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ABSTRACT

Gradual domain adaptation (GDA) aims to mitigate domain shift by progressively
adapting models from the source domain to the target domain via intermediate
domains. However, real intermediate domains are often unavailable or ineffec-
tive, necessitating the synthesis of intermediate samples. Flow-based models have
recently been used for this purpose by interpolating between source and target dis-
tributions; however, their training typically relies on sample-based log-likelihood
estimation, which can discard useful information and thus degrade GDA perfor-
mance. The key to addressing this limitation is constructing the intermediate do-
mains via samples directly. To this end, we propose an Entropy-regularized Semi-
dual Unbalanced Optimal Transport (E-SUOT) framework to construct interme-
diate domains. Specifically, we reformulate flow-based GDA as a Lagrangian
dual problem and derive an equivalent semi-dual objective that circumvents the
need for likelihood estimation. However, the dual problem leads to an unstable
min–max training procedure. To alleviate this issue, we further introduce entropy
regularization to convert it into a more stable alternative optimization procedure.
Based on this, we propose a novel GDA training framework and provide theoreti-
cal analysis in terms of stability and generalization. Finally, extensive experiments
are conducted to demonstrate the efficacy of the E-SUOT framework.

1 INTRODUCTION

Unsupervised Domain Adaptation (UDA) (Pan & Yang, 2010; Tzeng et al., 2017; Long et al., 2015;
Courty et al., 2014; 2017a), which transfers knowledge from a well-trained source domain to a re-
lated yet unlabeled target domain, is of great importance across fundamental application areas. For
example, in recommender systems (Liu et al., 2023; Zheng et al., 2024), a cold-start user has no
interaction history with new items, so domain adaptation helps transfer user and item knowledge
from an existing system to improve recommendations. Similar scenarios occur in machine trans-
lation, where a model trained on high-resource language pairs like English-French can be adapted
to translate between English and low-resource languages with limited parallel data (Gazdieva et al.,
2023). These scenarios highlight the importance of conducting UDA to bridge domain gaps and
ensure reliable performance in real-world applications.

Despite these methodological advances, directly performing UDA can be brittle when the
source–target shift is substantial or class overlap is weak. In such cases, one-shot alignment of-
ten degrades discriminability and amplifies pseudo-label errors during self-training. This challenge
motivates a transition from the traditional UDA setting to the Gradual Domain Adaptation (GDA)
setting (He et al., 2024), where adaptation proceeds through a sequence of intermediate distributions
that progressively bridge the domain gap. A key aspect of generating intermediate domains in GDA
is to interpolate between the source and target domains. Various methods have been proposed to
construct such intermediate domains, among which flow-based approaches (Kobyzev et al., 2020;
Papamakarios et al., 2021) have attracted increasing attention, primarily due to their property of
preserving probability density along the transformation path, thereby enabling consistent and stable
probability densities without distortion or loss of information. To drive the samples from the source
domain towards those of the target domain, it is necessary to design an appropriate driving force,
typically derived from a discrepancy metric. Among these metrics, f -divergence (Sason & Verdú,
2016) is most widely used due to its computational efficiency, empirical effectiveness, and principled
formulation within the framework of geometry for probability distributions (Amari, 2016).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite the success of flow-based approaches in GDA (Sagawa & Hino, 2025; Zhuang et al., 2024;
Zeng et al., 2025), we argue that directly applying standard flow-based models leads to subopti-
mal performance. Specifically, existing flow-based frameworks utilizing f -divergence often require
the explicit estimation of target domain probability density functions (PDFs) from available tar-
get samples (In our setting, for simplicity, we treat both log PDF and its gradient, also known as
score function, as forms of density estimation, since they characterize the underlying data distribu-
tion.) (Vincent, 2011; Santambrogio, 2017; Ambrosio et al., 2005), whereas the subsequent GDA
process relies on these estimated (normalized / unnormalized) PDFs to drive the source-to-target
transfer. For example, Zhuang et al. (2024) estimate the unnormalized target domain PDF in the
score function form and generate intermediate domains via Langevin dynamics. Consequently, the
quality of the intermediate domain heavily depends on the accuracy of the estimated target PDF; if
this estimation is inaccurate, the performance of the downstream task is likely to suffer significantly.

To address these limitations, we propose a novel flow-based GDA framework E-SUOT, which lever-
ages the semi-dual formulation of gradient flows. Rather than explicitly estimating PDFs, we recast
flow evolution as an optimization problem that combines an f -divergence term with a Wasserstein
distance regularization term, enabling sample transport toward the target domain without reliance on
PDF estimation. However, as the semi-dual reformulation inherently leads to an adversarial training
paradigm that can compromise stability and performance, we introduce entropy regularization to
the objective to guarantee the stability of the training process. Based on this, we summarize the al-
gorithm for E-SUOT-based intermediate domain generation, prove the convergence of our E-SUOT
framework, and empirically demonstrate its effectiveness on representative GDA tasks. Extensive
experiments validate that E-SUOT achieves superior performance compared with existing methods.

Contributions. The main contributions of this paper are summarized as follows:
• We develop a semi-dual formulation for intermediate domain generation in flow-based GDA,

which eliminates the need for explicit estimation of the target-domain PDF—whether normalized
or unnormalized—or its score-based representation.

• We introduce an entropy regularization term to address the unstable issue inherent in the semi-dual
formulation, resulting in the novel and stable E-SUOT framework.

• We conducted various experiments to demonstrate the superiority of the proposed E-SUOT ap-
proach compared to prevalent approaches.

2 PRELIMINARIES

2.1 SETTINGS AND NOTATIONS

In GDA, we consider a labeled source domain, T − 1 unlabeled intermediate domains, and an
unlabeled target domain. Let the input space be X and the label space be Y . We denote inputs as
x ∈ X and labels as y ∈ Y . We index the domains by t ∈ {0, 1, . . . , T}, where t = 0 denotes the
source domain and t = T denotes the target domain. Each domain induces a marginal distribution
pt over X . Let H be a hypothesis class of classifiers h : X → Y . We assume that each domain
admits a labeling function qt ∈ H. Given a loss function L : Y×Y → R≥0, the generalization error
of h on domain t is defined as εpt

(h) = Ept(x)

[
L
(
h(x), qt(x)

)]
. A source classifier q0 ∈ H can

be learned via supervised learning on the source domain with minimal error εp0(q0). The objective
of GDA is to evolve q0 through the intermediate domains to a classifier hT so as to minimize the
target error εpT

(hT ).

2.2 FLOWS FOR INTERMEDIATE DOMAIN GENERATION

A flow describes the time-dependent evolution of particles induced by a smooth invertible (diffeo-
morphic) map. Based on this, the intermediate domains can be seen as a discretization of a contin-
uous flow linking source and target distributions. This motivates flow-based models, which evolve
a distribution over a fixed time horizon while preserving normalization, and are thus well-suited
for GDA. From the flow perspective, intermediate domains are generated by the following ordinary
differential equation:

dxt
dt

= vt(xt) = −∇
δD[p(xt), pT (x)]

δp(xt)
, xt=0 = x0, (1)
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where p(xt) is the (empirical) PDF induced by {xt,i}Ni=1, and we desire the law p(xT ) to approxi-
mate the target pT (x). Here vt : X → X is the velocity field. The core design problem is to choose
vt so that p(xt) −−−→

t→T
pT (x). A principled approach is to define vt as the steepest descent direction

of some discrepancy functional D[p(xt), pT (x)] between p(xt) and pT (x) as demonstrated in the
second equal sign in Eq. (1). Notably, δ/δp denotes the first variation, and the second equality sign
is called “gradient flow”.

Among various choices, f -divergences are favored in GDA for their task-aligned objectives, stable
probability-preserving dynamics, and efficient computation when compared to alternatives such as
Sinkhorn divergence and maximum mean discrepancy (Glaser et al., 2021). For an f -divergence,

Df [p(xt), pT (x)] =

∫
f

(
p(xt)

pT (x)

)
pT (x) dx, (2)

with f : (0,∞) → R convex and f(x) = 0 if and only if x = 1. A canonical example is the
Kullback–Leibler (KL) divergence with f(u) = u log u. In this case,

vt(xt) = ∇ log pT (x)−∇ log p(xt), (3)

and, in the weak partial differential equation sense (Evans, 2022; Liu, 2017), the induced dynamics
yield the classical Langevin dynamic (Welling & Teh, 2011; Santambrogio, 2017).

Intuitively, applying the forward Euler scheme with step size η to the gradient flow in Eq. (1) under
an f -divergence yields a discrete-time generation for the intermediate domain, which is equivalent
to solving a 2-Wasserstein-distance–regularized optimization problem as (see Section C.1):

xt+η = xt−η∇
δDf [p(xt), pT (x)]

δp(xt)
⇒ p(xt+η) = argmin

ρ(x)∈P2(RD)

1

2η
W2

2 (ρ(x), p(xt))+Df [ρ(x), pT (x)],

(4)
where P2(RD) denotes the Wasserstein space (Villani et al., 2009), which is the set of the distribu-
tions with finite second moment. HereW2 is the 2-Wasserstein distance, whose definition is given
as follows:

W2
2 (ρ, ξ) = inf

π∈Π(ρ,ξ)

∫∫
∥x− y∥22 π(x, y) dx dy, (5)

and Π(ρ, ξ) is the set of joint distribution on RD × RD with marginal distributions ρ and ξ.

3 METHODOLOGY

3.1 MOTIVATION ANALYSIS

Flow-based approaches, exemplified by gradient-flow methods, interpolate between the source and
target distributions by gradually minimizing a discrepancy measure, typically an f -divergence, be-
tween the two domains. The success of these methods in GDA tasks critically depends on accurately
estimating the target distribution’s probability density function (PDF). Given a reliable estimate, one
can construct a velocity field that progressively pushes source samples toward the target distribution.
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(a) Ground Truth.
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(b) Langevin, W2
2 ≈ 9.7.
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2 ≈ 5.4.

Figure 1: Illustrative Example: Comparison between Langevin Dynamics and E-SUOT, where the
corresponding decision boundary is shown as a dashed line.
However, directly estimating the PDF from target domain data is generally ill-posed (Vincent et al.,
2010; Song et al., 2020). When the estimate is inaccurate, the induced velocity field can push
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samples into low-probability regions of the target distribution, causing a substantial shift between
the generated and true target domains and degrading downstream task performance. To illustrate
this issue, we compare ground-truth target samples with those obtained via Langevin dynamics and
E-SUOT in Figs. 1(a) to 1(c). The PDF for the target domain is estimated using denoised score
matching (Vincent, 2011). In addition, we also report the Wasserstein distance between the pre-
dicted and ground-truth samples (relative to Fig. 1(a)) in the captions of Figs. 1(b) and 1(c), which
constituted the lower generalization bound for GDA tasks. From Figs. 1(b) and 1(c), it is evident
that when the estimated log-likelihood function is inaccurate, the samples generated for the target
distribution deviate substantially from the ground truth and yield a large Wasserstein distance, which
may ultimately limits performance on GDA tasks. Although neither method perfectly recovers the
ground truth distribution, E-SUOT shows a clearer alignment with the major modes and the cor-
responding decision boundary of the target domain, resulting in a substantially lower Wasserstein
distance compared to Langevin dynamics. In summary, the key questions addressed in this paper
can be summarized as follows: How can we generate intermediate domains without compromising
the accuracy of the target domain? How can robust intermediate domain generation be achieved
within this framework? Does this approach improve the performance for GDA task?

3.2 DUAL-FORM TRANSPORTATION FOR INTERMEDIATE DOMAIN GENERATION

As shown in Eq. (4), simulating the gradient flow to generate intermediate domains is precisely
equivalent to solving a Wasserstein-distance-regularized optimization problem. This insight opens
up a practical alternative: instead of explicitly estimating the target domain’s probability density,
one can guide source samples by directly tackling this optimization formulation. Thus, we have the
following proposition regarding the solution property of the problem defined in Eq. (4):

Proposition 1. Consider the following primal problem:

LPrimal = argmin
ρ(x)∈P2(RD)

1

2η
W2

2 (ρ(x), p(xt)) + Df [ρ(x), pT (x)]. (6)

This problem is equivalent to the following semi-dual formulation:

LSemiDual = sup
w

Ep(xt)

[
inf
T

(
1

2η
∥T (xt)− xt∥22 − w(T (xt))

)]
− EpT (x)[f

⋆(−w(x))], (7)

where w : RD → R is a measurable continuous function, T : RD → RD is the transport map, and
f⋆ denotes the convex conjugate of f , defined as f⋆(z) := supy≥0 (zy − f(y)).

Importantly, the structure of the semi-dual problem ensures that both pt(x) and pT (x) are involved
only through expectation operators, rather than through explicit density evaluations. This enables the
use of Monte Carlo methods to approximate all necessary integrals, thereby eliminating the need for
access to the density function—particularly for the target domain—when constructing intermediate
distributions. Practically, following prior works (Korotin et al., 2023; Choi et al., 2023; 2024), we
can parameterize both the dual potential w and the transport map T by neural networks, denoted
as wϕ and Tθ respectively. The models are trained in an alternating adversarial scheme to learn the
sequence of maps {Tθ,t}T−1

t=0 , which can be applied to generate intermediate domains progressively.

3.3 ROBUST TRAINING PROCEDURE FOR SEMI-DUAL FORM TRANSPORTATION

While Section 3.2 provides a semi-dual form of the gradient flow problem that avoids explicit PDF
estimation in target domain, naively training LSemiDual in Eq. (7) is intrinsically unstable because
of its composite ‘sup–inf’ structure. This instability is not merely algorithmic: the objective itself
may be non-identifiable. We formalize this phenomenon by proving that the dual problem can have
non-unique optima, as the following theorem shows:

Proposition 2. The semi-dual formulation in Eq. (7) admits non-unique optimal solutions.

To address this issue, we incorporate an entropy regularization term into the primal objective Eq. (6),
which leads to the following proposition:

4
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Proposition 3. Let κ(xt, x) := p(xt) pT (x) denote the reference joint PDF. The entropy-regularized
primal problem is

LE-Primal = argmin
ρ∈P2(RD)

1

2η
W2

2 (ρ(x), p(xt)) + Df

[
ρ(x), pT (x)

]
+ ϵ

∫∫
π(xt, x) [log

π(xt, x)

κ(xt, x)
− 1] dxt dx,

(8)

and is equivalent to the semi-dual optimization problem

LE-SemiDual = sup
w
− ϵEp(xt)[logEpT (x)(exp(

w(x)− 1
2η ∥x−xt∥2

2

ϵ ))] − EpT (x)[f
⋆(−w(x))], (9)

where w : RD → R and f⋆ are as defined in Proposition 1.

On this basis, we provide a theoretical guarantee of uniqueness for the semi-dual objective in Eq. (9):
Proposition 4. The semi-dual formulation in Eq. (9) admits a unique optimal solution.

Notably, as seen in Eq. (9), the semi-dual objective depends solely on the potential w. Consequently,
we can optimize a single model, which lowers the computational burden. We therefore parameterize
w by a neural network wϕ and carry out the optimization.

Finally, conditioned on the resulting wϕ, we subsequently optimize the transport map Tθ(x) via the
following objective based on Eq. (7):

argmin
θ

1

2η
∥xt − Tθ(xt)∥22 − wϕ(Tθ(xt)). (10)

Notably, we denote our approach as “E-SUOT”, as the derivation of Tθ is grounded in the Entropy-
regularized Semi-dual Unbalanced Optimal Transport framework.

