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Abstract
Purpose Automatic liver segmentation is a key component for performing computer-assisted hepatic procedures. The task is
challenging due to the high variability in organ appearance, numerous imaging modalities, and limited availability of labels.
Moreover, strong generalization performance is required in real-world scenarios. However, existing supervised methods
cannot be applied to data not seen during training (i.e. in the wild) because they generalize poorly.
Methods We propose to distill knowledge from a powerful model with our novel contrastive distillation scheme. We use
a pre-trained large neural network to train our smaller model. A key novelty is to map neighboring slices close together
in the latent representation, while mapping distant slices far away. Then, we use ground-truth labels to learn a U-Net style
upsampling path and recover the segmentation map.
Results The pipeline is proven to be robust enough to perform state-of-the-art inference on target unseen domains.We carried
out an extensive experimental validation using six common abdominal datasets, covering multiple modalities, as well as 18
patient datasets from the Innsbruck University Hospital. A sub-second inference time and a data-efficient training pipeline
make it possible to scale our method to real-world conditions.
Conclusion Wepropose a novel contrastive distillation scheme for automatic liver segmentation. A limited set of assumptions
and superior performance to state-of-the-art techniques make our method a candidate for application to real-world scenarios.

Keywords Liver segmentation · In the wild · Contrastive · Distillation

Introduction

Medical image segmentation is a key step toward automatic
computer-assisted procedures. The high variability of organ
appearance, numerous different modalities, the absence of
texture contrast, and the limited availability of labels are
some of the challenges of segmenting medical scans in the
wild (i.e. generalizing well to arbitrary real-world datasets
not seen during training). Despite efforts in computer vision
(CV) and medical image analysis, the task is still considered
unsolved. Recently, fully supervised deep learning meth-
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ods have achieved human-level segmentation performance
on synthetic datasets [1–3]. However, their performance
degrades rapidly in real-world scenarios [4], where a large
distribution shift between training and inference data is
often encountered. The issue is more evident in the medical
domain, where generalization to real-world clinical settings
is hard even for state-of-the-art models [5]. The large shift
between the fields hampers the application of common CV
solutions in the medical domain. Extensive pre-training on
natural images does not always help to transfer knowledge
[6]. The discrepancy between the two domains is consider-
able: ImageNet [7] (a common CV dataset) contains 14.2
million images from 22 thousand classes, while LiTS [8] (a
common abdomen tomography dataset) contains 131 vol-
umes with up to 30000 images and two classes. Domain
adaptation (DA) techniques assume access to the inputs of
the target domain. However, this is not valid in real-world in
the wild scenarios, wherefore domain generalization (DG)
techniques have been proposed. These either assume access
to many datasets (i.e. multi-DG), which is prohibitive in
real-world scenarios, or train on a single, heavily augmented

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-023-02912-3&domain=pdf
http://orcid.org/0000-0003-4600-8000
http://orcid.org/0000-0003-0021-5792
http://orcid.org/0000-0001-7564-6234


1144 International Journal of Computer Assisted Radiology and Surgery (2023) 18:1143–1149

Fig. 1 Overview of our training pipeline. It comprises three main pro-
cessing steps: feature extraction, contrastive distillation, and learnable
upsampling. Dots indicate numerous channels (typically hundreds).

Learnable steps are shown in green solid lines, non-learnable in blue
dotted lines, and label usage is marked with red dashed lines

dataset (i.e. single-DG), which is not easily scalable in real-
world scenarios.

Related to this, in this paper we address the problem of
automatic liver segmentation in the wild. Our input data
are 3D tomographic scans obtained from medical imaging,
which are processed as a set of 2D slices along the axial
direction. Our pipeline does not undergo any pre-training
or self-supervised phase. We train on a small number of
labeled inputs from one or more source domains and per-
form inference on the unseen target domains. Our method
learns to construct a robust latent representation fromabdom-
inal scans with a novel contrastive “distillation” scheme. We
transfer knowledge from a pre-trained large model to our
smaller model under a contrastive framework by imposing
that neighboring slices (along the cranio-caudal z-axis of the
scans) are mapped close together in the latent space, while
distant slices are mapped far away, when measured e.g. with
cosine similarity. Then, we perform a U-Net-style upsam-
pling to recover the segmentation prediction. An overview of
the pipeline can be seen in Fig. 1. Our key contribution is a
contrastive sampling strategy suitable for liver segmentation
in the wild. Knowledge distillation in our contrastive frame-
work achieves state-of-the-art domain generalization results.
We perform an extensive benchmark of our method using six
public medical datasets, commonly used in the field, as well
as real-world scans from the Innsbruck University Hospi-
tal. Finally, we provide ablation studies to justify the design
choices of the pipeline.

