
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ATTENDING ON MULTILEVEL STRUCTURE OF PRO-
TEINS ENABLES ACCURATE PREDICTION OF COLD-
START DRUG-TARGET INTERACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Cold-start drug-target interaction (DTI) prediction focuses on interaction between
novel drugs and proteins. Previous methods typically learn transferable interac-
tion patterns between structures of drug and proteins to tackle it. However, insight
from proteomics suggest that protein have multi-level structures and they all influ-
ence the DTI. Existing works usually represent protein with only primary struc-
tures, limiting their ability to capture interactions involving higher-level struc-
tures. Inspired by this insight, we propose ColdDTI, a framework attending on
protein multi-level structure for cold-start DTI prediction. We employ hierarchi-
cal attention mechanism to mine interaction between multi-level protein structures
(from primary to quaternary) and drug structures at both local and global granu-
larities. Then, we leverage mined interactions to fuse structure representations of
different levels for final prediction. Our design captures biologically transferable
priors, avoiding the risk of overfitting caused by excessive reliance on represen-
tation learning. Experiments on benchmark datasets demonstrate that ColdDTI
consistently outperforms previous methods in cold-start settings.

1 INTRODUCTION

Identifying drug–target interactions (DTIs) is fundamental to drug discovery, yet traditional wet-lab
experiments are costly and time-consuming, which often spanning years or decades (Hughes et al.,
2011). Recently, in silico DTI prediction has greatly improved efficiency by prioritizing candidate
interactions, allowing wet-lab studies to focus on a smaller and more promising subset of drug–target
pairs. However, an urgent challenge in practice is cold-start DTI prediction, which refers to inferring
interactions involving newly discovered drugs or newly identified target proteins. This requires the
computational models have the ability to generalize beyond the observed interactions and make
reliable predictions. Existing methods typically learn interaction patterns from known pairs and
transfer them to unseen ones, but their generalization ability remains limited in cold-start scenarios.

Traditional DTI prediction methods fall into graph-based and structure-based categories. Graph-
based models struggle in cold-start scenarios due to a lack of informative neighbors for new nodes.
Therefore, existing efforts to address cold-start DTI mainly focus on structure-based approaches,
which exploit the intrinsic features of drugs and proteins. GraphDTA (Nguyen et al., 2020) uses
GNNs for drug molecular graphs and CNNs for protein sequences to predict binding affinity.
MolTrans (Huang et al., 2021) utilizes large unlabeled data to identify key substructures and com-
pute interactions. TransformerCPI (Chen et al., 2020) encodes proteins with word2vec embeddings
and drugs with GCN-based atomic features, and employs a modified Transformer encoder–decoder
to model compound–protein interactions. HyperAttentionDTI (Zhao et al., 2022) embeds atoms
and residues, extracts fragment features with stacked 1D CNNs, and applies a hyper-attention
mechanism for fine-grained interactions between drug fragments and protein subsequences. Drug-
BAN (Bai et al., 2023) employs bilinear attention to capture interactions between drug substructures
and protein subsequences More recently, MlanDTI (Xie et al., 2024) builds on pretrained encoders
and fuses features from different network layers, avoiding models over-rely on drug patterns and ne-
glect protein information. Despite these advances, most structure-based methods remain restricted
to shallow representations and overlook the hierarchical organization of proteins, which limits their
ability to generalize in cold-start scenarios.
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Figure 1: A real example of the Human COX-1 Crystal Struc-
ture with drug FLC (A) Protein exhibits hierarchical struc-
tures from primary to quaternary levels. (B)Drug–protein in-
teractions vary in granularity, with global interactions involv-
ing broader binding surfaces and local interactions reflecting
weaker contacts.

These limitations highlight the need for
models that go beyond sequence em-
beddings and incorporate biologically
grounded structural priors, capturing inter-
actions across different protein levels. As
illustrated in Figure 1, proteins exhibit a
natural hierarchy of structural levels and
drug–protein interactions can occur at dif-
ferent levels of granularity. Building upon
these biological and physical insights, we
develop our method by explicitly incor-
porating such structural priors, aiming to
provide a more generalizable solution to
the cold-start DTI prediction problem.