3.4 OVERALL WORKFLOW FOR E-SUOT

Although Sections 3.2 and 3.3 have presented the E-SUOT framework for intermediate domain
generation, they do not provide a unified view of the overall workflow for generating intermediate
domains. To address this, we summarize the complete procedure in Algorithm 1 (Due to page
limit, the complete algorithm and other detailed information are summarized in Appendix E) and
the corresponding illustration is given in Fig. 2. As shown in the algorithm, the construction of wϕ

and Tθ are performed as separate steps, corresponding to Fig. 2(a), and are illustrated in Lines 3–6
and Lines 7–10, respectively. By iteratively executing the procedure described in Lines 3–10, we
obtain a sequence of transport maps, T = {Tθ,t}T−1

t=0 , which progressively transport samples from
the source domain to the target domain, as we demonstrate in Fig. 2(b).

𝑥𝑥0

ℎ0 ℎ1 ℎ2

𝑥𝑥1 𝑥𝑥2

𝑝𝑝𝑇𝑇(𝑥𝑥)

𝑥𝑥3

ℎ3

𝑥𝑥𝑇𝑇

≈ℎ𝑇𝑇−1

𝑦𝑦0 𝑦𝑦0 𝑦𝑦0 𝑦𝑦0 𝑦𝑦0

···

···

ℎ∗
𝑥𝑥𝑡𝑡

(1)

𝑝𝑝(𝑥𝑥𝑡𝑡)

𝑥𝑥𝑡𝑡
(2)

𝑝𝑝𝑇𝑇(𝑥𝑥)
𝑥𝑥𝑇𝑇

(1)

𝑥𝑥𝑇𝑇
(2)

𝑻𝑻𝜽𝜽(⋅)

(a) (b)

Figure 2: The illustration of the proposed E-SUOT: (a) the unbalanced OT formulation used to
solve the transport map Tθ(·) at time t, where thicker arrows and larger points indicate higher mass
flows, and (b) the evolution process from the source to the target domain (This figure is conceptually
inspired by Zhuang et al. (2024)).

Once the transport map sequence T = {Tθ,t}T−1
t=0 has been obtained, we proceed to train the classi-

fier h in a stage-wise manner along the transport path. Specifically, at each intermediate step t, we
first map samples xt from the current domain to the next intermediate domain xt+1 using the corre-
sponding transport map Tθ,t. We then update or train the model ht using the mapped data xt+1 as
input. By iteratively applying this procedure for t = 0, . . . , T−1, the model is progressively adapted
along the sequence of intermediate domains, ultimately bridging the source and target domains.
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Algorithm 1 Overall Workflow for Construing E-SUOT-based Intermediate Domain Generation

Input: Source domain samples: {(x(i)0 , y
(i)
0 )}Ni=1, target domain samples: {(x(i)T , y

(i)
T )}Ni=1, entropy

regularization strength: ϵ, step size: η, number of intermediate domain T − 1, neural network batch
size B, and neural network training epochs: E .
Output: The set of transportation map: T = {Tθ,t}T−1

t=0 .
1: T ← ∅.
2: for t = 0 to T − 1 do
3: for e = 1 to E do
4: Sample a batch {x(i)t }Bi=1 ∼ {(x

(i)
t , y

(i)
t )}Ni=1 and {x(i)T }Bi=1 ∼ {(x

(i)
T , y

(i)
T )}Ni=1.

5: Update wϕ,t by: ϕ ← argminϕ
ϵ
B
∑B

j=1 log
1
B
∑B

i=1[exp(
wϕ,t(x

(j)
T )− 1

2η ∥x(j)
t −x

(i)
T ∥2

2)

ϵ )] +
1
B
∑B

j=1 f
⋆(−wϕ,t(x

(j)
T )).

6: end for
7: for e = 1 to E do
8: Sample a batch {x(i)t }Bi=1 ∼ {(x

(i)
t , y

(i)
t )}Ni=1.

9: Update Tθ,t by: θ ← argminθ
1
B
∑B

i=1
1
2η∥x

(i)
t − Tθ,t(x

(i)
t )∥22 − wϕ,t(Tθ,t(x

(i)
t )).

10: end for
11: x

(i)
t+1 ← Tθ,t(x

(i)
t ), ∀i ∈ {1, . . . ,N}.

12: T ← T ∪ {Tθ,t}
13: end for

3.5 THEORETICAL ANALYSIS

Notably, our derivation sidesteps the explicit estimation of the PDF of the target domain by leverag-
ing the semi-dual formulation. This naturally leads to two important questions: (1) Can the proposed
E-SUOT framework transport the source domain sufficiently close to the target domain? (2) How
does the model perform on the target domain after transport?

To address the first question, we present the following theorem, which quantitatively characterizes
the discrepancy between ρ(x) and pT (x):
Theorem 5. The optimal solution ρ∗(x) to problem defined in Eq. (8) satisfies the following bound:

Df [ρ
∗(x), pT (x)] ≤ W2(p(xt), pT (x)). (11)

From Theorem 5, we observe that as t increases, the transported PDF ρ(x) progressively becomes
similar to pT (x). Based on this result, we present the following theorem, which provides a theoreti-
cal guarantee for the model’s performance on the target domain:
Theorem 6. Under mild assumptions, the E-SUOT-based GDA ensures that the target domain gen-
eralization error is upper-bounded by the following inequality:

εpT
(hT ) ≤ εp0(h0) + εp0(h

∗
T ) + ιζC + Sstat, (12)

where ι is the Lipschitz constant of the loss function, ζ is the Lipschitz constant bound for hypothe-
ses in H, C aggregates the cumulative domain transportation and label continuity costs along the
adaptation path, and Sstat is the statistical error term.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets: We conduct case studies on four datasets. Specifically, for GDA task, the datasets are
“Portraits” (Kumar et al., 2020), “MNIST 45◦” and “MNIST 60◦” (LeCun, 1998; Deng, 2012).
For UDA task, we conduct experiment on the “Office-Home” dataset (Venkateswara et al., 2017).
Detailed information about these datasets is given in Appendix E.1.

Implementation: Following prior work (Zhuang et al., 2024; Sagawa & Hino, 2025), we employ
semi-supervised UMAP to produce low-dimensional embeddings while preserving class discrim-
inability. Unless stated otherwise, we use the KL divergence in the implementation of the E-SUOT.
Additional details are available in Appendix E.2.
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4.2 BASELINE COMPARISON RESULTS

We first compare our proposed approach with several existing GDA-based methods, including Self-
training, GST (4 intermediate domains) (Kumar et al., 2020), GOAT (He et al., 2024), CNF (Sagawa
& Hino, 2025), and GGF (Zhuang et al., 2024). The detailed information of the experiments are
provided in Section E. All baseline models for the GDA task are evaluated with five groups of
random seeds, each repeated three times.

Table 1: Baseline comparison on the GDA task with standard deviation and p-value.

Method Portraits MNIST 45◦ MNIST 60◦

Accuracy (%) ∆ p-value Accuracy (%) ∆ p-value Accuracy (%) ∆ p-value

Source 71.2 - - 58.4 - - 36.8 - -
Self Train 77.4∗

±5.02E-2 ↑8.7% 1.25E-47 58.7∗
±2.24E-2 ↑0.5% 4.99E-50 39.9∗

±2.00E-2 ↑8.5% 1.19E-48
GST (4) 76.1∗

±6.00E-2 ↑6.9% 1.98E-21 59.2∗
±2.45E-2 ↑1.3% 1.21E-22 39.9∗

±1.00E-2 ↑8.5% 2.14E-23
GOAT 74.9∗

±6.21E-1 ↑5.3% 2.27E-17 65.0∗
±1.05E-1 ↑11.3% 4.07E-20 37.2∗

±8.43E-2 ↑1.1% 1.08E-19
CNF 80.0∗

±1.85E0 ↑12.4% 1.79E-15 57.6∗
±1.08E0 ↓1.4% 4.60E-16 41.8∗

±1.92E0 ↑13.5% 2.90E-14
GGF 83.4∗

±8.79E-1 ↑17.2% 9.18E-17 57.7∗
±6.55E-1 ↓1.2% 6.15E-17 40.8∗

±8.35E-1 ↑11.0% 1.04E-15
E-SUOT 86.4∗

±8.72E-2 ↑21.5% 8.88E-21 72.1∗
±4.62E-1 ↑23.4% 1.55E-17 51.0∗

±5.81E-1 ↑38.6% 2.48E-16

Kindly Note: “∗” marks the variants that E-SUOT outperforms significantly at p-value < 0.05 over paired
sample t-test. ∆ denotes the performance change relative to the initial classifier. The accuracy is reported as
mean (%) ± 1.0 × standard deviation error. In addition, Bolded results are the best results. Underlined results
are the second best results.

As shown in Table 1, our proposed E-SUOT framework consistently outperforms the current state-
of-the-art GDA approaches on all evaluated datasets. These results demonstrate the effectiveness
and superiority of the E-SUOT framework. In addition, we observe that flow-based methods, such
as CNF and GGF, generally achieve top-2 performance on most datasets, highlighting the potential
of incorporating flow-based methods in GDA tasks. However, we also note that flow-based methods,
occasionally underperform. This observation suggests that flow-based GDA, which requires explicit
PDF estimation on target domain, may have inherent limitations, as discussed in Section 3.1.

On this basis, we further evaluate the performance of E-SUOT under the UDA task by compar-
ing it to the DANN (Ganin & Lempitsky, 2015), MSTN (Xie et al., 2018), GVB-GD (Cui et al.,
2020), RSDA (Gu et al., 2020; 2022), LAMBDA (Le et al., 2021), SENTRY (Prabhu et al., 2021),
FixBi (Na et al., 2021), CST (Liu et al., 2021a), CoVi (Na et al., 2022), and GGF (Zhuang et al.,
2024) on the Office-Home dataset (Venkateswara et al., 2017). Detailed information on the ex-
periments is provided in the Section E.2. The results, summarized in Table 2, show that E-SUOT
outperforms most existing methods on the majority of UDA tasks and achieves the highest overall
average performance. Despite not achieving top performance on every individual task, E-SUOT
attains the highest average result across the board, confirming its overall superiority in UDA task.

Table 2: Accuracy (%) comparison on the Office-Home dataset under the UDA setting.
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

MSTN 49.8 70.3 76.3 60.4 68.5 69.6 61.4 48.9 75.7 70.9 55.0 81.1 65.7

GVB-GD 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

RSDA 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9

LAMDA 57.2 78.4 82.6 66.1 80.2 81.2 65.6 55.1 82.8 71.6 59.2 83.9 72.0

SENTRY 61.8 77.4 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.3

FixBi 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

CST 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 72.9

CoVi 58.5 78.1 80.0 68.1 80.0 77.0 66.4 60.2 82.1 76.6 63.6 86.5 73.1

GGF 59.4 75.6 81.7 67.6 77.6 78.0 67.4 61.0 82.7 75.9 62.4 85.4 72.9

E-SUOT 61.6 79.3 81.8 67.6 77.7 78.1 67.4 61.2 82.9 76.3 62.5 85.2 73.5
Win Counts 9 9 8 6 7 8 7 9 9 8 7 6 10

Kindly Note: Bolded and underlined results are the first and second best results, respectively.
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4.3 INVESTIGATION OF THE UOT FORMULATION

While our main contribution lies in introducing the semi-dual UOT formulation to analyze and im-
prove the flow-based GDA approach, we further investigate “why the UOT-based method performs
better than the vanilla OT formulation”. To this end, we conduct experiments under label-shift and
missing-class scenarios using the Portrait dataset (binary classification task). Specifically, we re-
sample the target domain to vary the class prior p(y = 1); when p(y = 1) = 0.0 or p(y = 1) = 1.0,
a missing-class situation is realized. The comparison results between vanilla OT and UOT are re-
ported in Table 3. Here, “E-SOT” denotes entropy-regularized semi-dual optimal transport. From
the table, we observe that in the missing-class cases (p(y = 1) = 0.0 or p(y = 1) = 1.0), the vanilla
OT formulation not only fails to improve but even degrades the classifier’s performance in the target
domain. Moreover, under moderate label shift (p(y = 1) between 0.3 and 0.9), the performance of
vanilla OT fluctuates strongly and lacks stability, whereas UOT consistently improves performance.
These observations demonstrate that incorporating the unbalanced OT formulation provides a more
robust and effective approach for handling domain adaptation under label distribution mismatch.
Table 3: Comparison of vanilla and unbalanced OT formulations for GDA task on Portraits dataset.

Method p(y = 1) = 0.0 p(y = 1) = 0.1 p(y = 1) = 0.2 p(y = 1) = 0.3 p(y = 1) = 0.4

Accuracy (%) ∆ Accuracy (%) ∆ Accuracy (%) ∆ Accuracy (%) ∆ Accuracy (%) ∆

Initial 35.4 - 41 - 47.1 - 53.2 - 59.6 -
E-SOT 55.4±3.15E-1 ↑56.41% 61.1±2.01E-1 ↑48.94% 67.1±2.45E-1 ↑42.55% 56.7±2.16E-1 ↑6.54% 57.7±1.66E-1 ↓3.22%
E-SUOT 64.5±9.09E-2 ↑82.32% 78.2±6.55E-2 ↑90.50% 74.5±1.02E-1 ↑58.28% 79.8±8.24E-2 ↑49.92% 77.7±3.39E-2 ↑30.42%

Method p(y = 1) = 0.6 p(y = 1) = 0.7 p(y = 1) = 0.8 p(y = 1) = 0.9 p(y = 1) = 1.0

Accuracy (%) ∆ Accuracy (%) ∆ Accuracy (%) ∆ Accuracy (%) ∆ Accuracy (%) ∆

Initial 73.8 - 80 - 85.9 - 91.4 - 97.1 -
E-SOT 75.2±3.08E-2 ↑1.95% 74.1±4.80E-2 ↓7.33% 80.0±2.21E-2 ↓6.89% 89.9±1.92E-2 ↓1.65% 96.0±2.93E-2 ↓1.08%
E-SUOT 79.1±2.56E-2 ↑7.24% 84.0±3.46E-2 ↑5.05% 87.8±1.12E-2 ↑2.18% 91.8±1.71E-3 ↑0.45% 97.6±3.23E-3 ↑0.54%

Kindly Note: ∆ denotes performance change percentage compared to E-SUOT with entropy regularization and KL divergence. The
accuracy is reported as mean (%) ± 1 × standard deviation error. For source domain, p(y = 1) = 0.63. The acronym E-SOT stands
for entropy-regularized semi-dual optimal transport.

4.4 ABLATION STUDIES

We perform ablation studies from two perspectives: the training strategy for Tθ and the choice of
f -divergence. For the training strategy, we 1). examine the effect of removing the entropy regular-
ization term—reducing the method to the adversarial training strategy in Eq. (7), and 2). evaluate a
barycentric projection approach analogous to flow matching (Lipman et al., 2023), where the trans-
port plan is first estimated and then used to project source samples toward the target, subsequently
being refined during training. For the objective functional, we study different parameterizations of
f⋆, such as employing non-decreasing convex functions like 1) Softplus, and also compare the
2) χ2 divergence and the 3) identity function. More detailed information on these experiments’
implementation is provided in Appendix E.3. The ablation study results are summarized in Table 4.

