sampled to obtain the sample index set I(t).
Finally, the feature subspace B(t) and y(t) is constructed based on the I(t), s and f (t).

Algorithm 1 Feature Subspace Construction Algorithm.

1: Input: feature space F (t), fixed batch size s, sample loss L(t−1)
i .

2: Output: B(t), y(t).
3: f (t) ← Feature index subset.
4: pi ← Sampling probability distribution.
5: Ci← CDF.
6: for i = 0 to n do
7: generate a random number r ∈ [0, 1],
8: find the first sample xi that Ci ≥ r,
9: add the sample index i to the set I(t).

10: end for
11: B(t), y(t) ← Base on f (t), s and I(t).

Algorithm 2 is the pseudo-code for obtaining a robust evaluator. Specifically, we first construct a
Contextual Attention Evaluator M and initialize its parameters Θ. Then, we use Algorithm 1 to
obtain the feature subspace B(0) of all features and to pre-train the M. For the t-th evaluation,
we obtain the feature subspace B(t) at first, and then estimate the importance of each parameter
Gt−1(θj), reducing the update magnitude for important parameters in previous iteration. Finally, we
formulate the our objective function Lfinal(Θ

(t)
M) and minimize it.
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Algorithm 2 Generalized Adaptive Feature Space Evaluator Algorithm.

1: Input: Dataset D = ⟨F ,y⟩, optimization iterations T , fixed batch size s
2: Output: EvaluatorM.
3: M← Contextual attention evaluator.
4: Θ← Initialize the parameters.
5: B(0), y(0)← Feature subspace construction.
6: Θ

(0)
M ← Pre-training based on B(0).

7: for t = 0 to T do
8: B(t), y(t) ← feature subspace construction,
9: Gt−1(θj)← estimate parameter importance,

10: Lfinal(Θ
(t)
M)← final loss .

11: Θ
(t)
M← trainM by minimizing Lfinal(Θ

(t)
M).

12: end for

C ADDITIONAL EXPERIMENT RESULTS

C.1 EXPERIMENTAL SETUP

Hyperparameters, Source Code and Reproducibility. We limit pre-training and incremental
training to 50 and 200, respectively. We employ an early stopping strategy, stopping the training
process when the loss does not decrease for 10 consecutive epochs. In all experiments, we use the
Adam optimizer and a learning rate decay strategy to accelerate the convergence. Specifically, the
learning rate for the t′-th training iteration is:

l(t′) = l(t′0)× p

⌊
t′
u

⌋
, (11)

where l(t′) and l(t′0) is current and initial learning rate, p is the decay factor applied every u itera-
tions, and ⌊·⌋ is floor operation. And we set l(t′0) = 0.001, p = 0.9 and u = 30. All experiments
run 10 times and calculate the value of mean and standard deviation.

Environmental Settings All experiments were conducted on the macOS Sonoma 14.0 operating
system, Apple M3 Chip with 8 cores (4 performance and 4 efficiency), and 8GB of RAM, with the
framework of Python 3.8.19 and TensorFlow 2.13.0.
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Figure 6: Time complexity comparison of different feature space evaluators across various datasets.

C.2 ADDITIONAL OVERALL COMPARISON

We additionally compare overall comparison across all datasets. We choose RFE for iterative FS and
adopt EASE as the feature space evaluator. To compare the performance difference, we replace the
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Table 5: Overall performance comparison. The best results are highlighted in bold, and the second-
best results are underlined. (↑ indicates that a higher value of the metric corresponds to better
performance, while ↓ denotes that a lower value of the metric indicates better performance.)

Dataset R/C Metrics EASE LR DT GBDT RF XGB

airfoil R
MAE ↓ 0.337 ± 0.010 0.348 ± 0.011 0.364 ± 0.014 0.339 ± 0.014 0.347 ± 0.017 0.347 ± 0.013
RMSE ↓ 0.440 ± 0.017 0.449 ± 0.014 0.475 ± 0.028 0.448 ± 0.016 0.454 ± 0.014 0.475 ± 0.030
R2 ↑ 0.807 ± 0.010 0.801 ± 0.012 0.767 ± 0.012 0.799 ± 0.026 0.783 ± 0.013 0.802 ± 0.018