In this paper, we introduce ColdDTI, a
novel framework designed for cold-start
DTI prediction. Inspired by MlanDTI, we
also used pre-trained models to perform
embeddings on drugs and proteins. For
drugs, ColdDTI represents molecules at
two granularities: token-level embeddings
derived from Simplified Molecular Input
Line Entry System (SMILES) sequences
and holistic molecular representations.
For proteins, it explicitly considers hierar-
chical biological structures, including pri-
mary sequences, secondary motifs, ter-
tiary substructures, and quaternary global
embeddings. To bridge these modalities,
ColdDTI constructs cross-level interaction
attention maps that align drug representa-
tions at both fragment and global levels with protein structures across multiple hierarchical scales,
capturing complementary relationships that single-level models tend to ignore. Furthermore, it em-
ploys an adaptive fusion mechanism that dynamically balances contributions from different drug
granularities and protein structural levels, improving generalization under cold-start scenarios by
flexibly shifting between detailed and holistic perspectives. By jointly leveraging hierarchical pro-
tein modeling, cross-level interaction learning, and adaptive fusion, ColdDTI provides a principled
solution for predicting interactions in cold start settings, where training data are sparse or entirely
missing. Experiments show that ColdDTI achieves superior or comparable performance to the state-
of-the-art baselines on key metrics such as AUC across four benchmark datasets, highlighting its
strong generalization ability.

The contributions of this paper are as follows:

• We introduce a new paradigm for cold-start DTI prediction by explicitly considering multi-level
structure of proteins to improve generalization in scenarios involving novel drugs and proteins.

• ColdDTI extract multi-level structure representations for protein(from primary to quaternary struc-
tures) and drugs (local functional groups and global topology). Through hierarchical attention and
adaptive fusion, ColdDTI mines interaction patterns involving different-level structures and lever-
age the mined interactions to fuse multi-level structure representations for final prediction.

• Extensive experiments on multiple benchmark datasets demonstrate that ColdDTI consistently
outperforms state-of-the-art methods under various cold-start settings, highlighting its effective-
ness in capturing complex hierarchical interaction patterns.

2 RELATED WORK

Mainstream approaches for DTI prediction can be broadly divided into two categories. Except for
the structure-based methods discussed in Section 1, which focus on modeling the drugs and proteins
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structure representations and learning interaction patterns between these structures for binary classi-
fication, another dominant paradigm is graph-based methods. Graph-based methods formulate DTI
prediction as a link prediction task on heterogeneous networks, where drugs and proteins are rep-
resented as nodes. Drug–protein edges are directly constructed from known interaction data in the
dataset, while drug–drug and protein–protein edges are often derived from similarity measures. In
addition, some studies further incorporate auxiliary biomedical information such as side effects and
diseases to enrich the network structure. By propagating information through the network topology,
graph-based models aim to infer interactions from observed connectivity patterns.

Existing works typically treat DTI as a link-prediction problem. DTINet (Luo et al., 2017) learns
low-dimensional embeddings from heterogeneous networks via random walk and diffusion anal-
ysis for DTI prediction. NeoDTI (Wan et al., 2019) integrates multiple relations into a network,
learning topology-preserving embeddings. IMCHGAN (Li et al., 2021) models DTIs as multi-
channel graphs with graph attention and adversarial learning. SGCL-DTI (Li et al., 2022) enhances
embeddings through self-supervised graph contrastive learning on drug–protein bipartite graphs.
iGRLDTI (Zhao et al., 2023) mitigates GNN oversmoothing to improve representation learning.
GSRF-DTI (Zhu et al., 2024) uses GraphSAGE with random forests for interaction prediction.
NASNet-DTI (Zhong & Du, 2025) introduces a node-adaptive depth mechanism to handle over-
smoothing and exploit multiple relations. Although graph-based models effectively exploit network
connectivity and auxiliary biomedical information, their heavy reliance on existing edges makes
them vulnerable in cold-start scenarios, where the sparsity of DTI datasets leaves new drugs or
proteins without neighbors. This limitation underscores the need to move beyond relation-driven
approaches and directly leverage the intrinsic properties of molecules.

