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ABSTRACT

We study the type of solutions to which stochastic gradient descent converges when
used to train a single hidden-layer multivariate ReLU network with the quadratic
loss. Our results are based on a dynamical stability analysis. In the univariate
case, it was shown that linearly stable minima correspond to network functions
(predictors), whose second derivative has a bounded weighted L1 norm. Notably,
the bound gets smaller as the step size increases, implying that training with a
large step size leads to ‘smoother’ predictors. Here we generalize this result to
the multivariate case, showing that a similar result applies to the Laplacian of the
predictor. We demonstrate the tightness of our bound on the MNIST dataset, and
show that it accurately captures the behavior of the solutions as a function of the
step size. Additionally, we prove a depth separation result on the approximation
power of ReLU networks corresponding to stable minima of the loss. Specifically,
although shallow ReLU networks are universal approximators, we prove that
stable shallow networks are not. Namely, there is a function that cannot be well-
approximated by stable single hidden-layer ReLU networks trained with a non-
vanishing step size. This is while the same function can be realized as a stable
two hidden-layer ReLU network. Finally, we prove that if a function is sufficiently
smooth (in a Sobolev sense) then it can be approximated arbitrarily well using
shallow ReLU networks that correspond to stable solutions of gradient descent.

1 INTRODUCTION

Neural networks (NNs) have been demonstrating phenomenal performance in a wide array of fields,
from computer vision and speech processing to medical sciences. Modern networks are typically
taken to be highly overparameterized. In such setting, the training loss usually has multiple global
minima, which correspond to models that perfectly fit the training data. Some of those models are
clearly sub-optimal in terms of generalization. Yet, the training process seems to consistently avoid
those bad global minima, and somehow steer the model towards global minima that generalize well.
A long line of works attributed this behavior to “implicit biases” of the training algorithms, e.g.,
(Zhang et al., 2017; Gunasekar et al., 2017; Soudry et al., 2018; Arora et al., 2019).

Recently, it has been recognized that a dominant factor affecting the implicit bias of gradient descent
(GD) and stochastic gradient descent (SGD), is associated with dynamical stability. Roughly speaking,
the dynamical stability of a minimum point refers to the ability of the optimizer to stably converge to
that point. Particular research efforts have been devoted to understanding linear stability, namely the
dynamical stability of the optimizer’s linearized dynamics around the minimum (Wu et al., 2018; Nar
& Sastry, 2018; Mulayoff et al., 2021; Ma & Ying, 2021). For GD and SGD, it is well known that a
minimum is linearly stable if the loss terrain is sufficiently flat w.r.t. the step size η.

Concretely, a necessary condition for a minimum to be linearly stable for GD and SGD is that the
top eigenvalue of the Hessian at that minimum point be smaller than 2/η (see Sec. 2). Although this
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(a) Small step size (η = 0.001) (b) Medium step size (η = 0.01) (c) Large step size (η = 0.1)

Figure 1: Larger step size leads to smoother prediction function. We train a single hidden-layer
ReLU network on a regression task with two-dimensional data, depicted by red points. The different
panels show the predictor function f obtained when training with different step sizes.

condition only characterizes the linearized dynamics, it has been empirically shown to hold in real-
world neural-network training (Cohen et al., 2020; Gilmer et al., 2022). The linear stability condition
turns out to have a strong effect on the nature of the network that is obtained upon convergence, both
in terms of the end-to-end predictor function (Mulayoff et al., 2021), and in terms of the way this
function is implemented by the network (Mulayoff & Michaeli, 2020).

Mulayoff et al. (2021) studied how linear stability affects a single hidden-layer univariate ReLU
network, when trained with the quadratic loss. They showed that in this setting, stable solutions of
SGD with step size η correspond to functions f satisfying∫

R
|f ′′(x)| g(x)dx ≤ 1

η
− 1

2
, (1)

where f denotes the network input-output function, and g is a weight function that depends only
on the training data. This result implies that for univariate shallow ReLU networks, SGD is biased
towards ‘smooth’ solutions1. Moreover, the larger the step size η, the smoother the solution becomes.

In this paper, we study the stable solutions of single hidden-layer ReLU networks with multidimen-
sional inputs, trained using SGD and the quadratic loss. Particularly, in Sec. 3 we generalize the
result of Mulayoff et al. (2021) to the multivariate setting. As it turns out, the natural extension of (1)
involves the Radon transform of the Laplacian of the predictor function, ∆f (see Thm. 1). However,
we show this result can also be interpreted in primal space as∫

Rd

|∆f(x)|ρ(x)dx ≤ 1

η
− 1

2
, (2)

where ρ is some weighting function. Thus, stable solutions of SGD in the multivariate case also
correspond to smooth predictors (i.e., functions whose Laplacian has a small weighted L1 norm).
The larger the step size, the smoother the function becomes. Figure 1 illustrates this phenomenon.

Additionally, we study the approximation power of single hidden-layer ReLU networks corresponding
to stable minima. It is well known that shallow ReLU networks can approximate any continuous
function over a compact set (Pinkus, 1999). However this does not imply that SGD can stably
converge to such approximations. If there exist functions whose approximations are all unstable, then
this property may be of limited practical interest. In Sec. 4 we prove that every convergent sequence
of stable networks has a limit function that also satisfies the stability condition (Thm. 1). Building on
this, we prove a depth separation result. Specifically, we show that there exists a function that does
not satisfy the stability condition for any positive step size. Namely, it cannot be stably approximated
by a single hidden-layer ReLU network trained with a non-vanishing step size. Yet, the same function
can be realized as a two hidden-layer ReLU network corresponding to a stable minimum. Moreover,
in Sec. 5 we show that if a function is sufficiently smooth (Sobolev) then it can be approximated
arbitrarily well using single hidden-layer ReLU networks that correspond to stable solutions of GD.

Finally, in Sec. 3.3 and 6 we demonstrate our results. Particularly, we illustrate how our stable minima
characterization (Thm. 1) can be used to predict certain properties of the solution. For example, for

1In a slight abuse of terms, in this paper we say a function is ‘smooth’ if some weighted L1 norm of its
second derivative is bounded.
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certain isotropic data (e.g., Gaussian), we show that a large step size tends to increase the biases of all
neurons. We also demonstrate on the MNIST dataset the tightness of our stability bound, and that it
predicts well the dependence of the stability and generalization performance on the step size.

2 BACKGROUND: MINIMA STABILITY OF SGD

In this section we give a brief survey on minima stability. Let us consider the problem of minimizing
an empirical loss using SGD. We are interested in the typical regime of overparameterized models. In
this setting, there exist multiple global minimizers of the loss. Yet, SGD cannot stably converge to
any minimum. The stability of a minimum is associated with the dynamics of SGD in its vicinity.
Specifically, a minimum is said to be stable if once SGD arrives near the minimum, it stays in its
vicinity. If SGD repels from the minimum, then we say that it is unstable.

Formally, let ℓj : Rd → R be differentiable almost everywhere for all j ∈ [n]. Here we consider a
loss function L and its stochastic analogue,

L(θ) = 1

n

n∑
j=1

ℓj(θ) and L̂t(θ) =
1

B

∑
j∈Bt

ℓj(θ), (3)

where Bt is a batch of size B sampled at iteration t. We assume that the batches {Bt} are drawn
uniformly from the dataset, independently across iterations. SGD’s update rule is given by

θt+1 = θt − η∇L̂t(θt), (4)
where η is the step size. Analyzing the full dynamics of this system is intractable in most cases.
Therefore, several works studied the behavior of this system near minima using linearized dynamics
(Wu et al., 2018; Ma & Ying, 2021; Nar & Sastry, 2018; Mulayoff et al., 2021), which is a common
practice for characterizing the stability of nonlinear systems.
Definition 1 (Linear stability). Let θ∗ be a twice differentiable minimum of L. Consider the linearized
stochastic dynamical system

θt+1 = θt − η
(
∇L̂t(θ

∗) +∇2L̂t(θ
∗)(θt − θ∗)

)
. (5)

Then θ∗ is ε linearly stable if for any θ0 in the ε-ball Bε(θ
∗), we have lim sup

t→∞
E[∥θt − θ∗∥] ≤ ε.

Namely, a minimum is ε linearly stable if once θt enters an ε-ball around the minimum, it ends up at
a distance no greater than ε from it in expectation. Under mild conditions, any stable minimum of the
nonlinear system is also linearly stable (Vidyasagar, 2002, p. 268). We have the following condition.
Lemma 1 (Necessary condition for linear stability (Mulayoff et al., 2021, Lemma 1)). Consider
SGD with step size η, where batches are drawn uniformly from the training set, independently across
iterations. If θ∗ is an ε linearly stable minimum of L, then

λmax

(
∇2L(θ∗)

)
≤ 2

η
. (6)

This condition states that stable minima of SGD are flat w.r.t. the step size. Although this result was
proved for the linearized dynamics, it was observed to hold also in practice, where the full nonlinear
dynamics apply. Particularly, much empirical evidence on real-world neural-network training (Cohen
et al., 2020; Gilmer et al., 2022) points out that GD and SGD converge only to linearly stable minima,
i.e., minima satisfying (6). More on dynamical stability and its interaction with common practices
(e.g., learning rate decay, absence of ε and B in Lemma 1 result, etc.) in App. A.

3 LARGE STEP SIZE BIASES TO SMOOTH FUNCTIONS

Consider the set of multivariate functions over Rd that can be implemented by a single hidden-layer
ReLU network with k neurons,

Fk ≜

{
f : Rd → R

∣∣∣∣∣ f(x) =
k∑

i=1

w
(2)
i σ

(
x⊤w

(1)
i + b

(1)
i

)
+ b(2)

}
, (7)

where σ(·) denotes the ReLU activation function. Each f ∈ Fk is a piecewise linear function with
at most k knots2. Given some training set {xj , yj}nj=1, we are interested in functions that globally

2A ‘knot’ is a boundary between two pieces (i.e., intersection between hyperplanes). See Fig. 2 for illustration.
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minimize the quadratic loss3

L(f) ≜ 1

2n

n∑
j=1

(
f(xj)− yj

)2
. (8)

Definition 2 (Solution). A function f ∈ Fk is a ‘solution’ if L(f) = 0, i.e., f(xj) = yj ∀j ∈ [n].

We focus on the overparameterized regime (kd > n) in which there exist multiple solutions. We
want to study the properties of solutions which correspond to stable minima of SGD. However, a key
challenge is that any solution f ∈ Fk typically has infinitely many different parameterizations. In
other words, there are various parameter vectors

θ ≜
[
w

(1)⊤
1 · · · w

(1)⊤
k b(1)⊤ w(2)⊤ b2

]⊤
∈ R(d+2)k+1, (9)

that can implement the same function f . Different parameterizations correspond to different minima,
which may have different Hessian eigenvalues. Therefore, for a given step size η, some parameteriza-
tions of f may be stable while others may not. Thus, to determine whether SGD can stably converge
to a solution f , we need to check whether there exists some stable minimum θ, which corresponds to
a parametrization of f . We therefore use the following definition.
Definition 3 (Stable solution). A solution f ∈ Fk is said to be stable for step size η if there exists a
minimum θ∗ of the loss that corresponds to f , where θ∗ is linearly stable for SGD with step size η.

The next theorem characterizes stable solutions using the Radon transform R (see App. C) and the
Laplace operator ∆. Particularly, we use the inverse of the dual Radon transform, (R∗)−1, and
interpret ∆f in the weak sense, i.e., as a sum of weighted Dirac delta functions (see App. D).
Theorem 1 (Properties of stable solutions). Let f be a linearly stable solution for SGD with step
size η. Assume that the knots of f do not coincide with any training point. Then

∥f∥R,g ≤ 1

η
− 1

2
, (10)

where ∥·∥R,g is the stability norm, defined as

∥f∥R,g ≜
∫
Sd−1×R

∣∣[(R∗)−1∆f
]
(v, b)

∣∣ g(v, b)ds(v)db, (11)

and g(v, b) ≜ min
(
g̃(v, b), g̃(−v,−b)

)
is a non-negative weighting function, with g̃ given by

g̃(v, b) ≜ P2(X⊤v > b)E
[
X⊤v − b

∣∣∣X⊤v > b
]√∥∥∥E [X∣∣∣X⊤v > b

]∥∥∥2 + 1. (12)

Here X is a random vector drawn from the dataset’s distribution (i.e., sampled uniformly from {xj}).

This theorem, whose proof is provided in App. E, shows that the step size constrains the stability norm
of the solution. Notably, the constraint becomes stricter as the step size increases. Before interpreting
this result, let us note that although it depends only on the step size, other hyper-parameters (e.g.,
batch size, initialization) may potentially improve the bound. Yet, as we discuss in App. A, the effect
of other hyper-parameters seems secondary in practical settings. The implications of Thm. 1 can be
understood in primal space and in Radon space. In the following, we discuss both interpretations and
give examples.

3.1 PRIMAL SPACE INTERPRETATION

Theorem 1 is stated in Radon space, which may be difficult to interpret. However, in some cases it
can also be interpreted in primal space, by deriving an alternative form for the stability norm ∥ · ∥R,g .
Specifically, in App. G we show that if g is piecewise continuous and L1-integrable4, then for
all f ∈ Fk and ρ = R−1g we have5

∥f∥R,g =

∫
Rd

|∆f(x)|ρ(x)dx. (13)

3We focus on MSE loss for simplicity, but the results can be extended to other loss functions, see App. J.
4Which is true, for example, when the training set is finite.
5This integral should be interpreted in the distributional sense (see App. G for details).
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(a) Surface of f (b) Laplacian magnitude |∆f | (c) Weight function ρ

Figure 2: Illustration of the stability norm. Panel (a) depicts an interpolating function f . Panel (b)
displays the absolute value of the Laplacian of f , i.e., |∆f |. Here the color codes the amplitude of
the delta functions. Panel (c) presents the weight function ρ. The stability norm is the weighted sum
of line integrals of ρ, according to |∆f |.

In this presentation of the stability norm, ρ is not necessarily non-negative. Nevertheless, all its
hyper-plane integrals are non-negative, since Rρ = g ≥ 0. Thus, the stability norm can be interpreted
as a non-negative linear combination of hyper-plane integrals of ρ along the knots of f . This is
visualized in Fig. 2. Hence, Thm. 1 combined with (13) implies that the larger the step size η, the
smoother the solution becomes.

3.2 RADON SPACE INTERPRETATION

Another interesting interpretation of Thm. 1 can be derived in Radon space. First, let us examine
how the weight function g(v, b) behaves as a function of b. For every fixed v, the function g(v, ·)
has a finite support, [minj{x⊤

j v},maxj{x⊤
j v}]. Moreover, g(v, ·) typically has most of its mass

concentrated around the center of the distribution of the projected data points {x⊤
j v}, and it decays

towards the endpoints (see e.g., Fig. 3).