Related work

Traditionally, automatic liver segmentation has been tackled
via region-growing, rule-based, graph-cut, or statistical-
shape-model approaches [9]. Only recently deep learning-

based methods have started to surpass traditional techniques
[8, 10]. Therefore, in the following, we will focus on recent
state-of-the-art for automatic anatomical segmentation with
deep learning.

Domain generalization for medical image segmentation
Recent work reported in [11, 12] attempts to solve the DG
problem in medical segmentation via episodic training (the
model is trained on train-test splits of a virtual dataset). In
particular, Li et al. show superior performance in multi-DG
for liver segmentation in computed tomography (CT) data
[12]. However, many different labeled domains are required.
The generalization to data in the wild is mostly given by the
meta-split generation process and the difference across the
meta-training domains. The learning objective in both works
does not explicitly include the construction of a robust latent
representation that can be leveraged across domains. Regard-
ing single-DG methods, the work described in [13] focuses
on cross-modality segmentation by augmenting individual
domains and capturing domain-specific information to simu-
late the appearance of unseen domains. The authors achieve
great performance in single-DG on multi-organ abdominal
tomography segmentation.

Contrastive learning for medical image segmentation Pre-
training a model on a huge amount of data and fine-tuning it
to a few labels is not always useful for medical image seg-
mentation [6]. This is why contrastive learning approaches
have been explored. The technique is typically used in low-
data regimes to learn powerful representations. The idea is to
pull together the feature representations of similar data points
(i.e. positive samples), while pulling apart those of dissimi-
lar data (i.e. negative samples). The work described in [14]
proposes a contrastive approach based on tomography slices
for pre-training their model, focusing on cardiac tomography
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segmentation. However, as the experimental results show,
their solution is suitable only for small organs (w.r.t. a full
abdominal scan). Another difficulty is their assumption of
perfect alignment between volumes and datasets. The authors
of [15] introduce a contrastive distillation loss in order to
solve unsupervised semantic segmentation. While we draw
on their work to define our contrastive distillation strategy,
our pipeline is trained on labeled data from one or more
source datasets with the goal of generalization to unseen
target datasets. Moreover, our pipeline heavily differs in con-
trastive sampling strategy and learning objective.

Method

Feature extraction We draw on the evidence provided in
[16] and employ a frozen (i.e. gradients do not get back-
propagated) self-supervised Vision Transformer (ViT) [17]
as feature extractor in the first step of our pipeline. Freezing
the backbone is necessary to avoid the risk of overfit-
ting the training data (distillation performance should be
domain invariant) and helps reducing the model training
time.

Contrastive distillation In the second step, we carry out
contrastive distillation on the obtained features. Given a fea-
ture extractor λ and two input images x, y, the metric X
computes the cosine similarity between the feature tensors
λ(x) ∈ R

C×H×W and λ(y) ∈ R
C×I×J , at spatial positions

(h, w) and (i, j), respectively:

Xhwi j(λ, x, y) =
∑

c

λchw(x) · λci j (y)

‖λhw(x)‖‖λi j (y)‖ , (1)

where c is the channel dimension. Based on this, we deter-
mine the distillation loss Lcd as a key element of our loss
formulation, following [15]. It is imposed on each input slice
sample x to learn a nonlinear transformation of the prelimi-
nary feature tensor:

Lcd(x) = Lcr (x, x, bself) + Lcr (x, x
+, b+)

+ Lcr (x, x
−, b−) (2)

Lcr (x, y, b) = −
∑

hwi j

(Shwi j(Xhwi j(F , x, y))

− b)max(Xhwi j(C ◦ F , x, y), 0) (3)

Shwi j(X) = Xhwi j − 1

I J

∑

i ′ j ′
Xhwi ′ j ′ , (4)

where Shwi j is the spatial centering operation introduced in
[15],F is the feature extractor, C is the nonlinear transforma-
tion, b is a hyper-parameter to prevent collapse. Here, x+, x−

denote the positive and negative samples, while bself, b+, b−
are the specific hyper-parameters for balancing the learning
signal. These are set such that at the end of the training the
average similarity of features between a slice and itself equals
0.05, between a slice and its positive samples equals 0.0, and
between a slice and its negative sample equals−0.05, respec-
tively. To evaluate this setting we examined the distribution
of feature correspondences between a slice and itself. A
bi-modal distribution peaking at alignment (1) and orthogo-
nality (0) of features resulted. This empirically demonstrates
the expected clustering of the slices. Finally, we parameter-
ize the nonlinear transformation with 2 convolutional layers
and ReLU nonlinearities.