Prior studies demonstrated that specific sub-structures in both drugs and proteins often serve as the
key determinants of drug–target interactions (Schenone et al., 2013). Inspired by this insight, many
subsequent works have followed this direction. Examples are MolTrans (Huang et al., 2021), Trans-
formerCPI (Chen et al., 2020), HyperAttentionDTI (Zhao et al., 2022) and DrugBAN (Bai et al.,
2023). However, many of these models treat drugs and proteins as flat sequences (primary-level),
thereby ignoring their structural hierarchies. Some approaches, such as GraphDTA (Nguyen et al.,
2020), represent drugs as molecular graphs and preserve their 2D topological information, yet this
remains insufficient for capturing the complexity of interactions. MlanDTI (Xie et al., 2024) aligned
representations across different layers in deep neural network, which improves performance but still
lacks biological interpretability, since its “multi-levels” correspond to network depth rather than
structural hierarchies. More recently, EviDTI (Zhao et al., 2025) used both 2D and 3D information
of the drugs but still overlooks the informative protein multi-level information. This gap highlights
the need for methods that explicitly incorporate biologically meaningful multi-level structures.

3 PROBLEM FORMULATION

DTI prediction aims to determine whether a given drug interacts with a specific protein. Following
previous works (Luo et al., 2017; Zhao et al., 2022; Bai et al., 2023), we model DTI prediction as
a binary classification task, where the interaction between a drug-target pair (D,T ) is represented
by a label y. Specifically, y = 1 indicates that an interaction exists between drug D and protein T ,
while y = 0 indicates no interaction.

Given a drug D, referring previous works (Zhao et al., 2022; Xie et al., 2024), we represent it with
SMILES, as a sequence of non-overlapping chemical local structures D = (s1, s2, ..., sn), where
sj corresponds to a local structure (e.g., atoms like C, O, ions such as [NH4+], or atom groups like
[NH2]) (Schwaller et al., 2018). Here, n is the number of local structures in D. Given a protein
T , Prior works usually represent it as a sequence of amino acid residues (i.e. primary structure)
T = (a1, a2, ..., ami), where aj is an amino acid residue, and m is the length of T . However, T has
multi-level structure as introduced in Section 1. To model such multi-level structure, we represent
each secondary structure by its starting and end position on residue sequence, as well as its type
(e.g. α-helix or β-sheet). Tertiary structure is also represented by its starting and end position.
Quaternary structure is in fact the whole protein, thus dose not need extra representation.

ColdDTI addresses the cold-start DTI task, aiming to learn interaction patterns from known
drug–target pairs and generalize them to novel pairs involving previously unseen drugs or proteins.
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Figure 2: Overview of ColdDTI. (A) Overall architecture with hierarchical attention and fusion. (B) Inter-
level feature fusion aggregates protein levels. (C) Intra-level feature fusion combines features within the same
level. (D) Hierarchical attention captures drug–protein cross-level interactions. (E) Protein multi-level structure
feature extraction with ProtBERT encoding.

4 METHODOLOGY

Inspired by the scientific insight about proteins’ multi-level structures, we propose ColdDTI, a
framework that captures interaction patterns between drug and multi-level structures of protein for
cold-start DTI prediction. First, Section 4.1 describes how to extract structure feature of drug and
protein, especially protein multi-level structure features according to available protein structure in-
formation. Then, Section 4.2 introduces hierarchical attention mechanism to mine hierarchical in-
teraction patterns between drug and multi-level structures of protein. Finally Section 4.3 introduces
feature fusion mechanism to leverage mined hierarchical interactions corresponding to different
level structures for final DTI prediction.

4.1 PROTEIN MULTI-LEVEL STRUCTURE FEATURE EXTRACTION

As introduced in Section 3, protein T = (a1, a2, ..., am) has multi-level structures. To extract
feature of available protein multi-level structure information from biochemical database, we propose
to expand the amino acid residue sequences (i.e. primary structure) usually used in prior works
by inserting tags (e.g. [tertiary_start]) to starting and end point of secondary / tertiary
structures, indicating their position (e.g. from the 100-th residue to the 200-th residue) and type (e.g
α-helix) on residue sequences. Then, we use pretrained protein transformer ProtTrans (Elnaggar
et al., 2021) to extract protein multi-level structure features by adding these tags as special tokens
to vocabulary of ProtTrans (Tai et al., 2020). With ProtTrans and its expanded vocabulary, we
can obtain the dense representation of protein multi-level structures as Xp,Xs,Xt,Xq for primary,
secondary, tertiary and quaternary structure respectively. Specifically, the representation of each
secondary or tertiary structure is calculated as the mean of all amino acid residue as well as special
token representations in corresponding secondary or tertiary structure. More information of special
tokens and implementation details are in Appendix A.