Next, let us interpret how the term (R∗)−1∆f behaves. For a single hidden-layer ReLU network,
(R∗)−1∆f is a sum of Dirac deltas. Specifically, as shown in (Ongie et al., 2020), if f is a function
of the form f(x) =

∑k
i=1 aiσ(v

⊤
i x− bi) + c with ∥vi∥2 = 1 for all i ∈ [k], then (see App. F.3)

(R∗)−1∆f =

k∑
i=1

aiδ(vi,bi), (14)

where ∆f is the (distributional) Laplacian of f , and δ(v,b) denotes a Dirac delta centered at (v, b) ∈
Sd−1×R. We can thus define a parameter space representation for the stability norm as (see App. F.3)

Sθ ≜
k∑

i=1

|ai| g (vi, bi) . (15)

Generally, this parametric representation of the stability norm satisfies ∥f∥R,g ≤ Sθ , where equality
happens whenever the ReLU knots of the representation do not coincide (i.e., there is one Dirac
function for each ReLU unit). Yet, this parametric view of the stability norm also obeys (see App. F.3)

Sθ ≤ 1

η
− 1

2
. (16)

Hence, larger step sizes η push Sθ to be smaller, and from (15) we see that |ai| will tend to be small.
Also, since g(v, ·) typically decays towards the boundary of its support, this pushes the neurons’
biases, bi, away from the center of the distribution. The resulting effect is that the predictor function f
becomes flatter, especially near the center of the distribution. This is illustrated in Figs. 1 and 4(b).

3.3 EXAMPLES

Earlier we introduced two interpretations for the stability norm ∥·∥R,g: one in primal space, which
uses the weight function ρ, and one in Radon space, which uses the weight function g. In this section,
we compute g and ρ for two toy examples, for which (13) holds.
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(a) Two data points: g (b) Two data points: ρ (c) Gaussian data: g (d) Gaussian data: ρ

Figure 3: Visualization of g of Thm. 1 and ρ of (13) for two toy examples. (a), (b) Two data points
x1 = (1, 0) and x2 = (−1, 0). (c),(d) Two dimensional Gaussian data, i.e., X ∼ N (0, I).

Example 1: Two data points in R2. Assume the dataset contains two points: x1 = (1, 0) and
x2 = (−1, 0). In this case we can analytically calculate g and ρ (see App. H.1). Figure 3 depicts these
functions. Here, ρ has singularities at x1, x2 and at the origin. Yet, despite these singularities, all
line integrals of ρ are finite and thus the expression

∫
Rd |∆f |(x) ρ(x)dx is well-defined. Moreover,

while ρ takes negative values, all its line integrals take positive values.

Example 2: Isotropic distribution. Suppose the data is isotropically distributed, i.e., P(X⊤v > b)
does not depend on the direction of v. Thus g is independent of v, which implies that ρ = R−1g
is a radial function. In App. H.2 we give an analytic expression for g for any isotropic distribution.
In the special case of X ∼ N (0, I), g(v, ·) decays monotonically with b, and thus, as discussed in
Sec. 3.2, large step sizes will tend to increase the biases of all neurons. Additionally, we show in
App. H.2 that for 2D data, ρ is positive and strictly decreasing in ∥x∥, and it satisfies the asymptotics
ρ(x) = O(log(∥x∥)) as ∥x∥ → 0, and ρ(x) = O(∥x∥−1) as ∥x∥ → ∞. Figure 3 visualizes g
and ρ for two dimensional Gaussian data.

4 STABILITY LEADS TO DEPTH SEPARATION

Single hidden-layer neural networks are universal approximators, i.e., they can approximate arbitrarily
well any continuous function over compact sets (Pinkus, 1999). However, some of these approxi-
mations may correspond to unstable minima that are virtually unreachable by training via SGD. To
understand what is the effective approximation power of neural networks, we need to identify the
class of functions that have stable approximations. We have the following (see proof in App. I.1).
Proposition 1. Let X be the interior of the convex hull of the training points, and f : X → R be any
function. Suppose there exists a sequence of single hidden-layer ReLU networks {fk} with bounded
stability norm that converges to f in L1 over X . Then ∥f∥R,g is finite, and lim

k→∞
∥fk∥R,g = ∥f∥R,g .

Let {fk} be a convergent sequence of stable solutions with a growing number of knots, i.e., ∀fk ∈
Fk : ∥fk∥R,g ≤ 1/η − 1/2 (see Thm. 1). Then, by the proposition above we have that the
limit function f also satisfies this inequality. Therefore, the effective class of functions that can
be approximated arbitrarily well by single hidden-layer ReLU networks includes only continuous
functions f that satisfy the stability condition ∥f∥R,g ≤ 1/η − 1/2. As the step size decreases,
more functions satisfy this condition, suggesting that more functions can be stably approximated
by single hidden-layer ReLU networks. Surprisingly, there exists at least one continuous function p
that has ∥p∥R,g = ∞ and therefore does not satisfy the stability condition for any positive step size
(see proof in App. I.2). Therefore from Prop. 1 and Thm. 1, this function cannot be approximated
arbitrarily well by single hidden-layer ReLU networks trained with a non-vanishing step size.
Proposition 2. Assume the input dimension d ≥ 2, and let p(x) = σ(1−∥x∥1). Suppose the support
of p is contained in the interior of the convex hull of the training points. Then ∥p∥R,g = ∞.

Intriguingly, this function does have an implementation as a finite-width two hidden-layer network,
p(x) = σ(1 −

∑d
i=1(σ(xi) + σ(−xi))), which is a stable solution for a fixed step size. Indeed,

in App. I.3 we demonstrate that for an appropriate choice of η, GD is able to converge to this
implementation. Thus, we have a depth separation result: the function p cannot be approximated
by stable minima of one hidden-layer networks trained with a non-vanishing step size, yet with two
hidden-layers, GD can converge to this function with a fixed step size.

6



Published as a conference paper at ICLR 2023

5 SHALLOW NETWORK APPROXIMATIONS OF SMOOTH FUNCTIONS

In Sec. 4 we showed that stable single-hidden layer ReLU networks are not universal approximators.
In this section we give an approximation guarantee under smoothness assumptions. That is, we show
that if a function is sufficiently smooth, then it can be approximated arbitrarily well using single
hidden-layer networks that correspond to stable solutions of GD.

Let W d+1,1
w (Rd) denote the weighted Sobolev space of all functions whose weak partial derivatives up

to order d+1 are bounded in a weighted L1-norm ∥·∥1,w with weight function w(x) := R∗[1+|b|](x).
Let ∥ · ∥Wd+1,1

w (Rd) denote the corresponding Sobolev norm

∥f∥Wd+1,1
w (Rd) = ∥f∥1,w +

d+1∑
k=1

∑
|β|=k

∥∥∂βf
∥∥
1,w

, (17)

where β is a multi-index. For technical convenience, we restrict ourselves to odd input dimensions d
only. Our results use the “R-norm” ∥ · ∥R introduced by Ongie et al. (2020) (see Sec. 7 for details),
and the stability norm ∥ · ∥R,ĝ with a different weight function ĝ defined below (see proof in App. L).
Proposition 3. Assume d is odd and let f ∈ W d+1,1

w (Rd). Then, there exists a sequence of
single hidden-layer ReLU network functions {fk} such that fk ∈ Fk converges to f in L1 over
any compact subset K ⊂ Rd, i.e., lim

k→∞

∫
K
|fk(x) − f(x)|dx = 0, and satisfies the bounds

∥fk∥R + ∥fk∥R,ĝ ≤ cd,ĝ∥f∥Wd+1,1
w (Rd) for all k, where

ĝ(v, b) = P
(
X⊤v > b

)√
E
[(

X⊤v − b
)2∣∣∣∣X⊤v > b

]√
1 + E

[
∥X∥2

∣∣∣X⊤v > b
]
, (18)

and cd,ĝ is a constant depending on d and ĝ but independent of f . Here X is drawn uniformly at
random from the dataset.

This proposition shows that for any f ∈ W d+1,1
w (Rd) there exists a sequence of single hidden-layer

ReLU network approximations {fk} for which {∥fk∥R} and {∥fk∥R,ĝ} are bounded. To prove
that these functions can have stable parameterizations for GD, we need to show that if both the
stability norm and R-norm are bounded (a function space property), then there exists a corresponding
minimum with bounded sharpness6 in parameter space. To this end, we derive an upper bound on
the minimal sharpness of a solution f among its different parameterizations in terms of the stability
norm and the R-norm (see proof in App. K).
Lemma 2. Let f ∈ Fk be a solution for which the knots do not coincide with any training point.
Then there exists an implementation θ∗ corresponding to f such that

λmax

(
∇2L(θ∗)

)
≤ 1 + 2 ∥f∥R,ĝ + 4

(
∥f∥R + inf

x∈Rd
∥∇f(x)∥

)√
λmax

(
ΣX

)√
1 + E

[
∥X∥2

]
.

(19)
Here X is drawn uniformly at random from the dataset, and ΣX is the covariance matrix of X .

Combining Prop. 3 and Lemma 2 we get that any f ∈ W d+1,1
w (Rd) can be approximated arbitrarily

well by a sequence of stable solutions for GD with a fixed step size η.
Theorem 2. Suppose the input dimension d is odd, and let f ∈ W d+1,1

w (Rd). Then, there exist η > 0
and a sequence of single hidden-layer ReLU network functions {fk} such that fk ∈ Fk converges
to f in L1 over any compact subset K ⊂ Rd, and every fk is stable for GD with step size η.

This theorem state that any sufficiently smooth function can be stably approximated in the limit of
infinitely many neurons. We can also use Lemma 2 to guarantee the stability of solutions in the finite
case. Since λmax ≤ 2/η is a sufficient condition for stability in GD, we have the following.
Theorem 3. Let f ∈ Fk be a solution for which the knots do not coincide with any training point. If

∥f∥R,ĝ + 2

(
∥f∥R + inf

x∈Rd
∥∇f(x)∥

)√
λmax

(
ΣX

)√
1 + E

[
∥X∥2

]
≤ 1

η
− 1

2
, (20)

then f is a stable solution for GD with step size η.

Theorem 3 complements Thm. 1, as it gives a sufficient condition for stability in function space.
6Note that for GD, η < 2/λmax is a necessary and sufficient condition for linear stability.
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(a) Sharpness versus step size (b) Bias versus step size

Figure 4: Validating the bounds on synthetic data. We trained a two-layer ReLU network on a
regression task with synthetic data using GD (see Sec. 6). Panel (a) depicts the sharpness of the
minima to which GD converged, as a function of the step size η. As η increases, the minima get
flatter in parameter space (yellow curve), which translates to smoother predictors in function space
(purple curve). Panel (b) shows the norm of the bias vector b as a function of the step size. Here we
see that the bias vector grows with the step size, as the predictor function gets smoother.

6 EXPERIMENTS

We now demonstrate our theoretical results. We start with a regression task on synthetic data. Here,
we drew n = 100 pairs (xj , yj) in R20 × R from the standard normal distribution to serve as our
training set. We fit a single hidden-layer ReLU network with k = 40 neurons to the data using GD
with various step sizes (runs were stopped when the loss dropped bellow 10−8). For each minimum θ∗

to which GD converged, we computed the loss’ sharpness, λmax(∇2L(θ∗)), and our lower bound on
the sharpness, 1 + 2 ∥f∥R,g (Lemma 3 in the appendix). Additionally, we numerically determined
the sharpness of the flattest implementation for every solution. Figure 4(a) depicts the results for this
experiment. The red line marks the border of the stable region, which is 2/η. Namely, (S)GD cannot
stably converge to a minimum whose sharpness is above this line. The dashed yellow line shows the
sharpness of the minima to which GD converged in practice. As can be seen, here GD converged at
the edge of stability (the two lines coincide), a phenomenon discussed in (Cohen et al., 2020). The
blue curve is the sharpness of the flattest implementation of each solution (see App. A), while the the
purple curve is our lower bound. We see that our bound is quite tight (blue vs. purple). Furthermore,
as the step size increases the minima get flatter in parameter space (yellow curve), which translates to
smoother predictors in function space (purple curve). Additionally, we see from Fig. 4(b) that the
norm of the bias vector b increases with the step size, as our theory predicts (Sec. 3.2).

Next, we present an experiment with binary classification on MNIST (LeCun, 1998) using SGD. In
this experiment we used n = 512 samples from two MNIST classes, ‘0’ and ‘1’. The classes were
labeled as y = 1 and y = −1, respectively. For the validation set we used 4000 images from the
remaining samples in each class. We trained a single hidden-layer ReLU network with k = 200
neurons using SGD with batch size B = 16, and the quadratic loss. To perform classification at
inference time, we thresholded the net’s output at 0. We ran SGD until the loss dropped below 10−8

for 2000 consecutive epochs. Figure 5(a) shows the same indices as in the previous experiment.
Here we see again that as the step size increases, the minima get flatter in parameter space (yellow
curve), which translates to smoother predictors in function space (purple curve). Figure 5(b) shows
the classification accuracy on the validation set, where we see that the network generalizes better as
the step size increases, as past work showed, e.g., (Keskar et al., 2017). More experiments in App. N.

7 RELATED WORK

Dynamical stability analysis was applied to neural network training in several works. In particular,
Nar & Sastry (2018) analyzed Lyapunov stability of one hidden-layer ReLU networks without bias.
They proved a bound on the network’s output which depends on the step size and training data
and implies that the network’s output should be smaller for training samples with larger magnitude.
Mulayoff & Michaeli (2020) characterized the flattest minima for linear nets and showed that these
minima have unique properties. Yet, in their setting all minima implement the same input-output
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(a) Sharpness versus step size (b) Val. accuracy vs. step size

Figure 5: Validating the bounds on MNIST. We trained a single hidden-layer ReLU network for
binary classification on two classes from MNIST using SGD (see Sec. 6). Panel (a) depicts the
sharpness versus the step size η. Here as η increases, the minima get flatter in parameter space (yellow
curve), which translates to smoother predictors in function space (purple curve). Panel (b) shows the
performance on the validation set. Here the trained model generalizes better as the step size increases.

function. Thus, their results only show that SGD is biased toward certain implementations of the
same function, whereas our result shows that SGD is biased toward certain functions.

Wu et al. (2018) proved a sufficient condition for dynamical stability of SGD in expectation using
second moment. Ma & Ying (2021) extended their result by showing a necessary and sufficient
condition for dynamical stability in higher moments. In addition, the authors combined this condition
with the multiplicative structure of neural nets to prove an upper bound on the Sobolev seminorm
of the model’s input-output function at stable interpolating solutions. Their upper bound extends to
deep nets, yet it depends on the norm of the first layer of the network, which in general can be large.

Mulayoff et al. (2021) characterized the stable solutions of SGD for univariate single hidden-layer
ReLU networks with the square loss. Our Thm. 1 is the natural extension of (Mulayoff et al., 2021,
Thm. 1) to the multivariate case. To prove it, we combine the proof technique of lower bounding the
top eigenvalue of the Hessian, used by Mulayoff et al. (2021), with the Radon transforms analysis used
by Ongie et al. (2020). Combining these techniques is not a priori trivial, since Radon transform was
not used before for Hessian analysis. Also, it required several subtle steps that are not encountered in
the univariate setting nor in (Ongie et al., 2020) (e.g., working with the inverse of the dual Radon
transform to obtain the primal space representation).

