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ABSTRACT

Gradual domain adaptation (GDA) aims to mitigate domain shift by progressively
adapting models from the source domain to the target domain via intermediate
domains. However, real intermediate domains are often unavailable or ineffec-
tive, necessitating the synthesis of intermediate samples. Flow-based models have
recently been used for this purpose by interpolating between source and target dis-
tributions; however, their training typically relies on sample-based log-likelihood
estimation, which can discard useful information and thus degrade GDA perfor-
mance. The key to addressing this limitation is constructing the intermediate do-
mains via samples directly. To this end, we propose an Entropy-regularized Semi-
dual Unbalanced Optimal Transport (E-SUOT) framework to construct interme-
diate domains. Specifically, we reformulate flow-based GDA as a Lagrangian
dual problem and derive an equivalent semi-dual objective that circumvents the
need for likelihood estimation. However, the dual problem leads to an unstable
min—max training procedure. To alleviate this issue, we further introduce entropy
regularization to convert it into a more stable alternative optimization procedure.
Based on this, we propose a novel GDA training framework and provide theoreti-
cal analysis in terms of stability and generalization. Finally, extensive experiments
are conducted to demonstrate the efficacy of the E-SUOT framework.

1 INTRODUCTION

Unsupervised Domain Adaptation (UDA) (Pan & Yang, 2010; Tzeng et al., 2017; Long et al., 2015;
Courty et al., 2014; 2017a), which transfers knowledge from a well-trained source domain to a re-
lated yet unlabeled target domain, is of great importance across fundamental application areas. For
example, in recommender systems (Liu et al., 2023; Zheng et al., 2024), a cold-start user has no
interaction history with new items, so domain adaptation helps transfer user and item knowledge
from an existing system to improve recommendations. Similar scenarios occur in machine trans-
lation, where a model trained on high-resource language pairs like English-French can be adapted
to translate between English and low-resource languages with limited parallel data (Gazdieva et al.,
2023). These scenarios highlight the importance of conducting UDA to bridge domain gaps and
ensure reliable performance in real-world applications.

Despite these methodological advances, directly performing UDA can be brittle when the
source—target shift is substantial or class overlap is weak. In such cases, one-shot alignment of-
ten degrades discriminability and amplifies pseudo-label errors during self-training. This challenge
motivates a transition from the traditional UDA setting to the Gradual Domain Adaptation (GDA)
setting (He et al., 2024), where adaptation proceeds through a sequence of intermediate distributions
that progressively bridge the domain gap. A key aspect of generating intermediate domains in GDA
is to interpolate between the source and target domains. Various methods have been proposed to
construct such intermediate domains, among which flow-based approaches (Kobyzev et al., 2020;
Papamakarios et al., 2021) have attracted increasing attention, primarily due to their property of
preserving probability density along the transformation path, thereby enabling consistent and stable
probability densities without distortion or loss of information. To drive the samples from the source
domain towards those of the target domain, it is necessary to design an appropriate driving force,
typically derived from a discrepancy metric. Among these metrics, f-divergence (Sason & Verdd,
2016) is most widely used due to its computational efficiency, empirical effectiveness, and principled
formulation within the framework of geometry for probability distributions (Amari, 2016).
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Despite the success of flow-based approaches in GDA (Sagawa & Hino, 2025; Zhuang et al., 2024;
Zeng et al., 2025), we argue that directly applying standard flow-based models leads to suboptimal
performance. Specifically, existing flow-based frameworks utilizing f-divergence often require the
explicit estimation of target domain probability density functions (PDFs) from available target sam-
ples (Vincent, 2011; Santambrogio, 2017; Ambrosio et al., 2005). Consequently, the quality of the
intermediate domain heavily depends on the accuracy of the estimated target PDF; if this estimation
is inaccurate, the performance of the downstream task is likely to suffer significantly.

To address these limitations, we propose a novel flow-based GDA framework E-SUOT, which lever-
ages the semi-dual formulation of gradient flows. Rather than explicitly estimating PDFs, we recast
flow evolution as an optimization problem that combines an f-divergence term with a Wasserstein
distance regularization term, enabling sample transport toward the target domain without reliance on
PDF estimation. However, as the semi-dual reformulation inherently leads to an adversarial training
paradigm that can compromise stability and performance, we introduce entropy regularization to
the objective to guarantee the stability of the training process. Based on this, we summarize the al-
gorithm for E-SUOT-based intermediate domain generation, prove the convergence of our E-SUOT
framework, and empirically demonstrate its effectiveness on representative GDA tasks. Extensive
experiments validate that E-SUOT achieves superior performance compared with existing methods.

Contributions. The main contributions of this paper are summarized as follows:

* We develop a semi-dual-formulation for intermediate domain generation in flow-based
GDA, which eliminates the need for explicit PDF estimation in the target domain.

* We introduce an entropy regularization term to address the unstable issue inherent in the
semi-dual formulation, resulting in the novel and stable E-SUOT framework.

* We conducted various experiments to demonstrate the superiority of the proposed E-SUOT
approach compared to prevalent approaches.

2 PRELIMINARIES

2.1 SETTINGS AND NOTATIONS

In GDA, we consider a labeled source domain, 1" — 1 unlabeled intermediate domains, and an
unlabeled target domain. Let the input space be A’ and the label space be ). We denote inputs as
x € X and labels as y € ). We index the domains by ¢ € {0,1,...,T}, where t = 0 denotes the
source domain and ¢ = T denotes the target domain. Each domain induces a marginal distribution
pe over X. Let H be a hypothesis class of classifiers h : X — ). We assume that each domain
admits a labeling function ¢ € H. Given a loss function £ : J x Y — R>, the generalization error
of h on domain ¢ is defined as €, (k) = E,, ) [L£(M(z),q(x))]. A source classifier go € H can
be learned via supervised learning on the source domain with minimal error &,,(¢o). The objective
of GDA is to evolve g through the intermediate domains to a classifier Ap so as to minimize the
target error €, (hr).

2.2 FLOWS FOR INTERMEDIATE DOMAIN GENERATION

A flow describes the time-dependent evolution of particles induced by a smooth invertible (diffeo-
morphic) map. Based on this, the intermediate domains can be seen as a discretization of a contin-
uous flow linking source and target distributions. This motivates flow-based models, which evolve
a distribution over a fixed time horizon while preserving normalization, and are thus well-suited
for GDA. From the flow perspective, intermediate domains are generated by the following ordinary
differential equation:

d.]?t

E = vt(xt) = -V

éD[p(z+), pr ()]
op(zt) 7
where p(z;) is the (empirical) PDF induced by {z;;}},, and we desire the law p(z7) to approxi-
mate the target pr(z). Here v, : X — X is the velocity field. The core design problem is to choose
v so that p(zy) = pr(x). A principled approach is to define v; as the steepest descent direction
—

Tt—0 = 0, (D

of some discrepancy functional D[p(x:), pr(z)] between p(z:) and pr(z) as demonstrated in the
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second equal sign in Eq. (1). Notably, 6 /dp denotes the first variation, and the second equality sign
is called “gradient flow”.

Among various choices, f-divergences are favored in GDA for their task-aligned objectives, stable
probability-preserving dynamics, and efficient computation when compared to alternatives such as
Sinkhorn divergence and maximum mean discrepancy (Glaser et al., 2021). For an f-divergence,

Dilplepr@)] = [ 5(250) pr(o)da, @

with f : (0,00) — R convex and f(x) = 0 if and only if x = 1. A canonical example is the
Kullback-Leibler (KL) divergence with f(u) = ulog . In this case,

ve(ze) = Vog pr(z) — Viog p(xy), 3)

and, in the weak partial differential equation sense (Evans, 2022; Liu, 2017), the induced dynamics
yield the classical Langevin dynamic (Welling & Teh, 2011; Santambrogio, 2017).

Intuitively, applying the forward Euler scheme with step size 7 to the gradient flow in Eq. (1) under
an f-divergence yields a discrete-time generation for the intermediate domain, which is equivalent
to solving a 2-Wasserstein-distance-regularized optimization problem as (see Section B.1):

6Dy [p(z+), pr] B R R
ey = p(T4y) = p(ggg;ﬂg}j) 2 W2 (p(z), pla:))+Ds[p(z), pr(z)],
“4)

where Py (RD) denotes the Wasserstein space (Villani et al., 2009), which is the set of the distribu-
tions with finite second moment. Here W, is the 2-Wasserstein distance, whose definition is given
as follows:

T4y = Tt \%

Wi = int [ [ e~ sln(e.y) dedy, ©

and TI(p, £) is the set of joint distribution on RP x RP with marginal distributions p and &.

3 METHODOLOGY

3.1 MOTIVATION ANALYSIS

Flow-based approaches, exemplified by gradient-flow methods, interpolate between the source and
target distributions by gradually minimizing a discrepancy measure, typically an f-divergence, be-
tween the two domains. The success of these methods in GDA tasks critically depends on accurately
estimating the target distribution’s probability density function (PDF). Given a reliable estimate, one
can construct a velocity field that progressively pushes source samples toward the target distribution.
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(a) Ground Truth. (b) Langevin, W2 ~ 9.7. (c) E-SUOT, W2 ~ 5.4.

Figure 1: Illustrative Example: Comparison Between Lagevin Dynamic and E-SOUT.