Similarly, we extract drug structure feature with pretrained drug transformer ChemBERTa-2 (Ahmad
et al., 2022) to get Xl,Xg for drug local and global structure respectively. Note that the representa-
tions at each structural level are learned through pretraining on abundant unlabeled drug and protein
data, without relying on any interaction information.
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4.2 HIERARCHICAL INTERACTIONS MINING

In this section, we introduce a hierarchical attention mechanism to capture the interactions between
drug and protein. Existing methods primarily capture interactions between drug local structure and
protein primary structures, limiting their ability to recognize influence from higher level protein
structures to DTI result. Inspired by the success of hierarchical attention networks for modeling
interactions across text of different granularities in natural language processing tasks (Yang et al.,
2016; Lu et al., 2016), we then employ a hierarchical attention mechanism to model the interactions
between each of two level drug structures (global and local) and each of four level protein structures
(primary, secondary, tertiary, quaternary).

As an illustrative example, we model the interaction between a drug’s local structure and a protein’s
secondary structure by using the drug representation Xl and the protein representation Xs as in-
puts, and producing an interaction attention map Ils between the two structural levels. Specifically,
Ils = (Wl

lsXl)(W
s
lsXs)

⊤, where Wl
ls and Ws

ls are learnable parameters specific to interaction Ils
between the two level structures. The elements in the i-th row and j-th column of Ils can represent
the interaction intensity between the i-th local structure in drug molecule and the j-th secondary
structure in protein.

Similarly, we calculate the interaction attention maps between drug and protein structures of other
levels (e.g. between drug local structures and protein tertiary structures). More implementation
details are in Appendix A.

4.3 HIERARCHICAL INTERACTION FOR REPRESENTATION FUSION

With hierarchical interaction attention maps obtained in Section 4.2, how to leverage these interac-
tions across different level structures remains technical difficulty. Previous researches about molecu-
lar biology and proteomics suggest that chemical active structures are more inclined to interact with
other structures, thereby usually having more important effect on DTI result (Schenone et al., 2013;
Dudev & Lim, 2014). Inspired by this insight, we propose to estimate the importance of structures
from each level to DTI according to mined hierarchical interaction attention map. Then, we use the
estimated importance to fuse extracted multi-level structure representation into joint representation
for final prediction.

Specifically, we design two-stage feature fusion process, where we first estimate importance of
structures from the same level (e.g. all secondary structures in protein) to fuse their representations
into a dense vector representing this whole level (e.g. fusing all representations in Xs into a dense
vector representing secondary structure as a whole in protein), i.e. intra-level representation fusion.
Then, we estimate importance of different levels of protein or drug so that we can fuse all level
representations obtained during intra-level feature fusion into final representation of protein or drug,
i.e. inter-level representation fusion.

Intra-level representation fusion. We take protein secondary structure as an example to illustrate
intra-level representation fusion. According to Section 4.2, interaction attention maps related to
protein secondary structures are Ils with drug local structure and Igs with drug global structure
respectively, where the j-th column of the two interaction attention map represent the interaction in-
tensity related to the j-th secondary structure in protein. We then calculate the interaction intensity
of each secondary structure with Ss = (Igs + Ils.m(axis=column)), where .m(·) calculate mean of
matrix or vector. The j-th elements of Ss indicates the interaction intensity of j-th secondary struc-
ture with drug, including both drug global and local structures. Then, we apply Softmax(·) operator
to Ss to normalize it into the importance weight of secondary structures as ws = Softmax(Ss).
With this importance weight, we fuse the representations of all protein secondary structures into a
dense vector to represent protein secondary structure as a whole as rs = X⊤

s ws.