Contrastive sampling strategy To work with a wide range
of liver shapes and positions, our method takes into account
the relative position of a slice in the scan. A sampling strat-
egy with pre-defined thresholds provides false positives and
negatives due to the high variance of liver metrics between
patients. Therefore, we propose to obtain positives from
neighboring slices (i − 1 and i + 1) of a given i-th slice
of a scan I , and negatives from the farthest possible one, i.e.
i+ |I |

2 , where |I | is the number of slices in I . This contrastive
sampling strategy is tailored for large and highly deformable
organs such as the liver.

Learnable upsampling The third step in the pipeline is
the upsampling yielding the segmentation predictions. We
follow the traditional U-Net scheme [18], learning five
upsampling-then-convolution layers to decode the latent rep-
resentation and recover spatial information. Finally, we apply
a skip connection to the upsampled representation and the
original input, and learn three convolutional layers to gen-
erate the segmentation prediction. Batch normalization and
ReLU activations are used after each convolutional layer, as
well as dropout to improve generalization.

Training objective The supervised loss objective in the
pipeline consists of several components commonly applied
in the context of image segmentation: the Focal loss variant
of the traditional cross-entropy loss [19], the classic Tversky
loss, and the logarithm of IoU (i.e. intersection over union)
loss [20]. Additionally, we impose the entropy-based unsu-
pervised loss [21].

TheFocal loss helps to speed up the training process,while
the classic Tversky is the common loss objective in medi-
cal image segmentation. The logarithm of IoU is concerned
with optimizing the salient IoU metric, measuring the over-
lap between two segmentation maps, and the entropy-based
unsupervised loss supports regularization of a segmentation
map. We have studied the effect of each loss component,
summarized below in Table 4.
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Table 1 Quantitative
comparison between multi-DG
methods and our approach.
Results of supervised methods
are shown in italic, to give an
upper bound; training and
inference data are different
splits of the same dataset. The
best statistically significant
results are marked in bold font

Inference data Source training data Method DICE p-Value

BTCV CHAOS,IRCADb,LiTS [11] 0.863 5.38 × 10−14

[12] 0.867 2.57 × 10−13

Ours 0.929 ± 0.026 –

BTCV [3] 0.985 2.34 × 10−12

CHAOS BTCV,IRCADb,LiTS [11] 0.911 6.31 × 10−7

[12] 0.919 9.92 × 10−6

Ours 0.954 ± 0.026 –

CHAOS [1] 0.979 ± 0.003 5.23 × 10−5

LiTS BTCV,CHAOS,IRCADb [11] 0.901 1.72 × 10−39

[12] 0.897 5.30 × 10−43

Ours 0.948 ± 0.028 –

LiTS [2] 0.942 0.125

Experiments and results

Experimental setup We have evaluated and compared our
method on the liver segmentation task using specifically pre-
pared medical datasets (BTCV [22], CHAOS [23], IRCADb
[24], LiTS [8], ACT-1K [25], and AMOS221), as well as
real-world scans from Innsbruck University Hospital (IUH).
To support that our method can be successfully applied
in the wild, we devised three leave-one-dataset-out cross-
validation multi-DG experiments (i.e. training on multiple
source datasets and testing on the remaining unseen one, as
commonly done in relatedworks [11, 12]). Further, we exam-
ined the performance on cross-dataset and cross-modality in
a single-DG study. Finally, we qualitatively evaluated the
results on real-world clinical scans.

For training, we employ the RAdam optimizer [26] that
facilitates faster learningwith an adaptive learning ratemech-
anism (batch size 8, weight decay 10−5). The initial learning
rate set to 10−4; it is reducedwhen there is nometric improve-
ment on the training test set after 10 epochs. We found that
150 epochs are sufficient for convergence based on the DICE
metric evaluated on the source data test set. As test set, we
employed 5 scans of each training dataset. The training was
done with a ViT-base/8 backbone, on Linux Ubuntu with
16 GB RAM, 8 × Intel Core i7-9700K CPU @ 3.60GHz, 8
GBNVIDIAGeForce RTX 3080 Ti. PyTorch 1.10 and Tor-
chIO [27] were employed to implement our pipeline. Further
details on the pipeline are compiled in supplementary mate-
rial.