Table 4: Ablation study results on GDA setting with standard deviation and p-value.
Dataset Portraits MNIST 45◦ MNIST 60◦

Metric Accuracy (%) ∆ p-value Accuracy (%) ∆ p-value Accuracy (%) ∆ p-value

Training Adversarial KL 74.8∗
±3.10E0 ↓13.4% 1.83E-03 52.0∗

±3.60E0 ↓27.8% 3.05E-04 34.9∗
±4.10E0 ↓31.5% 4.59E-03

Barycentric KL 83.9∗
±9.42E-1 ↓3.0% 4.05E-03 62.5∗

±1.06E0 ↓13.3% 1.77E-04 38.3∗
±4.46E0 ↓24.8% 6.57E-03

Functional

Entropy Softplus 80.1∗
±3.53E0 ↓7.3% 2.24E-02 59.7∗

±1.14E0 ↓17.2% 7.08E-05 38.2∗
±1.10E0 ↓25.1% 6.27E-06

Entropy χ2 79.8±6.07E0 ↓7.7% 9.57E-02 60.2∗
±1.43E0 ↓16.5% 8.03E-05 42.4∗

±3.47E0 ↓16.9% 7.19E-03
Entropy Identity 81.2∗

±1.71E0 ↓6.1% 3.13E-03 59.6∗
±1.25E0 ↓17.4% 8.62E-05 39.6∗

±2.34E0 ↓22.3% 2.59E-04
Entropy KL 86.4±8.72E-2 - - 72.1±4.62E-1 - - 51.0±5.81E-1 - -

Kindly Note: “∗” marks the variants that E-SUOT outperforms significantly at p-value < 0.05 over paired sample t-test. ∆ denotes
performance change percentage compared to E-SUOT with entropy regularization and KL divergence. The accuracy is reported as mean
(%) ± 1 × standard deviation error.

From Table 4, we find that adversarial training performs the worst, underscoring the importance of
entropy regularization for model training in Section 3.3. While barycentric mapping is competitive,
it struggles on complex datasets such as MNIST 45◦ and MNIST 60◦, highlighting the need for the
semi-dual formulation. Additionally, alternatives to KL divergence—especially Softplus—cause
significant performance drops, emphasizing the importance of proper divergence selection. We
also observe that replacing KL divergence with alternatives such as χ2 divergence, the identity
function, or particularly Softplus results in substantial performance degradation, further illustrating
that choosing a suitable discrepancy to drive the evolution of source domain to target domain is
critical for promising the performance of GDA.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.5 SENSITIVITY ANALYSIS

From Figs. 3(a) to 3(d), we systematically investigate the sensitivity of our E-SUOT model with
respect to key hyperparameters, including batch size B, discretization step size η, simulation steps
T , and entropy regularization strength ϵ on the Portraits and MNIST 45◦ datasets.

Specifically, as shown in Fig. 3(a), we observe that increasing the batch size B initially improves
model performance; however, after a certain point, further increasing the batch size leads to a perfor-
mance decline. This pattern suggests that, in the simulation of WGF-based approaches (including
ours), careful selection of batch size is crucial: if B is too small, stochastic sampling noise may
dominate and degrade the results; conversely, excessively large B can cause the model to overfit
and diminish its performance. A similar trend is found when varying the discretization step size η,
as illustrated in Fig. 3(b). A small step size may prevent the simulation trajectory from adequately
reaching the target distribution within a finite number of steps, limiting learning efficiency. On the
other hand, a step size that is too large introduces significant discretization error, which again results
in poor model performance. Furthermore, as demonstrated in Fig. 3(c), increasing the number of
simulation steps T also produces a non-monotonic effect: beyond a certain threshold, more steps
actually undermine performance. This is likely because aligning the feature/target distributions too
strictly does not necessarily correspond to optimal performance in the target domain, thus further
justifying our introduction of divergence-based regularization to relax strict alignment constraints
compared to traditional OT-based methods. Finally, as shown in Fig. 3(d), the entropy regulariza-
tion parameter ϵ also significantly influences results. We observe that varying ϵ can lead to diverse
performance outcomes, highlighting the importance of properly investigating and tuning the entropy
regularization strength in practical applications. In conclusion, our sensitivity study underscores the
importance of carefully selecting the batch size B, step size η, and end time T for E-SUOT perfor-
mance, and further indicates that the entropy regularization strength ϵ is dataset-dependent and thus
warrants systematic validation on the target dataset to achieve optimal E-SUOT performance.
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Figure 3: Sensitivity Analysis Results on Portrait and MNIST 45◦ Datasets.

4.6 COMPUTATIONAL TIME COMPARISON

In this subsection, we further analyze the empirical time complexity of the proposed E-SUOT ap-
proach in comparison with alternative methods on the GDA task. The computational time results
are presented in Fig. 4.

Portraits MNIST 45◦ MNIST 60◦
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Figure 4: Computational time (s).

As shown in Fig. 4, the GOAT approach is the most time-
consuming on larger datasets, while GGF takes more time
on smaller datasets; both consistently rank among the top
two in terms of computation cost. This can be attributed to
their inherent algorithmic structures: GOAT involves solv-
ing the exact optimal transport problem, which becomes
computationally prohibitive as the dataset size increases. In
contrast, GGF relies on the forward Euler method, which
requires a very small step size—and therefore a large num-
ber of iterations—to avoid significant simulation errors, re-
sulting in higher computational overhead even on smaller
datasets.Notably, the computational time of our proposed
E-SUOT remains stable as dataset size grows. This effi-
ciency stems from directly parameterizing the transport map using a single forward pass through a
neural network and the JKO scheme, a variant of backward discretization approach, requiring only
a few steps to achieve the desired performance.
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5 RELATED WORKS

5.1 GRADUAL DOMAIN ADAPTATION

GDA seeks to bridge the distributional gap between source and target domains by leveraging a se-
quence of intermediate domains, thereby enabling more fine-grained adaptation. Early works have
explored self-training strategies (Kumar et al., 2020), adversarial objectives (Wang et al., 2020), and
provided generalization bounds under gradual distribution shifts (Kumar et al., 2020; Dong et al.,
2022; Wang et al., 2022). However, these approaches often depend on the availability of discrete
intermediate domains (Chen & Chao, 2021). To address this, optimal transport approaches (Ab-
nar et al., 2021; He et al., 2024) have been leveraged to construct intermediate domains along the
Wasserstein geodesic, ensuring minimal distributional discrepancy in the adaptation process. More
recently, flow-based GDA has emerged, which explicitly models domain evolution and synthesizes
continuous intermediate distributions via parametric flows. For instance, Sagawa & Hino (2025)
uses continuous normalizing flows to parameterize domain trajectories as ODEs in the data space,
while Zhuang et al. (2024) incorporates label information into this evolution and employs gradient
flows to realize the steepest transformation from source to target domain. Nevertheless, flow-based
methods still require explicit estimation of the target domain’s PDF to guide the evolution, and
inaccuracies in this estimation can lead to performance drops in target domain. To address this lim-
itation, we reformulate the flow-based approach from a semi-dual formulation (see Proposition 1),
which unifies the flow-based and optimal transport methods. Building on this, we further propose a
convergence-guaranteed approach with the help of entropy regularization (Proposition 3) and ana-
lyze its generalization error (see Theorem 6). during the evolution of the flow and proposed gradient

5.2 SEMI-DUAL FORMULATION OF GRADIENT FLOWS

Gradient flow (Santambrogio, 2017), which seeks to optimize a specified functional in the space of
probability measures, has played a critical role in both sampling and optimization algorithm design.
For gradient flows induced by f -divergences (with the KL divergence being the notable example),
such as Langevin sampling (Welling & Teh, 2011), have been extensively explored to generate sam-
ples that progressively transition from the source domain toward the target domain. However, these
methods typically assume access to an exact (unnormalized) PDF for the target distribution (Liu &
Wang, 2016; Liu, 2017), which is often infeasible in practice when only samples are available. To
overcome this, several approaches have explored dual formulations of f -divergence (Nguyen et al.,
2007; 2010), which avoid explicit density estimation for the target domain and instead optimize pri-
mal formulation (Korotin et al., 2023; Rout et al., 2022; Fan et al., 2022; Gazdieva et al., 2023; Choi
et al., 2023; 2024). These dual-formulation methods, however, generally require adversarial opti-
mization characterized by a composite “sup-inf” structure in order to properly approximate the dual
objective when implemented with neural networks (Nowozin et al., 2016; Arjovsky et al., 2017).
Our work differs from these approaches in two key aspects. First, we provide a theoretical analysis
from the perspective of the non-uniqueness of optimal solutions in Proposition 2, highlighting that
such adversarial formulations can suffer from this issue, which may hinder training stability. Build-
ing upon this insight, we introduce the entropy regularization that transforms the adversarial game
into an alternative paradigm in Proposition 3, and further prove that this regularization ensures the
stability via the uniqueness of the optima in Proposition 4 and convergence in Theorem 5.

6 CONCLUSIONS

In this paper, we addressed the challenge in flow-based GDA, namely the reliance on explicit esti-
mation of the target domain PDF inherited from traditional f -divergence formulations. To overcome
this, we reformulated the flow simulation as an optimization problem augmented with a Wasserstein
regularization term. Building on this, we derived a novel semi-dual formulation that avoids explicit
estimation of the target density. However, we observed that the resulting semi-dual structure intro-
duces instability due to its composite ‘sup-inf’ structure. To address this, we proposed an entropy
regularization term that eliminates the inner inf operator, thereby restoring stability and ensuring
uniqueness of the optimal solution. Based on these insights, we developed a new GDA framework
called “E-SUOT” and provided theoretical guarantees for its convergence and generalization. Fi-
nally, extensive experiments validate the effectiveness and practical advantages of our approach.
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REPRODUCIBILITY STATEMENT

The anonymous downloadable source code is available at: https://anonymous.4open.
science/r/E_SUOT_GDA-9240/. For theoretical results, the derivations proof of the claims
are included in Appendix C. Based on this, a detailed overall workflow for the proposed E-SUOT is
summarized in Appendix D. For datasets used in our experiments, we provide a complete description
of the dataset statistics and processing work flow in Appendix E.
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A NOMENCLATURE

Table A.1: Technical terminology table.
Symbol Description Symbol Description

T Intermediate domain number A Upper bound on the L2 norm of
the first variation of the KL diver-
gence

∆ Performance difference B Upper bound on the L2 norm of
the gradient of the first variation of
the KL divergence

∥∥2 L2 norm H0 Light-tail constant
argmin Argument of the minimum ∇ Gradient operator
T Transportation map ω Parameter of classifier
T−1 Inverse transformation of the trans-

portation map
ϕ Parameter of potential function

δ Variation operator π Transportation plan
det Determinant ρ∗(x) Optimal PDF
ϵ Entropy regularization coefficient sup Supremum
η Discretization stepsize θ Parameter of transportation map
exp Exponential function δ Dirac delta mass
inf Infimum ε Generalization error
ι Lipschitz constant of the loss func-

tion
ĥ Logit layer of classifier

κ(x, y) Reference joint PDF ŷ Predicted label
λ1 Coefficient of unbalanced optimal

transport
ζ Lipschitz constant bound for hy-

potheses inH
λ2 Coefficient of unbalanced optimal

transport
c Cost matrix

Df [ρ(x), pT (x)] f -divergence of distribution q(x)
with-respect-to distribution p(x)

f⋆(x) Convex conjugate function of f(x)

DKL[ρ(x), pT (x)] Kullback-Leibler divergence of
distribution q(x) with-respect-to
distribution p(x)

h Classifier

Eq(x)[f(x)] Expectation of function f(x) with-
respect-to distribution q(x)

t Time index

I indicator function u Kantorovich potential function
B Batch size vt Velocity field
C Cumulative domain transportation

and label continuity costs along the
adaptation path

w Kantorovich potential function

H Hypothesis class for classifier x Input
L Loss function y Label
P2(RD) D-dimensional Wasserstein space GDA Gradual domain adaptation
Sstat Statistical error term. JKO Jordan-Kinderlehrer-Otto
T Set of transportation map KL divergence Kullback-Leibler divergence
Wp p-Wasserstein distance OT Optimal transport
X Input space PDF Probability density function
Y Label space UDA Unsupervised domain adaptation
N Sample size UOT Unbalanced optimal transport
d Differential operator
softmax softmax function
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B MATHEMATICAL BACKGROUND ON OPTIMAL TRANSPORT

We begin by reviewing the relevant background of optimal transport, based on references (Villani
et al., 2009; Peyré et al., 2019). Assume continuous variables with densities: source ρ(x) supported
on X , target ξ(y) supported on Y , and a cost c(x, y) ≥ 0. We search for a joint probability density
function which is called transport plan π(x, y) ≥ 0 such that:∫

π(x, y) dy = ρ(x), (B.1a)∫
π(x, y) dx = ξ(y), (B.1b)

and minimize expected cost:

inf
π≥0

∫∫
c(x, y)π(x, y) dy dx, (B.2)

where c(x, y) is the cost function, for example, squared Euclidean norm: c(x, y) = ∥x − y∥22.
Notably, when c(x, y) is chosen as the squared Euclidean distance, the resulting optimal transport
cost corresponds to the squared Wasserstein-2 distance between the two PDFs.

Introducing potentials u(x) and w(y) as Lagrange multipliers for the marginal constraints, we get:

sup
u,w

[

∫
u(x) ρ(x) dx+

∫
w(y) ξ(y) dy] s.t. u(x) + w(y) ≤ c(x, y) ∀x, y. (B.3)

Intuitively, u and w are “prices”; the constraint ensures the total price never exceeds the cost func-
tion. In addition, u and w are also called “(Kantorovich) potential” in optimal transport.

Based on this, we can eliminate one potential via the c-transform as follows:

wc(x) := inf
y
c(x, y)− w(y). (B.4)

Based on this, we get the semi-dual formulation of optimal transport problem (Korotin et al., 2021;
2023; Choi et al., 2023; 2024; 2025) which maximizes over one potential:

sup
w

∫
wc(x) ρ(x) dx+

∫
w(y) ξ(y) dy. (B.5)

Notably, when total mass may differ or we allow creation/destruction of mass, we can relax marginal
constraints using the f -divergence-based penalty terms (Chizat et al., 2018; Zhang et al., 2022).
Specifically, we still want to optimize π(x, y) ≥ 0, but we will penalize deviations of the induced
marginals ρ̃(x) :=

∫
π(x, y) dy and ξ̃(y) :=

∫
π(x, y) dx from ρ(x) and ξ(y):

min
π≥0

∫∫
c(x, y)π(x, y) dy dx+ λ1 Df (ρ̃(x), ρ(x)) + λ2 Df (ξ̃(y), ξ(y)), (B.6)

where Df (ρ̃(x), ρ(x)) =
∫
ρ(x) f

( ρ̃(x)
ρ(x)

)
dx and λ1,2 > 0.

In addition, using the convex conjugate f⋆, the dual problem becomes

max
u,w
−
∫
ρ(x) f⋆1

(
−u(x)

)
dx−

∫
ξ(y) f⋆2

(
−w(y)

)
dy s.t. u(x)+w(y) ≤ c(x, y) ∀x, y, (B.7)

where f1, f2 are the chosen divergences on each side.