Similarly, we obtain each level structure representation as a whole, of protein (primary, tertiary and
quaternary as rp, rt and rq respectively) and drug (local and global as rl and rg respectively). We
show the implementation details in Appendix A.

Inter-level representation fusion. After getting the representation of each level structure as a
whole, we fuse representations of different levels from the same side (i.e. drug side or protein
side) to obtain representation of this side. Representations obtained in this way contain information
of mined interaction and emphasize the feature of structures with stronger interaction intensity.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We take the protein multi-level structures as an example to illustrate inter-level feature fusion. Sim-
ilar to the idea of intra-level representation fusion, the interaction intensity of each level protein
structure indicates the importance of this level to DTI. Therefore, we calculate the mean of inter-
action intensities of all structures belonging to each level to get interaction intensity of this level
as a whole. Then we apply Softmax(·) to these intensities to get importance weight wt of each
level protein structure. Formally, wT = Softmax([Sp.m,Ss.m,St.m,Sq.m]), where Sp,St,Sq are
interaction intensities for primary, tertiary and quaternary structures respectively, the same as Ss

for secondary structure described in intra-level feature fusion. With this importance weight, we can
obtain the final representation of protein by rT = [rp, rs, rt, rq]wT .

Similarly, we obtain the final representation of drug as rD. The implementation details are in
Appendix A. Finally, the two representations rD and rT , are concatenated to form a joint repre-
sentation, which is passed through a classification head implemented by multi-layer perception to
generate the final prediction ŷ.

We use cross-entropy loss to train our model as LCE = −E(Di,Ti,yi)∼Dtrain [yi log ŷ+(1−yi) log(1−
ŷi)], where Dtrain is training set containing known DTI samples. The trained model is then used to
infer for novel drugs or proteins unseen in Dtrain.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Dataset. We evaluate our approach on four widely used benchmark datasets: DrugBank (Wishart
et al., 2006), BindingDB (Liu et al., 2007), BioSNAP (Group, 2018), and Human (Tsubaki et al.,
2019). The detailed statistics of these datasets are provided in Appendix B.1, Table 2. We consider
three types of cold-start conditions: (i) cold drug, where training, validation, and test sets share
no overlapping drugs while proteins are unrestricted; (ii) cold protein, where no proteins are shared
across splits while drugs are unrestricted; and (iii) cold pair, where neither drugs nor proteins overlap
across splits, ensuring no shared entities between training and test.

Baselines. We compare our proposed ColdDTI with a set of structure-based baselines, most of which
are discussed in Section 2. The structure-based baselines can be grouped into two categories ac-
cording to their feature encoders: GNN-based drug feature encoders, such as GraphDTA (Nguyen
et al., 2020), which represent drugs as molecular graphs and use graph neural networks to learn
topology-aware embeddings; and Sequence-based feature encoders, including MolTrans (Huang
et al., 2021), TransformerCPI (Chen et al., 2020), HyperAttentionDTI (Zhao et al., 2022), Drug-
BAN (Bai et al., 2023), and MlanDTI (Xie et al., 2024), which treat drugs and proteins as sequences
and leverage attention or alignment mechanisms to capture interactions.

Evaluation Metric. DTI datasets are typically imbalanced, with far fewer positive interactions than
negative ones. In such cases, overall accuracy can be misleading, as a model that simply predicts the
majority class would still achieve a high score. Therefore, we focus on metrics that better reflect the
ability to correctly identify both positive and negative classes. Specifically, we adopt the AUC, the
AUPR and the F1 score. AUC measures the overall discriminating ability across thresholds, AUPR
is particularly suitable for imbalanced data as it emphasizes the quality of positive predictions, and
F1, as the harmonic mean of precision and recall, balances the trade-off between capturing true
positives and avoiding false positives. Together, these metrics provide a comprehensive evaluation
of model performance under the class-imbalance characteristics of DTI prediction.

5.2 PERFORMANCE COMPARISON

From Table 1, we can observe that our proposed ColdDTI achieves almost all the best performance
on these metrics across all three cold-start settings (cold pair, cold drug, and cold protein).