bike share R
MAE ↓ 0.033 ± 0.001 0.033 ± 0.002 0.034 ± 0.002 0.036 ± 0.000 0.034 ± 0.001 0.037 ± 0.001
RMSE ↓ 0.051 ± 0.002 0.053 ± 0.002 0.053 ± 0.003 0.057 ± 0.001 0.052 ± 0.001 0.052 ± 0.002
R2 ↑ 0.998 ± 0.000 0.997 ± 0.000 0.997 ± 0.001 0.997 ± 0.001 0.997 ± 0.001 0.996 ± 0.000

wine red C

Accuracy ↑ 0.637 ± 0.018 0.617 ± 0.042 0.599 ± 0.043 0.596 ± 0.026 0.613 ± 0.020 0.588 ± 0.046
Precision↑ 0.386 ± 0.062 0.311 ± 0.099 0.296 ± 0.018 0.264 ± 0.036 0.307 ± 0.066 0.285 ± 0.136
F1 ↑ 0.332 ± 0.057 0.260 ± 0.041 0.290 ± 0.017 0.263 ± 0.027 0.300 ± 0.045 0.269 ± 0.088
Recall ↑ 0.334 ± 0.060 0.276 ± 0.038 0.294 ± 0.015 0.276 ± 0.025 0.308 ± 0.031 0.283 ± 0.071

svmguide3 C

Accuracy ↑ 0.846 ± 0.034 0.815 ± 0.015 0.816 ± 0.020 0.813 ± 0.024 0.817 ± 0.042 0.818 ± 0.050
Precision ↑ 0.852 ± 0.052 0.805 ± 0.033 0.823 ± 0.034 0.787 ± 0.044 0.823± 0.044 0.827 ± 0.065
F1 ↑ 0.646 ± 0.026 0.655 ± 0.048 0.673 ± 0.040 0.677 ± 0.059 0.691 ± 0.075 0.656 ± 0.074
Recall ↑ 0.679 ± 0.036 0.635 ± 0.038 0.651 ± 0.033 0.655 ± 0.047 0.670 ± 0.060 0.637 ± 0.055

wine white C

Accuracy ↑ 0.573 ± 0.017 0.531 ± 0.030 0.523 ± 0.027 0.549 ± 0.006 0.539 ± 0.026 0.546 ± 0.009
Precision ↑ 0.307 ± 0.074 0.259 ± 0.077 0.287 ± 0.114 0.303 ± 0.085 0.299 ± 0.089 0.273 ± 0.014
F1 ↑ 0.238 ± 0.016 0.214 ± 0.034 0.212 ± 0.037 0.240 ± 0.026 0.240 ± 0.030 0.218 ± 0.024
Recall ↑ 0.248 ± 0.018 0.223 ± 0.027 0.217 ± 0.028 0.244 ± 0.025 0.247 ± 0.025 0.230 ± 0.021

spam base C

Accuracy ↑ 0.939 ± 0.008 0.927 ± 0.017 0.929 ± 0.004 0.933 ± 0.009 0.936 ± 0.007 0.912 ± 0.012
Precision ↑ 0.939 ± 0.007 0.930 ± 0.017 0.932 ± 0.006 0.935 ± 0.009 0.939 ± 0.008 0.919 ± 0.010
F1 ↑ 0.929 ± 0.010 0.921 ± 0.018 0.925 ± 0.005 0.927 ± 0.009 0.932 ± 0.007 0.906 ± 0.011
Recall ↑ 0.928 ± 0.008 0.915 ± 0.019 0.919 ± 0.005 0.921 ± 0.009 0.927 ± 0.008 0.898 ± 0.011

evaluator with LR, DT, GBDT, RF and XGB respectively. Table 5 and Table 2 shows the compar-
ison results in terms of overall performance. EASE as an evaluator, significantly enhances feature
selection performance, demonstrating outstanding capability. This indicates that EASE not only
possesses excellent generalization ability but also excels in evaluation performance. The potential
reason for this superior performance lies in the Feature-Sample Subspace Generator, which greatly
improves generalization, while the Contextual Attention Evaluator further optimizes performance
by capturing interactions within the feature space.

C.3 ADDITIONAL EFFICIENCY COMPARISON

We additionally compare training time across all datasets. We choose RFE for iterative feature
selection and adopt EASE, GBDT, RF and XGB as the feature space evaluator respectively. Figure 6
shows the comparison results in terms of cumulative time. And we have omitted algorithms that
consume too much time. We find that EASE outperforms other baselines nearly across all datasets.
Specifically, EASE can save over 100 seconds of evaluation time compared to other time-consuming
baselines on bike share, wine white, openml 616, openml 607, and openml 586. The underlying
driver is that our incremental parameter update strategy focuses on the most relevant information and
quickly capture evolving patterns in the feature space for evaluation, leading to a faster optimization
process. In conclusion, EASE can effectively and efficiently evaluate the quality of the feature
space.