Similarly, we can eliminate one potential via the c-transform as follows:

max
w
−
∫
ρ(x) f⋆1

(
− wc(x)

)
dx−

∫
ξ(y) f⋆2

(
− w(y)

)
dy, wc(x) = inf

y
{c(x, y)− w(y)}. (B.8)

Based on this, we obtain the semi-dual formulation of the unbalanced optimal transport problem.
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C THEORETICAL DERIVATION

C.1 DERIVATION OF EQ. (4)

In this subsection, we want to derive the following equivalent relationship in the main content to
uphold the rigor of our manuscript:

xt+η = xt−η∇
δDf [p(xt), pT ]

δp(xt)
⇒ p(xt+η) = argmin

ρ(x)∈P2(RD)

1

2η
W2

2 (ρ(x), p(xt))+Df [ρ(x), pT (x)].

(C.1)

Notably, the optimization problem given by the right-hand-side of the abovementioned equation is
also called Jordan-Kinderlehrer-Otto canonical form (Jordan et al., 1998; Caluya & Halder, 2020;
2022) or minimum movement scheme (Park et al., 2023). Before conducting the derivation, it is
necessary to introduce the definition of Wasserstein distance. The squared 2-Wasserstein distance
W2

2 can be defined by finding a transport map T : RD → RD that minimizes the average cost of
transporting mass from ρ(x) to ξ(x) as follows:

W2
2 (ρ, ξ) = inf

T :T#ρ(x)=ξ(x)

∫
∥x− T (x)∥22 ρ(x)dx, (C.2)

where T# indicates the pushforward measure, and the expression for T (x) is defined as follows:

T (x) = x+ ηvt(x). (C.3)

Meanwhile, during the transportation, the differential equation that delineates PDF of the evolution
process driven by Eq. (1) is called continuity equation, defined as follows:

∂ρ(xt)

∂t
= −∇ · [vt(xt)ρ(xt)]. (C.4)

Building on Eqs. (C.3) and (C.4), and discretizing the continuity equation in the time domain using
the forward Euler scheme (Butcher, 2016; Evans, 2022), we obtain:

ρ(x) = ρ(xt)− η∇ · (ρ(xt)vt(xt)) +O(η2). (C.5)

Taking the functional derivative of Df [ρ(x), pT (x)] with respect to ρ(x), we get:

d

dη
Df [ρ(x), pT (x)] =

d

dη

∫
pT (x) f

(
ρ(x)

pT (x)

)
dx

=

∫
pT (x)

d

dη
f
(

ρ(x)
pT (x)

)
dx

=

∫
���pT (x) f

′
(

ρ(x)
pT (x)

)
1

���pT (x)

∂ρ(x)

∂η
dx

(i)
=

∫
δDf

δρ(x)

∂ρ(x)

∂η
dx

(C.6)

Here, step (i) is based on comparing the first variation:

δDf [ρ;σ] =
d

dε

∣∣∣∣
ε=0

∫
pT (x) f

(
ρ(x) + εσ(x)

pT (x)

)
dx

=

∫
pT (x) f

′
(

ρ(x)
pT (x)

)
1

pT (x) σ(x) dx (chain rule, pT fixed)

=

∫
f ′
(

ρ(x)
pT (x)

)
σ(x) dx,

with the definition of functional derivative:

δDf [ρ;σ] =

∫
δDf

δρ(x)
σ(x) dx,
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where σ(x) denotes an arbitrary perturbation function. Inserting Eq. (C.5) into Eq. (C.6), we get

d

dη
Df [ρ(x), pT (x)] =

∫
δDf

δρ(x)

[
−∇ · (ρ(x)vt(x))

]
dx

=

∫
δDf

δρ(x)

[
− v⊤t (x)∇ρ(x)− ρ(x)∇ · vt(x)

]
dx

(ii)
=

∫ (
−∇ ·

[ δDf

δρ(x)ρ(x)vt(x)
]
+ ρ(x) v⊤t (x)∇

δDf

δρ(x)

)
dx

(iii)
=

∫
ρ(x) v⊤t (x)∇

δDf (ρ(x), pT (x))

δρ(x)
dx.

(C.7)

Step (ii) is based on the chain rule:

∇ ·
[

δDf

δρ(x) ρ(x)vt(x)
]
=

δDf

δρ(x) ρ(x) [∇ · vt(x)]

+
δDf

δρ(x) v
⊤
t (x)∇ρ(x)

+
[
∇ δDf

δρ(x)

]⊤
[ρ(x)vt(x)].

(C.8)

Step (iii) uses a mild regularity assumption (Abraham et al., 2012; Liu et al., 2019; Shi et al., 2022)
on δDf

δρ(x)ρ(x)vt(x), for example rapid decay as x→∞, so that∫
−∇ ·

[
δDf

δρ(x) ρ(x)vt(x)
]
dx = 0. (C.9)

Consequently, Df [ρ(x), pT (x)] can be expanded as follows when η → 0:

Df [ρ(x), pT (x)] = Df [p(xt), pT (x)] + η

∫
p(xt)v

⊤
t (xt)∇

δDf [p(xt), pT (x)]

δp(xt)
dx. (C.10)

For the squared 2-Wasserstein distance, we get:

W2
2 (ρ(x), p(xt)) =

∫
p(xt)∥x− T ∗(xt)∥22dx = η2

∫
p(xt)∥v∗t (xt)∥22dx ≤ η2

∫
p(xt)∥vt(xt)∥22dx,

(C.11)
where T ∗(x) and v∗t (x) are the optimal transportation map and optimal velocity field. Since vt(x)
is not the optimal velocity filed, we obtain the last inequality. Based on Eqs. (C.10) and (C.11), we
finally reach the following result:

Df [ρ(x), pT (x)] +
1

2η
W2

2 (ρ(x), p(xt))− Df [p(xt), pT (x)]

≤(((((((Df [ρ(x), pT (x)] +
η

2
Ep(xt)[∥vt(xt)∥

2
2] + η

∫
·[p(xt)v⊤t (xt)∇

δDf [p(xt), pT (x)]

δp(xt)
]dx−(((((((Df [ρ(x), pT (x)]

≤η
2
Ep(xt)[∥∇

δDf [p(xt), pT (x)]

δp(xt)
]∥22]︸ ︷︷ ︸

≥0

+
η

2
Ep(xt)[∥vt(xt)∥

2
2] + η

∫
p(xt)v

⊤
t (xt)∇

δDf [p(xt), pT (x)]

δp(xt)
dx

=
η

2
Ep(xt){∥vt(xt) +∇

δDf [p(xt), pT (x)]

δp(xt)
∥22}.

(C.12)
Consequently, the optimal velocity field that reduces the upper bound of the optimization problem
defined by the right-hand-side of Eq. (4) can be given as follows:

v∗t (xt) = −∇
δDf [p(xt), pT (x)]

δp(xt)
, (C.13)

which implies that the left-hand side of Eq. (C.1) is a sufficient condition for the optimality of its
right-hand side.
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C.2 DERIVATION OF PROPOSITION 1

Proposition (1). Consider the following primal problem:

LPrimal = argmin
ρ(x)∈P2(RD)

1

2η
W2

2 (ρ(x), p(xt)) + Df [ρ(x), pT (x)]. (C.14)

This problem is equivalent to the following semi-dual formulation:

LSemiDual = sup
w

Ep(xt)

[
inf
T

(
∥T (xt)− xt∥22 − w(T (xt))

)]
− EpT (x)[f

⋆(−w(x))], (C.15)

where w : RD → R is a measurable continuous function, T : RD → RD is the transport map, and
f⋆ denotes the convex conjugate of f , defined as f⋆(z) := supy≥0 (zy − f(y)).

Proof. Eq. (C.14) can be reformulated as follows:

inf
π∈RD×D

+

1

2η

∫∫
∥xt − x∥22π(xt, x)dxtdx+

∫
f

(
ρ(x)

pT (x)

)
pT (x)dx, (C.16a)

s.t. p(xt) =

∫
π(xt, x)dx, ρ(x) =

∫
π(xt, x)dxt. (C.16b)

Based on this, we introduce the Lagrangian multiplier Biegler (2010) u(xt) and w(x) to handle the
equality constraints given by Eq. (C.16b) as follows:

L =
1

2η

∫∫
∥xt − x∥22π(xt, x)dxtdx+

∫
f

(
ρ(x)

pT (x)

)
pT (x)dx

+

∫
u(xt)[p(xt)−

∫
π(xt, x)dx]dxt +

∫
w(x)[ρ(x)−

∫
π(xt, x)dxt]dx

=

∫∫
[
1

2η
∥xt − x∥22 − u(xt)− w(x)]π(xt, x)dxtdx

+

∫
u(xt)p(xt)dxt +

∫
w(x)ρ(x) + f

(
ρ(x)

pT (x)

)
pT (x)dx.

(C.17)

On this basis, the dual function can be given as follows due to the linear independent structure of
problem defined by Eq. (C.17):

g(u,w) = inf
π(xt,x)

∫∫ [
1
2η∥xt − x∥

2
2 − u(xt)− w(x)

]
π(xt, x) dxt dx

+

∫
u(xt)p(xt) dxt + inf

ρ(x)

∫ [
w(x)

ρ(x)

pT (x)
+ f

(
ρ(x)
pT (x)

)]
pT (x) dx

= inf
π(xt,x)

∫∫ [
1
2η∥xt − x∥

2
2 − u(xt)− w(x)

]
π(xt, x) dxt dx

+

∫
u(xt)p(xt) dxt −

∫
pT (x) f

⋆(−w(x)) dx.

(C.18)

where the last line uses the Legendre–Fenchel conjugate (Touchette, 2005; Caluya & Halder, 2020).
Writing y(x) = ρ(x)/pT (x) and using separability, we have

inf
ρ(x)

∫ [
w(x)

ρ(x)

pT (x)
+ f

(
ρ(x)
pT (x)

)]
pT (x) dx =

∫
inf
y≥0

(
w(x) y + f(y)

)
pT (x) dx

= −
∫

sup
y≥0

(
(−w(x)) y − f(y)

)
pT (x) dx

= −
∫
pT (x) f

⋆
(
− w(x)

)
dx.

(C.19)
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Suppose that 1
2η∥xt − x∥

2
2 − u(xt) − w(x) < 0 for some pair (xt, x). In this case, concentrating

all the mass of π(xt, x) at this point drives the Lagrangian in Eq. (C.18) to −∞. To avoid such
degenerate solutions, it is necessary to impose the condition 1

2η∥xt − x∥22 − u(xt) − w(x) ≥ 0

almost everywhere. Consequently, the dual problem can be written as

sup
u(xt)+w(x)≤ 1

2η ∥xt−x∥2
2 π-a.e.

{∫
u(xt)p(xt) dxt −

∫
pT (x)f

⋆(−w(x)) dx
}
. (C.20)

Equivalently, introducing the convex indicator function ℓ, this becomes

sup
u,w

{∫
u(xt)p(xt) dxt −

∫
pT (x)f

⋆(−w(x)) dx− ℓ
(
u(xt) + w(x) ≤ 1

2η
∥xt − x∥22

)}
.

(C.21)
Since f⋆ is convex, non-decreasing, and differentiable, and because ∥xt − x∥22 ≥ 0, the choice
u(xt) ≡ −1 and w(x) ≡ −1 ensures all terms in Eq. (C.21) are finite. By Fenchel–Rockafellar’s
theorem (Bauschke & Combettes, 2017), strong duality therefore holds. Moreover, by complemen-
tary slackness the optimal plan π∗ assigns zero mass to pairs where 1

2η∥xt−x∥
2
2−u∗(xt)−w∗(x) >

0, implying that 1
2η∥xt − x∥

2
2 = u∗(xt) + w∗(x) π∗-almost everywhere. Hence,

u∗(xt) = inf
x

( 1

2η
∥xt − x∥2 − w∗(x)

)
.

Substituting this into the dual yields the semi-dual formulation

sup
w(x)

{∫
inf
x

[ 1

2η
∥xt − x∥22 − w(x)

]
p(xt) dxt −

∫
pT (x)f

⋆(−w(x)) dx
}
. (C.22)

Defining the transport map via the c-transform as

T ∗(xt) ∈ argmin
x

(
1

2η
∥xt − x∥22 − w(x)

)
⇐⇒ inf

x

(
1

2η
∥xt − x∥22 − w(x)

)
=

1

2η
∥xt − T ∗(xt)∥22 − w(T ∗(xt)),

(C.23)

and substituting Eq. (C.23) into Eq. (C.22), we obtain the final semi-dual objective

LSemiDual = sup
w

Ep(xt)

[
∥ 1

2η
T ∗(xt)− xt∥22 − w(T ∗(xt))

]
− EpT (x)[f

⋆(−w(x))], (C.24)

It should be pointed out that there is no closed-form expression of the optimal T ∗(xt) for each
w(x) (Korotin et al., 2023; Choi et al., 2023). Hence, the optimization T (xt) for each w(x) is
required, and we reach the final semi-dual objective as follows based on Eq. (C.24):

LSemiDual = sup
w

Ep(xt)

[
inf
T

(
1

2η
∥T (xt)− xt∥22 − w(T (xt))

)]
− EpT (x)[f

⋆(−w(x))].

C.3 DERIVATION OF PROPOSITION 2

Proposition (2). The semi-dual formulation in Eq. (7) admits non-unique optimal solutions.

Proof. Consider the discrete optimal transport setting with a single source point (xt in Eq. (7)) and
two symmetric target points (x in Eq. (7)). Augment the dual objective with an f -divergence term
acting only on the target potential w, but not on the source potential u. Then the dual optimizer is
not unique.

Specifically, let:

• Source space: xt = {a} with p(xt) ≈ δa.
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• Target space: x = {b1, b2} with ρ(x) = 1
2δb1 +

1
2δb2 .

• Cost constant on pairs: ∥a− b1∥22 = ∥a− b2∥22 = K for some fixed K ∈ R.

The dual problem obtained from the primal with an additional term
∫
f
(

ρ(x)
pT (x)

)
pT (x) dx acting

only on the target side admits multiple optimal solutions (u,w); in particular, uniqueness fails.

The demonstration process can be summarized as follows:

1) At the beginning, let us recall the feasibility for the multipliers u and w:

u(a) + w(bj) ≤ ∥a− bj∥22 = K, ∀j ∈ {1, 2}. (C.25)

Based on this, we can define a shifted source potential ũ := u − K and keep w̃ := w.
Hence, the feasibility in Eq. (C.25) can be given as follows:

ũ(a) + w̃(bj) ≤ 0, ∀j ∈ {1, 2}, (C.26)

where the dual objective differs from the original by a global additive constant (indepen-
dent of (ũ, w̃)), hence the set of maximizers is unaffected by this normalization. As such,
without loss of generality, it suffices to analyze the case K = 0. For notational simplicity
we drop tildes and write

u+ wj ≤ 0, ∀j ∈ {1, 2}. (C.27)

2) Eliminating u and obtaining a piecewise-linear term Since p(a) = 1 and ρ(b1) = ρ(b2) =
1
2 , the dual objective function (up to an additive constant) can be reformulated as follows:

max
u,w1,w2

u+ 1
2w1 +

1
2w2 − 1

2f
⋆(−w1)− 1

2f
⋆(−w2), (C.28)

subject to u ≤ −w1 and u ≤ −w2. At optimum the constraint in u is tight, hence we have
the following result:

u = −min{w1, w2}. (C.29)
Substituting back yields an equivalent maximization over (w1, w2):

Φ(w1, w2) := −min{w1, w2}+ 1
2w1 +

1
2w2 − 1

2f
⋆(−w1)− 1

2f
⋆(−w2). (C.30)

On this basis, we can define the “hinge” (V-shaped) linear part as follows:

L(w1, w2) := −min{w1, w2}+ 1
2w1 +

1
2w2 =

{
1
2 (w2 − w1), w1 ≤ w2,

1
2 (w1 − w2), w2 ≤ w1,

(C.31)

so that L(w1, w2) =
1
2 |w1 − w2| and in particular L(r, r) = 0 for all r.