Ongie et al. (2020) studied the space of functions realizable as infinite-width single hidden-layer
ReLU nets with bounded weights norm. Their settings assumes explicit regularization, i.e., min-norm
solution, whereas here we derived our results for SGD without regularization, via implicit bias. On
the technical level, they introduced the “R-norm” ∥ · ∥R that is closely related to the stability norm.
Particularly, ∥ · ∥R = ∥ · ∥R,g , for g = 1 the constant 1 function. They proved similar results of depth
separation and approximation guarantees, shown here in Secs. 4-5. More related work in App. B.

8 CONCLUSION

Large step sizes are often used to improve generalization (Li et al., 2019). This work suggests an
explanation to this practice. Specifically, we showed that large step sizes lead to smaller stability norm
and thus can bias towards smooth predictors in shallow multivariate ReLU networks. We find the
smoothness measure depends on the data via specific functions g or ρ, and exemplify their properties.
Moreover, we studied the approximation power of ReLU networks that correspond to stable solutions.
Although shallow networks are universal approximators, we proved that stable solutions of these
networks are not. Namely, there is a function that cannot be well-approximated by stable single
hidden-layer ReLU networks trained with a non-vanishing step size. Yet we showed that the same
function can be realized as a stable two hidden-layer network, leading to a depth separation result.
This result can explain the success of deep models over shallow ones. Finally, we gave approximation
guarantees for stable shallow ReLU networks. In particular, we proved that any Sobolev function can
be approximated arbitrarily well using GD with single hidden-layer ReLU networks.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

The research of RM was supported by the Planning and Budgeting Committee of the Israeli Council
for Higher Education, and by the Andrew and Erna Finci Viterbi Graduate Fellowship. GO was
supported by NSF CRII award CCF-2153371. The research of DS was funded by the European
Union (ERC, A-B-C-Deep, 101039436). Views and opinions expressed are however those of the
author only and do not necessarily reflect those of the European Union or the European Research
Council Executive Agency (ERCEA). Neither the European Union nor the granting authority can be
held responsible for them. DS also acknowledges the support of Schmidt Career Advancement Chair
in AI. TM was supported by grant 2318/22 from the Israel Science Foundation and by the Ollendorff
Center of the Viterbi Faculty of Electrical and Computer Engineering at the Technion.

10



Published as a conference paper at ICLR 2023

REFERENCES

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International Conference on Machine Learning, pp.
244–253. PMLR, 2018.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32:7413–7424, 2019.

Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake Woodworth, Nathan Srebro, Amir
Globerson, and Daniel Soudry. On the implicit bias of initialization shape: Beyond infinitesimal
mirror descent. International Conference on Machine Learning, 2021.

David Barrett and Benoit Dherin. Implicit gradient regularization. In International Conference on
Learning Representations, 2021.

Mohamed Ali Belabbas. On implicit regularization: Morse functions and applications to matrix
factorization. arXiv preprint arXiv:2001.04264, 2020.

Emmanuel J Candès. Harmonic analysis of neural networks. Applied and Computational Harmonic
Analysis, 6(2):197–218, 1999.

Emmanuel J Candès and David L Donoho. Ridgelets: A key to higher-dimensional intermittency?
Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 357(1760):2495–2509, 1999.

Sean M. Carroll and Bradley W. Dickinson. Construction of neural nets using the Radon transform.
In International Joint Conference on Neural Networks, volume 1, pp. 607–611, 1989.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. In International Conference on Learning
Representations, 2020.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Armin Eftekhari and Konstantinos Zygalakis. Implicit regularization in matrix sensing: Initialization
rank matters. arXiv preprint arXiv:2008.12091, 2021.

Charles L Epstein. Introduction to the mathematics of medical imaging. Society for Industrial and
Applied Mathematics (SIAM), 2007.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Justin Gilmer, Behrooz Ghorbani, Ankush Garg, Sneha Kudugunta, Behnam Neyshabur, David
Cardoze, George Edward Dahl, Zachary Nado, and Orhan Firat. A loss curvature perspective on
training instabilities of deep learning models. In International Conference on Learning Represen-
tations, 2022.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in Neural Information Processing Systems,
30, 2017.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–1841.
PMLR, 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. Advances in neural information processing systems, 31, 2018b.

11



Published as a conference paper at ICLR 2023

Sigurdur Helgason. The Radon transform. In The Radon Transform. Springer, 1999.

Yoshifusa Ito. Representation of functions by superpositions of a step or sigmoid function and their
applications to neural network theory. Neural Networks, 4(3):385–394, 1991.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations, 2019a.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on Learning Theory, pp. 1772–1798. PMLR, 2019b.

Ziwei Ji and Matus Telgarsky. Characterizing the implicit bias via a primal-dual analysis. In
Algorithmic Learning Theory, pp. 772–804. PMLR, 2021.

Ziwei Ji, Miroslav Dudík, Robert E Schapire, and Matus Telgarsky. Gradient descent follows the
regularization path for general losses. In Conference on Learning Theory, pp. 2109–2136. PMLR,
2020.

Hui Jin and Guido Montúfar. Implicit bias of gradient descent for mean squared error regression with
wide neural networks. arXiv preprint arXiv:2006.07356, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017.

Yann LeCun. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,
pp. 2–47. PMLR, 2018.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Donald Ludwig. The Radon transform on Euclidean space. Communications on pure and applied
mathematics, 19(1):49–81, 1966.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
International Conference on Learning Representations, 2020.

Chao Ma and Lexing Ying. On linear stability of SGD and input-smoothness of neural networks.
Advances in Neural Information Processing Systems, 34, 2021.

Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit regularization in nonconvex
statistical estimation: Gradient descent converges linearly for phase retrieval and matrix completion.
In International Conference on Machine Learning, pp. 3345–3354. PMLR, 2018a.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of SGD in modern over-parametrized learning. In International Conference on
Machine Learning, pp. 3325–3334. PMLR, 2018b.

Paul Malliavin, Hélène Airault, Leslie Kay, and Gérard Letac. Integration and probability, volume
157. Springer Science & Business Media, 1995.

Rotem Mulayoff and Tomer Michaeli. Unique properties of flat minima in deep networks. In
International Conference on Machine Learning, pp. 7108–7118. PMLR, 2020.

Rotem Mulayoff, Tomer Michaeli, and Daniel Soudry. The implicit bias of minima stability: A view
from function space. Advances in Neural Information Processing Systems, 34:17749–17761, 2021.

12



Published as a conference paper at ICLR 2023

Mor Shpigel Nacson, Suriya Gunasekar, Jason Lee, Nathan Srebro, and Daniel Soudry. Lexicographic
and depth-sensitive margins in homogeneous and non-homogeneous deep models. In International
Conference on Machine Learning, pp. 4683–4692. PMLR, 2019a.

Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan
Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In The 22nd
International Conference on Artificial Intelligence and Statistics, pp. 3420–3428. PMLR, 2019b.

Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable
data: Exact convergence with a fixed learning rate. In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 3051–3059. PMLR, 2019c.

Kamil Nar and Shankar Sastry. Step size matters in deep learning. Advances in Neural Information
Processing Systems, 31, 2018.

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of bounded
norm infinite width relu nets: The multivariate case. In International Conference on Learning
Representations, 2020.

Rahul Parhi and Robert D Nowak. Banach space representer theorems for neural networks and ridge
splines. Journal of Machine Learning Research, 22(43):1–40, 2021.

Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta numerica, 8:
143–195, 1999.

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
norms. Advances in neural information processing systems, 33:21174–21187, 2020.

Michael Shub. Global stability of dynamical systems. Springer Science & Business Media, 2013.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. In International Conference on Learning Representations, 2018.

Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regularization
in stochastic gradient descent. In International Conference on Learning Representations, 2021.

Donald C Solmon. Asymptotic formulas for the dual radon transform and applications. Mathematische
Zeitschrift, 195(3):321–343, 1987.

Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is universal
approximator. Applied and Computational Harmonic Analysis, 43(2):233–268, 2017.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822–2878, 2018.

Gal Vardi and Ohad Shamir. Implicit regularization in ReLU networks with the square loss. In
Conference on Learning Theory, pp. 4224–4258. PMLR, 2021.

Mathukumalli Vidyasagar. Nonlinear systems analysis. Society for Industrial and Applied Mathemat-
ics (SIAM), 2002.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Lei Wu, Chao Ma, et al. How SGD selects the global minima in over-parameterized learning:
A dynamical stability perspective. Advances in Neural Information Processing Systems, 31:
8279–8288, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017.

13



Published as a conference paper at ICLR 2023

A ADDITIONAL DISCUSSION

The independence of Lemma 1 and Theorem 1 on the batch size B. Theorem 1 relies on
Lemma 1 (see App. E), which was proved in (Mulayoff et al., 2021). This lemma states that if a
minimum θ∗ is linearly stable for SGD with batch-size B, then the Hessian H of the loss at θ∗ must
satisfy λmax(H) ≤ 2/η, where η is the step-size. Importantly, this necessary condition holds true for
any batch size B, and thus Theorem 1 is independent of B. We note, however, that the precise stability
threshold of SGD might depend on B, yet the important points to notice are: (1) Here all we need is
a necessary condition, and Lemma 1 provides a simple bound that holds for any B. (2) Empirical
evidence shows that there is not much room for improvement upon this batch-size-independent bound
in real-world settings. Specifically, for practical batch sizes, the gap between 2/η and the stability
threshold of SGD is often very small (see Fig. 5 in our paper and Figures 2-3 in (Gilmer et al., 2022)).

The proof of Lemma 1 is actually quite short and easy to follow (see (Mulayoff et al., 2021, App. II)).
The idea is that if θ∗ is an ε linearly stable minimum, then by definition we have

lim sup
t→∞

E[∥θt − θ∗∥] ≤ ε, (21)

where {θt}∞t=0 are governed by the linearized stochastic dynamics given in Eq. (5). Using Jensen’s
inequality, for all t > 0 we get ∥E[θt]− θ∗∥ ≤ E[∥θt − θ∗∥]. Thus,

lim sup
t→∞

∥E[θt]− θ∗∥ ≤ lim sup
t→∞

E[∥θt − θ∗∥] ≤ ε. (22)

Note that under the linearized dynamics, {E[θt]}∞t=0 are precisely GD steps. Therefore, we have that
if θ∗ is linearly stable for SGD, then it must be linearly stable also for GD. Now, a well-known fact is
that θ∗ is linearly stable for GD if and only if λmax(H) ≤ 2/η . This is how we get the necessary
condition in Lemma 1, which does not depend on the batch size.

The independence of Lemma 1 and Theorem 1 on ε. Lemma 1 states that a necessary condition
for a twice differentiable minimum to be ε linearly stable is λmax

(
∇2L(θ∗)

)
≤ 2/η. That is, the

condition does not depend on ε which might seem not intuitive. However, the reason Lemma 1 does
not depend on ε is because it refers to linear stability, opposed to non-linear dynamical stability.
In linear stability for twice-differentiable minima, all we care about is the second-order Taylor
approximation of the loss at the minimum. In see previous paragraph we explained that Lemma 1
gives a necessary condition through reduction to GD. Now, when applying GD on a quadratic loss
(with a PSD matrix), for any ε > 0 only one of two things can happen:

1. Either ∃θ0 ∈ Bε(θ
∗) : lim sup

t→∞
∥θt − θ∗∥ = +∞ (unstable for any ε > 0),

2. or ∀θ0 ∈ Bε(θ
∗) : lim sup

t→∞
∥θt − θ∗∥ ≤ ∥θ0 − θ∗∥ ≤ ε (stable for any ε > 0).

In any outcome, the result does not depend on ε, and therefore ε does not appear in the result of
Lemma 1. Note that for non-differentiable minima, ε does affect linear stability in GD, however
Lemma 1 only refers to twice-differentiable minima.

Theorem 1 is based on Lemma 1, and therefore does not depend on ε. Yet, beyond this technical
reasoning, it is important to note that here we consider interpolating solutions. For those solutions,
the global minimum of the loss is also a global minimum w.r.t. each data sample (xj , yj) separately.
Therefore, despite the stochasticity of SGD, every step points towards a global minimum. This implies
that if the stability criterion is satisfied, then SGD converges to the minimum (lim sup

t→∞
E[∥θt−θ∗∥] =

0) and if it is not satisfied, then SGD repels from the minimum (lim sup
t→∞

E[∥θt − θ∗∥] = ∞ for the

linearized dynamics). This is also seen in simulations where models are overfit to training data using
SGD, e.g., (Ma et al., 2018b). Particularly, in our simulations the loss always converged to 0 when it
converged (we arbitrarily decided to stop each run when the loss dropped below 10−8). In the general
case of non-interpolating solutions, the expected final distance to the minimum in mini-batch SGD
(lim sup

t→∞
E[∥θt − θ∗∥]) can be a strictly positive finite number, and therefore in those cases ε does

play a role.
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Large step size training and warmup. While Theorem 1 applies to any positive step size, it is
most interesting when considering large step sizes. High learning rates are standard practice, as
they are associated with good generalization (Li et al., 2019). However, there are cases, e.g., large
initialization, in which high learning rate might cause the training to diverge. In these cases, a learning
rate warmup is applied, enabling training with large step sizes.

Learning rate decay. Practitioners often work with learning rate schedule, which typically reduces
the step size toward the end of training. In this scenario, 2/η can be quite high at the end, making
Theorem 1 loose. Here, empirical evidence shows that when reducing the step size at a late stage,
the sharpness of the obtained minimum is often still controlled by the initial step size, e.g., Figs. 1
and 3 in (Gilmer et al., 2022). Moreover, although learning rate decay is a popular technique, there
are other popular training schemes in which the learning rate is not reduced, e.g., (Smith et al., 2018).
Lastly, as for the depth separation results (Sec. 4) and the approximation results (Sec. 5), they apply
for any fixed positive step size. In other words, the learning rate decay does not affect these results.

Initialization independent results. Our results are independent of the initialization. In the past it
was shown that initialization can have large effect on which minimum GD converges under certain
conditions. However, this do not contradict our results, as explained below.

For very small step sizes, the GD trajectory follows that of gradient flow (GF). Under certain
conditions, e.g., infinite width or vanishing initialization, it was shown that the network does not
change much on the evolution trajectory of GF. In this case, the initialization dominates the properties
of the obtained solution. This is known as kernel regime or Neural Tangent Kernel (NTK) regime
(Jacot et al., 2018; Chizat et al., 2019). However, for practical step sizes and standard initialization,
recent work (Cohen et al., 2020) showed that GD typically deviates from the GF trajectory, while
entering the Edge of Stability regime. This occurs when the stability threshold is achieved during
training, i.e., λmax(∇2L(θt)) ≥ 2/η for some t > 0. In this case, GD converges to a different
minimum than GF, i.e., GD escapes the NTK regime. Similar behavior was shown also for SGD
(Gilmer et al., 2022).