C.4 THE EFFECTIVENESS OF EASE FOR FEATURE SPACE REFINEMENT

We additionally test the prediction performance on all datasets between the original feature space
and the space refined by EASE using various downstream predictors, including LR, DT, GBDT, and
RF. Figure 7 shows the overall comparison results in terms of Accuracy and MAE according to the
task type. We find that the feature space evaluated by EASE outperforms the original feature space
across all datasets and baselines. For the datasets openml 616, openml 607, spam base, spectf, and
svmguide3, and wine white, EASE significantly improves performance in terms of Accuracy or
MAE. The underlying driver is that our information decoupling strategy can effectively integrate in-
formation interactions and provide it to the contextual attention evaluator. Then contextual attention
evaluator accurately captures the intrinsic interactions of feature space, thereby guiding the feature
space iterative optimization algorithm to obtain high-quality feature space.
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Figure 7: Comparison of prediction performance between original and EASE refined feature spaces.

C.5 EASE’S PERFORMANCE IN DIFFERENT FEATURE SELECTION FRAMEWORKS

This experiment aims to answer: Is EASE generalizable and applicable across different feature
space optimization algorithms? We apply EASE to a state-of-the-art FS algorithm SDAE (Has-
sanieh & Chehade, 2024). SDAE learns low-dimensional representations of high-dimensional data
through a deep auto-encoder structure, while introducing a selective layer that automatically selects
a relevant subset of features representing the entire feature space. This method performs FS in an
unsupervised manner, effectively capturing nonlinear relationships between features. We respec-
tively selected EASE LR, DT, GBDT, RF, and XGB as evaluators to assess the the final selected
feature space. Table 6 shows the comparison results across different datasets. We can observe that in
the feature space selected by the SDAE algorithm, EASE exhibits the best evaluation performance
in both classification and regression tasks. This proves that EASE has stronger robustness and
can accurately capture the key information in the feature space compared with other methods. The
underlying reason for this lie in EASE’s innovative design of the Contextual Attention mechanism.

Table 6: Comparison of different evaluators in terms of Accuracy (for classification tasks) and MAE
(for regression tasks) in SDAE framework.The best results are highlighted in bold. The second-best
results are highlighted in underline.(Lower MAE value and higher Accuracy value corresponds to
better performance.

Dataset R/C EASE LR DT GBDT RF XGB

openml 607 R 0.232 ± 0.034 0.740 ± 0.040 0.397 ± 0.030 0.233 ± 0.015 0.278 ± 0.012 0.243 ± 0.011
openml 616 R 0.202 ± 0.014 0.764 ± 0.045 0.518 ± 0.024 0.314 ± 0.026 0.343 ± 0.030 0.331 ± 0.033
openml 620 R 0.199 ± 0.005 0.735 ± 0.033 0.477 ± 0.007 0.327 ± 0.013 0.358 ± 0.024 0.324 ± 0.012
openml 586 R 0.228 ± 0.016 0.713 ± 0.041 0.383 ± 0.008 0.227 ± 0.019 0.264 ± 0.019 0.229 ± 0.010
airfoil R 0.154 ± 0.013 0.564 ± 0.025 0.273 ± 0.012 0.286 ± 0.017 0.195 ± 0.008 0.162 ± 0.012
bike share R 0.007 ± 0.000 0.020 ± 0.000 0.016 ± 0.001 0.019 ± 0.000 0.007 ± 0.001 0.013 ± 0.001
wine red C 0.741 ± 0.037 0.591 ± 0.008 0.549 ± 0.022 0.640 ± 0.020 0.724 ± 0.032 0.600 ± 0.009
svmguide3 C 0.856 ± 0.014 0.806 ± 0.021 0.795 ± 0.018 0.832 ± 0.024 0.861 ± 0.012 0.851 ± 0.004
wine white C 0.686 ± 0.034 0.518 ± 0.011 0.585 ± 0.010 0.584 ± 0.009 0.675 ± 0.015 0.654 ± 0.008
spectf C 0.829 ± 0.046 0.789 ± 0.064 0.772 ± 0.030 0.756 ± 0.072 0.837 ± 0.057 0.813 ± 0.023
mammography C 0.992 ± 0.001 0.983 ± 0.001 0.980 ± 0.003 0.986 ± 0.002 0.987 ± 0.004 0.987 ± 0.001
spam base C 0.963 ± 0.006 0.927 ± 0.007 0.904 ± 0.013 0.946 ± 0.003 0.960 ± 0.007 0.946 ± 0.005
AmazonEA C 0.950 ± 0.003 0.944 ± 0.002 0.930 ± 0.003 0.942 ± 0.006 0.947 ± 0.002 0.943 ± 0.001
Nomao C 0.973 ± 0.002 0.941 ± 0.004 0.945 ± 0.003 0.953 ± 0.002 0.967 ± 0.001 0.969 ± 0.002