Consequently, we have:

Φ(w1, w2) =
1
2 |w1 − w2| − 1

2f
⋆(−w1)− 1

2f
⋆(−w2). (C.32)

3) Notably, on the diagonal w1 = w2 = r, we have the following result:

Φ(r, r) = −f⋆(−r). (C.33)

Since f⋆ is strictly convex, the one-dimensional problem maxt Φ(r, r) has a unique maxi-
mizer r∗. Now let us consider antisymmetric perturbations around the diagonal:

w1 = r∗ + δ, w2 = r∗ − δ, δ ∈ R. (C.34)

Then we obtain the following result:
1
2 |w1 − w2| = 1

2 |2δ| = |δ|. (C.35)

Using the second-order Taylor expansion of the strictly convex function f⋆ about −r∗, we
have for the following equality for small |δ|:

− 1
2f

⋆(−w1)− 1
2f

⋆(−w2) = −f⋆(−r∗)− 1
2

(
f∗′′(−r∗)

)
δ2 +O(δ2). (C.36)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Based on this, we get:

Φ(r∗ + δ, r∗ − δ) = |δ| − 1
2f

∗′′(−r∗) δ2 − f⋆(−r∗) +O(δ2). (C.37)

It should be pointed out that, for any sufficiently small but nonzero δ, the linear gain term
|δ| dominates the quadratic penalty term 1

2f
∗′′(−r∗)δ2, hence

Φ(r∗ + δ, r∗ − δ) > Φ(r∗, r∗).

Consequently, the diagonal point (w1, w2) = (r∗, r∗) is not uniquely optimal; in fact,
there exists a continuum of distinct maximizers in a neighborhood along the antisymmetric
direction. The corresponding u is

u = −min{w1, w2} =
{
−(r∗ − δ), δ ≥ 0,

−(r∗ + δ), δ < 0,

yielding distinct optimal triples (u,w1, w2) for different δ ̸= 0.

4) If the original cost is ∥a − bj∥22 = K, recall u = ũ + K. Thus each optimal (ũ, w)
constructed above gives an optimal (u,w) for the original problem by adding K to u. As
the set of optimalw-pairs is already non-singleton, the full optimal dual variable pair (u,w)
is non-unique.

In summary, our proof is based on the counter-example mentioned above. Specifically, in the sym-
metric two-target discrete setting, with the additional f -term acting only on the target potential w,
the dual objective contains a V-shaped hinge L(w1, w2) = 1

2 |w1 − w2| arising from eliminating
u. This non-strict component competes with the strictly convex penalty −

∑
j ρ(bj) f

⋆(−w(bj)).
Along antisymmetric perturbations, the first-order increase from the hinge dominates the second-
order decrease from the convex penalty, producing a continuum of maximizers. Hence the optimal
dual variable pair is not unique. Consequently, the dual problem defined in Eq. (7) admits non-
unique optimal solutions.

C.4 DERIVATION OF PROPOSITION 3

Proposition (3). Let κ(xt, x) := p(xt) pT (x) denote the reference joint PDF. The entropy-
regularized primal problem is

LE-Primal = argmin
ρ∈P2(RD)

1

2η
W2

2 (ρ(x), p(xt)) + Df

[
ρ(x), pT (x)

]
+ ϵ

∫∫
π(xt, x) [log

π(xt, x)

κ(xt, x)
− 1] dxt dx,

(C.38)

and is equivalent to the semi-dual optimization problem

LE-SemiDual = sup
w
− ϵEp(xt)[logEpT (x)(exp(

w(x)− 1
2η ∥x−xt∥2

2

ϵ ))] − EpT (x)[f
⋆(−w(x))], (C.39)

where f⋆ denotes the convex conjugate of f .

Proof. Define c(xt, x) := 1
2η ∥xt − x∥22 as the quadratic transport cost. Introducing Lagrange

multipliers u(xt) : RD → R (for the xt-marginal) and w(x) : RD → R (for the x-marginal). The
Lagrangian of Eq. (C.38) is

L(π, ρ;u,w) =
∫∫

c(xt, x)π(xt, x) dxt dx+ ϵ

∫∫
π(xt, x)

[
log

π(xt, x)

κ(xt, x)
− 1

]
dxt dx

+

∫
f
(

ρ(x)
pT (x)

)
pT (x) dx+

∫
u(xt)

[
p(xt)−

∫
π(xt, x) dx

]
dxt

+

∫
w(x)

[
ρ(x)−

∫
π(xt, x) dxt

]
dx.

(C.40)
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Grouping π-, ρ- and constant terms yields

L =

∫∫ (
c(xt, x)− u(xt)− w(x)

)
π(xt, x) dxt dx

+ ϵ

∫∫
π(xt, x)

[
log

π(xt, x)

κ(xt, x)
− 1

]
dxt dx

+

∫ (
w(x)ρ(x) + f

( ρ(x)
pT (x)

)
pT (x)

)
dx+

∫
u(xt)p(xt) dxt.

(C.41)

Define a(xt, x) := c(xt, x)− u(xt)− w(x). For each fixed (xt, x), minimize

ϕ(y) := a y + ϵ
(
y log y

κ − y
)
, y ≥ 0.

The first-order condition a+ ϵ log(y/κ) = 0 gives

y⋆ = κ e−a/ϵ = κ e(u+w−c)/ϵ. (C.42)

Substituting back yields

inf
y≥0

ϕ(y) = −ϵ κ e−a/ϵ = −ϵ κ exp
(

u+w−c
ϵ

)
. (C.43)

Hence

inf
π≥0

{
π-terms of Eq. (C.41)

}
= −ϵ

∫∫
κ(xt, x) exp

(
u(xt)+w(x)−c(xt,x)

ϵ

)
dxt dx. (C.44)

For ρ, by Legendre–Fenchel conjugate (Touchette, 2005; Caluya & Halder, 2020), we have:

inf
ρ(x)≥0

{
w(x)ρ(x) + f

( ρ(x)
pT (x)

)
pT (x)

}
= −pT (x) f⋆

(
− w(x)

)
. (C.45)

Integrating over x gives

inf
ρ

∫
[w ρ(xt) + f(

ρ(xt)

pT (x)
) pT (x)]dx = −

∫
pT (x) f

⋆
(
− w(x)

)
dx.

Combining Eq. (C.44) and Eq. (C.45), we obtain

g(u,w) =− ϵ
∫∫

κ(xt, x) exp
(

u(xt)+w(x)−c(xt,x)
ϵ

)
dxt dx

−
∫
pT (x) f

⋆
(
− w(x)

)
dx+

∫
u(xt)p(xt) dxt.

(C.46)

Using κ = p(xt) · pT (x), define

A(xt) :=

∫
exp

(
w(x)−c(xt,x)

ϵ

)
pT (x) dx. (C.47)

Then ∫∫
κ exp[

(u(xt) + w(x)− c(xt, x))
ϵ

]dxtdx =

∫
p(xt)A(xt) e

u(xt)
ϵ dxt.

Thus, Eq. (C.46) can be reformulated as follows:

g(u,w) =

∫ [
p(xt)u(xt)− ϵ p(xt)A(xt) eu(xt)/ϵ

]
dxt −

∫
pT (x) f

⋆(−w(x)) dx. (C.48)

For each xt, consider
ψxt(u) := p(xt)u− ϵ p(xt)A(xt) e

u(xt)
ϵ .

The first-order condition
d

du
ψxt

(u) = p(xt)− p(xt)A(xt)e
u(xt)

ϵ = 0
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gives

eu
⋆(xt)/ϵ =

1

A(xt)
⇐⇒ u⋆(xt) = − ϵ logA(xt). (C.49)

Substituting back,
sup
u
ψxt

(u) = ϵ p(xt)
(
− logA(xt)− 1

)
.

Summing over xt and discarding the constant −ϵ
∫
p(xt) dxt = −ϵ (independent of w(x)), we

obtain the semi-dual

sup
w
−ϵEp(xt)

[
logA(xt)

]
− EpT (x)

[
f⋆(−w(x))

]
, (C.50)

with A(xt) defined in Eq. (C.47).

C.5 DERIVATION OF PROPOSITION 4

Proposition (4). The semi-dual formulation in Eq. (9) admits a unique optimal solution.

Proof. Let the entropy-regularized dual objective in Eq. (9) be

g(w) = −ϵEp(xt){logEpT (x)[exp(
w(x)− ∥x− xt∥22

ϵ
)]} − EpT (x)[f

⋆(−w(x))], (C.51)

where f⋆ is assumed to be strictly convex and proper, and ϵ > 0.

We seek to show that g(w) is a strictly concave functional on an appropriate space of measurable
functions w, thus its maximizer (if it exists) is unique.

Our proof can be given by the following steps

1) Define for fixed xt:

Φϵ(w;xt) := −ϵ logEpT (x)[exp(
w(x)− ∥x− xt∥22

ϵ
)], (C.52)

The mapping w 7→ EpT (x)[exp(
w(x)−C(x,xt)

ϵ )] is log-convex by Hölder’s inequality, and
therefore, w 7→ Φϵ(w;xt) is strictly concave, except in directions where w differs only
by an additive constant almost everywhere. Taking the expectation over xt preserves strict
concavity unless w is constant almost everywhere.

2) The term −Ex[f
⋆(−w(x))] is strictly concave with respect to w because f⋆ is strictly

convex. Specifically, for any distinct w1 ̸= w2, strict convexity of f⋆ gives for all λ ∈
(0, 1),

−Ex[f
⋆(−((1− λ)w1(x) + λw2(x)))] > −(1− λ)Ex[f

⋆(−w1(x))]− λEx[f
⋆(−w2(x))]

provided w1(x) ̸= w2(x) on a set of positive measure.

3) Since the sum of a strictly concave function and a concave function is strictly concave,
it follows that the full dual objective g(w) is strictly concave on the set of admissible
functions.

As a result, g(w) admits at most one maximizer, and the proposition is proved.

C.6 DERIVATION OF THEOREM 5

Theorem (5). The optimal solution ρ∗(x) to problem defined in Eq. (8) satisfies the following bound:

Df [ρ
∗(x), pT (x)] ≤ W2(p(xt), pT (x)). (C.53)
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According to the definition of the JKO proximal recursion Eqs. (6) and (8), each update p(xt+1)
satisfies the following inequality (see Theorem 4.0.4 of reference (Ambrosio et al., 2005)):

1

2η
W2

2 (p(xt+1), p(xt)) + Df [p(xt+1), pT (x)] ≤ Df [p(xt), pT (x)],

where Df [p(xt), pT (x)] ≥ 0 and attains its minimum at the target distribution pT (x). This inequal-
ity implies that the total energy decreases at every step, thereby reducing the Wasserstein distance
to pT (x) when Df [p(xt+1), pT (x)] is geodesically convex:

W2

(
p(xt+1), pT (x)

)
≤ W2

(
p(xt), pT (x)

)
−∆t, ∆t ≥ 0. (C.54)

Hence, as t increases, based on Eqs. (C.53) and (C.54) the upper bound on Df [ρ
∗(xt), pT (x)] is

gradually tightened:

Df [ρ
∗(xt+1), pT (x)] ≤ Df [ρ

∗(xt), pT (x)]−∆t,

which shows that the transported probability density ρ(x) progressively becomes more similar to
the target pT (x).

Proof. To facilitate reading, we define the signal as follows:

W2
2,ϵ(ρ, ξ) := inf

π∈Π(ρ,ξ)

∫∫
∥x− y∥22π(x, y)dxdy

+ ϵ

∫∫
π(ρ(x), p(xt))[log π(ρ(x), p(xt))− 1]dxdxt,

(C.55)

The dual representation of the f -divergence based on the Legendre–Fenchel conjugate is:

Df [ρ(x), pT (x)] = sup
v(x)

{
Eρ(x)[v(x)]− EpT (x) [f

⋆(v(x))]
}
. (C.56)

Thus, the problem defined in Eq. (8) can be written as:

inf
ρ(x)

W2,ϵ(ρ(x), p(xt)) + sup
v(x)

{Eρ(x)[v(x)]− EpT (x) [f
⋆(v(x))]} (C.57)

Interchanging minρ(x), supv(x) by the convexity-concavity and Sion’s theorem (Sion, 1958; Simons,
1995), we obtain the following result:

sup
v(x)

−EpT (x)[f
⋆(v(x))] + inf

ρ(x)
{W2,ϵ(ρ(x), p(xt)) + Eρ(x)[v(x)]} (C.58)

The inner minimization with respect to ρ(x) is precisely the entropic optimal transport problem in
the semi-dual form for PDFs ρ(x) and p(xt):

min
ρ(x)

W2,ϵ(ρ(x), p(xt)) + Eρ(x) [v(x)] (C.59)

whose optimal value equals

Ep(xt)[−ϵ log
∫

exp(
v(x)− c(xt, x)

ϵ
)dy]. (C.60)

This follows from standard duality in entropic optimal transport.

Plug the expression above into the main problem:

sup
v(x)

Ep(xt)[−ϵ log
∫

exp(
v(x)− c(xt, x)

ϵ
)dy]− EpT (x)[f

⋆(v(x))]. (C.61)

This is the desired semi-dual form.

At optimality, plug in any variation v = v∗ + δψ into g(w) and take derivative w.r.t. δ at 0, then set
to zero. The calculation is:

0 =
∂

∂δ
g(v∗+ δψ)

∣∣∣∣
δ=0

= Ep(xt)

∫
ψ(x) exp

(
v∗(x)−c(xt,x)

ϵ

)
dx∫

exp
(

v∗(x)−c(xt,x)
ϵ

)
dx

−EpT (x) [(f
⋆)′(v∗(x))ψ(x)] ,

(C.62)
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which for all test functions ψ(x) implies∫
p(xt)

exp
(

v∗(x)−c(xt,x)
ϵ

)
∫
exp

(
v∗(x)−c(xt,x)

ϵ

)
dx

dxt

︸ ︷︷ ︸
:=p̃T (x)

= pT (x)(f
⋆)′(v∗(x)).

That is, the pushforward of p(xt) under the mapping:

T ∗(x|xt) =
exp

(
v∗(x)−c(xt,x)

ϵ

)
∫
exp

(
v∗(x)−c(xt,x)

ϵ

)
dx
,

which indicates that
p̃T (x) = pT (x)(f

⋆)′(v∗(x)). (C.63)
So, ρ∗(x) = p̃T (x) is the marginal of the optimal transport π∗ as claimed.