Theorem 1 Proof idea. Theorem 1 is a result of two properties of twice-differentiable minima. First,
we show in Lemma 3 in the appendix that these minima satisfy λmax(∇2

θL) ≥ 1+2 ∥f∥R,g . Second,
we know from Lemma 1 that stable minima satisfy λmax(∇2

θL) ≤ 2/η. Together, these properties
imply that 2/η ≥ 1 + 2 ∥f∥R,g , from which we get the result of the theorem, ∥f∥R,g ≤ 1/η − 1/2.
Note that twice-differentiable minima correspond to functions whose knots do not coincide with any
training point. Although we prove our result only for such functions, we observed that in practice the
condition λmax(∇2

θL) ≤ 2/η is always met around minima to which SGD converges (see Sec. 6 and
the next paragraph). For full derivation of the theorem see App. E.

Theorem 1 assumption and minima that are not twice-differentiable. Theorem 1 assumes that
the knots of f do not coincide with any training point. This assumption is done for technical simplicity,
that is to ensure the minimum is twice-differentiable. In practice, we observed that usually only a
small fraction of the knots coincide with training points. For example, in our MNIST experiment we
had only 30 training points coinciding with knots of f (out of n = 512 training points and k = 200
neurons). Note that the twice-differentiability assumption in Theorem 1 is required for Lemma 1 to
hold as Theorem 1 invokes Lemma 1. However, we observed that in practical settings, Lemma 1 still
applies in settings where the assumption is violated. This can be appreciated by the red curve upper
bounding the orange curve in Figs. 4(a) and 5(a). Namely, despite the fact that the minima are not
always twice-differentiable in our experiments, the stability criterion for SGD is still observed to be
upper bounded by 2/η.

It is possible to extend the analysis to minima that are not twice-differentiable by using the same
method as in (Mulayoff et al., 2021). However, this makes the analysis much more complex.

The meaning of minλmax in figures 4(a) and 5(a). The curve minλmax shows the sharpness of
the flattest implementation of each solution f . In more detail, as discussed earlier, Theorem 1 is a
result of two properties of twice-differentiable minima. On the one hand, we know from Lemma 1
that stable minima satisfy λmax(∇2

θL) ≤ 2/η. On the other hand, Lemma 3 in App. E asserts that
these minima satisfy λmax(∇2

θL) ≥ 1 + 2∥f∥R,g. Note that each function f ∈ Fk has multiple
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implementations, i.e., different minima in parameter space which all correspond to f . These minima
can have different sharpness. Here, we can look at the best implementation, i.e., a solution to
minλmax, where the minimum is taken over all loss’ minima {θ} that implement f . Overall, given a
minimum θ with a corresponding function f , we have

1 + 2∥f∥R,g ≤ minλmax(∇2
θL) ≤ λmax(∇2

θL) ≤ 2/η. (23)

These inequalities give us the result of Theorem 1, 1 + 2∥f∥R,g ≤ 1/η − 1/2. To understand the
tightness of each part of our analysis, we added to the plots λmax and minλmax. In both figures,
λmax(∇2

θL) equals or just below 2/η, a phenomenon known as edge of stability (Cohen et al., 2020).
Additionally, minλmax(∇2

θL) is close to 1 + 2∥f∥R,g in these experiments. Yet, Figure 4 shows
that λmax(∇2

θL) can be quite larger than minλmax(∇2
θL), meaning that there exists a far flatter

minimum that implements the same function. This fact was used by Dinh et al. (2017) to show that
sharp minima can generalize.

B ADDITIONAL RELATED WORK

Implicit bias. A long line of works studied the implicit bias of the training procedure in an attempt
to better understand generalization in overparameterized models. For the classification setting, in the
case of linear prediction function, linearly separable data, and exponentially tailed loss functions (e.g.,
logistic and exponential), Soudry et al. (2018) showed that GD converges in the direction of the SVM
solution. This result was later extended to linear fully connected and convolutional neural networks
(Gunasekar et al., 2018b; Ji & Telgarsky, 2019a), more loss functions (Nacson et al., 2019b; Ji &
Telgarsky, 2021), SGD optimization algorithm (Nacson et al., 2019c), other generic optimization
methods (Gunasekar et al., 2018a), non-separable data (Ji & Telgarsky, 2019b), and homogeneous
prediction functions (Nacson et al., 2019a; Lyu & Li, 2020; Ji et al., 2020). However, all those results
do not depend on the step size, except for the requirement that it be sufficiently small.

Another line of works studied the implicit bias in the context of linear models with quadratic loss such
as matrix factorization (Gunasekar et al., 2017; Li et al., 2018; Arora et al., 2018; 2019; Belabbas,
2020; Eftekhari & Zygalakis, 2021; Gidel et al., 2019; Ma et al., 2018a; Woodworth et al., 2020;
Azulay et al., 2021). However, all of these works relied on either small or infinitesimal step size
(i.e., gradient flow). Thus, they do not capture how the step size affects the implicit bias. Moreover,
they assumed a manifold property (Azulay et al., 2021). As pointed out by Razin & Cohen (2020)
and Vardi & Shamir (2021), these assumptions do not always apply. In contrast, our result is based
on a stability condition of SGD, which depends on the step size and does not require the manifold
assumption.

How the step size affects the implicit bias. To investigate the implicit bias of the step size, Barrett
& Dherin (2021) and Smith et al. (2021) suggested using a modified loss. Under this modified loss,
gradient flow approximates the trajectory of (S)GD on the original loss. However, the step size should
be sufficiently small for the approximation to hold true. Moreover, the induced regularization term
this method yields is expressed in terms of the model’s parameters. Additionally, this term increases
linearly with the step size and vanishes at any stationary point.

Radon transform analysis of shallow networks. Radon transform analysis has previously been
used in studies of the approximation capabilities of single hidden-layer neural networks with bounded
activation functions (Carroll & Dickinson, 1989; Ito, 1991), and more general activation functions in
the ridgelet framework (Candès & Donoho, 1999; Candès, 1999). More recently, Sonoda & Murata
(2017) used ridgelet transform analysis to study the approximation properties of two-layer neural
networks with unbounded activation functions, including the ReLU.

Parts of this work extend results by Ongie et al. (2020), which defined a similar Radon-domain
seminorm (the “R-norm”) to determine the space of functions realizable as an infinite-width single
hidden-layer ReLU networks with square-summable weights. Parhi & Nowak (2021) proved a
representer theorem for single hidden-layer ReLU networks using the R-norm. Finally, an L2 version
of the R-norm is used by Jin & Montúfar (2020) to describe the function space implicit bias of
training a single hidden-layer ReLU network using gradient descent in the neural tangent kernel
regime.
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C THE RADON TRANSFORM

For a function f : Rd → R, the d-dimensional Radon transform Rf is the collection of all integrals
of f over (d− 1)-dimensional affine hyperplanes in Rd. Every hyperplane can be parametrized by a
pair (v, b) ∈ Sd−1 ×R, where v is a unit normal to the hyperplane and b ∈ R is its distance from the
origin. Therefore, the Radon transform Rf is the function over (v, b) ∈ Sd−1 × R given by

Rf (v, b) ≜
∫
v⊤x=b

f(x)ds(x), (24)

where ds(x) represents integration with respect to the (d − 1)-dimensional surface measure on
the hyperplane v⊤x = b. Note that the Radon transform is an even function, i.e., Rf(v, b) =
Rf(−v,−b), since (v, b) and (−v,−b) describe the same hyperplane.

The dual Radon transform R∗ maps functions defined on Sd−1 × R to functions on Rd by

R∗φ (x) ≜
∫
Sd−1

φ
(
v,v⊤x

)
ds(v) (25)

for all x ∈ Rd, where ds(v) represents integration with respect to the (d− 1)-dimensional surface
measure on the unit sphere Sd−1.

The Radon transform and its dual are invertible over spaces of smooth functions via the inversion
formulas:

R−1 = γd(−∆)
d−1
2 R∗, (26)

(R∗)
−1

= γdR(−∆)
d−1
2 , (27)

where the fractional Laplacian operator (−∆)
d−1
2 is defined by application of a ramp function in

Fourier domain (i.e., multiplication by ∥ω∥d−1 in Fourier domain), and

γd =
1

2(2π)d−1
(28)

is a dimension dependent constant.

These transforms may be extended to spaces of distributions (e.g., Dirac deltas) in a standard way
(Ludwig, 1966; Helgason, 1999), which we summarize in App. D. Important for this work is the
distributional dual inverse Radon transform (R∗)−1, which maps a distribution defined over Euclidean
space Rd to a distribution in Radon domain Sd−1 × R.

D DISTRIBUTIONAL FRAMEWORK

Let f : Rd → R be any locally integrable function. Then its Laplacian ∆f can be interpreted as a
tempered distribution, meaning that ∆f is defined via the duality pairing

⟨∆f, φ⟩ ≜ ⟨f,∆φ⟩Rd =

∫
Rd

f(x)∆φ(x) dx, (29)

where φ is any Schwartz test function on Rd, i.e., a smooth function such that the function and its
partial derivatives of all orders have sufficiently fast decay at infinity; denote this space of functions
by S(Rd). For example, if f consists of a single ReLU unit, i.e., f(x) = σ(v⊤x − b) such that
∥v∥ = 1, then it is easy to show ∆f = δ(v⊤x − b), meaning ⟨∆f, φ⟩ =

∫
{x:v⊤x=b} φ(x)dx =

Rφ(v, b). In other words, ∆f is the distribution given by evaluation of the Radon transform of a test
function at the point (v, b) ∈ Sd−1 × R.

Next, we describe how to understand the operator (R∗)−1 in a distributional sense. Let SH(Sd−1×R)
denote the image of Schwartz functions S(Rd) under the classical Radon transform R. The space
SH(Sd−1×R) is characterized in (Ludwig, 1966; Helgason, 1999); it is the space of all even Schwartz
functions defined on Sd−1 × R that additionally satisfy some moment conditions7. It is also shown

7Specifically, for all positive integers k, the function v →
∫
b∈R ϕ(v, b)b

kdb needs to be a homogeneous
polynomial in v of degree k.
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by Ludwig (1966) that the classical inverse Radon transform R−1 is a linear homeomorphism of
SH(Sd−1×R) onto S(Rd). Therefore, we may define its distributional transpose (R−1)∗ = (R∗)−1

applied to any tempered distribution h by

⟨(R∗)−1h, ϕ⟩ = ⟨h,R−1ϕ⟩ (30)

for all ϕ ∈ SH(Sd−1 × R). Note that (R∗)−1h is a distribution belonging to S ′
H(Sd−1 × R), the

topological dual of SH(Sd−1 × R).

Returning to the example where f is a single ReLU unit, i.e., f(x) = σ(v⊤x − b) with ∥v∥ = 1,
then for any test function ϕ ∈ SH(Sd−1 × R) we have

⟨(R∗)−1∆f, ϕ⟩ = ⟨∆f,R−1ϕ⟩ = [RR−1ϕ](v, b) = ϕ(v, b). (31)

This shows (R∗)−1∆f = δ(v,b), i.e., a Dirac delta centered at (v, b). If f(x) =
∑k

i=1 aiσ(v
⊤
i x−

bi) + c is any single hidden-layer ReLU network such that ∥vi∥ = 1 for all i = 1, ..., k, then by
linearity we have

(R∗)−1∆f =

k∑
i=1

aiδ(vi,bi). (32)

Finally, we may define the total variation ∥ · ∥TV for any distribution α ∈ S ′
H(Sd−1 × R) by

∥α∥TV ≜ sup
ϕ∈SH(Sd−1×R)

|⟨α, ϕ⟩|. (33)

If ∥α∥TV is finite, then α is a distribution of order-0. In this case, since SH(Sd−1 × R) is dense in
the space of even and continuous functions on Sd−1 × R that vanish at infinity, α can be extended
uniquely to an even signed measure on Sd−1 × R, and ∥α∥TV is equal to the total variation norm
of α.

E PROOF OF THEOREM 1

In the proof of the theorem we use the following lemma (for the proof of this lemma see Appendix F).
Lemma 3 (Top eigenvalue lower bound). Let f ∈ Fk be a twice-differentiable minimizer of the loss
function, then

λmax

(
∇2

θL
)
≥ 1 + 2 ∥f∥R,g , (34)

where ∥·∥R,g denotes the stability norm.

Let f ∈ Fk be a stable solution of the loss function. Then, according to Definition 3, there exists a
linearly stable minimum point θ ∈ R(d+2)k+1 such that the network at this minimum implements f .
Due to the fact that the knots of f do not contain any training point, we have that θ is a twice-
differentiable minimum. From Lemma 1, since θ is a twice differentiable stable minimum then

λmax

(
∇2

θL
)
≤ 2

η
. (35)

On the other hand, from Lemma 3 we have that

λmax

(
∇2

θL
)
≥ 1 + 2 ∥f∥R,g . (36)

Using (35) and (36) we get

∥f∥R,g ≤ 1

η
− 1

2
. (37)

F PROOF OF LEMMA 3

The proof of the Lemma consists of the following steps:

1. Calculating ∇2
θL, and showing that at a global minimum it takes the form ∇2

θL = 1
nΦΦ⊤

(Appendix F.1).
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2. Lower bounding λmax(∇2
θL) by using

λmax

(
∇2

θL
)
= max

v∈S(d+2)k
v⊤ (∇2

θL
)
v = max

v∈S(d+2)k

1

n

∥∥∥Φ⊤v
∥∥∥2 = max

u∈Sn−1

1

n
∥Φu∥2 ,

(38)
and lower bounding the right hand side (Appendix F.2).

3. Simplifying the lower bound to obtain a more interpretable version which does not depend
on the specific implementation of f (Appendix F.3).