However, directly estimating the PDF from target domain data is generally ill-posed (Vincent et al.,
2010; Song et al., 2020). When the estimate is inaccurate, the induced velocity field can push
samples into low-probability regions of the target distribution, causing a substantial shift between
the generated and true target domains and degrading downstream task performance. To illustrate
this issue, we compare ground-truth target samples with those obtained via Langevin dynamics
and E-SUOT in Figs. 1(a) to 1(c). The PDF for the target domain is estimated using denoised
score matching (Vincent, 2011). In addition, we also report the 2-Wasserstein distance between
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the predicted and ground-truth samples (relative to Fig. 1(a)) in the captions of Figs. 1(b) and 1(c),
which constituted the lower generalization bound for GDA tasks. From Figs. 1(b) and 1(c), it is
evident that when the estimated log-likelihood function is inaccurate, the samples generated for the
target distribution deviate substantially from the ground truth and yield a large Wasserstein distance,
which may ultimately limits performance on GDA tasks. In summary, the key questions addressed
in this paper can be summarized as follows: How can we generate intermediate domains without
compromising the accuracy of the target domain? How can robust intermediate domain generation
be achieved within this framework? Does this approach improve the performance for GDA task?

3.2 DUAL-FORM TRANSPORTATION FOR INTERMEDIATE DOMAIN GENERATION

As shown in Eq. (4), simulating the gradient flow to generate intermediate domains is precisely
equivalent to solving a Wasserstein-distance-regularized optimization problem. This insight opens
up a practical alternative: instead of explicitly estimating the target domain’s probability density,
one can guide source samples by directly tackling this optimization formulation. Thus, we have the
following proposition regarding the solution property of the problem defined in Eq. (4):

Proposition 1. Consider the following primal problem:

. . 1
EPrzmal = argmin 27 W22 (p(x))p(fﬂt)) + Df [p($>7pT(l')]- (6)
p(z)EP2(RP) 411

This problem is equivalent to the following semi-dual formulation:
emiDua : 1 *
et —sup By [igf (5T = 0l ~ 0T (@) ) | - Byl (-], )

where w : RP — R is a measurable continuous function, T : RP — RP is the transport map, and
[* denotes the convex conjugate of f, defined as f*(z) = sup,q (zy — f(y))-

Importantly, the structure of the semi-dual problem ensures that both p;(z) and py(x) are involved
only through expectation operators, rather than through explicit density evaluations. This enables the
use of Monte Carlo methods to approximate all necessary integrals, thereby eliminating the need for
access to the density function—particularly for the target domain—when constructing intermediate
distributions. Practically, following prior works (Korotin et al., 2023; Choi et al., 2023; 2024), we
can parameterize both the dual potential w and the transport map T' by neural networks, denoted
as wg and T} respectively. The models are trained in an alternating adversarial scheme to learn the

sequence of maps {Tg,t}tT;Ol, which can be applied to generate intermediate domains progressively.

3.3 ROBUST TRAINING PROCEDURE FOR SEMI-DUAL FORM TRANSPORTATION

While Section 3.2 provides a semi-dual form of the gradient flow problem that avoids explicit PDF
estimation in target domain, naively training £5™Pu! in Eq. (7) is intrinsically unstable because
of its composite ‘sup—inf’ structure. This instability is not merely algorithmic: the objective itself
may be non-identifiable. We formalize this phenomenon by proving that the dual problem can have
non-unique optima, as the following theorem shows:

Proposition 2. The semi-dual formulation in Eq. (7) admits non-unique optimal solutions.

To address this issue, we incorporate an entropy regularization term into the primal objective Eq. (6),
which leads to the following proposition:

Proposition 3. Let (x4, x) := p(x;) pr(z) denote the reference joint PDF. The entropy-regularized
primal problem is

. o1
LEPinal — argmin — W2(p(x), p(x2)) + Dy[p(x), pr ()]
peP(RD) 27]

®)
7T($t7 x)
1 —1]da: d
+ 6//7T($t,l‘) [ Ogn(xt,x) ] das d,
and is equivalent to the semi-dual optimization problem
1 2
-SemiDua w(z)—5- ||lz—zt]| .
LSl = sup — €Ep(y,[log Epy (a)exp{ ————))] ~ Epplf*(~w(@))], O
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where w : RP — R and f* are as defined in Proposition 1.

On this basis, we provide a theoretical guarantee of uniqueness for the semi-dual objective in Eq. (9):

Proposition 4. The semi-dual formulation in Eq. (9) admits a unique optimal solution.

Notably, as seen in Eq. (9), the semi-dual objective depends solely on the potential w. Consequently,
we can optimize a single model, which lowers the computational burden. We therefore parameterize
w by a neural network wy and carry out the optimization.

Finally, conditioned on the resulting w,, we subsequently optimize the transport map Ty(x) via the
following objective based on Eq. (7):

. 1
argemln %Hmt — Ty(x1) |15 — we(To(xy)). (10)

Notably, we denote our approach as “E-SUOT”, as the derivation of Ty is grounded in the Entropy-
regularized Semi-dual Unbalanced Optimal Transport framework.

3.4 OVERALL WORKFLOW FOR E-SUOT

Although Sections 3.2 and 3.3 have presented the E-SUOT framework for intermediate domain
generation, they do not provide a unified view of the overall workflow for generating intermediate
domains. To address this, we summarize the complete procedure in Algorithm 1 (Due to page
limit, the complete algorithm and other detailed information are summarized in Appendix D) and
the corresponding illustration is given in Fig. 2. As shown in the algorithm, the construction of wg
and T} are performed as separate steps, corresponding to Fig. 2(a), and are illustrated in Lines 3—6
and Lines 7-10, respectively. By iteratively executing the procedure described in Lines 3-10, we
obtain a sequence of transport maps, 7 = {Tgyt}tT;Ol, which progressively transport samples from
the source domain to the target domain, as we demonstrate in Fig. 2(b).
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Figure 2: The illustration of the proposed E-SUOT: (a) the dual formulation for obtaining the trans-
portation map, and (b) the evolution process from the source to the target domain.

Once the transport map sequence 7 = {Ty ;}/—," has been obtained, we proceed to train the classi-
fier h in a stage-wise manner along the transport path. Specifically, at each intermediate step ¢, we
first map samples z; from the current domain to the next intermediate domain x;; using the corre-
sponding transport map T ;. We then update or train the model h, using the mapped data x4 as
input. By iteratively applying this procedure for¢t = 0, ..., T —1, the model is progressively adapted
along the sequence of intermediate domains, ultimately bridging the source and target domains.



Under review as a conference paper at ICLR 2026

Algorithm 1 Overall Workflow for Construing E-SUOT-based Intermediate Domain Generation

Input: Source domain samples: {(aso ,yé)) ;1. target domain samples: {(xT ,ygp)) i1, eNntropy

regularization strength: e, step size: n, number of intermediate domain 7" — 1, neural network batch
size B, and neural network training epochs: £.
Output: The set of transportation map: 7 = {Tp ; }{_'

I: T+ 2.

2: fort=0to7T — 1do

3: fore=1to & do

4: Sample a batch {;z:t B~ {(xf 7yt ) N and {zT 1B~ {(I(T 73/T )(?I:r |
we,t (x5 @02
5: Update wg,+ by: ¢ < argmin, EZFI IOgE Zle[exp( o.t(xg’)— 6H &=z |l ))] n
B
% Zj:l f*( We, t(xéf)))
6: end for
7. fore=1to& do
8: Sample a batch {z{"}8 | ~ {(xgi),yt(i)) oo
9: Update Tj ; by: 0 <— arg ming z Zl . ||33t _ To,t(argl))Hg _ wqb,t(Te,t(l‘gl))).

10:  end for

1 2l Ty (e, vie {1,... N}
122 T« TU{Ty,}

13: end for

3.5 THEORETICAL ANALYSIS

Notably, our derivation sidesteps the explicit estimation of the PDF of the target domain by leverag-
ing the semi-dual formulation. This naturally leads to two important questions: (1) Can the proposed
E-SUOT framework transport the source domain sufficiently close to the target domain? (2) How
does the model perform on the target domain after transport?

To address the first question, we present the following theorem, which quantitatively characterizes
the discrepancy between p(z) and pr(x):

Theorem 5. The optimal solution p*(x) to problem defined in Eq. (8) satisfies the following bound:
Dy [p* (), pr(z)] < Wa(p(z:), pr(2)). (1)

From Theorem 5, we observe that as ¢ increases, the transported PDF p(x) progressively becomes
similar to pr(z). Based on this result, we present the following theorem, which provides a theoreti-
cal guarantee for the model’s performance on the target domain:

Theorem 6. Under mild assumptions, the E-SUOT-based GDA ensures that the target domain gen-
eralization error is upper-bounded by the following inequality:

Epr (hT) < €po (h()) + €po (h;) + LCC + Sslata (12)

where u is the Lipschitz constant of the loss function, ( is the Lipschitz constant bound for hypothe-
ses in H, C aggregates the cumulative domain transportation and label continuity costs along the
adaptation path, and S, is the statistical error term.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets: We conduct case studies on three datasets. Specifically, the datasets are “Portraits” (Ku-
mar et al., 2020), “MNIST 45°” and “MNIST 60°” (LeCun, 1998; Deng, 2012). For the last two
datasets, we construct target domains by rotating vanilla images by 45° and 60°, thus referred to as
MNIST 45° and MNIST 60°, respectively. Detailed information is given in Appendix D.1.