Since the value of the primal objective at ρ(x) = pT (x) gives an upper bound:

Df [ρ
∗(x)∥pT (x)] +W2,ϵ(ρ

∗(x), p(xt)) ≤ W2,ϵ(pT , p(xt)). (C.64)

So in particular, we get:
Df [ρ

∗(x)∥pT (x)] ≤ W2,ϵ(p(xt), pT (x)). (C.65)

In addition, we notice that the following inequality holds for ϵ > 0:

ϵ

∫∫
π(ρ(x), p(xt))[log π(ρ(x), p(xt))− 1]dxdxt ≤ 0. (C.66)

Plugging Eq. (C.66) into Eq. (C.65), we arrive at the desired result.

C.7 DERIVATION OF THEOREM 6

Theorem (6). Under mild assumptions, the E-SUOT-based GDA ensures that the target domain
generalization error is upper-bounded by the following inequality:

εpT
(hT ) ≤ εp0

(h0) + εp0
(h∗T ) + ιζC + Sstat, (C.67)

where ι is the Lipschitz constant of the loss function, ζ is the Lipschitz constant bound for hypothe-
ses in H, C aggregates the cumulative domain transportation and label continuity costs along the
adaptation path, and Sstat is the statistical error term.

Before formally proving the theorem, we introduce the following assumptions, which are mild and
commonly satisfied in practical domain adaptation scenarios:

(A. 1) The loss function L(·, y) is ι-Lipschitz with respect to its first argument; that is, for any
a, a′ and fixed y, we have:

|L(a, y)− L(a′, y)| ≤ ι|a− a′|. (C.68)

(A. 2) Each hypothesis h ∈ H is ζ-Lipschitz, i.e., for any x, x′, we have:

|h(x)− h(x′)| ≤ ζ∥x− x′∥. (C.69)

(A. 3) The labeling function qt along the adaptation path is such that |qt(x) − qt−1(x)| is small
for most x, to ensure local continuity.

(A. 4) The sequence of domains (p0, p1, . . . , pT ) is induced by E-SUOT-based GDA transport, so
that the total cumulative cost C as defined below is finite.

(A. 5) At every step, empirical risk minimization over sufficient samples ensures a small
empirical-to-expected error gap, leading to a statistical error term Sstat.

(A. 6) The sample size for each domain is large enough to make Sstat negligible in the asymptotic
regime.
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Notably, Assumption (A.1) is standard and well-justified for classification tasks employing the cat-
egorical cross-entropy loss. More specifically, the gradient of LCE with respect to the logits a is
bounded as ∣∣∣∣∂LCE

∂aj

∣∣∣∣ = ∣∣[softmax(a)]j − I(j = y)
∣∣ ≤ 1,

for any class index j, since each softmax component lies within [0, 1], and the indicator function
I(j = y) takes values in {0, 1}. By the classical Lagrange mean value theorem (see, Theorem
4 in (Thomas et al., 2014)), this bounded-gradient property implies that LCE is globally Lipschitz
continuous with respect to its first argument on any bounded input domain, with a Lipschitz constant
of at most 1. In practice, this assumption can be further facilitated by applying weight normalization
or spectral-norm regularization, which help maintain bounded network outputs and thereby make
the Lipschitz condition more readily satisfied during optimization.

Furthermore, Assumptions (A.2), (A.5) and (A.6) are standard and generally hold for commonly
used loss functions and hypothesis classes. Unless the loss or model is exceptionally non-standard,
these can be stated directly with the theorem and do not require additional justification.

Assumption (A.3) holds in cases where the labeling function changes smoothly along the adaptation
path. For our construction, since the intermediate domains are generated by incremental, continuous
transformations (e.g., gradual style or environmental shifts), the underlying semantics of inputs
remain stable, and thus Ept−1(x)

[
qt(x) − qt−1(x)

]
is small for every t. This situation typically

occurs under covariate shift, where only the input distribution evolves while class definitions stay
fixed. However, we acknowledge that this assumption may not hold in fine-grained recognition
settings or tasks with rapidly changing label semantics, where small variations in features can lead
to distinct class assignments. In such cases, the theoretical guarantees derived under Assumption
(A.3) would apply only locally, within regions where the labeling function remains approximately
smooth. However, the assumption may not hold in tasks with abrupt semantic boundaries—such as
fine-grained classification—where visually similar samples can belong to distinct categories. Our
analysis therefore applies when the domain evolution does not induce significant concept shift.

As for Assumption (A.4), in our E-SUOT-based GDA, each domain is generated via an iterative
unbalanced optimal transport step that progressively reduces the transport cost as we proved in The-
orem 6. This guarantees that the cumulative cost C is finite, as can be bounded analytically. In
summary, all the above assumptions are justified in our setting. Based on these assumptions, we
now proceed with the formal proof.

Proof. Our goal is to bound the target risk εpT
(hT ). Consider the telescoping sum along the domain

adaptation path:
εpT

(hT ) = εp0(h0) + [εpT
(hT )− εp0(h0)] . (C.70)

To make the recursion explicit, rewrite this as:

εpT
(hT ) = εp0

(h0) +

T∑
t=1

[
εpt

(ht)− εpt−1
(ht−1)

]
. (C.71)

For each t ∈ {0, . . . , T − 1}, we observe that

εpt
(ht)− εpt−1

(ht−1)

= [εpt
(ht)− εpt

(ht−1)]︸ ︷︷ ︸
optimization error

+
[
εpt

(ht−1)− εpt−1
(ht−1)

]︸ ︷︷ ︸
domain shift term

+
[
εpt−1

(ht−1)− εpt−1
(ht)

]︸ ︷︷ ︸
≤0 by ERM

(C.72)

In practice, the last term is non-positive since ‘empirical risk minimization’ (Vapnik, 1999; Shalev-
Shwartz & Ben-David, 2014; Zhuang et al., 2024) ensures moving toward lower risk, so we can drop
it for an upper bound.

By the Lipschitz property of L and h,
|εpt

(h)− εpt−1
(h)| ≤ ιζ · W1(pt−1, pt). (C.73)

Suppose the true label function qt changes along the path. Following standard analysis, this gives
an additional cost due to the label discrepancy:

ιEpt(x)|qt(x)− qt−1(x)|. (C.74)
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Therefore, each step can be bounded by

|εpt
(ht)− εpt−1

(ht−1)| ≤ ιζW1(pt−1, pt) + ιEpt(x)|ft(x)− ft−1(x)|+ st (C.75)

where st denotes the statistical error at step t.

Let

C :=
T−1∑
t=0

[
W1(pt−1, pt) +

1

ζ
Ept(x)|qt(x)− qt−1(x)|

]
(C.76)

and

Sstat :=

T−1∑
t=1

st. (C.77)

Sum these bounds for all t ∈ {0, . . . , T − 1}, we get:
T−1∑
t=0

|εpt(ht)− εpt−1(ht−1)| ≤ ιζC + Sstat. (C.78)

As the final classifier hT may not be optimally trained with respect to p0, include the approximation
gap:

εp0
(h0) + εp0

(h∗T )− εp0
(h0) (C.79)

where h∗T is the risk minimizer inH for p0.

Finally,
εpT

(hT ) ≤ εp0
(h0) + εp0

(h∗T ) + ιζC + Sstat,

as desired.

While Theorem 6 provides a clean decomposition, the last two terms are not directly computable
from data. To bridge this gap between theory and practice, we attempt to estimate them using the
following strategies:

• Loss Lipschitz constant ι: According to the analysis of Assumption (A.1), we conclude that
ι < 1 with the help of applying weight normalization or spectral-norm regularization.

• Hypothesis Lipschitz constant ζ. This bounds how sensitively hypotheses h ∈ H react to in-
put perturbations. In our implementation process, we use the multi-layer-perceptron with ReLU
activated function. Thus, the Lipschitz constant ζ for the classfier can be estimated as follows:

ζ ≤
L∏

ℓ=1

∥Wℓ∥2, (C.80)

where Wℓ is the weight of the linear layer, ∥Wℓ∥2 is the spectral norm of Wℓ. Similarily, ζ can be
controlled by enforcing spectral normalization or weight normalization on layers.

• Cumulative cost C: Recall Eq. (C.76), we observe that the 1-Wasserstein distance term
W1(pt−1, pt) can be approximated using sample-based optimal transport distances, for example,
Sinkhorn distance (Cuturi, 2013), computed on intermediate feature representations. Besides, the
inter-step labeling-function shift term Ept(x)

∣∣qt(x)− qt−1(x)
∣∣ in Eq. (C.76) can be approximated

in practice via pseudo-labels predicted by the models at steps t− 1 and t, effectively quantifying
how much pseudo-labels change along the adaptation path.

• Statistical error Sstat: The term Sstat =
∑T−1

t=1 st collects the statistical deviations between
empirical and population risks at each adaptation step. Under mild assumptions, including G-
Lipschitz losses and norm-constrained neural networks, standard uniform-convergence bounds
based on Rademacher complexity yield the following result, adapted from Section 9.4 of Bach
(2024):

st = O
( 1√

N

)
, (C.81)

Consequently, for all t ∈ {0, 1, . . . , T − 1}, we can estimate Sstat as follows:

Sstat = O
( T√

N

)
. (C.82)
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C.8 DISCUSSIONS ON THE SELECTION OF STEP SIZE η

Let us recall Eqs. (B.6) and (6) as follows:{
LPrimal = argminρ(x)∈P2(RD)

1
2η W

2
2 (ρ(x), p(xt)) + Df [ρ(x), pT (x)],

minπ≥0

∫∫
c(x, y)π(x, y) dy dx+ λ1 Df (ρ̃(x), ρ(x)) + λ2 Df (ξ̃(y), ξ(y)).

(C.83)

Since Eq. (6) is a variant of Eq. (B.6), where λ1 ≡ 0. Based on this, we may raise one question:
How to select the λ2, i.e. η?

Since our target is decreasing the functional Df [ρ(x), pT (x)] along the simulation process, thus one
of the key factor is that the selection of the η can decrease the functional Df [ρ(x), pT (x)]. Take
the KL divergence, the f -divergence we consider in the proposed E-SUOT approach, we have the
following proposition for selecting the η:

Proposition 7. Suppose that the ∥ δDKL[ρ(x),pT (x)]
δρ(x) ∥ ≤ A and ∥∇ δDKL[ρ(x),pT (x)]

δρ(x) ∥ ≤ B, there
exists a constant H0 control the tailness of pT (x), and let {ρt(x)|t = 1, . . . , T} denote the sequence
of empirical PDF of the intermediate domain generated by the JKO recursion. When η satisfies the
following condition, the sequence of KL divergence {DKL[ρt(x), pT (x)]|t = 1, . . . , T} converges
to a finite value as t→∞:

0 < η < min(
1

B
,

H0

A
). (C.84)

Before proposing the proof, we should introduce the light-tailness property on the target distribution
pT (x) in order to ensure the validity of our Taylor expansion and to control higher-order discretiza-
tion errors during the proof process. Specifically, we say that pT (x) is light-tailed (Ambrosio et al.,
2005; Johnson & Zhang, 2018; 2021) if there exists a universal constant H0 <∞ such that∫

∥∇ log pT (x)∥ pT (x)dx < H0. (C.85)

We call H0 the “light-tail constant” of pT (x). This condition requires that the expectation (under
pT (x)) of the norm of the score function∇pT (x) is finite. Intuitively, this ensures that pT (x) decays
sufficiently rapidly in the tails so that the gradients do not blow up at infinity. On this basis, the proof
is articulated as follows:

Proof. Suppose at time t and time t+ η, we have:

xt+η = T (x) := xt + ηvt(xt). (C.86)

We denote the probability distributions, before and after applying Eq. (C.86) as ρt(x) and ρt+η(x),
respectively. The aim is to Taylor expand the evolution of

DKL[ρt+η(x), pT (x)] =

∫
ρt+η(x) log

ρt+η(x)

pT (x)
dx, (C.87)

with respect to η around η = 0. The new probability distribution, for small η, can be given as
follows according to the Liouville’s theorem:

ρt+η(x) = ρt(T
−1(x)) · |detJT−1(z)| (C.88)

where JT−1(z) is the Jacobian matrix of the inverse map, and when η is small enough, the inverse
function T−1(x) of function T (x) can be given as follows:

T−1(x) ≈ x− ηvt(x). (C.89)

Hence, expanding to the first order in η can be given as follows:

ρt+η(x) ≈ ρt(x− ηvt(x)) [1− η∇ · ϕ(z)] ≈ ρt(x)− η∇ [ρt(x)vt(x)] . (C.90)

Define F (η):

F (η) := DKL[ρt+η(x), pT (x)] =

∫
ρt+η(x) log

ρt+η(x)

pT (x)
dx. (C.91)

Applying Taylor’s expansion at η = 0, we can obtain the following result:

F (η) = F (0) + ηF ′(0) +O(η2). (C.92)
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Now, we start deriving F ′(0). When we take the derivative inside the integral, we have:

F ′(η) =
d

dη

∫
ρt+η(x) log

ρt+η(x)

pT (x)
dx =

∫
d

dη
ρt+η(x)[1 + log

ρt+η(z)

pT (x)
]dx (C.93)

At η = 0, ρt+η(x) = ρt(x):

F ′(0) =

∫
d

dη
ρt+η(x)

∣∣∣∣
η=0

[1 + log
ρt(x)

pT (x)
]dx. (C.94)

Now, using the result from the calculus of variations:

d

dη
ρt+η(x)

∣∣∣∣
η=0

= −∇ · (ρt(x)vt(x)) (C.95)

Thus,

F ′(0) = −
∫
∇ · (ρt(x)vt(x))[1 + log

ρt(x)

pT (x)
]dx. (C.96)

Now, use integration by parts:∫
−∇ · [ρt(x)vt(x)]g(x)dz =

∫
[ρt(x)vt(x)]

⊤∇g(x)dx. (C.97)

Set g(x) = 1 + log ρt(x)
pT (x) . Its gradient is:

∇g(x) = ∇ log ρt(x)−∇ log pT (x). (C.98)

Hence,

F ′(0) =

∫
[ρt(x)vt(x)]

⊤[∇ log ρt(x)−∇ log pT (x)]dx = Eρt(x)

[
v⊤t (x)(∇ log ρt(x)−∇ log pT (x))

]
.

(C.99)
But with a negative sign because the original derivative is minus divergence:

F ′(0) = −Eρt(x)

[
v⊤t (x)(∇ log ρt(x)−∇ log pT (x))

]
. (C.100)

Putting all together, we get:

DKL[ρt+η(x), pT (x)]

=DKL[ρt(x), pT (x)]− ηEρt(x)

[
v⊤t (x)(∇ log pT (x)−∇ log ρt(x))

]
+O(η2).