In cold drug setting, most methods can achieve relatively good performance compared with other
2 settings, which makes it difficult to distinguish one dominate method. However, ColdDTI still
achieves the best or second-best. On BindingDB, some existing methods already perform well, such
as DrugBAN (0.886), while ColdDTI further improves the AUC to 0.896. On BioSNAP, all base-
lines achieving AUCs between 0.81–0.83, and ColdDTI reaching the second-best result (0.832). On
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Table 1: Test performance on BindingDB, BioSNAP, Human, and DrugBank datasets under cold drug, cold
protein, and cold pair settings. The best performance is highlighted in bold, while the second-best performance
is marked with underline. All of the results are mean of 3 random runs.

Dataset Methods Cold Drug Cold Protein Cold Pair
AUC AUPR F1 AUC AUPR F1 AUC AUPR F1

BindingDB

GraphDTA .819 .834 .729 .628 .453 .281 .582 .531 .508
MolTrans .839 .826 .741 .617 .445 .502 .595 .522 .511

TransformerCPI .826 .838 .738 .695 .567 .550 .656 .594 .566
HyperAttDTI .875 .847 .759 .671 .511 .514 .661 .598 .582

DrugBAN .886 .865 .768 .609 .462 .352 .655 .600 .542
MlanDTI .848 .851 .747 .739 .540 .596 .671 .594 .601

ColdDTI .896 .861 .775 .751 .579 .609 .742 .652 .634

BioSNAP

GraphDTA .815 .812 .706 .723 .746 .641 .703 .694 .557
MolTrans .824 .823 .726 .744 .771 .664 .681 .693 .528

TransformerCPI .825 .828 .713 .765 .757 .645 .728 .746 .634
HyperAttDTI .811 .811 .712 .789 .817 .669 .778 .783 .587

DrugBAN .835 .830 .729 .678 .699 .443 .660 .636 .562
MlanDTI .824 .827 .719 .841 .868 .735 .782 .801 .653

ColdDTI .832 .833 .733 .847 .867 .759 .791 .798 .695

Human

GraphDTA .934 .953 .872 .783 .787 .702 .446 .599 .140
MolTrans .913 .934 .850 .713 .534 .561 .720 .815 .516

TransformerCPI .931 .963 .874 .832 .809 .734 .675 .775 .471
HyperAttDTI .940 .958 .821 .859 .812 .798 .788 .836 .536

DrugBAN .951 .962 .886 .817 .805 .724 .782 .842 .616
MlanDTI .944 .961 .866 .859 .817 .801 .794 .833 .571

ColdDTI .947 .964 .889 .864 .824 .810 .818 .847 .676

DrugBank

GraphDTA .816 .807 .718 .517 .569 .497 .497 .492 .456
MolTrans .809 .799 .675 .692 .755 .576 .531 .535 .246

TransformerCPI .760 .774 .658 .650 .691 .293 .547 .553 .323
HyperAttDTI .818 .814 .710 .759 .812 .631 .504 .512 .187

DrugBAN .829 .823 .730 .718 .756 .526 .515 .502 .144
MlanDTI .836 .814 .706 .807 .844 .730 .540 .532 .205

ColdDTI .849 .851 .760 .837 .864 .749 .583 .591 .584

Human, most methods achieve high performance with AUCs above 0.93, indicating that this dataset
is inherently easier to model; ColdDTI ranks second-best in this case. On DrugBank, ColdDTI
attains the best AUC of 0.849, while also outperforming all baselines in terms of AUPR and F1.

The cold protein setting is generally more challenging than cold drug. The representation space
of proteins themselves is higher-dimensional and more complex. In cold drug scenario, the model
can rely on shared proteins to learn stable binding patterns. However, in cold protein scenario, the
complex and brand-new proteins make the model lack transfer references, thus posing greater chal-
lenges. Although the setting is more difficult, ColdDTI achieves the best among all the baselines
and datasets. On BindingDB, most methods fail to reach an AUC of 0.7, whereas ColdDTI achieves
an AUC of 0.751 and an F1 of 0.609, significantly outperforming the baselines. On BioSNAP, Cold-
DTI attains the best AUC 0.847. On Human, ColdDTI achieves an AUC of 0.864, outperforming
MlanDTI and HyperAttentionDTI (both 0.859), showing stronger generalization. On DrugBank,
ColdDTI consistently delivers the best results across all metrics, with a notable margin over the
baselines.