Implementation: Following prior work (Zhuang et al., 2024; Sagawa & Hino, 2025), we employ
semi-supervised UMAP to produce low-dimensional embeddings while preserving class discrim-
inability. Unless stated otherwise, we use the KL divergence in the implementation of the E-SUOT.
Additional details are available in Appendix D.2.
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4.2 BASELINE COMPARISON RESULTS

We first compare our Table 1: Baseline comparison on GDA setting.
proposed approach with Method | Portraits | MNIST45° | MNIST 60°
several existing GDA- etho

based methods, including | Accuracy A | Accuracy A | Accuracy A
Self-training, GST (4 inter- Source  |0.71 - 0.58 - 0.37 -
mediate domains) (Kumar Self Train|0.77°  18.8% [0.59"  10.5% |0.40°  18.6%
et al., 2020), GOAT (He GST (4) |0.76" 16.9% |0.59* 11.3% |0.40* 18.5%

GOAT  [075°  153% |0.65°  +11.3%|037*  11.1%
et al, 2024), CNF Sagawa CNF  |0.80°  112.4%|058  [14% |042*  113.5%

& Hino (2025), and GGF  [0.83*  117.2%/0.58 112% (04T 111.0%
GGF (Zhuang et al., 2024). E-SUOT |0.86" 121.5%0.72* 123.4%)0.51* 138.6%
As shown in Table 1, our Kindly Note: “*” marks the variants that E-SUOT outperforms signifi-
proposed E-SUOT frame- cantly at p-value < 0.05 over paired sample ¢-test. A denotes the per-
work consistently outper- formance change relative to the source classifier. Bolded and underlined

forms the current state-of- results are the first and second best results, respectively.

the-art methods on all evaluated datasets. These results demonstrate the effectiveness and supe-
riority of the E-SUOT framework. In addition, we observe that flow-based methods, such as CNF
and GGF, generally achieve top-2 performance on most datasets, highlighting the potential of in-
corporating flow-based methods in GDA tasks. However, we also note that flow-based methods,
occasionally underperform. This observation suggests that flow-based GDA, which requires explicit
PDF estimation on target domain, may have inherent limitations, as discussed in Section 3.1.

4.3 ABLATION STUDIES

We perform ablation studies from two perspectives: the training strategy for Ty and the choice of
f-divergence. For the training strategy, we 1). examine the effect of removing the entropy regular-
ization term—reducing the method to the adversarial training strategy in Eq. (7), and 2). evaluate a
barycentric projection approach analogous to flow matching (Lipman et al., 2023), where the trans-
port plan is first estimated and then used to project source samples toward the target, subsequently
being refined during training. For the objective functional, we study different parameterizations of
f*, such as employing non-decreasing convex functions like 1) Softplus, and also compare the
2) x? divergence and the 3) identity function. More detailed information on these experiments’
implementation is provided in Appendix D.3. The ablation study results are summarized in Table 2.

Table 2: Ablation study results.

Dataset | Portraits | MNIST45° | MNIST 60°

Metric | Accuracy A | Accuracy A | Accuracy A
Trainin Adversarial | KL 0.75* 19.4%0.52* 127.8%0.41 119.4%
& Barycentric | KL 0.84 $2.3%10.62* $13.3%(0.41% 119.3%
Entropy Softplus|0.80* $7.3%10.60" $17.2%10.38" 125.1%
Functional |[EOTOPY | X 080 17.7%[0.60"  1165%|0.42°  16.9%
Entropy Identity 0.81* 16.1%0.60" $17.4%10.40* 122.3%

Entropy KL 0.86 - 0.72 - 0.51 -

Kindly Note: “*” marks the variants that E-SUOT outperforms significantly at p-value <
0.05 over paired sample ¢-test. A denotes performance change percentage compared to E-
SUOT with entropy regularization and KL divergence.

From Table 2, we find that adversarial training performs the worst, underscoring the importance of
entropy regularization for model training in Section 3.3. While barycentric mapping is competitive,
it struggles on complex datasets such as MNIST 45 and MNIST 60, highlighting the need for the
semi-dual formulation. Additionally, alternatives to KL divergence—especially Softplus—cause
significant performance drops, emphasizing the importance of proper divergence selection. We
also observe that replacing KL divergence with alternatives such as x? divergence, the identity
function, or particularly Softplus results in substantial performance degradation, further illustrating
that choosing a suitable discrepancy to drive the evolution of source domain to target domain is
critical for promising the performance of GDA.
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4.4 SENSITIVITY ANALYSIS

From Figs. 3(a) to 3(d), we systematically investigate the sensitivity of our E-SUOT model with
respect to key hyperparameters, including batch size B, discretization step size 7, simulation steps
T, and entropy regularization strength € on the Portraits and MNIST 45° datasets.

Specifically, as shown in Fig. 3(a), we observe that increasing the batch size B initially improves
model performance; however, after a certain point, further increasing the batch size leads to a perfor-
mance decline. This pattern suggests that, in the simulation of WGF-based approaches (including
ours), careful selection of batch size is crucial: if B is too small, stochastic sampling noise may
dominate and degrade the results; conversely, excessively large B can cause the model to overfit
and diminish its performance. A similar trend is found when varying the discretization step size 7,
as illustrated in Fig. 3(b). A small step size may prevent the simulation trajectory from adequately
reaching the target distribution within a finite number of steps, limiting learning efficiency. On the
other hand, a step size that is too large introduces significant discretization error, which again results
in poor model performance. Furthermore, as demonstrated in Fig. 3(c), increasing the number of
simulation steps 7" also produces a non-monotonic effect: beyond a certain threshold, more steps
actually undermine performance. This is likely because aligning the feature/target distributions too
strictly does not necessarily correspond to optimal performance in the target domain, thus further
justifying our introduction of divergence-based regularization to relax strict alignment constraints
compared to traditional OT-based methods. Finally, as shown in Fig. 3(d), the entropy regulariza-
tion parameter € also significantly influences results. We observe that varying e can lead to diverse
performance outcomes, highlighting the importance of properly investigating and tuning the entropy
regularization strength in practical applications. In conclusion, our sensitivity study underscores the
importance of carefully selecting the batch size 3, step size 7, and end time 7" for E-SUOT perfor-
mance, and further indicates that the entropy regularization strength € is dataset-dependent and thus
warrants systematic validation on the target dataset to achieve optimal E-SUOT performance.

0.85{ —e— MNIST45" ==\ 0.85 /M —e— MNIST45° 0.85 = 0.85 P
S . is \ S /e Portraits 30.80 & = g o
2 0.80{ Portraits \ 3\/0.80 Vi S é 8 ”" 50.80 /, *
= 7 N m==f S %0751 o= = - e MNIST45¢
3075 4= = mimm s 2075 w===| 397 2 — F07s| - ST 45
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3 o 8 3 0.65 i 3
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0.65 06519 v 0.6018” .. Portraits \. 0.65 e
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(a) Accuracy (%) along B. (b) Accuracy (%) along 7. (c) Accuracy (%) along T'. (d) Accuracy (%) along e.
Figure 3: Sensitivity Analysis Results on Portrait and MNIST 45° Datasets.

4.5 COMPUTATIONAL TIME COMPARISON

In this subsection, we further analyze the empirical time complexity of the proposed E-SUQOT ap-
proach in comparison with alternative methods on the GDA task. The computational time results
are presented in Fig. 4.

As shown in Fig. 4, the GOAT approach is the 30| = Sortoan t
most time-consuming on larger datasets, while 25 o I
GGF takes more time on smaller datasets; both ONF

. . 820 GGF
consistently rank among the top two in terms of z
computation cost. This can be attributed to their s I I i
inherent algorithmic structures: GOAT involves Lo p
solving the exact optimal transport problem, 05
which becomes computationally prohibitive as o0 | IR =-= = =-m -
the dataset size increases. In contrast, GGF Porraits MNIST 457 MNIST 60°
relies on the forward Euler method, which re- Figure 4: Computationa] time (s) Comparison.

quires a very small step size—and therefore a

large number of iterations—to avoid significant simulation errors, resulting in higher computational
overhead even on smaller datasets.Notably, the computational time of our proposed E-SUOT re-
mains stable as dataset size grows. This efficiency stems from directly parameterizing the transport
map using a single forward pass through a neural network and the JKO scheme, a variant of back-
ward discretization approach, requiring only a few steps to achieve the desired performance.
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5 RELATED WORKS

5.1 GRADUAL DOMAIN ADAPTION

GDA seeks to bridge the distributional gap between source and target domains by leveraging a se-
quence of intermediate domains, thereby enabling more fine-grained adaptation. Early works have
explored self-training strategies (Kumar et al., 2020), adversarial objectives (Wang et al., 2020), and
provided generalization bounds under gradual distribution shifts (Kumar et al., 2020; Dong et al.,
2022; Wang et al., 2022). However, these approaches often depend on the availability of discrete
intermediate domains (Chen & Chao, 2021). To address this, optimal transport approaches (Ab-
nar et al., 2021; He et al., 2024) have been leveraged to construct intermediate domains along the
Wasserstein geodesic, ensuring minimal distributional discrepancy in the adaptation process. More
recently, flow-based GDA has emerged, which explicitly models domain evolution and synthesizes
continuous intermediate distributions via parametric flows. For instance, Sagawa & Hino (2025)
uses continuous normalizing flows to parameterize domain trajectories as ODEs in the data space,
while Zhuang et al. (2024) incorporates label information into this evolution and employs gradient
flows to realize the steepest transformation from source to target domain. Nevertheless, flow-based
methods still require explicit estimation of the target domain’s PDF to guide the evolution, and
inaccuracies in this estimation can lead to performance drops in target domain. To address this lim-
itation, we reformulate the flow-based approach from a semi-dual formulation (see Proposition 1),
which unifies the flow-based and optimal transport methods. Building on this, we further propose a
convergence-guaranteed approach with the help of entropy regularization (Proposition 3) and ana-
lyze its generalization error (see Theorem 6). during the evolution of the flow and proposed gradient