(C.101)

Notably, the optimal velocity field v∗t (x) for KL divergence is −∇ δDKL[ρt(x)]
δρt(x)

. Thus, we have:

DKL[ρt+η(x), pT (x)]

=DKL[ρt(x), pT (x)]−ηEρt(x)

[
(∇ log pT (x)−∇ log ρt(x))

⊤v∗t (x)
]︸ ︷︷ ︸

≤0

+O(η2). (C.102)

Since ∥∇ δDKL[ρ(x),pT (x)]
δρ(x) ∥ ≤ B, there exists a positive constant C such that:

DKL[ρt(x), pT (x)]− ηEρt(x)

[
(∇ log pT (x)−∇ log ρt(x))

⊤v∗t (x)
]
+O(η2)

≤DKL[ρt(x), pT (x)]− ηEρt(x)

[
(∇ log pT (x)−∇ log ρt(x))

⊤v∗t (x)
]
+ Cη2,

(C.103)

where constant C satisfies the following condition:

C ∝ B2. (C.104)

To avoid Cη2 dominating the right-hand-side of Eq. (C.103), we should satisfy the following condi-
tion:

1

η2
≫ B2 ⇒ η ≪ 1

B
⇒ η <

1

B
. (C.105)

According to the log–Sobolev inequality (Ambrosio et al., 2005; Villani et al., 2009), for the
target distribution pT (x) satisfying the curvature condition controlled by H0 > 0 (i.e., strong
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log–concavity or equivalent tailness control), there exists a log–Sobolev constant H0 such that for
any smooth density ρt(x),

DKL[ρt(x), pT (x)] ≤
H0

2
Eρt(x)

[
∥∇ log ρt(x)

pT (x)∥
2
]
. (C.106)

Equivalently, the following lower-bound form holds:

Eρt(x)

[
∥v∗t (x)∥2

]
≥ 1

H0
DKL[ρt(x), pT (x)], (C.107)

where we used v∗t (x) = ∇ log pT (x)−∇ log ρt(x).

When the variational derivative δDKL[ρt(x),pT (x)]
δρt(x)

is bounded by A , and the spatial gradient of this
functional derivative is bounded by B, the log–Sobolev inequality admits a perturbation-corrected
version:

Eρt(x)[∥v
∗
t (x)∥2] ≥

1

H0
{DKL[ρt(x), pT (x)]−

A

H0
}, (C.108)

where the correction term A
H0

compensates for the bounded ∥∇ δDKL

δρ ∥ and ensures dimensional
consistency of the energy inequality. Plugging Eq. (C.108) into Eq. (C.103) gives:

DKL[ρt+η(x), pT (x)]

≤DKL[ρt(x), pT (x)]− η Eρt
[∥v∗t (x)∥2] + Cη2

≤DKL[ρt(x), pT (x)]−
η

H0
{DKL[ρt(x), pT (x)]−

A

H0
}+ Cη2,

(C.109)

Rearranging Eq. (C.109), we have:

DKL[ρt+η(x), pT (x)] ≤ (1− η
H0

)DKL[ρt(x), pT (x)] +
ηA
H 2

0
+ Cη2. (C.110)

To promise the iteration will gradually reduce DKL[ρt(x), pT (x)], we should require:

(1− η
H0

) ∈ (0, 1) ⇒ 0 < η < H0. (C.111)

According to Eq. (C.105), ignoring Cη2, we obtain the equilibrium point, corresponding to the
steady state as t→∞:

DKL[ρ∞(x), pT (x)] =
A

H0
. (C.112)

Next, to ensure that each discrete update indeed decreases the KL divergence, we impose

DKL[ρt+η(x), pT (x)] < DKL[ρt(x), pT (x)]. (C.113)

Substituting Eq. (C.110) into Eq. (C.113) yields the following result:

− η

H0
DKL[ρt(x), pT (x)] +

ηA

H 2
0

+ Cη2 < 0. (C.114)

Dividing both sides by η > 0 and rearranging terms gives the following equation:

DKL[ρt(x), pT (x)] >
A

H0
+ CηH0. (C.115)

In the late stage of GDA task, DKL[ρt(x), pT (x)] approaches its equilibrium value
DKL[ρ∞(x), pT (x)] =

A
H0

, so that:

DKL[ρt, pT ]− DKL[ρ∞, pT ] ≈ DKL[ρ∞, pT ] =
A

H0
. (C.116)

Hence, the typical contraction strength per update is of order:

η

H0

(
DKL[ρt, pT ]− DKL[ρ∞, pT ]

)
≈ η

H0

A

H0
. (C.117)
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To guarantee that the quadratic residual Cη2 does not dominate the contraction term in Eq. (C.117),
we require:

Cη2 ≪ η

H0

A

H0
=⇒ η ≪ H0

A
. (C.118)

That is, the discretization step must satisfy the stability condition since A > 0:

0 < η <
H0

A
< H0, (C.119)

which ensures that the numerical update is dominated by the contraction term rather than by the
additive bias or high-order error. Based on Eqs. (C.105) and (C.119), we arrive at the desired result.

D DETAILED ALGORITHM OF THE E-SUOT FRAMEWORK

While Algorithm 1 outlines the general workflow for generating the intermediate domain, it does
not specify how E-SUOT can be applied to the GDA task. To bridge this gap, we first present the
complete workflow for E-SUOT-based GDA in Algorithm 2.

Building on this foundation, the complete workflow for E-SUOT-based gradual domain adaptation
is summarized in Algorithm 2 based on Algorithm 1. Notably, our algorithm decouples the training
of the transport function Tθ from the fine-tuning of the classifier hω . This separation allows the
intermediate domain to be generated offline and subsequently used for online inference, potentially
reducing overall computation time comparable to traditional GDA approaches.

Algorithm 2 Overall Workflow for Construing E-SUOT-based Gradual Domain Adaptation

Input: Source domain samples: {(x(i)0 , y
(i)
0 )}Ni=1, target domain samples: {(x(i)T , y

(i)
T )}Ni=1, entropy

regularization strength: ϵ, step size: η, number of intermediate domain T − 1, neural network batch
size B, and neural network training epochs: E .
Output: Classifier in target domain hω,T .

1: Initialize the classifier hω,0: hω,0 ← argminω LCE(x0, hω,t, y0).
2: Train T = {Tθ,t}T−1

t=1 : T ←Algorithm 1.
3: for t = 0 to T − 1 do
4: Obtain the intermediate domain data {(x(i)t+1, y

(i)
t+1)}: x

(i)
t+1 ← Tθ,t(x

(i)
t ) and y(i)t+1 ← y

(i)
t for

all i ∈ {1, . . . ,N}.
5: Finetune the classifier hω,t+1: hω,t+1 ← argminω LCE(xt+1, hω,t, yt+1).
6: end for

E DETAILED INFORMATION FOR EXPERIMENTS

E.1 DATASET DESCRIPTIONS

• Portraits: Portraits is a binary gender classification dataset comprising 37,921 front-facing
portrait images collected between 1905 and 2013. Following the chronological split proto-
col of (Kumar et al., 2020), we divide the data into a source domain (the earliest 2,000 im-
ages), intermediate domains (14,000 images not utilized in this work), and a target domain
(the subsequent 2,000 images), similar to the setting in reference (Zhuang et al., 2024).

• Rotated MNIST: Rotated MNIST is a variant of the standard MNIST dataset Deng (2012)
in which images are rotated to create domain adaptation challenges. As described in He
et al. (2024); Kumar et al. (2020), we use 4,000 source images and 4,000 target images,
with the target images rotated by 45◦ to 60◦.

• Office-Home: Office-Home is a domain adaptation benchmark dataset consisting of ap-
proximately 15,500 images categorized into 65 object classes commonly found in office
and home environments (Venkateswara et al., 2017). The dataset encompasses four vi-
sually distinct domains—Artistic (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw).
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Following common domain adaptation protocols, one domain is selected as the source do-
main while another serves as the target domain, resulting in a total of 12 domain transfer
tasks (e.g., Ar→Rw, Cl→Pr, etc.).

E.2 EXPERIMENTAL SETTINGS

E.2.1 PRELIMINARIES OF SELF-TRAINING METHOD

Self-training is a classical semi-supervised learning strategy that leverages the model’s own predic-
tions on unlabeled data to iteratively improve its performance. Given a model hω trained on labeled
source data, we use it to generate pseudo-labels for unlabeled samples in a target or auxiliary dataset
Daux. Each unlabeled input xi ∈ Daux is assigned a pseudo-label ỹi = sign(hω(xi)), indicating a
positive or negative prediction. A new model hω′ is then trained to minimize the empirical loss on
this pseudo-labeled dataset:

ST(θ,Daux) = argmin
h′
ω∈H

1

Naux

∑
xi∈Daux

L(h′ω(xi), sign(hω(xi))) , (E.1)

where ST is the abbreviation of self-training, Naux denotes the sample size of auxiliary datasetDaux.
This procedure can be iteratively repeated, replacing θ with the newly optimized θ′ to refine the
pseudo-labels over time.

Intuitively, self-training alternates between

1) Producing pseudo-labels using the current classifier.
2) Retraining the model on these pseudo-labels, thereby progressively refining the decision

boundary.

In practice, confidence thresholding or pseudo-label sharpening can be incorporated to reduce noise
accumulation and improve stability.

E.2.2 TRAINING & EVALUATION PROTOCOLS

For GDA and UDA task, we follow the standard domain adaptation protocol, where model training
and hyperparameter tuning are performed using labeled source data merely since the validation on
the target domain is infeasible in unsupervised adaptation setting. All results are reported on the
target domian dataset without using target labels for validation or early stopping.

For classifier training under this protocol, let ĥω,t(xt) denote the logits produced by the classifier
parameterized by ω at time step t. We define

hω,t(xt) = softmax
(
ĥω,t(xt)

)
(E.2)

as the corresponding class-probability vector. Given the ground-truth label yt, the categorical cross-
entropy loss is formulated as follows:

LCE(xt, ω, yt) = −
B∑

i=1

y
(i)
t log h

(i)
ω,t(xt) = −

B∑
i=1

y
(i)
t log[softmax

(
ĥω,t(xt)

)(i)
]. (E.3)

On this basis, we use the classification accuracy (denoted as “Accuracy”) as the evaluation metric,
defined as the proportion of correctly predicted target samples:

Accuracy = [
1

Ntgt

Ntgt∑
i=1

I(ŷi = yi)]× 100%, (E.4)

where Ntgt is the number of target test samples, ŷi denotes the predicted label of the i-th sample, yi
is the corresponding ground-truth label, and I(·) is the indicator function that equals 1 when the con-
dition holds and 0 otherwise. A larger accuracy value corresponds to better adaptation performance.
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E.2.3 GDA TASK

Table E.1: Hyperparameters
for E-SUOT on GDA task.
Datasets η B ϵ T

Portraits 0.5 1024 0.1 5
MNIST 45◦ 0.5 1024 0.01 5
MNIST 60◦ 0.5 2048 0.005 5

The official implementations of GOAT (He et al., 2024) and
CNF (Sagawa & Hino, 2025) are used in our experiments. Addi-
tionally, we employ UMAP (McInnes et al., 2018) to reduce the
dimensionality of the three GDA datasets to 8 in order to align
with the experimental tuple provided by (Zhuang et al., 2024). The
experiments are conducted on a workstation equipped with two
NVIDIA RTX 4090 GPUs under five different random seeds at least
three times. The overall hyper-parameters we use in our GDA task
are summarized in Table E.1.

In all experiments, we parameterize the classifier hϕ as a three-layer multi-layer perceptron (MLP)
at each step, utilizing ReLU activation functions and a hidden dimension of 100 for each layer. For
both Tθ and wϕ, we employ a two-layer MLP with the SiLU activation function and incorporate a
skip connection to enable a residual structure (He et al., 2016). All models are optimized by the
Adam optimizer (Kingma & Ba, 2015) with learning rate at 0.0001. For all three GDA datasets, we
apply UMAP (McInnes et al., 2018) to reduce their dimensionality to eight. For the classifier hω , we
use a two-layer MLP with ReLU activations and 128 hidden units. All baseline models are trained
on features embedded by the UMAP.

E.2.4 UDA TASK

For the UDA task, we adopt the Office-Home dataset (Venkateswara et al., 2017) as the benchmark to
evaluate the performance of the proposed E-SUOT framework. Following the standard unsupervised
domain adaptation (UDA) protocol, model training and hyperparameter tuning are performed solely
using the labeled source data, without access to target labels for validation or early stopping. All
results are reported on the target domain dataset.

We compare E-SUOT with a diverse set of representative UDA approaches, including DANN (Ganin
& Lempitsky, 2015), MSTN (Xie et al., 2018), GVB-GD (Cui et al., 2020), RSDA (Gu et al., 2020;
2022), LAMBDA (Le et al., 2021), SENTRY (Prabhu et al., 2021), FixBi (Na et al., 2021), CST (Liu
et al., 2021a), CoVi (Na et al., 2022), and GGF (Zhuang et al., 2024). For baselines including DANN,
MSTN, GVB-GD, RSDA, LAMBDA, SENTRY, FixBi, CST, and CoVi, we directly report the pub-
licly available results from their original papers under identical experimental settings (i.e., the same
dataset and evaluation protocol). For the GGF method, as the public release of GGF provides only
code for GDA task, we re-implemented the missing components according to the paper’s description
and ran the experiments locally to maintain consistency with the original experimental protocol.

In addition, similar to GGF, our E-SUOT framework builds upon CoVi as the backbone feature
extractor. The extracted features are embedded into an eight-dimensional space using UMAP. The
classifiers hω for GGF and E-SUOT are implemented as two-layer ReLU MLPs with 256 hidden
units. We set the η, B, ϵ, and T as 0.5, 1024, 0.001, and 4, respectively. Both GGF and E-SUOT
models are trained under the same conditions for fair comparison.

E.3 DETAILED INFORMATION FOR ABLATION STUDIES

For the ablation study, we ablate two module namely the training strategy of Tθ and the objective
functional. The detailed information are elaborated in this part.

For “Training Strategy”, the detailed experimental protocols are given as follows:

• Adversarial Training: In our adversarial training scheme, we optimize Eq. (7). Building
on (Korotin et al., 2021; 2023; Choi et al., 2023; 2024), the training of Tθ is formulated
adversarially, as summarized in Algorithm 3. In Line 5, the penalty term 1

2η ∥xt−1 −
Tθ,t−1(xt−1)∥22 is omitted since it is constant with respect to wϕ,t−1.

• Barycentric-based Training: We propose the algorithm for barycentric-based training
in Algorithm 4. For barycentric-based training, rather than first compute the transport
map, we attempt to compute the optimal transport map π∗ between ρ(xt−1) and pT (x) as
we demonstrate in Line 4. Based on this, we make barycentric projection (Courty et al.,
2017b; Perrot et al., 2016) using this π∗ to obtain the proxy points (Liu et al., 2021b; 2023)
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for transport map learning as we demonstrate in Line 5. Finally, the transport map Tθ,t−1

is constructed based on these points, similar to the flow matching (Lipman et al., 2023), as
we demonstrate in Line 6.

Algorithm 3 Adversarial Training for {Tθ,t}T−1
t=1 .

Input: Intermediate domain samples: {(x(i)t−1, y
(i)
t−1)}Ni=1 for all t ∈ {1, . . . ,T}, target domain

samples: {(x(i)T , y
(i)
T )}Ni=1, entropy regularization strength: ϵ, step size: η, neural network batch size

B, and neural network training epochs: E .
Output: The transportation map at t− 1: Tθ,t−1.

1: Initialize
2: for e = 1 to E do
3: Sample a batch {x(i)t−1}Bi=1 ∼ {(x

(i)
t−1, y

(i)
t−1)}Ni=1 and {x(i)T }Bi=1 ∼ {(x

(i)
T , y

(i)
T )}Ni=1.

4: Update wϕ,t−1 by: ϕ ← argminϕ
1
B
∑B

i=1
(((((((((((((
− 1

2η∥xt−1 − Tθ,t−1(xt−1)∥22 +

wϕ,t−1(Tθ(x
(i)
t )) + 1

B
∑B

j=1 f
⋆(−wϕ,t−1(x

(j)
T )).