C.6 THE IMPACT OF EACH TECHNICAL COMPONENT

This experiment aims to answer: How does each technical component in EASE impact its effi-
ciency? We compare the average training time of EASE with other EASE variants in each opti-
mization, including EASE−FC , EASE−IT and EASE−PT . We develop EASE−PT , EASE−IT ,
and EASE−FC by removing the pre-training, incremental training, and feature-sample subspace
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construction steps from EASE respectively. Table 7 shows the comparison results across different
datasets in terms of average training time and standard deviation. We observe that EASE has the
shortest runtime across all the datasets. Specifically, for classification, EASE−IT has the second-
best performance which indicate the technical component of feature subspace construction and pre-
training are crucial for enhancing efficiency. For regression, EASE−PT exhibit the second highest
efficiency which demonstrate the technical component of incremental training and feature subspace
construction can significantly improve EASE evaluation efficiency. The possible reason is pre-
training can obtain a well-initialized contextual attention evaluator to provide a strong foundation
for evaluation. Incremental training can leverage the overlapping information between consecutive
iterations to avoid redundant computations and training time. And feature subspace construction
can decouple the information within the feature space. In summary, our proposed EASE, which
includes components for pre-training, incremental training, and feature subspace construction sig-
nificantly reduce the average training time.

Table 7: Comparison of different EASE variants in terms of time complexity.The best results are
highlighted in bold. The second-best results are highlighted in underline. (The unit is seconds.)

Dataset R/C EASE EASE−FC EASE−IT EASE−PT

openml 607 R 4.396 ± 1.237 5.400 ± 0.134 5.762 ± 0.044 5.175 ± 0.076
openml 616 R 3.994 ± 1.347 5.408 ± 0.639 5.859 ± 0.051 5.097 ± 0.074
openml 620 R 4.547 ± 1.322 5.635 ± 0.063 6.598 ± 0.068 5.687 ± 0.142
openml 586 R 4.644 ± 0.382 7.287 ± 0.271 7.459 ± 0.056 6.980 ± 0.212
airfoil R 4.201 ± 0.595 6.206 ± 0.340 6.531 ± 0.064 5.792 ± 0.340
bike share R 3.356 ± 0.069 5.877 ± 0.122 6.501 ± 0.116 5.745 ± 0.116
wine red C 2.848 ± 0.273 5.998 ± 1.006 3.235 ± 0.123 4.585 ± 0.062
svmguide3 C 0.872 ± 0.134 5.899 ± 0.272 1.538 ± 0.468 6.178 ± 0.540
wine white C 3.815 ± 1.228 6.180 ± 0.225 4.083 ± 0.671 6.002 ± 0.103
spam base C 4.032 ± 0.354 7.598 ± 1.035 4.745 ± 0.829 7.622 ± 1.046
mammography C 0.733 ± 0.010 1.436 ± 0.024 0.813 ± 0.088 4.799 ± 0.020
spectf C 3.005 ± 0.043 5.852 ± 0.577 3.216 ± 0.301 5.276 ± 0.343