5.2 SEMI-DUAL FORMULATION OF GRADIENT FLOWS

Gradient flow (Santambrogio, 2017), which seeks to optimize a specified functional in the space of
probability measures, has played a critical role in both sampling and optimization algorithm design.
For gradient flows induced by f-divergences (with the KL divergence being the notable example),
such as Langevin sampling (Welling & Teh, 2011), have been extensively explored to generate sam-
ples that progressively transition from the source domain toward the target domain. However, these
methods typically assume access to an exact (unnormalized) PDF for the target distribution (Liu &
Wang, 2016; Liu, 2017), which is often infeasible in practice when only samples are available. To
overcome this, several approaches have explored dual formulations of f-divergence (Nguyen et al.,
2007; 2010), which avoid explicit density estimation for the target domain and instead optimize
primal formulation (Korotin et al., 2023; Rout et al., 2022; Fan et al., 2022; Gazdieva et al., 2023;
Choi et al., 2023; 2024). These dual-formulation methods, however, generally require adversarial
optimization characterized by a composite “sup-inf” structure to in order to properly approximate
the dual objective when implemented with neural networks (Nowozin et al., 2016; Arjovsky et al.,
2017). Our work differs from these approaches in two key aspects. First, we provide a theoretical
analysis from the perspective of the non-uniqueness of optimal solutions in Proposition 2, highlight-
ing that such adversarial formulations can suffer from this issue, which may hinder training stability.
Building upon this insight, we introduce the entropy regularization that transforms the adversarial
game into an alternative paradigm in Proposition 3, and further prove that this regularization ensures
the stability via the uniqueness of the optima in Proposition 4 and convergence in Theorem 5.

6 CONCLUSIONS

In this paper, we addressed the challenge in flow-based GDA, namely the reliance on explicit esti-
mation of the target domain PDF inherited from traditional f-divergence formulations. To overcome
this, we reformulated the flow simulation as an optimization problem augmented with a Wasserstein
regularization term. Building on this, we derived a novel semi-dual formulation that avoids explicit
estimation of the target density. However, we observed that the resulting semi-dual structure intro-
duces instability due to its composite ‘sup-inf’ structure. To address this, we proposed an entropy
regularization term that eliminates the inner inf operator, thereby restoring stability and ensuring
uniqueness of the optimal solution. Based on these insights, we developed a new GDA framework
called “E-SUOT” and provided theoretical guarantees for its convergence and generalization. Fi-
nally, extensive experiments validate the effectiveness and practical advantages of our approach.
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A  MATHEMATICAL BACKGROUND ON OPTIMAL TRANSPORT

We begin by reviewing the relevant background of optimal transport, based on references (Villani
et al., 2009; Peyré et al., 2019). Assume continuous variables with densities: source p(x) supported
on X, target £(y) supported on ), and a cost ¢(z,y) > 0. We search for a joint probability density
function which is called transport plan 7(z, ) > 0 such that:

[ ) dy = pta), (A1a)
[ #)do = etw) (A1b)
and minimize expected cost:
;r%fo // c(z,y) m(z,y)dy de, (A2)
where c(x,y) is the cost function, for example, squared Euclidean norm: c(z,y) = ||z — y||3.

Notably, when c¢(z,y) is chosen as the squared Euclidean distance, the resulting optimal transport
cost corresponds to the squared Wasserstein-2 distance between the two PDFs.

Introducing potentials u(x) and w(y) as Lagrange multipliers for the marginal constraints, we get:
sup [/u(x) plx)dz + /w(y) E(y)dy] st ulx)+wly) <c(z,y) Va,y. (A3)

Intuitively, v and w are “prices”’; the constraint ensures the total price never exceeds the cost func-
tion. In addition, v and w are also called “(Kantorovich) potential” in optimal transport.

Based on this, we can eliminate one potential via the c-transform as follows:
w(z) :=inf e(z,y) — w(y). (A4)
y

Based on this, we get the semi-dual formulation of optimal transport problem (Korotin et al., 2021;
2023; Choi et al., 2023; 2024; 2025) which maximizes over one potential:

sup / w(zx) p(z) dz + /w(y) ¢(y) dy. (A5)

w

Notably, when total mass may differ or we allow creation/destruction of mass, we can relax marginal
constraints using the f-divergence-based penalty terms (Chizat et al., 2018; Zhang et al., 2022).
Specifically, we still want to optimize m(x,y) > 0, but we will penalize deviations of the induced

marginals j(z) := [ 7(z,y)dy and £(y) := [ 7(x,y) dz from p(z) and &(y):

mn// (g wla,y) dydz + M Dy (3(2), (@) + XDy EW).EW),  (AH)

where D¢ (p(x = [ p(z) (

In addition, using the convex conjugate f*, the dual problem becomes

)dxand)\12>0

max—/ (z )f1 dx /§ f2 )) st u(z)+w(y) < clz,y) Ve, y, (A7)

u,w
where f1, f2 are the chosen divergences on each side.

Similarly, we can eliminate one potential via the c-transform as follows:

max —/p(l‘) fi(=wi(z)) dz — /E(y) F3( = w(y)) dy. w'(z) = inffe(z,y) —w(y)} (A8)

w

Based on this, we obtain the semi-dual formulation of the unbalanced optimal transport problem.
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B THEORETICAL DERIVATION

B.1 DERIVATION OF EQ. (4)

In this subsection, we want to derive the following equivalent relationship in the main content to
uphold the rigor of our manuscript:

oDy [p(zt), pr]

Sp(z1) = p(x44y) = argmin fWQ( (z),p(z4))+Dy[p(), pr(z)].

Tiqn = T—NV
! p(z)EP2(RP) 21]
(B.1)

Notably, the optimization problem given by the right-hand-side of the abovementioned equation is
also called Jordan-Kinderlehrer-Otto canonical form (Jordan et al., 1998; Caluya & Halder, 2020)
or minimum movement scheme (Park et al., 2023). Before conducting the derivation, it is necessary
to introduce the definition of Wasserstein distance. The squared 2-Wasserstein distance W3 can be
defined by finding a transport map T' : RP — RP that minimizes the average cost of transporting
mass from p(z) to £(x) as follows:

Wy (p, / B.2)
0.0 =t o= T@) ple)de (
where T indicates the pushforward measure, and the expression for T'(z) is defined as follows:
T(z) =z + nu(x). (B.3)

Meanwhile, during the transportation, the differential equation that delineates PDF of the evolution
process driven by Eq. (1) is called continuity equation, defined as follows:

Ip(z+)
ot

==V [ve(z)p(a)]. (B-4)

Building on Egs. (B.3) and (B.4), and discretizing the continuity equation in the time domain using
the forward Euler scheme (Butcher, 2016; Evans, 2022), we obtain:

p(x) = p(s) =V - (plz)ve(ar)) + O(n7). (B.5)

Taking the functional derivative of D [p(z), pr(x)] with respect to p(z), we get:

D@ pr@] = 5 [pr(e) s ( e ) "

pr()

(B.6)

/Mf pT(a: ) wlwag(i) dx

@ 0Dy Op(x)
= dz
/ ép(z) On

Here, step (i) is based on comparing the first variation:

dDylp;o] = —

.o [P () o

= /pT(x) 1 (pi%ﬁ)) pTl(z) o(x)dx (chain rule, pr fixed)

p(r)
/ 7'(#55) o) d.
with the definition of functional derivative:

ylpio] = [ 25 o) da,
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where o (z) denotes an arbitrary perturbation function. Inserting Eq. (B.5) into Eq. (B.6), we get

d oD
0 2 @.pr@)] = [ 555 [= V- (pl@)(@)] de
oD
= T(i:) [— v/ (z)Vp(z) — p(2)V - ve(2)] da

(B.7)

= / ( -V [6(21?;)/)(33)%(%)} +p(z) v (z) Véi%)) dz

© [ ofayol (0 v LD gy,

Step (ii) is based on the chain rule:
5 §
V- [ p@)u@)] = 2k p(@) [V - v(@)]
5
+ s vl (@) Vo() (B.8)
oDy 1T
+ [V 5p(£)] [p(z)ve()].