5: Sample a batch {x(i)t−1}Bi=1 ∼ {(x
(i)
t−1, y

(i)
t−1)}Ni=1.

6: Update Tθ,t−1 by: θ ← argminθ
1
B
∑B

i=1
1
2η∥x

(i)
t−1 − Tθ,t−1(x

(i)
t−1)∥22 −

wϕ,t−1(Tθ,t−1(x
(i)
t−1)).

7: end for

Algorithm 4 Barycentric-based training for {Tθ,t}T−1
t=1 .

Input: Intermediate domain samples: {(x(i)t−1, y
(i)
t−1)}Ni=1 for all t ∈ {1, . . . ,T}, target domain

samples: {(x(i)T , y
(i)
T )}Ni=1, entropy regularization strength: ϵ, step size: η, neural network batch size

B, and neural network training epochs: E .
Output: The transportation map at t− 1: Tθ,t−1.

1: Initialize
2: for e = 1 to E do
3: Sample a batch {x(i)t−1}Bi=1 ∼ {(x

(i)
t−1, y

(i)
t−1)}Ni=1 and {x(i)T }Bi=1 ∼ {(x

(i)
T , y

(i)
T )}Ni=1.

4: Obtain the optimal transport map π∗(xt−1, xT ) by: π∗(xt−1, xT ) ←
infπ

1
2η W

2
2 (ρ(xt−1), pT (x)) + ϵ

∫∫
π(xt−1, xT )[log π(xt−1, xT ) − 1]dxt−1dxT +

Df [ρ(xt−1), pT (x)].
5: Obtain the projected samples x̃t via π∗(xt−1, xT ): x̃t = xt−1π

∗(xt−1, xT ):
6: Update Tθ,t−1 by: θ ← 1

B
∑B

i=1 ∥x̃
(i)
t − Tθ,t−1(x

(i)
t−1)∥22

7: end for

For “Objective Functional”, the detailed experimental protocols are given as follows:

• χ2 Divergence: The expression for χ2 divergence can be given as follows:

Dχ2 [ρ(xt), pT (x)]

∫
pT (x)[

ρ(xt)

pT (x)
− 1]2dxt, where f(x) = (x− 1)2. (E.5)

Based on this, the corresponding conjugate function f⋆ can be given as follows:

f⋆(x) =

{
1
4x

2 + x, ifx ≥ −2
−1, ifx < −2 . (E.6)

• Identity: For the identity function, we remove the f -divergence-based regularization term
during the construction of E-SUOT framework. Based on this, the training objective for
wϕ is reformulated as follows:

LE-SemiDual
Identity = sup

w
−ϵEp(xt){logEpT (x)[exp(

w(x)− 1
2η∥x− xt∥

2
2

ϵ
)]}+ EpT (x)[w(x)],

(E.7)
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• Softplus: We directly parameterize the f⋆(x) using the smooth, convex, and non-
decreasing softplus function as follows:

f⋆(x) = log(1 + exp(x)). (E.8)

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 IMPACT OF EARLY TRANSPORT STEPS ON ADAPTATION PERFORMANCE

The multi-step structure of E-SUOT involves a series of learned transport maps {Tθ,0, Tθ,1, . . .},
where each step aims to progressively align intermediate feature distributions between domains.
While this design promotes smooth domain alignment, it also raises an important question: how
sensitive the overall adaptation performance is to the quality of early transport maps, and whether
suboptimal early mappings introduce cumulative errors that affect subsequent steps.

To investigate this, we conduct an experiment on the Portraits dataset, where we selectively disable
the training of certain transport maps to simulate incomplete or inaccurate early-stage optimization.
Two complementary training strategies are designed:

• Forward strategy: Progressively remove the training of early transport maps (Tθ,0, Tθ,1, . . .)
while keeping the later ones active, thereby testing whether missing early steps hinder later GDA
performance.

• Backward strategy: progressively disable the training of later maps (Tθ,4, Tθ,3, . . .) while retain-
ing the trained early steps, examining whether well-trained initial stages are sufficient to sustain
strong performance.

Table F.1 summarizes the results. We observe that in the “Forward” direction, excluding early trans-
port steps causes a substantial accuracy drop (up to 17.7%), indicating that early-stage mappings
are crucial for forming a reliable transport foundation. In contrast, the “Backward” experiments
show that once these early steps are properly optimized, subsequent refinements yield consistent
performance gains, suggesting that later transport maps mainly provide fine adjustments on top of
an already well-aligned feature space.

Table F.1: Performance of the E-SUOT vary different training stage on the Portraits dataset.
Direction Forward Backward

Time Index t = 0 t = 1 t = 2 t = 3 t = 4 Accuracy (%) ∆ t = 0 t = 1 t = 2 t = 3 t = 4 Accuracy (%) ∆

Training
Status

% ! ! ! ! 76.4±2.06E-2 ↑7.2% ! % % % % 81.5±1.70E-2 ↑14.4%
% % ! ! ! 75.0±2.48E-2 ↑5.3% ! ! % % % 83.2±1.13E-2 ↑16.8%
% % % ! ! 74.4±1.92E-2 ↑4.4% ! ! ! % % 83.9±8.10E-3 ↑17.8%
% % % % ! 74.0±1.64E-2 ↑3.9% ! ! ! ! % 84.0±6.56E-3 ↑17.9%
% % % % % 58.6±1.87E-2 ↓17.7% ! ! ! ! ! 86.4±8.72E-2 ↑21.5%

Kindly Note: ∆ denotes performance change percentage of the initial classifier accuracy.

Overall, the results highlight that the early transport steps are the key drivers of successful adap-
tation. When the early mappings are well trained, the rest of the chain benefits from a stabilized
feature representation, leading to larger and more consistent improvements. This behavior parallels
diffusion-like processes, where the early transport transformations largely determine the shape and
quality of the final distribution, as also illustrated in Fig. 3 in reference (Caluya & Halder, 2020)
and Fig. 1 in reference (Liu & Wang, 2016).

F.2 PERFORMANCE IMPROVEMENT VARYING DIFFERENT UDA FEATURE EXTRACTORS

In addition to the results reported in Table 2, we further assess the effectiveness of the proposed E-
SUOT framework by integrating it with four representative UDA backbones—MSTN, RSDA, FixBi,
and CoVi—on the Office-Home dataset. To facilitate a fair and consistent comparison, we apply
UMAP-based dimensionality reduction to obtain an 8-dimensional embedding. The corresponding
results are summarized in Table F.2.
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Table F.2: Accuracy (%) improvement over different UDA feature extractors.
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

MSTN 49.8 70.3 76.3 60.4 68.5 69.6 61.4 48.9 75.7 70.9 55 81.1 65.7
E-SUOT+MSTN 57.8 75.9 79.6 65.5 75.9 74.8 64.5 58.5 81.4 73.7 59.5 84.4 71
∆ ↑16.1% ↑8.0% ↑4.3% ↑8.4% ↑10.8% ↑7.5% ↑5.0% ↑19.6% ↑7.5% ↑3.9% ↑8.2% ↑4.1% ↑8.1%

RSDA 53.2 77.7 81.3 66.4 74 76.5 67.9 53 82 75.8 57.8 85.4 70.9
E-SUOT+RSDA 61.5 78.8 81.7 67.6 77.3 77.6 67.2 61 82.7 76 62.4 85.3 73.3
∆ ↑15.7% ↑1.4% ↑0.5% ↑1.8% ↑4.4% ↑1.5% ↓1.0% ↑15.2% ↑0.9% ↑0.3% ↑7.9% ↓0.1% ↑3.3%

FixBi 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
E-SUOT+FixBi 61.7 79.1 81.7 67.6 77.6 78.2 67.3 61.3 82.7 76 62.5 85.3 73.4
∆ ↑6.2% ↑2.3% ↑1.6% ↓0.1% ↓2.4% ↑0.1% ↑2.3% ↑5.9% ↑1.2% ↓0.5% ↓0.6% ↓1.6% ↑1.0%

CoVi 58.5 78.1 80 68.1 80 77 66.4 60.2 82.1 76.6 63.6 86.5 73.1
E-SUOT+CoVi 61.6 79.3 81.8 67.6 77.7 78.1 67.4 61.2 82.9 76.3 62.5 85.2 73.5
∆ ↑5.3% ↑1.5% ↑2.2% ↓0.7% ↓2.9% ↑1.4% ↑1.5% ↑1.7% ↑1.0% ↓0.4% ↓1.7% ↓1.5% ↑0.5%

Kindly Note: ∆ denotes performance change percentage of the vanilla UDA feature extractor compared to E-SUOT.

As shown in Table F.2, E-SUOT consistently enhances the performance of all baseline methods,
achieving an average improvement of 8.1%, 3.3%, 1.0%, and 0.5% for MSTN, RSDA, FixBi, and
CoVi, respectively. The largest relative gain (+16.1%) is observed on the challenging “Ar→Cl”
transfer, indicating that E-SUOT is particularly effective when the domain gap is large. Even when
combined with more recent and competitive adaptation approaches (e.g., FixBi, CoVi), E-SUOT still
yields moderate yet consistent improvements, demonstrating its strong complementary capability
rather than competing nature. Overall, the consistent gains across different backbones highlight the
adaptability, scalability, and robustness of the E-SUOT framework in handling UDA task.

F.3 INVESTIGATION ON THE UMAP’S DIMENSION

We further conduct experiments on the sensitivity of the UMAP dimension to investigate the perfor-
mance of E-SUOT under different input dimensions. Specifically, we vary the UMAP’s reduction
dimension and investigate the model performance. Since the backbone dimension is 256, setting the
dimension to 256 indicates that we did not use the UMAP embedding feature.

From Fig. F.1, we observe that as the embedding dimension changes, the classification accuracy
tends to fluctuate within a relatively small range across all target domains. In detail, for each target
domain, the performance remains quite stable as we vary the UMAP dimension from 4 to 256—no
drastic drops are observed. In some domains (e.g., Ar in Fig. F.1(a), Pr in Fig. F.1(c) and Rw
in Fig. F.1(d)), the accuracy curves are almost flat, indicating the proposed method is insensitive
to UMAP dimension choices in these cases. For domain Cl in Fig. F.1(b), although the standard
deviation is higher, the main trend is still relatively stable. It suggests that E-SUOT retains strong
robustness to the UMAP embedding dimension and does not rely heavily on fine-tuning this hyper-
parameter. In summary, the sensitivity analysis shows that E-SUOT remains robust to variations in
the UMAP embedding dimension.
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Figure F.1: Sensitivity of E-SUOT performance to the UMAP embedding dimension on the Office-
Home dataset under the UDA setting. For dimension 256, the vanilla backbone features are used
without UMAP. The feature extractor is pre-trained using the CoVI method. The shaded area indi-
cates the ± 5.0 times standarad deviation error.
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G LIMITATIONS & FUTURE DIRECTIONS AND BROADER IMPACT

G.1 LIMITATIONS & FUTURE DIRECTIONS

The limitations and future research directions of this work can be summarized as follows:

• Consideration of Label Information: In this work, we focused primarily on feature adaptation
and did not explicitly incorporate label or discriminator information into the adaptation process.
As a result, the performance of the proposed E-SUOT framework may degrade under scenarios
involving significant covariate shift (Sugiyama et al., 2007; Sugiyama & Kawanabe, 2012). An
important direction for future research is to integrate label information into the transportation
process, for example, classifier guidance approach (Courty et al., 2017a; Dhariwal & Nichol,
2021; Bonet et al., 2025; Zhuang et al., 2024), which could further enhance model robustness and
adaptation performance.

• Regularization for Transport Plan: To facilitate computation, we introduced entropy regular-
ization on the transport plan; however, this may introduce potential instability or blur sparsity in
the map (Yin et al., 2025). Future work may explore alternative regularization strategies (Courty
et al., 2014; 2017b), such as group sparsity (to better incorporate label priors) or Laplacian reg-
ularization (to preserve local relationships), in order to further stabilize training and improve the
properties of the learned potential function w.

• Exploration of Other Discrepancy: In this work, we adopted the Wasserstein distance as the
primary metric for measuring domain discrepancy. However, other discrepancy measures, such as
the Fisher-Rao distance (Zhang et al., 2022; Wang et al., 2023; Zhu, 2025), could also be explored
to enable more flexible or principled adaptation approaches. Future work may investigate the
use of alternative metrics (Neklyudov et al., 2023; Skreta et al., 2025) to further improve the
effectiveness of the quality of intermediate domain thereby improving the performance of GDA.

• Assumption of Label Invariance along the Transport Path: The current formulation assumes
that labels remain invariant during adaptation, i.e., yt+1 ← yt, and thus primarily focuses on
aligning the marginal feature distributions p(xt). This assumption may limit performance under
pronounced label shift scenarios, where the conditional relationship p(y|x) varies across domains,
a case often encountered in unbalanced or fine-grained settings. Although our framework can be
extended by incorporating classifier uncertainty or pseudo-label refinement (drawing inspiration
from self-training schemes such as Eq. (3)–(4) in reference (Kumar et al., 2020)), handling sub-
stantial concept drift remains an open challenge. Future work may consider integrating adaptive
label transport (Courty et al., 2017a) or uncertainty-aware pseudo-labeling (Kumar et al., 2020;
Zhuang et al., 2024) to explicitly account for label-shift dynamics along the adaptation trajectory.

• Higher Efficiency Utilization of Neural Networks: In our current design, each stage requires
training three separate networks, namely wϕ, Tθ, and hω , to generate each intermediate domain.
Although this strategy can save computation time compared to existing approaches that perform
intermediate-domain generation online during the domain adaptation stage, it may still be subop-
timal in terms of overall training efficiency in the offline stage. A promising future direction is
to reformulate the training of Tθ into a more parameter-efficient form, such as adopting a LoRA-
style adaptation (Hu et al., 2022) or using reparameterization trick to parameterize the difference
between different stage (Choi et al., 2024). For wϕ and hω , one possible improvement is to fine-
tune only the last layer (Harrison et al., 2024; Brunzema et al., 2025), which could further reduce
the offline training cost.

G.2 BROADER IMPACT STATEMENT

GDA addresses a critical challenge in machine learning: transferring knowledge from a labeled
source domain to an unlabeled target domain when there is a substantial gap between the two.
Rather than relying on abrupt, one-shot shifts—which are often brittle in the face of large distri-
butional discrepancies—GDA interpolates through a series of intermediate domains, allowing for
a smoother and more effective adaptation process. This paradigm has direct implications for many
real-world applications. For example, in recommender systems, GDA enables knowledge transfer to
serve cold-start users or to integrate new items, and in language processing it allows models trained
on high-resource languages to adapt more robustly to low-resource languages. By constructing and
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navigating intermediate distributions, GDA provides a principled foundation for bridging domain
gaps and ensuring stable model performance under challenging conditions. Our work advances
the field of GDA by unifying flow-based methods and optimal transport within the semi-dual for-
mulation, identifying fundamental issues of stability and generalization that have limited previous
approaches. We further propose theoretically-grounded regularization strategies that improve the
robustness and reliability of the adaptation process. These advances not only deepen the theoretical
understanding of GDA but also offer practical benefits for deploying adaptable machine learning
systems in diverse settings. We believe our findings will help catalyze the development of more
general, stable, and information-preserving domain adaptation methods, with impact across fields
ranging from recommendation and computational linguistics to broader AI applications.
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