Metrics For comparison we use the DICE metric, which is
the only metric consistently reported in related work. It esti-
mates similarity of two samples via the number of pixels in

1 Ji et al., AMOS: A Large-Scale Abdominal Multi-Organ Benchmark
for VersatileMedical Image Segmentation, NeurIPS TrackDatasets and
Benchmarks (2022).

common. Statistical significance of our results is examined
via p-values from paired t-tests on directly compared DICE
coefficients (assuming normality of results). Any standard
deviations are computed across scans. In the following tables,
the best statistically significant results (p-value < 0.05) are
marked in bold font. Note that this only takes into account
the other unsupervised methods; metrics of fully supervised
methods are just provided to give an upper bound on the
performance. Fully supervised methods have access to the
inference data distribution, rendering a direct comparison
with unsupervised, in the wild methods unfair. It has to be
noted that in some cases it was not possible to obtain the
implementations from other authors for comparisons, where-
fore we were only able to compare to their published results.
To this end, we sampled from a normal distribution centered
at the mean reported in the respective publications, assuming
0 standard deviation.

Evaluation on widely available medical datasets First, we
have carried out leave-one-domain-out experiments, inmulti-
DG settings. The results are reported in Table 1. For training,
different combinations of the BTCV, CHAOS, IRCADb, and
LiTS datasets were used, excluding one; and inference was
performed on the remaining dataset. We compare to the
performance of the unsupervised approaches in [11, 12].
Methods [1–3] are supervised state-of-the-art in the respec-
tive inference domain, giving an upper bound.

Next, we compared to the state-of-the-art single-DG tech-
nique reported in [13]. Following their work, we trained
on the CT data of the BTCV dataset and inferred on the
MR T2-SPIR data of the CHAOS dataset. We obtained with
our method a DICE metric of 0.815 ± 0.087, compared
to 0.673 for [13], with a statistically significant p-value of
8.39 × 10−7.

Further, we performed inference on the scans from the
AMOS22 challenge (using our model trained on the BTCV,
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Fig. 2 Liver segmentation predicted by our method on a case in portal venous phase from the IUH

CHAOS, IRCADb datasets), and obtained a DICE score of
0.918 ± 0.066, compared to 0.981 for the fully supervised
method described in Isensee et al.2 (p-value 5.02 × 10−30).
To the best of our knowledge, these are the first in the wild
results on AMOS22 challenge data.

In addition to the DICE results reported above, we also
examined two further salients: average symmetric surface
distance (ASSD) and maximum symmetric surface distance
(MSSD). The former computes the average distance between
the predicted and the ground truth surface, while the lat-
ter considers only the maximum distance. These values are
often not reported in related work, but we consider them
useful from a clinical perspective. They evaluate the error
on the real-world-dimensions of a scan, not just on pixels.
The ASSD metric was under 1.3 mm in each experiment
(1.057 ± 0.537 mm, 0.757 ± 0.380 mm, and 1.299 ± 1.829
mm, forBTCV,CHAOS, andLiTS, respectively). TheMSSD
metric was found to be smaller than 5 cm (4.108± 2.93 cm,
3.09 ± 2.40 cm, and 4.62 ± 5.20 cm, for BTCV, CHAOS,
and LiTS, respectively).

Evaluation on clinical scans in the wild Further, we per-
formed inference on everyday patient CT scans of 18,
obtained in preparation for stereotactic radiofrequency abla-
tion (SRFA) interventions [28]. An overview of one seg-
mented case can be seen in Fig. 2; more visual results and
comparisons with commercial systems are shown in sup-
plementary material. Our segmentations were found to be
reasonable and useful for their clinical practice by our collab-
orating radiological experts. A more quantitative evaluation
will be carried out in the future.

Ablation studies and discussion

Ablation studies We conducted several ablation studies, on
training data, pipeline, contrastive distillation loss, objective

2 Isensee et al., Extending nnU-Net is all you need, arXiv pre-print
(2022).

loss, and contrastive sampling strategy. For this, we exam-
ined inference on the BTCV dataset, as it showed the lowest
performance (see Table 1). We report p-values of paired t-
tests with respect to DICE metrics, comparing against our
pipeline with a ViT-small/16 feature extractor and default
parameters as baseline.

First, we studied the effect of the amount of training data
in the source domains on the DICE performance in the target
domain (BCTV). Results are reported in Table 2. Compar-
isons were done with multi-DG state-of-the-art [12]. We
found that using as little as 5 scans in each source train-
ing domain was sufficient to reach competitive performance.
This is important for work in the wild, since learning has to
be done efficiently in low-data regimes. Moreover, increas-
ing the amount of training data in general seemed to increase
the performance, but without statistical significance.

Next, we examined the influence of our sampling strategy
for positive and negative samples. Different approaches for
obtaining these samples were compared. Results are com-
piled in Table 3. Input is the i-th slice of a scan I , where |I |
is again the number of slices in I . The target inference dataset
is again BTCV. Sampling positive samples from neighbor-
ing slices, and negative samples from the farthest possible
yielded overall the best performance.