Step (iii) uses a mild regularity assumption (Abraham et al., 2012; Liu et al., 2019; Shi et al., 2022)
on %p(z)vt(x), for example rapid decay as x — o0, so that

/—V . {;pﬂ?i) p(aﬁ)vt(x)}dx =0. (B.9)

Consequently, D [p(z), pr(z)] can be expanded as follows when i — 0:

Dylp(z), pr(z)] = Dylp(2:), pr(z)] +77/p(xt)vt—r(mt)v6Df[p§;;(ti;];T(x)]dZC. (B.10)

For the squared 2-Wasserstein distance, we get:

WE(p(o).plae)) = [ par)llo — T (ol = [ pawo)li (wlide < a? [ o) outen)

(B.11)
where T™*(z) and v} (x) are the optimal transportation map and optimal velocity field. Since v;(z)
is not the optimal velocity filed, we obtain the last inequality. Based on Egs. (B.10) and (B.11), we
finally reach the following result:

Do), pr()] + %Wﬂmx),p(xm Dy lp(er), pr(@)

<Dy pl)epra ] + DBy lunCe) B+ [ pteno] (20) 9 PPN 4y ot et

op(t)
0Dy [p(@e), pr(@); o 5 By [lve() 3] + n/p(xt)vj(xt)vmﬂp(m),pT(:c)]d

n
<3 B V=000 (o)
>0
oD )
:ng(a:t){”Ut(xt) +V f[p(zgitém(x)] 13}
(B.12)

Consequently, the optimal velocity field that reduces the upper bound of the optimization problem
defined by the right-hand-side of Eq. (4) can be given as follows:

v (an) — —yRelp@).pr() B3

op(wt)

which implies that the left-hand side of Eq. (B.1) is a sufficient condition for the optimality of its
right-hand side.
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B.2 DERIVATION OF PROPOSITION 1

Proposition (1). Consider the following primal problem:

: 1
argmin —

ﬁPrimul _
p(a)ePs(RP) 27]

W; (p(x), p(1)) + Dylp(x), pr ()] (B.14)
This problem is equivalent to the following semi-dual formulation:
Ll — sup By, [inf (|7 () =22l = w(T(@e)]| = Eprio [ (—w@)],  B.15)

where w : RP — R is a measurable continuous function, T : RP — RP is the transport map, and
[* denotes the convex conjugate of f, defined as f*(z) = sup,q (2y — f(y))-

Proof. Eq. (B.14) can be reformulated as follows:

inf %// llz: — |37 (z, x)dwda + /f ( p(z) )pT(x)dx, (B.16a)

T{'€RBXD pT(Jﬂ)

st play) = /ﬂ(xt,x)dx, plx) = /ﬂ(xt,x)dxt. (B.16b)

Based on this, we introduce the Lagrangian multiplier Biegler (2010) u(z;) and w(x) to handle the
equality constraints given by Eq. (B.16b) as follows:

L :%/ llze — |37 (z¢, 2)daida + /f ( pz) )pT(x)dx

pr(z)

+/u(xt)[p(xt) —/w(th)dx]dxt—f—/w(x)[p(x) —/w(mt,x)dxt]dx

— [[ (g lloe 213 ~ u(e) - wi@)ln(an o)z o
+/wmmmMm+/me@+fQ§%>muMm

On this basis, the dual function can be given as follows due to the linear independent structure of
problem defined by Eq. (B.17):

g(u,w) = inf // [Q%]Hact —z||5 — u(zy) — w(x)} (e, x) dey da

w(x¢,x)

pr(z)

+/U($t)p($t)d$t+;{lmf)/ [w(x) plz) +f(pf;(2)>]pT(x) dz
(B.18)

7T(iznfm) // [ﬁ”xt — 2|3 — u(zy) — w(m)} 7(zy, ) dy dz

+ [uledpen de— [ pr(e) £ (-wie) de.

where the last line uses the Legendre—Fenchel conjugate (Touchette, 2005; Caluya & Halder, 2020).
Writing y(x) = p(z)/pr(z) and using separability, we have

p(x)

. p(x) oo o
i / lw@ pr() f(pT(d))]pT(x) o= /;%% (w(z)y + f(y)) pr(x) dz
- 7/85%’ (~w(@)y - f(y) pr(z)de (B19)

= —/pT(x) (= w(x))da.
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Suppose that %th — 2|3 — u(z;) — w(z) < 0 for some pair (z¢,z). In this case, concentrating
all the mass of m(x,x) at this point drives the Lagrangian in Eq. (B.18) to —oco. To avoid such
degenerate solutions, it is necessary to impose the condition %th — 2|13 — u(zy) —w(x) >0
almost everywhere. Consequently, the dual problem can be written as

up { [t~ [ pT(w)f*(—w(ff))dw}~ (B.20)

u(x,,)+w(x)<ﬁ |z —=||3 m-ae.

Equivalently, introducing the convex indicator function /¢, this becomes

sup { [ utepten) e [ pr) (-l do - ¢(u(e) + u(o) < 5l - 13}

’ (B.21)
Since f* is convex, non-decreasing, and differentiable, and because ||z; — |3 > 0, the choice
u(xy) = —1 and w(x) = —1 ensures all terms in Eq. (B.21) are finite. By Fenchel-Rockafellar’s

theorem (Bauschke & Combettes, 2017), strong duality therefore holds. Moreover, by complemen-
tary slackness the optimal plan 7* assigns zero mass to pairs where ﬁ lze — 2|3 —u* (z;) —w* (x) >

0, implying that % |z: — z||3 = u*(z¢) + w*(z) 7*-almost everywhere. Hence,
1
u*(zy) = ir;f (%th — z|]* — w*(x)).

Substituting this into the dual yields the semi-dual formulation

sup { [ inf [l = 2l = w(a)] pan) de — [ pr@)s* (=) dx} . B2

w(z)

Defining the transport map via the c-transform as

1
T*(a) € avgain (5o~} - (o))

1 (B.23)

1
=it (5ol = w(e) ) = 5l — T (@) - (T (@)
and substituting Eq. (B.23) into Eq. (B.22), we obtain the final semi-dual objective
mi 1 * *
[ SemiDual _ S]‘ul)p]EP(ft) [Q’r]T (l't) — LL't”% — ’lU(T (-Tt)):| - EpT(z) [f*(—w(x))], (B.24)
It should be pointed out that there is no closed-form expression of the optimal T () for each

w(z) (Korotin et al., 2023; Choi et al., 2023). Hence, the optimization T'(x;) for each w(zx) is
required, and we reach the final semi-dual objective as follows based on Eq. (B.24):

oo supyy gt (51T (w0) = 0118 = w(T(0) )| = By ()]

B.3 DERIVATION OF PROPOSITION 2

Proposition (2). The semi-dual formulation in Eq. (7) admits non-unique optimal solutions.

Proof. Consider the discrete optimal transport setting with a single source point (z; in Eq. (7)) and
two symmetric target points (z in Eq. (7)). Augment the dual objective with an f-divergence term
acting only on the target potential w, but not on the source potential u. Then the dual optimizer is
not unique.

Specifically, let:

* Source space: z; = {a} with p(z;) = 3.

20



Under review as a conference paper at ICLR 2026

* Target space: = {b1,bo} with p(z) = 184, + 380,

* Cost constant on pairs: ||a — b1]|3 = |la — b2||3 = K for some fixed K € R.

p’;(zz)) pr(z) dx acting

only on the target side admits multiple optimal solutions (u, w); in particular, uniqueness fails.

The dual problem obtained from the primal with an additional term [ f (

The demonstration process can be summarized as follows:

1) At the beginning, let us recall the feasibility for the multipliers v and w:

u(a) +w(by) < la—bil =K, ¥je{1,2}. (B.25)

Based on this, we can define a shifted source potential & := u — K and keep w := w.
Hence, the feasibility in Eq. (B.25) can be given as follows:

a(a) +@(b;) <0, Vje{1,2}, (B.26)

where the dual objective differs from the original by a global additive constant (indepen-
dent of (@, )), hence the set of maximizers is unaffected by this normalization. As such,
without loss of generality, it suffices to analyze the case K = 0. For notational simplicity
we drop tildes and write

ut+w; <0, Vje{l,2} (B.27)

2) Eliminating v and obtaining a piecewise-linear term Since p(a) = 1 and p(b;) = p(bs) =
%, the dual objective function (up to an additive constant) can be reformulated as follows:

Jmax - u + %wl + %wg — %f*(—wl) — %f*(—wg), (B.28)

subject to u < —w; and v < —ws. At optimum the constraint in w is tight, hence we have
the following result:

u = —min{wy, wa}. (B.29)
Substituting back yields an equivalent maximization over (wy, ws):
O (wy,wy) = —min{w,wa} + %wl + %w — %f*(—wl) — % *(—ws). (B.30)

On this basis, we can define the “hinge” (V-shaped) linear part as follows:

L(wy,ws) :== —min{wy,ws} + %wl 4 %wQ _ {%(wz —wy), wi < ws, (B31)
5(w1 —wa), wy < wy,
so that L(wy, wa) = %|wy — ws| and in particular L(r,r) = 0 for all r.
Consequently, we have:
D(wy,ws) = %|w1 — ws| — % *(—wy) — %f*(—wg). (B.32)
3) Notably, on the diagonal w; = ws = r, we have the following result:
O(r,r) = —f*(—r). (B.33)

Since f* is strictly convex, the one-dimensional problem max; ®(r,r) has a unique maxi-
mizer r*. Now let us consider antisymmetric perturbations around the diagonal:

w; = 1"+ 8, wg =1% — 5, 6 €R. (B.34)
Then we obtain the following result:
Flwy — wa| = 1]28] = [5]. (B.35)

Using the second-order Taylor expansion of the strictly convex function f* about —r*, we
have for the following equality for small |5:

AP Cw) - B e = =P )~ B ) 8406, B30
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Based on this, we get:

S(r*+06,r*—8) =18 — %f*”(—r*) 82 — f(—r*) 4+ 0(8%). (B.37)

It should be pointed out that, for any sufficiently small but nonzero §, the linear gain term
|5| dominates the quadratic penalty term  f*”(—r*)52, hence

O(r* +05, r" —08) > ®(r*,r*).