F.1 HESSIAN COMPUTATION

Recall that

L(f) = 1

2n

n∑
j=1

(f (xj)− yj)
2
, (39)

where

f(x) =

k∑
i=1

w
(2)
i σ

(
x⊤w

(1)
i + b

(1)
i

)
+ b(2). (40)

We denote

W (1) =
[
w

(1)
1 , · · · ,w(1)

k

]
∈ Rd×k, b(1) =

[
b
(1)
1 , · · · , b(1)k

]⊤
∈ Rk,

w(2) =
[
w

(2)
1 , · · · , w(2)

k

]⊤
∈ Rk, b(2) ∈ R (41)

and

θ =


vec
(
W (1)

)
b(1)

w(2)

b(2)

 ∈ R(d+2)k+1. (42)

Using these notations, assuming that θ∗ is a twice differentiable global minimum of L, we have that
the gradient is

∇θL =
1

n

n∑
j=1

(f (xj)− yj)∇θf (xj) . (43)

The Hessian is given by

∇2
θL =

1

n

n∑
j=1

∇θf (xj)∇θf (xj)
⊤
+

1

n

n∑
j=1

(f (xj)− yj)∇2
θf (xj)

=
1

n

n∑
j=1

∇θf (xj)∇θf (xj)
⊤
, (44)

where in the last transition we used ∀j ∈ [n] : f(xj) = yj (see Def. 2). From direct calculation we
obtain

∇θf (x) =


vec
(

∂f
∂W (1)

)
∇b(1)f
∇w(2)f
∇b(2)f

 =


(
w(2) ⊙ I (x;θ)

)
⊗ x

w(2) ⊙ I (x;θ)((
W (1)

)⊤
x+ b(1)

)
⊙ I (x;θ)

1

 , (45)

where ⊙ denotes the Hadamard product, ⊗ represents the Kronecker product and I : Rd ×
R(d+2)k+1 → {0, 1}k is the activation pattern of all neurons for input x, namely [I(x;θ)]i = 1 if
x⊤w

(1)
i + b

(1)
i > 0 and [I(x;θ)]i = 0 otherwise. Let us denote the tangent features matrix by

Φ = [∇θf (x1) ∇θf (x2) · · · ∇θf (xn)] ∈ R(dk+2k+1)×n. (46)

Then the Hessian can be expressed as ∇2
θL = ΦΦ⊤/n, and its maximal eigenvalue can be written as

λmax(∇2
θL) = max

v∈S(d+2)k
v⊤∇2

θLv = max
v∈S(d+2)k

1

n

∥∥∥Φ⊤v
∥∥∥2 = max

u∈Sn−1

1

n
∥Φu∥2 . (47)
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F.2 LOWER BOUNDING THE TOP EIGENVALUE

Continuing from the previous section’s calculation, if we take u = 1√
n
1, we obtain

max
u∈Sn−1

1

n
∥Φu∥2

≥ 1

n2
∥Φ1∥2

= 1 +
1

n2

k∑
i=1

 d∑
l=1

 n∑
j=1

w
(2)
i xj,lIj,i

2

+

 n∑
j=1

w
(2)
i Ij,i

2

+

 n∑
j=1

σ
(
x⊤
j w

(1)
i + b

(1)
i

)2


= 1 +
1

n2

k∑
i=1

(w(2)
i

)2 d∑
l=1

 n∑
j=1

xj,lIj,i

2

+

 n∑
j=1

Ij,i

2
+

 n∑
j=1

σ
(
x⊤
j w

(1)
i + b

(1)
i

)2


(∗)
≥ 1 +

2

n2

k∑
i=1

∣∣∣w(2)
i

∣∣∣
√√√√√ d∑

l=1

 n∑
j=1

xj,lIj,i

2

+

 n∑
j=1

Ij,i

2 ∣∣∣∣∣∣
n∑

j=1

σ
(
x⊤
j w

(1)
i + b

(1)
i

)∣∣∣∣∣∣ , (48)

where in (∗) we used α2 + β2 ≥ 2 |αβ| . Let Ci ⊆ {xj} be the set of training points for which the
ith neuron is active, and denote ni = |Ci|, that is

ni =

n∑
j=1

Ij,i. (49)

Then,

λmax

(
∇2

θL
)
≥ 1 +

2

n2

k∑
i=1

∣∣∣w(2)
i

∣∣∣
√√√√∥∥∥∥∥∑

x∈Ci

x

∥∥∥∥∥
2

+ n2
i

∣∣∣∣∣∑
x∈Ci

(
x⊤
j w

(1)
i + b

(1)
i

)∣∣∣∣∣
= 1 + 2

k∑
i=1

∣∣∣w(2)
i

∣∣∣ (ni

n

)2√√√√∥∥∥∥∥ 1

ni

∑
x∈Ci

x

∥∥∥∥∥
2

+ 1

∣∣∣∣∣ 1ni

∑
x∈Ci

(
x⊤w

(1)
i + b

(1)
i

)∣∣∣∣∣
= 1 + 2

k∑
i=1

∣∣∣w(2)
i

∣∣∣ (P (X ∈ Ci))
2
√
∥E [X|X ∈ Ci]∥2 + 1E

[
X⊤w

(1)
i + b

(1)
i |X ∈ Ci

]
,

(50)

where X is a random sample from the dataset under uniform distribution. Next, we define

w̄
(1)
i ≜

w
(1)
i∥∥∥w(1)
i

∥∥∥ , b̄
(1)
i ≜

−b
(1)
i∥∥∥w(1)
i

∥∥∥ . (51)

Using these notations we obtain

λmax

(
∇2

θL
)
≥ 1 + 2

k∑
i=1

∣∣∣w(2)
i

∣∣∣ ∥∥∥w(1)
i

∥∥∥ (P (X ∈ Ci))
2
√

∥E [X|X ∈ Ci]∥2 + 1

× E
[
X⊤w̄

(1)
i − b̄

(1)
i |X ∈ Ci

]
(∗)
= 1 + 2

k∑
i=1

∣∣∣w(2)
i

∣∣∣ ∥∥∥w(1)
i

∥∥∥ g̃ (w̄(1)
i , b̄

(1)
i

)
(∗∗)
≥ 1 + 2

k∑
i=1

∣∣∣w(2)
i

∣∣∣ ∥∥∥w(1)
i

∥∥∥ g (w̄(1)
i , b̄

(1)
i

)
, (52)
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where in (∗) and (∗∗) we defined, respectively,

g̃
(
w̄, b̄

)
=
(
P
(
X⊤w̄ > b̄

))2
E
[
X⊤w̄ − b̄

∣∣∣X⊤w̄ > b̄
]√∥∥∥E [X∣∣∣X⊤w̄ > b̄

]∥∥∥2 + 1,

g
(
w̄, b̄

)
= min

(
g̃
(
w̄, b̄

)
, g̃
(
−w̄,−b̄

))
. (53)

From our derivation so far, we obtain that

λmax

(
∇2

θL
)
≥ 1 + 2

k∑
i=1

∣∣∣w(2)
i

∣∣∣ ∥∥∥w(1)
i

∥∥∥ g (w̄(1)
i , b̄

(1)
i

)
. (54)

We denote ai = w
(2)
i ∥w(1)

i ∥ and the representation dependent stability norm as

Sθ ≜
k∑

i=1

|ai| g
(
w̄

(1)
i , b̄

(1)
i

)
. (55)

F.3 IMPLEMENTATION FREE LOWER BOUND

In this section, our goal is to give a simpler lower bound of the multivariate stability norm Sθ, that
does not depend on the specific representation of f . Let α be the signed measure over Sd−1 ×
R given by α =

∑k
i=1 aiδ

(
w̄

(1)
i ,b̄

(1)
i

), and whose total variation measure |α| is given by |α| =∑k
i=1 |ai|δ(w̄(1)

i ,b̄
(1)
i

). Recall that

f(x) =

k∑
i=1

∥∥∥w(1)
i

∥∥∥w(2)
i σ

(
x⊤w̄

(1)
i − b̄

(1)
i

)
+ b(2) =

k∑
i=1

aiσ
(
x⊤w̄

(1)
i − b̄

(1)
i

)
+ b(2), (56)

and thus

∆f(x) =

d∑
l=1

∂2f(x)

∂x2
l

=

k∑
i=1

aiδ
(
x⊤w̄

(1)
i − b̄

(1)
i

)
=

∫
Sd−1×R

α
(
w̄, b̄

)
δ
(
w̄⊤x− b̄

)
ds(w̄)db̄

=

∫
Sd−1

α
(
w̄, w̄⊤x

)
ds(w̄)

= R∗α. (57)

Namely, ∆f is a weighted sum of Diracs supported on hyperplanes. From the last equation we obtain
α = (R∗)−1∆f . Combining these results we get that

Sθ =

∫
Sd−1×R

gd|α| = ⟨|α|, g⟩ ≥
∫
Sd−1×R

∣∣∣[(R∗)
−1

∆f
]
(v, b)

∣∣∣ g (v, b) ds(v)db = ∥f∥R,g ,

(58)
where the inequality in the third step is due to g being non-negative and the scenarios in which
multiple deltas become active at the same location, namely ∃i ̸= j : w̄

(1)
i = w̄

(1)
j and b̄

(1)
i = b̄

(1)
j .

Note that if the deltas do not align, then Sθ = ∥f∥R,g . Overall we have that

λmax

(
∇2

θL
)
≥ 1 + 2Sθ ≥ 1 + 2 ∥f∥R,g . (59)

G DERIVATION OF THE STABILITY NORM IN PRIMAL SPACE

We defined the multivariate stability norm as ∥f∥R,g = ⟨|(R∗)−1∆f |, g⟩Sd−1×R, where ⟨·, ·⟩Sd−1×R
denotes the integral inner-product on Sd−1 × R. Supposing that the inverse Radon transform of g
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exists, then by purely formal reasoning we ought to have
∥f∥R,g =

〈∣∣(R∗)−1∆f
∣∣ , g〉Sd−1×R

=
〈∣∣(R∗)−1∆f

∣∣ ,RR−1g
〉
Sd−1×R

=
〈
R∗ ∣∣(R∗)−1∆f

∣∣ ,R−1g
〉
Rd . (60)

Therefore, making the (formal) definitions |∆f |R ≜ R∗|(R∗)−1∆f | and ρ ≜ R−1g, we may also
interpret the stability norm ∥f∥R,g as the quantity∫

Rd

|∆f |R(x)ρ(x)dx. (61)

In the event that f and g are smooth, and g is in the range of the classical Radon transform, then
the above expression is equal to ∥f∥R,g. However, this is not generally the case in our setting, and
below we show how to give a more precise interpretation of this integral formula using distributional
theory. In particular, we show that when f is a finite-width ReLU network |∆f |R is equal to the
total variation measure of ∆f (i.e., the measure-theoretic analog of the absolute value of a function).
Additionally, in the event that g does not have a classically defined Radon inverse, we show how the
integral in (61) can be interpreted using a smoothing approach.

Let f be a finite width single hidden-layer ReLU network, i.e., f ∈ Fk for some finite k. Recall that
(R∗)−1∆f is a finite weighted sum of Diracs in Sd−1 × R. Let |(R∗)−1∆f | be the associated total
variation measure, and define |∆f |R = R∗|(R∗)−1∆f |, where R∗ is the distributional dual Radon
transform. Here |∆f |R is a tempered distribution given by a (positive) weighted sum of Diracs
supported on hyperplanes. For example, if f is a single ReLU unit of the form f(x) = a σ(x⊤v− b)
with ∥v∥2 = 1, then |∆f |R is the distribution |a|δ(x⊤v− b), that is, for any test function ϕ we have

⟨|∆f |R, ϕ⟩Rd = |a|
∫
x⊤v=b

ϕ(x)ds(x) = |a|Rϕ(v, b). (62)

On the other hand, treating ∆f as a measure defined over a compact subset of Rd, its total variation
measure |∆f | is also equal to |a|δ(x⊤v − b). The following result shows that, more generally,
when f is any finite width ReLU net then |∆f |R and |∆f | are equal as measures.
Proposition 4. Let f ∈ Fk, then |∆f |R = |∆f | as measures defined over any compact set of Rd.

Proof. Since f ∈ Fk, there exists a representation of f as f(x) =
∑k′

i=1 aiσ(v
⊤
i x− bi) +x⊤q+ c

where ∥vi∥ = 1 for all i, ai ̸= 0 for all i, and (vi, bi) ̸= ±(vj , bj) for all i ̸= j (i.e., the knots of all
ReLU units are distinct8), and where k′ ≤ k. Therefore, each ReLU unit in this representation of f
maps to a distinct Dirac δ(vi,bi) in Radon space after applying the operator (R∗)−1∆, and so

|(R∗)−1∆f | =
k′∑
i=1

|ai|δ(vi,bi). (63)

Let X be any compact subset of Rd, and let ϕ be any continuous test function defined over X . Then,

⟨|∆f |R, ϕ⟩ = ⟨|(R∗)−1∆f |,Rϕ⟩ =
k′∑
i=1

|ai|Rϕ(vi, bi). (64)

Now, we show the same equality holds with |∆f | in place of |∆f |R. Let I+ denote the set of
indices i such that ai > 0 and I− denote the set of indices i such that ai < 0. Define the measures
µ+ =

∑
i∈I+ aiδ(v

⊤
i · − bi) and µ− = −

∑
i∈I− ai δ(v

⊤
i · − bi). Observe that µ+ and µ− are both

positive measures whose supports only possibly intersect on a set of measure zero, and ∆f = µ+−µ−.
This implies the total variation measure of ∆f is given by |∆f | = µ++µ− =

∑k′

i=1 |ai|δ(v⊤
i ·− bi).

Hence,

⟨|∆f |, ϕ⟩ =
k′∑
i=1

|ai|Rϕ(vi, bi), (65)

as claimed.
8If (vi, bi) = (vj , bj) then one of the neurons is redundant. If (vi, bi) = −(vj , bj) then these units can be

combined into an affine function, which we “absorb” into the term x⊤q + c.
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Note, however, that when f corresponds to finite-width ReLU network, |∆f | does not have finite
total variation considered as a measure defined over all Rd. Due to this technicality, when ρ is
not compactly supported, we need to understand the integral in (61) as being with respect to the
distribution |∆f |R in place of the measure |∆f |.
Now we show that when ρ = R−1g does not exist in a classical sense, the integral in (61) can still be
interpreted using a smoothing approach.
Proposition 5. Let f ∈ Fk and suppose g is an even, piecewise continuous L1 function on Sd−1× R
and let ρ = R−1g be its distibutional Radon inverse. Further, assume the support of |(R∗)−1∆f |
does not intersect the set of points where g is discontinuous. Then ∥f∥R,g is finite and

∥f∥R,g =

∫
Rd

|∆f(x)|ρ(x)dx, (66)

where the integral above is understood as the finite limit
lim
ϵ→0

⟨|∆f |R, ρϵ⟩Rd , (67)

where ρϵ is a smooth approximation of ρ defined independently of f whose classical Radon transform
gϵ = Rρϵ exists for all ϵ > 0, and gϵ → g uniformly as ϵ → 0 on any closed subset of Rd over which
g is continuous.