Finally, we studied the influence of training data, dif-
ferent data splits, backbone sizes, and loss functions. The
results are compiled in Table 4. As can be seen, the choice
of training data splits (encoded by the randomization seed
RS) or the usage of a different dataset (ACT-1K) did not
influence the inference performance. Further, as expected,
usingmore powerful backbones (ViTwith patch resolution of
8) improved the performance. Regarding the loss functions,
dropping the contrastive distillation (see row 9) yielded a sig-
nificant drop in performance. We also note that omitting the
log IoU loss from the learning objective achieved a higher,
but not statistically significant, DICEmetric. However, since
the loss optimizes the number of false positives better than
the Tversky loss, it is part of our learning objective.
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Table 2 Effect of the amount of
training data in source domains
on the DICE performance in the
target domain (BCTV). Results
of baseline method are shown in
italic. The best statistically
significant results are marked in
bold font

CHAOS IRCADb LiTS Method DICE p-Value

5 5 5 Ours 0.895 ± 0.038 0.298

10 10 10 0.903 ± 0.033 0.875

15 15 15 0.904 ± 0.030 Baseline

14 14 92 0.915 ± 0.029 0.168

14 14 92 [12] 0.867 2.57 × 10−13

Table 3 Ablation studies on the
contrastive sampling strategy.
Results of baseline method are
shown in italic

Positive samples Negative samples DICE p-Value

i − 1-th, i + 1-th slices i + |I |
2 -th 0.904 ± 0.030 Baseline

i − 2-th and i + 2-th slices i + |I |
2 -th 0.892 ± 0.038 0.168

i − 1-th and i + 1-th slices i + |I |
2 -th, i + |I |

2 + 1-th 0.888 ± 0.042 8.92 × 10−2

Table 4 Ablation studies grouped by data, pipeline module and loss function examined

Trainingdata RS Backbone Loss ablated Loss range DICE p-Value

ACT-1K 42 ViT-small/16 0.902 ± 0.049 0.866

CHAOS IRCADb LiTS 42 ViT-small/16 0.904 ± 0.030 Baseline

41 0.903 ± 0.035 0.849

43 0.906 ± 0.031 0.838

44 0.905 ± 0.029 0.892

42 ViT-small/8 0.921 ± 0.035 0.048

ViT-base/16 0.913 ± 0.031 0.251

ViT-base/8 0.929 ± 0.026 1.67 × 10−3

42 ViT-small/16 Lcd [−1, 0] 0.876 ± 0.030 1.42 × 10−2

Focal [0,+∞[ 0.902 ± 0.032 0.825

Tversky [0, 1] 0.900 ± 0.031 0.590

log IoU [0,+∞[ 0.912 ± 0.028 0.321

Entropy [0, 0.02[ 0.901 ± 0.030 0.692

The target inference dataset is BTCV. RS denotes the randomization seed, encoding different splits of training data

Comparison with state-of-the-art and limitations Overall,
the experimental results show that our method surpasses the
performance of state-of-the-art multi-DG methods with sta-
tistical significance. Our method also performed better than
fully supervisedmethods in the case of LiTS inference.When
comparingwith single-DGmethods, there is a significant per-
formance improvement over the state-of-the-art [13]. Finally,
our method was capable of segmenting the liver in challeng-
ing conditions in the wild, even in presence of SRFA needles
(see a comparison with commercial systems in supplemen-
tary material).

As a limitation, our method has difficulties in predict-
ing the segmentation map at the bottom of the liver. We
hypothesize the reason for this is the downsampling in the
pre-processing steps, since it may misalign the learned con-
volution kernels with the tiny liver part. This could be solved
by using higher-resolution slices. As evidenced by evalua-
tions on the clinical scans, the scans in hepatic arterial phase

are easier to segment than the other phases; the scans with
no contrast enhancement are the most difficult to segment.

Conclusions and future work

Our novel contrastive distillation scheme showed great
potential for automatic liver segmentation in the wild. Thor-
ough ablation studies and empirical results on common test
datasets and real-world scans support these findings. Our
next steps aim at multi-modal multi-organ segmentation,
as this is critical for computer-assisted hepatic procedures.
Using powerful backbone architectures has a beneficial
effect on performance, however, there is a clear discrep-
ancy between what can be achieved in the natural imaging
domain and the medical imaging domain. We will explore
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cross-domain knowledge transfer that was recently reported
in other domains.3

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-023-02912-
3.
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