Consequently, the diagonal point (wq,ws) = (r*,r*) is not uniquely optimal; in fact,
there exists a continuum of distinct maximizers in a neighborhood along the antisymmetric
direction. The corresponding u is

—(r*=19%), 6>0,

u:—mln{wlvw2}:{_(r*+6) 6<0

yielding distinct optimal triples (u, w1, ws) for different & # 0.

4) If the original cost is ||a — b;||3 = K, recall w = @ + K. Thus each optimal (&, w)
constructed above gives an optimal (u, w) for the original problem by adding K to u. As
the set of optimal w-pairs is already non-singleton, the full optimal dual variable pair (u, w)
is non-unique.

In summary, our proof is based on the counter-example mentioned above. Specifically, in the sym-
metric two-target discrete setting, with the additional f-term acting only on the target potential w,
the dual objective contains a V-shaped hinge L(wy,ws) = %|w; — w,| arising from eliminating
u. This non-strict component competes with the strictly convex penalty — 3, p(b;) f*(—w(b;)).
Along antisymmetric perturbations, the first-order increase from the hinge domlnates the second-
order decrease from the convex penalty, producing a continuum of maximizers. Hence the optimal
dual variable pair is not unique. Consequently, the dual problem defined in Eq. (7) admits non-
unique optimal solutions. O

B.4 DERIVATION OF PROPOSITION 3

Proposition (3). Let k(x:,x) = p(z:)pr(x) denote the reference joint PDF. The entropy-
regularized primal problem is

LEPrimal _ apomin iy\é( (z),p(x1)) + Dy|p(x), pr(z)]

D
pEP2(RP) ( ) (B.38)
T\T¢, T
1 —1]dx; d
e//ﬂ(xt,x)[ogﬁ(xt’x) | da; dex,

and is equivalent to the semi-dual optimization problem
E-SemiDual w(m)—ﬁHx—xtHg * B.39
L = sup — €By g, log By (o exp(——L——))] —Eppolf*(—w(z))], (B39

where f* denotes the convex conjugate of f.

Proof. Define c(zt,z) = ﬁ |lz: — x||3 as the quadratic transport cost. Introducing Lagrange

multipliers u(z;) : RP — R (for the x;-marginal) and w(z) : RP — R (for the x-marginal). The
Lagrangian of Eq. (B.38) is

L(7m, p;u,w) // c(xg, @) w(we, @ dmtda:—&—e// (e, x log gt’ ; — 1}dmtda:
ty L

+/f(%)p:r(x) dm—&-/u(a:t)[p(xt) —/w(mt,x) dm}dmt (B.40)

+ / w(z) [pla) - / (00, 2) da | .
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Grouping 7-, p- and constant terms yields
L= // (c(xt,x) —u(zy) — w(a:)) m(xt, x) day dx

+e// (s, 10 E ;l}dxtdx (B.41)

+/(w(x)p(x)+f( o) ) (x))daw/u(xt)p(xt)dxt.

Define a(xy, x) := c(x, ) — u(z) — w(zx). For each fixed (z, z), minimize

o(y) r=ay+6(y10g% —y), y > 0.

The first-order condition a + elog(y/x) = 0 gives

Y= ke /€ = gelutw—o)e (B.42)
Substituting back yields
inf ¢(y) = —ene = —€k exp(w) (B.43)
y>0 €
Hence
iI;% {7r terms of Eq. (B. 41) // k(xe, T exp u(‘“Hw(w) c(ze,2 )) dz, dx. (B.44)

For p, by Legendre—Fenchel conjugate (Touchette, 2005; Caluya & Halder, 2020), we have:
inf {w(@)o(@) + f(L)pr(@)} = —pr(@) (- w(@)). (B.45)

p(z)>0

Integrating over x gives

it [ ) + S22

pr ()

Combining Eq. (B.44) and Eq. (B.45), we obtain

// Kz, exp u(zt)+w(z) c(mt,z))dz dx

~ [ @ (= wiw)) do+ [ uCw)pen) da
Using k = p(z;) - pr(z), define

A(zy) = /exp(w) pr(x)de. (B.47)

//ﬁ exp LT T w@) = el )y g /p(a:t) Alz) ™22 da,.

€

pr(@de == [ pr(o) (- wla) da.

(B.46)

Then

Thus, Eq. (B.46) can be reformulated as follows:
gu,w) = / [p(xt) w(@) — e plae) Alzy) eu@ﬂ/ﬂ day — / pr(z) f*(—w(z))de.  (B.48)

For each z;, consider

u(ay)

Va, (u) == p(x1) u — ep(s) A(zt) e
The first-order condition

u(zy)

’/’wt( ) =p(xt) — p(zr)Alxs)e = =0
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gives
* 1
uil@)/e = —  u(zy) = —elog A(zy). B.49
e A u*(x4) elog A(x:) (B.49)
Substituting back,
sup ¥z, (u) = ep(zy) (— log A(zy) — 1).
Summing over z; and discarding the constant —e [ p(z;) dz; = —e (independent of w(z)), we
obtain the semi-dual
sup —€Ep(z,)[log A(z4)] — Epp (o[ f* (—w(@))], (B.50)
w
with A(z;) defined in Eq. (B.47). O

B.5 DERIVATION OF PROPOSITION 4

Proposition (4). The semi-dual formulation in Eq. (9) admits a unique optimal solution.

Proof. Let the entropy-regularized dual objective in Eq. (9) be

o) =~y (108 By eIy g @), @S

where f* is assumed to be strictly convex and proper, and € > 0.

We seek to show that g(w) is a strictly concave functional on an appropriate space of measurable
functions w, thus its maximizer (if it exists) is unique.

Our proof can be given by the following steps

1) Define for fixed x;:

w(z) — ||z — 2413

(PE(U);xt) = —elog ]EpT(r) [eXp< )]7 (B.52)

€

The mapping w — E,,, (4 [exp(w)] is log-convex by Holder’s inequality, and

therefore, w +— ®.(w;z;) is strictly concave, except in directions where w differs only
by an additive constant almost everywhere. Taking the expectation over x; preserves strict
concavity unless w is constant almost everywhere.

2) The term —E,[f*(—w(x))] is strictly concave with respect to w because f* is strictly
convex. Specifically, for any distinct wy # wa, strict convexity of f* gives for all A €
(0, 1),

—Eo [/ (=((1 = Nwi () + Adwa(2)))] > —(1 = NEq [f* (—wi1(2))] — ABo[f* (—w2(x))]
provided w1 () # wo(x) on a set of positive measure.

3) Since the sum of a strictly concave function and a concave function is strictly concave,
it follows that the full dual objective g(w) is strictly concave on the set of admissible
functions.

As aresult, g(w) admits at most one maximizer, and the proposition is proved. O

B.6 DERIVATION OF THEOREM 5

Theorem (5). The optimal solution p*(x) to problem defined in Eq. (8) satisfies the following bound:

Dylp*(x), pr(z)] < Wa(p(zt), pr(2)). (B.53)
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Proof. To facilitate reading, we define the signal as follows:

Wi &)= _int [ [ o~ ylBm(o. oy

t+e / / m(p(a), p(ae))log w(p(z), plar)) — 1dadz,,

(B.54)
The dual representation of the f-divergence based on the Legendre—Fenchel conjugate is:
Df[p(l‘),pT(x)} = 51(113 {Ep(x) [U('r)] - EPT(I) [f*(v(x))]} . (B.55)
Thus, the problem defined in Eq. (8) can be written as:
i Waclpla),pa) + Sy (0)] — By [ ()} (B.56)

Interchanging min, ), sup,,,) by the convexity-concavity and Sion’s theorem (Sion, 1958; Simons,
1995), we obtain the following result:

sl(l}; —]EPT(JU) [f*(v(z))] + ;&f){WQ,e(P(:C),p(mt)) + Ep(w) [v(x)]} (B.57)

The inner minimization with respect to p(x) is precisely the entropic optimal transport problem in
the semi-dual form for PDFs p(z) and p(x;):

min Wa o(p(@). (1)) + By [o(0)] (B.58)
whose optimal value equals
v(x) — c(xg, @
Ep(zt)[—elog/exp(¥)dy]. (B.59)

This follows from standard duality in entropic optimal transport.
Plug the expression above into the main problem:
v(x) — c(ze, @ N
up By e log [enM =y g, 0@ B
v
This is the desired semi-dual form.

At optimality, plug in any variation v = v* 4 ¢ into g(w) and take derivative w.r.t. § at 0, then set
to zero. The calculation is:

() exp (Lm0t

0=22g9(v"+0¢)|  =Epq, ; —Epr @) [(F) (0" ()0 ()],
9o s Y [ exp (7” (x)_:(xt’x)) dz rrio)
(B.61)
which for all test functions v (z) implies
exp (v*(a:)—c(acf,,a:))
[ pled——p S da = pr@) () (0 (@),
fexp(v T Ec T, T )de
=pr ()
That is, the pushforward of p(x;) under the mapping:
exp (v*(m)fc(xt,x))
T = ;
(33|-77t) feXp (U*(x)—c(aff,,x)) dxa
which indicates that
pr(z) = pr(@)(f*) (0" (2)). (B.62)
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So, p*(z) = pr(z) is the marginal of the optimal transport 7* as claimed.