Proof. For any ϵ > 0 let ϕϵ ∈ S(Sd−1 × R) be a compactly supported even function acting as a
smooth approximation of the identity, i.e., for any continuous, even function h vanishing at infinity we
have ϕϵ ∗ h → h uniformly as ϵ → 0, where ∗ denotes convolution of functions on Sd−1 ×R. Define
gϵ = (ϕϵ ∗ g) · χϵ, where χϵ(v, b) is a smooth cutoff function that is equal to one if |b| ≤ 1/ϵ and
rapidly decays to zero for |b| ≥ 1/ϵ. Observe that gϵ is an even Schwartz function by construction.
Furthermore, since g is piecewise continuous and L1 (and in particular, it vanishes at infinity), this
implies gϵ → g uniformly over any closed set that does not intersect the set of points where g is
discontinuous. Therefore, if we let U ⊂ Sd−1 × R be any closed set containing the support of
|(R∗)−1∆f | that does not intersect the set of points where g is discontinuous (which is guaranteed
to exist since the support of |(R∗)−1∆f | is a finite set), then we have gϵ → g uniformly over U .
Therefore

∥f∥R,g = ⟨|(R∗)−1∆f |, g⟩Sd−1×R = lim
ϵ→0

⟨|(R∗)−1∆f |, gϵ⟩Sd−1×R, (68)

where the limit is guaranteed to exist since the finite measure |(R∗)−1∆f | is a continuous linear
functional over C0(U), the space of continuous functions over U vanishing at infinity. Finally, since
gϵ is Schwartz, (Solmon, 1987, Thm. 7.7) guarantees ρϵ = R−1gϵ exists as a C∞-smooth function
on Rd that is also integrable along hyperplanes and for which the classical Radon inversion formula
holds: Rρϵ = gϵ. Therefore, we have

∥f∥R,g = lim
ϵ→0

⟨|(R∗)−1∆f |,Rρϵ⟩Sd−1×R

= lim
ϵ→0

⟨R∗|(R∗)−1∆f |, ρϵ⟩Rd

= lim
ϵ→0

⟨|∆f |R, ρϵ⟩Rd , (69)

as claimed.

The assumption made above that the support of |(R∗)−1∆f | does not intersect the set of points where
g is not overly restrictive. For example, this assumption holds when f corresponds to a differentiable
minimizer of the squared loss defined in terms of a finite set of training points and g is the data
dependent weighting function defined in (12). In this case, the discontinuity set of g(v, b) corresponds
to the set of hyperplanes {x : Rd : x⊤v = b} that intersect one or more of the training points. And f
corresponds to a differentiable minimizer if and only if the hyperplanes defined by the knots of the
ReLU units making up f (i.e., the support of |(R∗)−1f |) do not intersect any training points.

H EXAMPLES OF g AND ρ

H.1 TWO DATAPOINTS

For this example, it is easy to calculate that
g(v, b) = ασ

(
|v1| − |b|

)
, (70)
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where α is a positive constant. We compute ρ = R−1g by first determining its Laplacian, ∆ρ, then
inverting and Laplacian to recover ρ. First, the intertwining property of the Laplacian and the Radon
transform gives

R∆ρ =
∂

∂b2
Rρ =

∂

∂b2
g. (71)

Therefore, by the Fourier slice theorem (Helgason, 1999), for all (v, s) ∈ Sd−1 × R we have

F{∆ρ}(sv) = Fb

{
∂

∂b2
g

}
(v, s), (72)

where F{·} is the 2-D Fourier transform, and Fb{·} is the Fourier transform in the b variable. For
fixed v, the function b → g(v, b) is continuous and piecewise linear with knots at 0 and ±|v1|, and it
is easy to see that

∂

∂b2
g(v, b) = α

(
δ(b− |v1|) + δ(b+ |v1|)− 2δ(b)

)
, (73)

which implies

F{∆ρ}(sv) = Fb

{
∂

∂b2
g

}
(v, s) = α

(
e−j2π|v1|s + ej2π|v1|s − 2

)
. (74)

If we restrict the unit-norm vector v = (v1, v2) to be such that v1 ≥ 0 and define ξ = sv then we see
that x⊤

1 ξ = s|v1| and x⊤
2 ξ = −s|v1|. Therefore, we have

F{∆ρ}(ξ) = α
(
e−j2πx⊤

1 ξ + e−j2πx⊤
2 ξ − 2

)
, (75)

and inverting the Fourier transform gives

∆ρ(x) = α (δ(x− x1) + δ(x− x2)− 2δ(x)) . (76)

Finally, since φ(x) = 1
2π log(∥x∥) is the fundamental solution of Poisson’s equation in 2D (i.e.,

∆φ = δ, where δ is a Dirac centered at origin), we have

ρ(x) =
α

2π

(
log(∥x− x1∥) + log(∥x− x2∥)− 2 log(∥x∥)

)
. (77)

While each term in the sum above not absolutely integrable along lines, their sum is absolutely
integrable along lines. This is because the function t → log(|t|) is absolutely integrable over any
neighborhood of the origin, and by a multipole expansion we may show that ρ(x) = O(∥x∥−2) as
x → ∞, which is also absolutely integrable along lines.

H.2 ISOTROPIC DATA DISTRIBUTION

For an isotropic data distribution, i.e., P
(
x⊤v > b

)
= M (b) for any v that satisfies ∥v∥ = 1, we

will have that

g̃ (v, b) =M(b)

∫ ∞

b

M(z)dz

√(
b+

1

M(b)

∫ ∞

b

M(z)dz

)2

+ 1. (78)

Then, from symmetry and assuming that g̃ is decreasing in b we obtain

g(v, b) = M(|b|)
∫ ∞

|b|
M(z)dz

√√√√(|b|+ 1

M(|b|)

∫ ∞

|b|
M(z)dz

)2

+ 1. (79)

Note that g only depends on |b| and is decreasing in |b|. Considering the parameter space representa-
tion for the stability norm

Sθ =

k∑
i=1

|ai| g (vi, bi) , (80)

we can see that solutions with larger |bi|, i.e., solutions which are more flat in function space, will
have smaller stability norm.
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We now characterize ρ = R−1g. For simplicity, we focus on the two-dimensional setting (d = 2).
Since g(v, b) does not depend on v, we drop this dependence and simply write g(b). Note that
this implies ρ is a radial function. Let ρ̃(r) denote the radial profile of ρ, i.e., ρ(x) = ρ̃(∥x∥). We
additionally make the following assumptions: g(b) is twice continuously differentiable away from
the origin, and both g and its weak derivative g′ are bounded and absolutely integrable. In this case, ρ̃
has the integral formula 9

ρ̃(r) = − 1

π

∫ ∞

r

g′(b)√
b2 − r2

db. (81)

The assumptions on g above are sufficient to show the integrand in (81) is absolutely integrable over
[r,∞) for r > 0. Since g(|b|) is assumed to be decreasing in |b|, we have −g′(b) ≥ 0 for all b > 0,
which shows ρ̃(r) ≥ 0 for all r > 0. However, if g is not smooth at the origin, then g′(b) = O(1)
as b → 0+, and elementary analysis shows ρ̃(r) = O(log(r)) as r → 0+ and ρ̃(r) = O(1/r) as
r → +∞.

Finally, if we additionally assume g′(b) is non-increasing for b > 0, then ρ(r) is strictly decreasing
for r > 0. To see this, fix any r′ > r, and define δ = r′ − r. Using the change of variables b 7→ b− δ,
we may show

ρ̃(r′) = − 1

π

∫ ∞

r

g′(b+ δ)√
(b+ δ)2 − r2

db. (82)

Since g′ is assumed to be non-increasing, we have g′(b + δ) ≤ g′(b) and it is elementary to show
((b+ δ)2 − r2)−1/2 < (b2 − r2)−1/2 for all b > r, which shows the integrand in (82) is pointwise
strictly bounded above by the integrand in (81) for all b > r, hence ρ̃(r′) < ρ̃(r).

In the case of 2D Gaussian distributed data X ∼ N (0, I), then M(b) is the complementary of the
CDF of a normal random variable: M(b) = 1√

2π

∫∞
b

e−b2/2 db. It is easy to verify that the resulting
g function satisfies the above assumptions (g(b) is decreasing, twice continuously differentiable away
from the origin, both g and its weak derivative g′ are bounded and absolutely integrable, and g′ is
non-increasing). Therefore, the resulting ρ has the all the properties outlined above.

I DEPTH SEPARATION PROOFS

Before giving the proofs in this section we introduce some additional notation. Let X denote the
closed convex hull of the training points and X its open interior. Additionally, let Y = {(v, b) ∈
Sd−1 × R : v⊤x > b for some x ∈ X}, and let Y denote its closure. Note that for any smooth
function ϕ with support contained in X , the Radon transform Rϕ has support contained in Y . Finally,
for any distribution h and open set U , we let h|U denote its restriction to U .

I.1 PROOF OF PROPOSITION 1

First, we show that the convergence of a sequence of functions fk to f in L1-norm over X implies
that the sequence of distributions ∆fk|X converges weakly to the distribution ∆f |X . For all test
functions ϕ ∈ S(X) we have

|⟨∆fk −∆f, ϕ⟩| = |⟨fk − f,∆ϕ⟩| ≤ ∥fk − f∥L1(X)∥∆ϕ∥L∞(X), (83)

where we used Holder’s inequality to achieve the final bound. Therefore, we have
limk→∞⟨∆fk, ϕ⟩ → ⟨∆f, ϕ⟩, which proves the weak convergence.

Next, we show (R∗)−1∆fk|Y converges weakly to (R∗)−1∆f |Y . For all test functions φ ∈ SH(Y )
we have 〈

(R∗)−1∆fk − (R∗)−1∆f, φ
〉
=
〈
∆fk −∆f,R−1φ

〉
. (84)

Since ϕ vanishes outside Y , by the support theorem (Helgason, 1999, Corollary 2.8) we are ensured
that R−1φ has support contained in X , hence R−1φ ∈ S(X). The desired result now follows
immediately by weak convergence of ∆fk|X to ∆f |X .

Since g has support contained in Y , this further implies that the distribution g · (R∗)−1∆fk converges
weakly to the distribution g · (R∗)−1∆f . Finally, since ∥fk∥R,g = ∥g · (R∗)−1∆fk∥TV is bounded

9See Proposition 3.5.1 in (Epstein, 2007).
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by assumption, this implies each g · (R∗)−1∆fk is a measure having finite total variation, hence
their weak limit g · (R∗)−1∆f is also a measure with finite total variation (i.e., the weak limit
of order-0 distributions that are bounded in TV-norm is also an order-0 distribution). Therefore,
∥f∥R,g = ∥g · (R∗)−1∆f∥TV is finite, as claimed.

I.2 PROOF OF PROPOSITION 2

To show the pyramid function p has infinite stability norm, we prove that g·(R∗)−1∆p is a distribution
of order > 0, which implies

∥p∥R,g = sup
ϕ∈SH(Sd−1×R)

⟨g · (R∗)−1∆p, ϕ⟩ = +∞. (85)

First, observe that the Laplacian ∆p is an order-0 distribution whose support is contained in the
unit ℓ1-ball. This implies the distribution (R∗)−1∆p, is supported on a compact set K in Radon
domain. By our assumption on the convex hull of the training points, g(v, b) > 0 for all (v, b) ∈ K.
Since g is piecewise continuous and K is compact, this implies there exists constants c1, c2 > 0
such that c1 ≤ g(v, b) ≤ c2 for all (v, b) ∈ K. Therefore, we see that g · (R∗)−1∆p is an order-0
distribution if and only if (R∗)−1∆p is an order-0 distribution. However, by a result in (Ongie
et al., 2020), we know (R∗)−1∆p has order > 0 (i.e., in the terminology of (Ongie et al., 2020),
p has infinite R-norm). Additionally, we show this by direct calculation in App. M in the case of
input dimension d = 2. Therefore, g · (R∗)−1∆p must be a distribution of order > 0 and hence
∥p∥R,g = +∞ as claimed.

I.3 STABILITY OF THE TWO HIDDEN-LAYER IMPLEMENTATION OF p(x)

Let us focus on the under-parameterized setting, in which there exists a single optimal input-output
predictor p(x) that globally minimizes the loss. In this case, the set of all global minima corresponds
to different implementations of p(x). Under this setting, we will prove that there exists a set of
nonzero Lebesgue measure such that for any initialization inside this set, GD necessarily converges
to p(x).

To do so, we will first prove that for any minimum point θ∗ ∈ Rm corresponding to an implementation
of p(x), there exists a nonzero step size η with which θ∗ is linearly stable. Furthermore, we will
show that there exists a set T s

loc(θ
∗) embedded in a subspace of dimension m − mNull, in which

any initialization converges to θ∗. Here m is the number of parameters in our two hidden-layer
network, and mNull is the number of zero eigenvalues of ∇2L at θ∗. Next, we will show that there is
a connected set of minima Θ∗ around θ∗, such that the union

⋃
θ∈Θ∗ T s

loc(θ) has a nonzero Lebesgue
measure.

Let us start with some minimum point θ∗, which corresponds to an implementation of p(x). GD’s
update rule is

θt+1 = θt − η∇L(θt). (86)

Define the mapping
T (θ) = θ − η∇L(θ). (87)

Then (86) can be written as
θt+1 = T (θt). (88)

This equation describes the full dynamics of GD using the nonlinear mapping T . Note that in this
representation, θ∗ is an equilibrium point of T , i.e., T (θ∗) = θ∗. We would like to show that it is
possible to converge to θ∗. Assume there is a finite number of training samples n, and none of them
coincide with the knots of p. Then T is differentiable in a small neighborhood of θ∗. The Jacobian
matrix of T is

∂

∂θ
T = I − η∇2L(θ∗), (89)

and its eigenvalues are

λi

(
∂

∂θ
T

)
= λi

(
I − η∇2L(θ∗)

)
= 1− ηλi

(
∇2L(θ∗)

)
. (90)
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In this setting, the loss’ Hessian at θ∗ has non-negative and bounded eigenvalues. Particularly, there
exists10 a sufficiently small step size η that satisfies

0 <
∣∣1− ηλi

(
∇2L(θ∗)

)∣∣ ≤ 1, (91)

for all i. Using the Center and Stable Manifold Theorem (Shub, 2013, Th. III.7), there exists a
bounded set T s

loc(θ
∗) such that

T (T s
loc(θ

∗)) ⊆ T s
loc(θ

∗) and ∀θ ∈ T s
loc(θ

∗) : ∥T (θ)− θ∗∥ ≤ α ∥θ − θ∗∥ , (92)

for some 0 ≤ α < 1. Here T s
loc(θ

∗) is tangent to the hyperplane that contains θ∗ and is spanned by
the nonzero eigenvectors of ∇2L(θ∗). Thus, assume that the initial point θ0 ∈ T s

loc(θ
∗), then

∥T (θt)− θ∗∥ ≤ αt ∥T (θ0)− θ∗∥ −→
t→∞

0, (93)

which shows that with any initialization in T s
loc(θ

∗), GD’s iterations converge to θ∗.

Next, note that there is a neighborhood of θ∗ within which the set of global minima of the loss form
a smooth mNull-dimensional manifold11. Let us denote this set of global minima around θ∗ by Θ∗,
and set η < 2/maxθ∈Θ∗{λmax(∇2L)} and limit the set Θ∗ such that ∀i : η ̸= 1/λi. Then, for each
minimum θ ∈ Θ∗, according to the first part of the proof, there exists a (m−mNull)-dimensional
set T s

loc(θ). Now, since each T s
loc(θ) is contained in a hyperplane that is orthogonal to the tangent

of Θ∗ at θ, and the dimension of the tangent of Θ∗ at θ∗ is mNull, we have that the dimension of
the union of these sets,

⋃
θ∈Θ∗ T s

loc(θ), is m. Thus, the set
⋃

θ∈Θ∗ T s
loc(θ) is of nonzero Lebesgue

measure within Rm and for any initialization in
⋃

θ∈Θ∗ T s
loc(θ), GD converges to p(x).