The cold pair setting is the most challenging, as neither drugs nor proteins overlap between training
and testing, requiring the model to capture truly transferable interaction patterns. On BindingDB, all
methods fail to reach an AUC of 0.7, while ColdDTI outstands significantly with an AUC of 0.742
and an F1 of 0.634. On BioSNAP, ColdDTI again outperforms all baselines, achieving an AUC of
0.791 and an F1 of 0.695. On Human, all methods experience a sharp performance drop in the cold
pair setting, for instance, GraphDTA’s AUC falls to only 0.446, while ColdDTI still achieves an AUC
of 0.818. On DrugBank, most methods are close to random (AUC around 0.50–0.55), highlighting
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Figure 3: Ablation study on the DrugBank dataset under cold drug, cold protein, and cold pair settings.

the extreme difficulty of this dataset in the cold pair scenario. Nevertheless, ColdDTI still maintains
state-of-the-art performance, boosting the AUC from below 0.55 to 0.583, and achieving an F1 of
0.584, demonstrating robust cross-distribution generalization.

Overall, the cold pair setting is the most difficult, yet ColdDTI consistently achieves substantial
improvements across all datasets. These results confirm that ColdDTI, by modeling multi-level
protein structures and cross-level interactions, effectively captures biologically transferable patterns
and achieves comprehensive and stable performance gains in cold-start DTI prediction.

5.3 ABLATION STUDY

To demonstrate the effectiveness of hierarchical interactions mined in Section 4.2, we design four
variants of ColdDTI by removing interactions corresponding to four level protein structures respec-
tively, and compare their performance with ColdDTI. Specifically, we design the following variants:

• w/o p: without interaction attention map corresponding to primary structure, i.e. Ilp and Igp.
• w/o s: without interaction attention map corresponding to secondary structure, i.e. Ils and Igs.
• w/o t: without interaction attention map corresponding to tertiary structure, i.e. Ilt and Igt.
• w/o q: without interaction attention map corresponding to quaternary structure, i.e. Ilq and Igq .

The implementation details of the four variants are in Appendix B.3. We evaluate the four variants
on DrugBank dataset across three cold-start settings. Figure 3 shows the results.

As shown in Figure 3, we can observe that ColdDTI surpasses all other four variants, demonstrating
the effectiveness of hierarchical interactions mining in Section 4.2. Compared with ColdDTI, w/o
p, w/o s and w/o t perform apparently worse than to ColdDTI, highlighting the effectiveness of
interactions related to these three level protein structures in our framework on the whole. However,
ColdDTI has almost no advantage over w/o q, suggesting that interactions about quaternary level
may contribute little to the overall performance.

Specifically, the performance of w/o p decreases obviously compared with ColdDTI, demonstrating
that the primary structure plays important role in DTI result and supporting previous works (Huang
et al., 2021; Zhao et al., 2022; Bai et al., 2023) that represent protein as amino acid residue sequence
(i.e. primary structure). However, w/o s and w/o t also perform worse than ColdDTI, showing
that whether the potential interaction can be triggered is influenced by higher level (secondary and
tertiary) structure, due to factors like spatial structure posed by these higher level structures, verify-
ing the effectiveness of implementing protein multi-level structure-aware interaction. w/o t performs
better than w/o s, showing that secondary structure may play more important role for used Drugbank
dataset than tertiary structure.

The most noticeable performance drop occurs in the cold protein setting, indicating that mining
interactions corresponding to protein multi-level structure is especially effective when predicting
DTI for unseen proteins.

The performance of w/o q is very close to that of ColdDTI, differing from other three variants. This
suggests that the interaction mined about protein quaternary structure contributes little to the overall
performance. This result is reasonable since proteins are very large with long amino acid sequences,
while drug molecules are typically small. Additionally, biologically active proteins usually have
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specific binding sites for drug interactions. These properties make it difficult to represent proteins
as a whole to interact with drugs at the quaternary structure level.