Since the value of the primal objective at p(x) = pr(x) gives an upper bound:

Dy[p™ () |[pr ()] + Wa,e(p™ (), p(21)) < Wa c(pT, p(24)). (B.63)

So in particular, we get:
Dylp*(@)llpr ()] < Wae(p(x1), pr(2)). (B.64)

In addition, we notice that the following inequality holds for ¢ > 0:

e//ﬂ(p(x),p(xt))[log m(p(x),p(zt)) — 1]dadz, < 0. (B.65)

Plugging Eq. (B.65) into Eq. (B.64), we arrive at the desired result. O

B.7 DERIVATION OF THEOREM 6

Theorem (6). Under mild assumptions, the E-SUOT-based GDA ensures that the target domain
generalization error is upper-bounded by the following inequality:

epr (hr) < epy (ho) + €po (h7) + 1CC + Syrar, (B.66)

where v is the Lipschitz constant of the loss function, ( is the Lipschitz constant bound for hypothe-
ses in H, C aggregates the cumulative domain transportation and label continuity costs along the
adaptation path, and S, is the statistical error term.

Before formally proving the theorem, we introduce the following assumptions, which are mild and
commonly satisfied in practical domain adaptation scenarios:

(A. 1) The loss function £(-,y) is ¢t-Lipschitz with respect to its first argument; that is, for any
a,a’ and fixed y, we have:

[L(a,y) — L(a,y)| < tla—d'l. (B.67)
(A. 2) Each hypothesis h € H is -Lipschitz, i.e., for any z, 2, we have:
() = h(a2')] < (|l — 2] (B.68)

(A. 3) The labeling function ¢; along the adaptation path is such that |g;(x) — g:—1(z)| is small
for most z, to ensure local continuity.

(A.4) The sequence of domains (pg, p1, - - ., pr) is induced by E-SUOT-based GDA transport, so
that the total cumulative cost C as defined below is finite.

(A.5) At every step, empirical risk minimization over sufficient samples ensures a small
empirical-to-expected error gap, leading to a statistical error term Sgy.

(A. 6) The sample size for each domain is large enough to make Sy, negligible in the asymptotic
regime.

Notably, Assumptions (A.1), (A.2), (A.5) and (A.6) are standard and generally hold for commonly
used loss functions and hypothesis classes. Unless the loss or model is exceptionally non-standard,
these can be stated directly with the theorem and do not require additional justification. Assumption
(A.3) holds in cases where the labeling function is changes smoothly along the adaptation path. For
our construction, since the intermediate domains are generated by incremental, continuous transfor-
mations, we have E,, | ;)|q:(x) — g;—1(x)| is small for every ¢. As for Assumption (A.4), in our
E-SUOT-based GDA, each domain is generated via an iterative unbalanced optimal transport step
that progressively reduces the transport cost as we proved in Theorem 6. This guarantees that the
cumulative cost C is finite, as can be bounded analytically. In summary, all the above assumptions
are justified in our setting. Based on these assumptions, we now proceed with the formal proof.

Proof. Our goal is to bound the target risk €. (h7). Consider the telescoping sum along the domain
adaptation path:
Epr (h1) = €po(ho) + [€pr (h1) — €y (ho)] - (B.69)
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To make the recursion explicit, rewrite this as:

T
epr (hr) = £ (ho) + > [ep, (he) — €p,_, (he—1)] - (B.70)
t=1

Foreacht € {0,...,T — 1}, we observe that

Ep: (h’t) - €Pt—1(h’t—1)
= lep, (he) — ep, (he—1)] + [ep, (hi—1) — €p,_, (he—1)] + [epr_, (hi—1) —&p,_, (he)]  (B.T1)

optimization error domain shift term <0 by ERM

In practice, the last term is non-positive since ‘empirical risk minimization’ (Vapnik, 1999; Shalev-
Shwartz & Ben-David, 2014; Zhuang et al., 2024) ensures moving toward lower risk, so we can drop
it for an upper bound.

By the Lipschitz property of £ and h,
|€Pt (h) —€pia (h)| < LC W (ptflvpt)' (B72)

Suppose the true label function ¢; changes along the path. Following standard analysis, this gives
an additional cost due to the label discrepancy:

LEp, (o)|@ (@) = ge—1(2)]. (B.73)

Therefore, each step can be bounded by

lep, (ht) = €p,_y (he—1)| < Wi (pi—1,pt) + L Ep, )| fe () — fro1(z)| + 50 (B.74)
where s; denotes the statistical error at step ¢.
Let B
Z {W1 Pi—1,pt) + CEpt(w)|qt( r) — q—1(x)| (B.75)
and -
Sgtat = Z St. (B.76)
t=1

Sum these bounds for all ¢ € {0,...,T — 1}, we get:

Z lep, (he) — €p, s (he—1)| < 1¢C + Sqaar- B.77)

As the final classifier A may not be optimally trained with respect to pg, include the approximation
gap:

€po (ho) + €po (h;) ~ Epo (ho) (B.78)
where hZ. is the risk minimizer in H for po.
Finally,
Epr (hT) < €p0(ho) + €po (h;“) + 1(C + Sgtats
as desired. O

C DETAILED ALGORITHM OF E-SUOT FRAMEWORK

While Algorithm 1 outlines the general workflow for generating the intermediate domain, it does
not specify how E-SUOT can be applied to the GDA task. To bridge this gap, we first present the
complete workflow for E-SUOT-based GDA in Algorithm 2.

Before detailing this workflow, we emphasize that our focus is on the classification setting. Specifi-
cally, we denote the classifier’s output as ¢ and the ground-truth label as y. The loss function for our
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classifier h, ;, parameterized by w at time ¢, is defined as follows. In our implementation, we adopt
cross-entropy as the loss function:

Lk (@, ht, Ye) Zy Dlog iy = Zy D log hy e (z)"). (C.1

Building on this foundation, the complete workflow for E-SUOT-based gradual domain adaptation
is summarized in Algorithm 2 based on Algorithm 1. Notably, our algorithm decouples the training
of the transport function Ty from the fine-tuning of the classifier h,,. This separation allows the
intermediate domain to be generated offline and subsequently used for online inference, potentially
reducing overall computation time comparable to traditional GDA approaches.

Algorithm 2 Overall Workflow for Construing E-SUOT-based Gradual Domain Adaption

Input: Source domain samples: {(:co 7yé)) L1, target domain samples: {(xT ,y(TZ)) L1, eNtropy

regularization strength: e, step size: n, number of intermediate domain 7" — 1, neural network batch
size B, and neural network training epochs: £.
Output: Classifier in target domain h,, 7.
1: Initialize the classifier hq, o: hy 0 < arg min, Lcg(To, haw.t, Y0)-
2: Train T = {Tp,};": T +Algorithm 1.
3: fort =0toT — 1do ‘ ‘ _
4:  Obtain the intermediate domain data {(mgﬁl, yt+1)} $t+1 — Ty (zy (e )) and yt(le — y,gl)
alli € {1,...,N}.
Finetune the classifier hy, 141 Ry t+1 < argming Lep(Tit1, Pt Yet1)-
end for

for

AR

D DETAILED INFORMATION FOR EXPERIMENTS

D.1 DATASET DESCRIPTIONS

* Portraits: Portraits is a binary gender classification dataset comprising 37,921 front-facing
portrait images collected between 1905 and 2013. Following the chronological split proto-
col of (Kumar et al., 2020), we divide the data into a source domain (the earliest 2,000 im-
ages), intermediate domains (14,000 images not utilized in this work), and a target domain
(the subsequent 2,000 images), similar to the setting in reference (Zhuang et al., 2024).

* Rotated MNIST: Rotated MNIST is a variant of the standard MNIST dataset Deng (2012)
in which images are rotated to create domain adaptation challenges. As described in He
et al. (2024); Kumar et al. (2020), we use 4,000 source images and 4,000 target images,
with the target images rotated by 45° to 60°.

D.2 EXPERIMENTAL SETTINGS

The official implementations of GOAT (He et al.,, 2024) and Table D.1: Hyperparameters
CNF (Sagawa & Hino, 2025) are used in our experiments. Addi- for E-SUOT on GDA task.
tionally, we employ UMAP (Mclnnes et al., 2018) to reduce the Datasets |n B € T
dimensionality of the three GDA datasets to 8. The experiments are .

conducted on a workstation equipped with two NVIDIA RTX 4090 i,})l{gglr}s%o 82 }8%3 8(])1 g
GPUs under five different random seeds at least three times. The MNIST 60°(0.5 2048 0.005 5
overall hyper-parameters we use in our GDA task are summarized
in Table D.1.