J GENERAL LOSS FUNCTIONS

In this section, we discuss how our results can be extended to general loss function with a unique
finite root. Assume some general loss function

L(f) = 1

n

n∑
j=1

ℓ (f(xj), yj) , (94)

where ℓ(a, b) is twice differentiable w.r.t. a and is minimized when a = b, i.e.,

ℓ′(a, b) ≜
∂

∂a
ℓ(a, b) = 0 ∀a = b. (95)

Then, we can calculate the loss’ gradient

∇θL =
1

n

n∑
j=1

ℓ′ (f(xj), yj)∇θf (xj) , (96)

and Hessian matrix

∇2
θL =

1

n

n∑
j=1

ℓ′′ (f(xj), yj)∇θf (xj)∇θf (xj)
⊤
+

1

n

n∑
j=1

ℓ′ (f(xj), yj)∇2
θf (xj)

=
1

n

n∑
j=1

ℓ′′ (f(xj), yj)∇θf (xj)∇θf (xj)
⊤
, (97)

where ℓ′′(a, b) ≜ ∂2

∂a2 ℓ(a, b), and in the last transition we used f(xj) = yj and ℓ′(a, a) = 0 for
all a ∈ R. If ℓ′′ (f(xj), yj) = C > 0 for all training points, then we can generalize our results by
simply multiplying the RHS of (47) by C. If not, the analysis can still be used but we need to add a
weigtning term to the stability norm which depends on the value of ℓ′′ (f(xj), yj) for each data point.

10Specifically, any η such that η ≤ 2/λmax(∇2L(θ∗)) and ∀i : η ̸= 1/λi, satisfies this condition.
11This set corresponds to multiplying the weights of corresponding neurons within different layers by positive

factors whose product is 1.
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K PROOF OF LEMMA 2

In this section, our goal is to upper bound the top eigenvalue of the flattest implementation of a
predictor function f . Here we use notation and some derivations form App. F.1. Let q denote the top
right singular vector of Φ, then

λmax

(
∇2

θL
)

=
1

n
∥Φq∥2

=
1

n


 n∑

j=1

qj

2

+

k∑
i=1

 d∑
l=1

 n∑
j=1

qjw
(2)
i xj,lIj,i

2

+

 n∑
j=1

qjw
(2)
i Ij,i

2

+

 n∑
j=1

qjσ
(
x⊤
j w

(1)
i + b

(1)
i

)2



≤ 1

n

n+

k∑
i=1

(w(2)
i

)2 d∑
l=1

 n∑
j=1

qjxj,lIj,i

2

+

 n∑
j=1

qjIj,i

2


+

 n∑
j=1

qj

∥∥∥w(1)
i

∥∥∥σ (x⊤
j w̄

(1)
i − b̄

(1)
i

)2

 (98)

where in the inequality we used
(∑n

j=1 uj

)2
≤ n for all u ∈ Sn−1 and substituted

w̄
(1)
i ≜

w
(1)
i∥∥∥w(1)
i

∥∥∥ , b̄
(1)
i ≜

−b
(1)
i∥∥∥w(1)
i

∥∥∥ . (99)

Let Θ(f) be the set of all implementations corresponding to f . Since substituting

w
(1)
i → c−1

i w
(1)
i b

(1)
i → c−1

i b
(1)
i w

(2)
i → ciw

(2)
i (100)

does not affect the network’s functionality f , we have

min
θ∈Θ(f)

λmax

(
∇2

θL
)

≤ min
θ∈Θ(f)

1

n

n+

k∑
i=1

(w(2)
i

)2 d∑
l=1

 n∑
j=1

qjxj,lIj,i

2

+

 n∑
j=1

qjIj,i

2


+

 n∑
j=1

qj

∥∥∥w(1)
i

∥∥∥σ (x⊤
j w̄

(1)
i − b̄

(1)
i

)2



= min
θ∈Θ(f),c2i>0

1

n

n+

k∑
i=1

c2i (w(2)
i

)2 d∑
l=1

 n∑
j=1

qjxj,lIj,i

2

+

 n∑
j=1

qjIj,i

2


+c−2
i

∥∥∥w(1)
i

∥∥∥2
 n∑

j=1

qjσ
(
x⊤
j w̄

(1)
i − b̄

(1)
i

)2

 . (101)
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A necessary condition for optimality is that the derivative of the objective with respect to ci is equal
to zero:

2ci

(
w

(2)
i

)2 d∑
l=1

 n∑
j=1

qjxj,lIj,i

2

+

 n∑
j=1

qjIj,i

2


− 2c−3
i

∥∥∥w(1)
i

∥∥∥2
 n∑

j=1

qjσ
(
x⊤
j w̄

(1)
i − b̄

(1)
i

)2

= 0

⇒ c2i =

∥∥∥w(1)
i

∥∥∥ ∣∣∣∑n
j=1 qjσ

(
x⊤
j w̄

(1)
i − b̄

(1)
i

)∣∣∣∣∣∣w(2)
i

∣∣∣√∑d
l=1

(∑n
j=1 qjxj,lIj,i

)2
+
(∑n

j=1 qjIj,i
)2 . (102)

It is easy to verify that these solutions for {ci} are indeed global minima. Plugging this in, we get

min
θ∈Θ(f)

λmax

(
∇2

θL
)

≤ min
θ∈Θ(f)

1

n

n+ 2

k∑
i=1

∥∥∥w(1)
i

∥∥∥ ∣∣∣w(2)
i

∣∣∣
∣∣∣∣∣∣

n∑
j=1

qjσ
(
x⊤
j w̄

(1)
i − b̄

(1)
i

)∣∣∣∣∣∣
×

√√√√√ d∑
l=1

 n∑
j=1

qjxj,lIj,i

2

+

 n∑
j=1

qjIj,i

2

 . (103)

Now, by Cauchy–Schwarz inequality three times we get∣∣∣∣∣∣
n∑

j=1

qjσ
(
x⊤
j w̄

(1)
i − b̄

(1)
i

)∣∣∣∣∣∣ ≤ ∥q∥

√√√√ n∑
j=1

σ2
(
x⊤
j w̄

(1)
i − b̄

(1)
i

)
,

 n∑
j=1

qjxj,lIj,i

2

≤ ∥q∥2
n∑

j=1

x2
j,lIj,i,

 n∑
j=1

qjIj,i

2

≤ ∥q∥2
n∑

j=1

Ij,i. (104)

Since ∥q∥ = 1, the right hand sides of these inequalities are independent of q. Thus, using these
inequalities to further upper bound the top eigenvalue we have

min
θ∈Θ(f)

λmax

(
∇2

θL
)

≤ min
θ∈Θ(f)

1 + 2

n

k∑
i=1

∥∥∥w(1)
i

∥∥∥ ∣∣∣w(2)
i

∣∣∣
√√√√ n∑

j=1

σ2
(
x⊤
j w̄

(1)
i − b̄

(1)
i

)√√√√√ d∑
l=1

 n∑
j=1

x2
j,lIj,i

+

 n∑
j=1

Ij,i





= 1 +
2

n
min

θ∈Θ(f)

k∑
i=1

∥∥∥w(1)
i

∥∥∥ ∣∣∣w(2)
i

∣∣∣
√√√√ n∑

j=1

σ2
(
x⊤
j w̄

(1)
i − b̄

(1)
i

)√√√√ n∑
j=1

(
∥xj∥2 + 1

)
Ij,i. (105)

To continue upper bounding the sharpness (λmax(∇2L)) of the flattest implementation, we can
consider some implementation of f . Specifically, since f ∈ Fk, it can be represented as

f(x) =

k′∑
i=1

aiσ(v
⊤
i x− bi) + βx⊤h+ c, (106)
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where ∥vi∥ = 1 for all i, ∥h∥ = 1, ai ̸= 0 for all i, and (vi, bi) ̸= ±(vj , bj) for all i ̸= j (i.e., the
knots of all ReLU units are distinct12), and where k′ ≤ k. Thus, we use the following implementation
of f

w
(1)
i = vi, b

(1)
i = −bi, w

(2)
i = ai, b(2) = c+ βτ, (107)

for i ∈ [k′], where

τ =
1

n

n∑
j=1

h⊤xj . (108)

Additionally, if needed, we add two ReLU neurons to implement the linear component.

w
(1)
k′+1 = h, b

(1)
k′+1 = −τ, w

(2)
k′+1 = β,

w
(1)
k′+2 = −h, b

(1)
k′+2 = τ, w

(2)
k′+2 = −β. (109)

Thus,

1 +
2

n
min

θ∈Θ(f)

k∑
i=1

∥∥∥w(1)
i

∥∥∥ ∣∣∣w(2)
i

∣∣∣
√√√√ n∑

j=1

σ2
(
x⊤
j w̄

(1)
i − b̄

(1)
i

)√√√√ n∑
j=1

(
∥xj∥2 + 1

)
Ij,i

≤ 1 +
2

n

k′∑
i=1

|ai|

√√√√ n∑
j=1

σ2
(
x⊤
j vi − bi

)√√√√ n∑
j=1

(
∥xj∥2 + 1

)
Ij,i

+
2

n

|β|

√√√√ n∑
j=1

σ2
(
x⊤
j h− τ

)√√√√ n∑
j=1

(
∥xj∥2 + 1

)
Ij,k′+1

+|β|

√√√√ n∑
j=1

σ2
(
−x⊤

j h+ τ
)√√√√ n∑

j=1

(
∥xj∥2 + 1

)
Ij,k′+2


≤ 1 +

2

n

k′∑
i=1

|ai|

√√√√ n∑
j=1

σ2
(
x⊤
j vi − bi

)√√√√ n∑
j=1

(
∥xj∥2 + 1

)
Ij,i

+
4|β|
n

√√√√ n∑
j=1

(
x⊤
j h− τ

)2√√√√ n∑
j=1

(
∥xj∥2 + 1

)
, (110)

where in the last inequality we used

max
{
σ2
(
x⊤
j h− τ

)
, σ2

(
−x⊤

j h+ τ
)}

≤
(
x⊤
j h− τ

)2
, (111)

and ∥xj∥2+1 > 0 and thus removing the indicator term only increases the RHS of (110). Recall that
we denoted Ci ⊆ {xj} be the set of training points for which the ith neuron is active, and ni = |Ci|.
Then,

2

n

k′∑
i=1

|ai|

√√√√ n∑
j=1

σ2
(
x⊤
j vi − bi

)√√√√ n∑
j=1

(
∥xj∥2 + 1

)
Ij,i

= 2

k′∑
i=1

|ai|
ni

n

√
1

ni

∑
j∈Ci

(
x⊤
j vi − bi

)2√ 1

ni

∑
j∈Ci

(
∥xj∥2 + 1

)

= 2

k′∑
i=1

|ai|P
(
x⊤vi > bi

)√
E
[
(x⊤vi − bi)

2
∣∣∣x⊤vi > bi

]√
E
[
1 + ∥x∥2

∣∣∣x⊤vi > bi

]
. (112)

12If (vi, bi) = (vj , bj) then one of the neurons is redundant. If (vi, bi) = −(vj , bj) then these units can be
combined into an affine function, which we “absorb” into the term αx⊤h+ c.
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Additionally,

4|β|
n

√√√√ n∑
j=1

(
x⊤
j h− τ

)2√√√√ n∑
j=1

(
∥xj∥2 + 1

)
= 4|β|

√
Var (x⊤h)

√
1 + E

[
∥x∥2

]
. (113)

Define

ĝ(v, b) = P
(
x⊤v > b

)√
E
[
(x⊤v − b)

2
∣∣∣x⊤v > b

]√
1 + E

[
∥x∥2

∣∣∣x⊤v > b
]
. (114)

Then, we have

min
θ∈Θ(f)

λmax

(
∇2

θL
)
≤ 1 + 2

k′∑
i=1

|ai|ĝ(vi, bi) + 4|β|
√
Var (x⊤h)

√
1 + E

[
∥x∥2

]
= 1 + 2

∫
Sd−1×R

∣∣[(R∗)−1∆f
]
(v, b)

∣∣ ĝ(v, b)ds(v)db
+ 4|β|

√
Var (x⊤h)

√
1 + E

[
∥x∥2

]
= 1 + 2 ∥f∥R,ĝ + 4|β|

√
Var (x⊤h)

√
1 + E

[
∥x∥2

]
. (115)

Note that, √
Var (x⊤h) ≤

√
λmax

(
Σx

)
, (116)

where Σx is the covariance matrix of x. Additionally,

∥∇f(x)∥ =

∥∥∥∥∥∥
k′∑
i=1

ai1v⊤
i x−bi>0vi + βh

∥∥∥∥∥∥
≥ |β| ∥h∥ −

k′∑
i=1

∥∥∥ai1v⊤
i x−bi>0vi

∥∥∥
= |β| −

k′∑
i=1

|ai| ∥vi∥1v⊤
i x−bi>0

≥ |β| −
k′∑
i=1

|ai|

= |β| −
∫
Sd−1×R

∣∣∣(R∗)
−1

∆f
∣∣∣ds(v)db

= |β| − ∥f∥R . (117)

Therefore, for any x ∈ Rd

|β| ≤ ∥∇f(x)∥+ ∥f∥R . (118)

Taking the tightest bound we obtain

|β| ≤ ∥f∥R + inf
x∈Rd

∥∇f(x)∥ . (119)

Overall, combining (115), (116), and (119) we obtain

min
θ∈Θ(f)

λmax

(
∇2

θL
)
≤ 1 + 2 ∥f∥R,ĝ + 4

(
∥f∥R + inf

x∈Rd
∥∇f(x)∥

)√
λmax

(
Σx

)√
1 + E

[
∥x∥2

]
.

(120)
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L PROOF OF PROPOSITION 3

Let f ∈ W d+1,1
w (Rd). First, we show that this implies both ∥f∥R and ∥f∥R,ĝ are finite. Since we

assume d is odd (−∆)(d+1)/2f is an integral power of the negative Laplacian applied to f , hence
can be expanded as a linear combination of d+ 1 order partial derivatives, and so

∥(−∆)(d+1)/2f∥1,w ≤ ad
∑

|β|=d+1

∥∂βf∥1,w ≤ ad∥f∥Wd+1,1
w (Rd), (121)

where ad is a constant depending on d but independent of f . Therefore, ∥(−∆)(d+1)/2f∥1,w
is finite. In particular, this shows (−∆)(d+1)/2 ∈ L1(Rd), and so R(−∆)(d+1)/2f exists in a
classical sense. This implies have the formulas ∥f∥R = γd∥R(−∆)(d+1)/2f∥1 and ∥f∥R,ĝ =

γd∥ĝ · R(−∆)(d+1)/2f∥1 where γd = 1
2(2π)d−1 (see (Ongie et al., 2020, Prop. 1)).