C.7 PARAMETER SENSITIVITY ANALYSIS

This experiment aims to answer: How do parameters affect the performance of EASE? To validate
the parameter sensitivity of key parameters in EASE, we select the wine white and openml 586
datasets as examples. We focus on the number of heads h and the embedding dimension D in
training procedure. To address the issue of varying feature space lengths during the iterative pro-
cess, we first set the size of the feature subspace to match the embedding dimension and then
transpose it, successfully overcoming this challenge. Consequently, D is both the embedding di-
mension and the size of the feature subspace. Specifically, We set D = 32 and test the value
of h with the set {2, 4, 8, 16, 32}. And we set h = 16 and test the value of D with the set
{16, 32, 48, 64, 80, 96, 112, 128}. Figure 8 shows the comparison results in terms of Accuracy, Re-
call and F1 Score for classification task, 1-MAE, 1-RMSE, and R2 Score for regression task. 1-MAE
and 1-RMSE used for denoting that a higher value of the metric indicates better performance. We
observe that the performance of downstream tasks generally remains stable across different values
of h and D, with significant changes occurring only at specific parameter values, such as h = 4 and
D = 64 for the regression. A possible reason for this observation is that our proposed EASE can
effectively decouple information within feature space and can capture contextual information during
evaluation process. This observation indicates that EASE is not sensitive to the number of heads h
and the embedding dimension D. Therefore, the evaluating process of EASE is robust and stable.

C.8 CASE STUDY

This experiment aims to answer: What is the difference between the original feature space and the
feature space refined by the EASE for ML tasks? We select the wine white dataset as example to
visualize its features. In detail, we use the original feature space and a refined feature space evaluated
by EASE within the RFE framework, with RF as the downstream predictor. Figure 9 shows the
importance of top 8 features and their impact on the original feature space and EASE feature space.
Specifically, we select 400 samples and calculate their contribution during the prediction process.
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Figure 8: Parameter sensitivity on the number of heads h and the embedding dimension D on
wine white and openml 586 datasets.

Table 8: Comparison of different evaluators in terms of Accuracy (for classification tasks) and MAE
(for regression tasks) in GRFG framework.The best results are highlighted in bold. The second-best
results are highlighted in underline.

Dataset R/C EASE LR DT GBDT RF XGB

openml 616 R 0.302 ± 0.006 0.321 ± 0.002 0.327 ± 0.006 0.331 ± 0.012 0.312 ± 0.012 0.338 ± 0.000
openml 586 R 0.373 ± 0.001 0.410 ± 0.008 0.410 ± 0.009 0.409 ± 0.003 0.385 ± 0.017 0.399 ± 0.002
svmguide3 C 0.849 ± 0.002 0.816 ± 0.000 0.821 ± 0.006 0.822 ± 0.006 0.826 ± 0.000 0.820 ± 0.005
mammography C 0.993 ± 0.001 0.984 ± 0.000 0.985 ± 0.018 0.986 ± 0.001 0.985 ± 0.000 0.986 ± 0.000

The horizontal axis represents the SHAP values for each feature, reflecting the impact of that feature
on the prediction, while the vertical axis lists the feature names in order of importance (Temenos
et al., 2023). And we color the size of the feature values (red represents larger values, while blue
represents smaller values). We find that the EASE feature space greatly enhances the predictor
accuracy by 15%. Another interesting observation is that the feature ranking in the EASE feature
space differs from that in the original feature space for the same predictor RF. In detail, we can trace
and explain the source and effect of specific feature. For example, ”volatile acidity” measures the
impact of the wine’s acidity on the wine quality evaluation, which is positively correlated with wine
quality. The underlying driver for these observations is that the multi-head attention mechanism
in contextual attention evaluator can capture the interactions between samples and features after
decoupling the information, which not only improves the fairness of the evaluation but also enhances
its interpretability. Thus, this case study reflects that the effectiveness and interpretability of EASE
as a evaluator for feature space quality evaluation.
For all other details of the hyperparameter configurations, optimization strategies, specific training
processes, and environmental settings, please refer to Appendix C.1.
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Figure 9: Comparison of feature importance in EASE feature space and original feature space.

C.9 EASE’S PERFORMANCE IN FEATURE GENERATION FRAMEWORKS

This experiment aims to answer: Is EASE generalizable and applicable in feature generation al-
gorithm? We apply EASE to a feature generation method GRFG (Wang et al., 2022). GRFG
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addresses challenges in representation space reconstruction by proposing a cascading deep rein-
forcement learning approach that automates feature generation through a group-wise strategy and
nested interactive processes. We respectively selected EASE LR, DT, GBDT, RF, and XGB as eval-
uators to evaluate the performance of the generated or selected features during the GRFG procedure.
Table 8 shows the comparison results across different datasets. We observe that the proposed EASE
achieves the best performance in both classification and regression tasks. This further demonstrates
that, compared to traditional feature evaluation algorithms, EASE exhibits excellent performance in
both feature selection and feature generation tasks and can capture the key information of the feature
space.
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