In all experiments, we parameterize the classifier hy as a three-layer multi-layer perceptron (MLP)
at each step, utilizing ReLLU activation functions and a hidden dimension of 100 for each layer. For
both Tj and wy, we employ a two-layer MLP with the SiLU activation function and incorporate a
skip connection to enable a residual structure (He et al., 2016). All models are optimized by the
Adam optimizer (Kingma & Ba, 2015) with learning rate at 0.0001. For all three GDA datasets,
we apply UMAP (Mclnnes et al., 2018) to reduce their dimensionality to eight. We use the official
implementation of the baseline models in our experiment.
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D.3 DETAILED INFORMATION FOR ABLATION STUDIES

For the ablation study, we ablate two module namely the training strategy of Ty and the objective
functional. The detailed information are elaborated in this part.

For “Training Strategy”, the detailed experimental protocols are given as follows:

* Adversarial Training: In our adversarial training scheme, we optimize Eq. (7). Building
on (Korotin et al., 2021; 2023; Choi et al., 2023; 2024), the training of Ty is formulated
adversarially, as summarized in Algorithm 3. In Line 5, the penalty term ﬁ llwt—1 —

Tp.+—1(w¢—1)||3 is omitted since it is constant with respect to we ;1.

* Barycentric-based Training: We propose the algorithm for barycentric-based training
in Algorithm 4. For barycentric-based training, rather than first compute the transport
map, we attempt to compute the optimal transport map 7* between p(z;—1) and pr(z) as
we demonstrate in Line 4. Based on this, we make barycentric projection (Courty et al.,
2017b; Perrot et al., 2016) using this 7* to obtain the proxy points (Liu et al., 2021; 2023)
for transport map learning as we demonstrate in Line 5. Finally, the transport map Ty ;1
is constructed based on these points, similar to the flow matching (Lipman et al., 2023), as
we demonstrate in Line 6.

Algorithm 3 Adversarial Training for {Tp ;}7 .

Input: Intermediate domain samples: {(mi’)l,yt(z)l) N, forallt € {1,...,T}, target domain

samples: {(:1755), yéf )) ,—1, entropy regularization strength: e, step size: 7, neural network batch size

B, and neural network training epochs: £.
Output: The transportation map att — 1: Ty ;1.
1: Initialize
2: fore =1to & do )
3:  Sample a batch {xigl}? ~ {(xt 173/75 1)}N 1 and {mT ol {(xTz)7y¥)> i=1

4:  Update wgs—1 by: R argmln(bgzi:l—%ﬂxt, —Tr—i(x1)|I3 +

o (To(at")) + S5, *(~wg (@),
5:  Sample a batch {xth}i N{(iﬂt 17y7£-) )tz N
6: Update Ty, 1 by: 60 afgmlneszz 12n|| 2= D@ -
wq&,t—l(TO,t—l(Ii(ti—)l))'
7: end for

Algorithm 4 Barycentric-based training for {Tp. t}tTfl

Input: Intermediate domain samples: {(act 17yt 1)} , forall t € {1,..., T}, target domain

samples: {( ,y})) i—1 entropy regularization strength. €, step size: 7, neural network batch size

B, and neural network training epochs: £.
Output: The transportation map att — 1: T ;1.
1: Initialize
2: fore =1to & do

3 Sample abatch {72, ~ {(o7”, 5 )Y, and {of )2 ~ {2,y )L
4:  Obtain the optimal transport map T (:rt 1,xT) by. 7 (x¢—1, TT) —
infﬁﬁwg(p(xt_l) pr(z)) + effn(xim1,zr)logn(zi—1,zr) — 1)dze_qder +

Df[ﬁ(xtA)’pT(ﬂ?)]
5:  Obtain the projected samples Z; via m* (x¢—_1, x1): Tt = o177 (T4—1, TT):

6 Update Tp,—1 by: 0+ £ 30 (|71 — Tp1(2()))|3
7: end for

For “Objective Functional”, the detailed experimental protocols are given as follows:
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* x? Divergence: The expression for x? divergence can be given as follows:

Delptenpra)] [ pr@[ 255~ Pas, where (@)= (o= 102 @D

Based on this, the corresponding conjugate function f* can be given as follows:

1 .
f(z) = {4m2 o ife > 2 (D.2)

—1,ifr < -2
* Identity: For the identity function, we remove the f-divergence-based regularization term

during the construction of E-SUOT framework. Based on this, the training objective for
wgy is reformulated as follows:

w(w) - &z — .l

€

E%Sﬂegg}i]Dual = sup 7€Ep(xt) {log EpT(aL‘) [exp(

N} + Epp (2 [w()],
(D.3)

* Softplus: We directly parameterize the f* using the smooth, convex, and non-
decreasing softplus function as follows:

f* =log(1 + exp(x)). (D.4)

E LIMITATIONS & FUTURE DIRECTIONS AND BROADER IMPACT

E.1 LIMITATIONS & FUTURE DIRECTIONS
The limitations and future research directions of this work can be summarized as follows:

* Consideration of Label Information: In this work, we focused primarily on feature adap-
tation and did not explicitly incorporate label or discriminator information into the adaption
process. As a result, the performance of the proposed E-SUOT framework may degrade
under scenarios involving significant covariate shift (Sugiyama et al., 2007; Sugiyama &
Kawanabe, 2012). An important direction for future research is to integrate label infor-
mation into the transportation process, for example, classifier guidance approach (Courty
et al., 2017a; Dhariwal & Nichol, 2021; Bonet et al., 2025; Zhuang et al., 2024), which
could further enhance model robustness and adaptation performance.

* Regularization for Transport Plan: To facilitate computation, we introduced entropy
regularization on the transport plan; however, this may introduce potential instability or
blur sparsity in the map (Yin et al., 2025). Future work may explore alternative regular-
ization strategies (Courty et al., 2014; 2017b), such as group sparsity (to better incorporate
label priors) or Laplacian regularization (to preserve local relationships), in order to further
stabilize training and improve the properties of the learned potential function w.

» Exploration of Other Discrepancy: In this work, we adopted the Wasserstein distance as
the primary metric for measuring domain discrepancy. However, other discrepancy mea-
sures, such as the Fisher-Rao distance (Zhang et al., 2022; Wang et al., 2023; Zhu, 2025),
could also be explored to enable more flexible or principled adaptation approaches. Future
work may investigate the use of alternative metrics (Neklyudov et al., 2023; Skreta et al.,
2025) to further improve the effectiveness of the quality of intermediate domain thereby
improving the performance of GDA task.

E.2 BROADER IMPACT STATEMENT

GDA addresses a critical challenge in machine learning: transferring knowledge from a labeled
source domain to an unlabeled target domain when there is a substantial gap between the two.
Rather than relying on abrupt, one-shot shifts—which are often brittle in the face of large distri-
butional discrepancies—GDA interpolates through a series of intermediate domains, allowing for
a smoother and more effective adaptation process. This paradigm has direct implications for many
real-world applications. For example, in recommender systems, GDA enables knowledge transfer to
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serve cold-start users or to integrate new items, and in language processing it allows models trained
on high-resource languages to adapt more robustly to low-resource languages. By constructing and
navigating intermediate distributions, GDA provides a principled foundation for bridging domain
gaps and ensuring stable model performance under challenging conditions. Our work advances
the field of GDA by unifying flow-based methods and optimal transport within the semi-dual for-
mulation, identifying fundamental issues of stability and generalization that have limited previous
approaches. We further propose theoretically-grounded regularization strategies that improve the
robustness and reliability of the adaptation process. These advances not only deepen the theoretical
understanding of GDA but also offer practical benefits for deploying adaptable machine learning
systems in diverse settings. We believe our findings will help catalyze the development of more
general, stable, and information-preserving domain adaptation methods, with impact across fields
ranging from recommendation and computational linguistics to broader Al applications.

F LLM USAGE STATEMENT

In accordance with the conference guidelines, we disclose our use of Large Language Models
(LLMs) in the preparation of this paper as follows:

We used LLMs (specifically, OpenAl GPT-4.1, GPT-5 and Google Gemini 2.5) solely for checking
grammar errors and improving the readability of the manuscript. The LLMs were not involved in
research ideation, the development of research contributions, experiment design, data analysis, or
interpretation of results. All substantive content and scientific claims were created entirely by the
authors. The authors have reviewed all LLM-assisted text to ensure accuracy and originality, and
take full responsibility for the contents of the paper. The LLMs are not listed as an author.

31



	Introduction
	Preliminaries
	Settings and Notations
	Flows for Intermediate Domain Generation

	Methodology
	Motivation Analysis
	Dual-Form Transportation for Intermediate Domain Generation
	Robust Training Procedure for Semi-Dual Form Transportation
	Overall Workflow for E-SUOT
	Theoretical Analysis

	Experimental Results
	Experimental Setup
	Baseline Comparison Results
	Ablation Studies
	Sensitivity Analysis
	Computational Time Comparison

	Related Works
	Gradual Domain Adaption
	Semi-Dual Formulation of Gradient Flows

	Conclusions
	Appendices
	Mathematical Background on Optimal Transport
	Theoretical Derivation
	Derivation of Eq. (4)
	Derivation of Proposition 1
	Derivation of Proposition 2
	Derivation of Proposition 3
	Derivation of Proposition 4
	Derivation of Theorem 5
	Derivation of Theorem 6

	Detailed Algorithm of E-SUOT Framework
	Detailed Information for Experiments
	Dataset Descriptions
	Experimental Settings
	Detailed Information for Ablation Studies

	Limitations & Future Directions and Broader Impact
	Limitations & Future Directions
	Broader Impact Statement

	LLM Usage Statement