Recall that w(x) = R∗[1 + |b|](x) = cd + ζd∥x∥, with cd =
∫
Sd−1 dv and ζd =

∫
Sd−1 |v1|dv.

Therefore we have that

∥(−∆)(d+1)/2f∥1,w =

∫
Rd

∣∣∣(−∆)(d+1)/2f(x)
∣∣∣w(x)dx

=

∫
Sd−1×R

R
{∣∣∣(−∆)(d+1)/2f

∣∣∣} (v, b) (1 + |b|)ds(v)db

≥
∫
Sd−1×R

∣∣∣R{(−∆)(d+1)/2f
}
(v, b)

∣∣∣ (1 + |b|)ds(v)db

=

∫
Sd−1×R

∣∣∣R{(−∆)(d+1)/2f
}∣∣∣ 1 + |b|

1 + ĝ(v, b)
(1 + ĝ(v, b))ds(v)db

≥ Cĝ

∫
Sd−1×R

∣∣∣R{(−∆)(d+1)/2f
}∣∣∣ (1 + ĝ(v, b))ds(v)db

= γ−1
d Cĝ(∥f∥R + ∥f∥R,ĝ), (122)

where Cĝ = inf(v,b)∈Sd−1×R
1+|b|

1+ĝ(v,b) is finite and non-zero because for all v ∈ Sd−1 we have
ĝ(v, b) = O(|b|) as |b| → ∞ where the implied constant is independent of v. Therefore, we have
shown ∥f∥R and ∥f∥R,ĝ are finite as claimed.

Let α = (R∗)−1∆f = −γdR(−∆)(d+1)/2f . Then ∥f∥R = ∥α∥1 is finite, and so α is an L1

function, which can be identified with a finite signed measure. Since ∥f∥R,g = ∥ĝ · α∥1 is also finite,
we see that α̃(v, b) := (1 + ĝ(v, b)))α(v, b) is also an L1 function which can be identified with a
finite signed measure. By (Malliavin et al., 1995, Thm. 6.9), this implies there exists a sequence of
finite atomic measures {α̃k}, such that each α̃k consists of a sum of at most k Diracs, converging
narrowly13 to α̃ with ∥α̃k∥TV ≤ ∥α∥1. Define αk(v, b) = α̃k(v, b)/(1 + ĝ(v, b)), which is also
an atomic measure. Then it is easy to show αk → α narrowly, as well. By Lemma 5 of (Ongie
et al., 2020), this implies there exists a sequence of single hidden-layer ReLU networks fk ∈ Fk

converging to f pointwise. Therefore, for all k we have

∥fk∥R + ∥fk∥R,ĝ = ∥fk∥R,1+ĝ = ∥α̃k∥TV ≤ ∥α̃∥1 = ∥f∥R,1+ĝ = ∥f∥R + ∥f∥R,ĝ. (123)

Combining this inequality with the bound on ∥f∥R + ∥f∥R,ĝ given above, we see that

∥fk∥R + ∥fk∥R,ĝ ≤ ∥f∥R + ∥f∥R,ĝ ≤ cd,ĝ∥f∥Wd+1,1
w (Rd), (124)

where cd,ĝ = adγdC
−1
ĝ is a constant defined independently of f .

Finally, if K is any compact subset, the pointwise convergence of fk to f on K can be upgraded to
L1-convergence using Lebesgue’s dominated convergence theorem: by the bounds on the Lipschitz
constant of a function given in terms of the R-norm in Proposition 8 of (Ongie et al., 2020), we
have |fk(x)| ≤ ∥x∥(C + ∥fk∥R) ≤ B∥x∥ for some constants C,B ≥ 0, and since x 7→ B∥x∥
is L1-integrable over any compact subset, the hypotheses of Lesbesgue’s dominated convergence
theorem hold.

13Namely, ⟨αk, φ⟩ → ⟨α,φ⟩ for all continuous and bounded functions φ : Sd−1 × R → R.
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M STABILITY NORM OF “PYRAMID” FUNCTION

Here, to provide a better understanding of the depth separation result in Proposition 2, we show by
direct calculation that the “pyramid” function in d = 2 dimensions, given by

p(x) = p(x1, x2) = [1− |x1| − |x2|]+, (125)

fails to have finite stability norm. In particular, we explicitly compute (R∗)−1∆p as a tempered
distribution and show it is not a finite measure (i.e., must be a distribution of order > 0), which
implies it cannot have finite stability norm under the assumptions in Proposition 2.

First, observe that ∆p is linear combination of Diracs supported on finite line segments ℓk defining
the “edges” of the pyramid:

∆p(x) =
∑
k

ckδℓk . (126)

This means that if ϕ is any Schwartz class test function, then

⟨∆p(x), ϕ⟩ =
∑
k

ck

∫
ℓk

ϕ(x)ds(x). (127)

Note that ∆p(x) is a finite measure (i.e., a distribution of order zero), since

|⟨∆p(x), ϕ⟩| ≤

(∑
k

|ck||ℓk|

)
∥ϕ∥∞, (128)

where |ℓk| is the length of the line segment ℓk. See Fig. 6 below for illustration.
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Figure 6: Visualizations of the pyramid function p and its Laplacian - ∆p.

Now we compute R∆p, the Radon transform of ∆p, which exists as a tempered distribution. First,
we show how to compute Rδℓ where ℓ denotes a general line segment. Let φ is any Schwartz class
test function defined in Radon domain, then

⟨Rδℓ, φ⟩ =
∫
ℓ

(R∗φ)(x)ds(x) =

∫
ℓ

∫
S1
φ(v,v⊤x)dvds(x) =

∫
S1

∫
ℓ

φ(v,v⊤x)ds(x)dv,

(129)
where the exchange of integrals is justified by Fubini’s theorem since δℓ is a finite measure.
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Suppose ℓ is a vertical line segment ℓ = {(0, t) : t ∈ [c, d]}. Assuming v is such that v2 ̸= 0, then
the inner integral above with ℓ in place of ℓk above simplifies as∫

ℓ

φ(v,v⊤x)ds(x) =

∫ d

c

φ(v, v2t)dt

=
1

|v2|

∫ |v2|d

|v2|c
φ(v, b)db

=

∫
1

|v2|
1[|v2|a,|v2|b](b)φ(v, b)db. (130)

In the event that v2 = 0 we have∫
ℓ

ϕ(v, x1)ds(x) =

∫ d

c

ϕ(v, 0)dt = |d− c|ϕv(0) = |d− c|⟨δ0, ϕv⟩. (131)

Therefore, we have shown

Rδℓ(v, b) =

{
1

|v2|1[|v2|c,|v2|d](b) if v2 ̸= 0,

|d− c|δ(b) if v2 = 0.
(132)

Now, consider one of line segments ℓk coinciding with the edges of the pyramid. This can be
parameterized as ℓk = {bkvk + tv⊥

k : t ∈ [ck, dk]} where vk ∈ S1 is a unit vector, bk ∈ R is a
constant, and v⊥

k is orthogonal to vk. Let θk is the angle such that vk = [cos(θk), sin(θk)], then ℓk
is a rotation of the vertical line segment ℓ through the angle θk, and translation by bkvk. Therefore,
by properties of Radon transforms,

Rδℓk(v(θ), b) = Rδℓ(v(θ − θk), b− bk cos(θ − θk)), (133)

where we set v(θ) = [cos(θ), sin(θ)] for all θ ∈ [0, π). More concretely, we can express every slice
Rδℓk(v, ·) as either a weighted indicator function when v ̸= ±vk, which is non-zero when b is such
that the line Lv,b := {x : v⊤x = b} intersects the line segment ℓk, or as a weighted Dirac when
v = ±vk, i.e.,

Rδℓk(v(θ), b) =


| sin(θ − θk)|−1 if Lv(θ),b ∩ ℓk is a singleton,
|ℓk|δ(b− bk) if v parallel to vk,

0 else.
(134)

For a fixed v(θ) ∈ Sd−1 the set of b ∈ R for which Lv(θ),b ∩ ℓ0 ̸= ∅ is always a closed interval
[αθ, βθ]. Therefore, for θ ̸= θk we can write Rδℓk(θ, ·) = | sin(θ − θk)|−1

1[αk(θ),βk(θ)] for some
αk(θ) and βk(θ) that vary continuously with θ.

Finally, by linearity, we obtain R∆p =
∑

k ckRδℓk . See Figure 7 for an approximate plot of R∆p.

Now we compute (R∗)−1∆p. Recall that (R∗)−1 = KR where K = H∂b is a filtering step with
H being the Hilbert transform applied separably in the b-variable (Helgason, 1999). For a smooth
function g,

Hg(b) =
1

π
p.v.

∫ ∞

−∞

g(b′)

b− b′
db′, (135)

where p.v. indicates a principle value integral. Therefore, for any θ ̸= θk, we have

KRδℓk(v(θ), b) =
1

| sin(θ − θk)|
(Hδαk(θ) −Hδβk(θ))

=
1

π| sin(θ − θk)|

(
p.v.

1

b− αk(θ)
− p.v.

1

b− βk(θ)

)
, (136)

and for θ = θk we have

KRδℓk(v(θk), b) = |ℓk|Hδ′(b− bk) = −|ℓk|
π

p.v.
1

(b− bk)2
. (137)
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Figure 7: Visualizations of R∆p and (R∗)−1∆p.

Finally, by linearity of the operator KR, we have

(R∗)−1∆p = KR∆p =
∑
k

ckKRδℓk . (138)

Thus,

[(R∗)−1∆p](v(θ), b) =
∑
k

ck| sin(θ − θk)|−1

(
p.v.

1

b− αk(θ)
− p.v.

1

b− βk(θ)

)
+
∑
k

ck|ℓk|δ(θ − θk) · p.v.
−1

(b− bk)2
. (139)

See Figure 7 for an approximate plot of (R∗)−1∆p = KR∆p. As evidenced by the plot, this density
has singularities along a 1-D manifold S in Radon domain. This set corresponds to all lines in the
primal domain passing through the corners of the pyramid.

Finally, we show that α := (R∗)−1∆p is not a finite measure (i.e., it is not an order zero distribution).
Intuitively, this is because the “density” α(v, b) is not absolutely integrable, since every 1-D angular
slice has singularities like 1/|b|. Below we prove this more formally.

To prove α cannot be an order zero distribution, we construct a family of uniformly bounded test
functions {φϵ}ϵ>0 such that |⟨α,φϵ⟩| ≥ ρ(ϵ)∥φϵ∥∞, where ρ(ϵ) is a function such that ρ(ϵ) → +∞
as ϵ → 0+.

Let γ > 0 be a small fixed constant less than one. For every 0 < ϵ < γ, consider the “rainbow-shaped”
subset of Radon domain Ωϵ defined by the inequalities −γ/2 < θ < γ/2 and cos(θ)−ϵ < b < cos(θ)
where . In primal domain, the set corresponds to a collection of lines that nearly intersect the corner
point (1, 0).

Only three terms in the sum making up (R∗)−1∆p in (139) are dominant in the region Ωϵ, corre-
sponding to the three line segments in the support of ∆p that arise from the right-most corner of the
pyramid. Elementary calculations show these three terms are specified by the parameters:

c1 = −2, θ1 = π/2, β1(θ) = cos(θ),

c2 =
√
2, θ2 = π/4, β2(θ) = cos(θ),

c3 =
√
2, θ3 = −π/4, β3(θ) = cos(θ). (140)

Therefore, α is well-approximated on Ωϵ by

α̃ =

( √
2

| sin(θ − π/4)|
+

√
2

| sin(θ + π/4)|
− 2

| sin(θ − π/2)|

)
p.v.

1

cos(θ)− b
, (141)
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where we omit the terms p.v. −1
b−αk(θ)

and p.v. −1
(b−bk)2

, since points in Ωϵ are far from their singularity
set. In particular, we can show α− α̃ is an order zero distribution when restricted to Ωϵ (i.e., all other
terms are locally smooth and bounded). Let g(θ) be the function of θ in front of the principle value
in α̃. Note that g(θ) > B > 0 for all θ ∈ Ωϵ where the constant B is independent of ϵ.

Let φϵ(θ, b) be a smooth function supported in Ωϵ such that 0 ≤ φϵ(θ, b) ≤ 1 and φϵ(θ, b) = 1 on
the region defined by the inequalities −γ/2 < θ < γ/2 and cos(θ)− ϵ ≤ b ≤ cos(θ)− ϵ2. Then for
any fixed θ ∈ (−γ/2, γ/2), the integral p.v.

∫ φϵ(θ,·)
cos(θ)−bdb is bounded below by

∫ ϵ

ϵ2
1
bdb = log(ϵ−1).

Therefore, we have

|⟨α,φϵ⟩| ≥ |⟨α̃, φϵ⟩| − |⟨α̃− α,φϵ⟩|

≥

∣∣∣∣∣
∫ γ/2

−γ/2

⟨α̃θ, φϵ(θ, ·)⟩dθ

∣∣∣∣∣− C∥φϵ∥∞

≥ (γB log(ϵ−1)− C)∥φϵ∥∞. (142)

Since ∥φϵ∥∞ = 1 and γB log(ϵ−1)− C → +∞ as ϵ → 0+, this shows α cannot be a distribution
of order zero, i.e., it cannot be identified with a finite measure.

N ADDITIONAL EXPERIMENTS

The experiments in Sec. 6 are designed to demonstrate Theorem 1 in a diverse range of step sizes
([10−4, 0.1]). Since flat minima of the loss landscape are concentrated near the origin in parameter
space, and training with small step size near flat minima is inefficient, we used large initialization
(about 10 times larger than standard methods). Here we repeat the MNIST experiment using various
initialization scales on a higher range of step sizes ([10−3, 0.2]). Figure 8 presents the sharpness
curves for the different scales. For large initialization, ×10 and ×15, we get the same behavior as
depicted in Sec. 6. For small initialization, ×1 and ×5, the sharpness of the obtained solutions is
fixed for small learning rates up to a critical step size η∗. At this threshold, the sharpness equals
2/η∗, and any increment in the step size makes the minimum unstable. This pushes SGD to flatter
minima for larger step sizes, ones that satisfy the stability criterion. Here it is important to note
that for standard initialization, shown in Fig. 8(a), the threshold is well before the standard step size
of η = 0.1. Namely, this phenomenon happens using standard initialization and standard learning
rate.
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(a) Initialization factor 1 (standard) (b) Initialization factor 5

(c) Initialization factor 10 (d) Initialization factor 15

Figure 8: Sharpness vs. step size for different initialization scales. We trained a single hidden-layer
ReLU network for binary classification on two classes from MNIST using SGD (see Sec. 6 for
details). Specifically, we initialized the network using different scales, and for each scale we trained
the network using multiple step sizes. We see that as η increases, the minima get flatter in parameter
space (yellow curve), which translates to smoother predictors in function space (purple curve).

37