5.4 CASE STUDY

We visualize two interaction attention map (Ilp and Ils) of a well-researched DTI case (DB00945
and P23219) in Figure 4, output by ColdDTI trained on DrugBank dataset, to show ColdDTI can
capture explainable influence of structures from different levels to DTI results.

Figure 4 shows the process of -COO- group of DB00945 (drug) interacting with -OH group of 530-th
Ser (referred to as Ser-530, the same below) in P23219 (protein) the 140-th α−helix (referred to as
helix-140, the same below) (Rouzer & Marnett, 2020). In both maps, -COOH and -COO- group in
drug shows stronger interaction intensity, complying with their relatively more active property than
other two groups. According to the map involving protein primary structure, ColdDTI give high
attention to interaction between -COO- and Ser-530, accurately capturing the functional group and
amino acid residue involved in this interaction. ColdDTI also captures the secondary structures that
contribute to this results. In map about protein secondary structure, ColdDTI gives high attention to
interaction between -COO- and helix-140, where Ser-530 located. Moreover, ColdDTI also captures
other secondary structures that contribute to DTI result (a structure on the left of helix-140 in red
box and one between 40 an 60 have relatively high interaction intensity). These secondary structures
do not interact with DB00945 directly but provide stable skeleton and help to adjust spatial direction
of Ser530 to support interaction (Lucido et al., 2016; Lei et al., 2015).

P23219

DB00945

Ser-530 in Helix-140

Acetylation

Ser-530

Drug Local & Protein Secondary Attention Map

Drug Local & Protein Primary Attention Map
Helix-140

Figure 4: Case study of -COO- group of DB00945 interacts with -OH group of Ser-530 in P23219.

6 CONCLUSION

We introduce ColdDTI, a novel framework designed to tackle challenges of cold-start drug-target
interaction (DTI) prediction. By leveraging hierarchical interaction patterns and dynamically es-
timating substructure importance weights based on these patterns, our method captures the com-
plex dynamics of drug-protein interactions more effectively. Extensive experiments across multiple
benchmark datasets and cold-start settings demonstrate that ColdDTI outperforms existing methods,
particularly in cold-start protein settings.

Limitations. While ColdDTI presents a promising approach, there are some limitations that need
to be addressed in future work. (1) Current approach relies on structural information to simulate
cold-start settings, but in practice, multimodal data, such as morphological or chemical property
information, may offer additional insights and benefits. Future efforts will focus on exploring the
integration of multimodal data sources to further enhance cold-start DTI prediction performance.
These improvements will bring us closer to achieving more accurate, generalizable, and efficient
solutions for AI-driven drug discovery.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We give the implementation details of ColdDTI in Appendix A. We open the source code
of ColdDTI with an anonymous repository as https://anonymous.4open.science/r/
Code-ColdDTI-AC54.
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A IMPLEMENTATION DETAILS OF COLDDTI

A.1 IMPLEMENTATION DETAILS FOR MULTI-LEVEL STRUCTURE FEATURE EXTRACTION

We have the following tags as special tokens to indicate positions or types of multi-level structure.

• [secondary_start], indicating the start position of a secondary structure.
• [secondary_end], indicating the start position of a secondary structure.
• Helix, Sheet, Turn and Bend are put after [secondary_start], indicating the type of

secondary structures.
• [tertiary_start], ndicating the start position of a secondary structure.
• [tertiary_end], ndicating the start position of a secondary structure.

We do not set tags to indicate quaternary structure because quaternary structure is usually the global
structure of proteins. For representations of each level, we calculate the mean of representations
belong to this level. For example, a secondary structure α-helix starts from the 100-th residue and
ends at 200-th residue, the we calculate the mean of representations for , [secondary_start],
Helix, the residues in this structures and [secondary_end] as the representation for this α-
helix.

A.2 IMPLEMENTATION DETAILS FOR HIERARCHICAL INTERACTIONS

In Section 4.2, we have introduced how to calculate the interaction attention map Ils between drug
local structure and protein secondary structure. The interaction attention map involving other levels
is calculated as follows.

Drug local & protein primary. Ilp = (Wl
lpXl)(W

p
lpXp)

⊤, where Wl
lp and Wp

lp are learnable
parameters.

Drug local & protein tertiary. Ilt = (Wl
ltXl)(W

t
ltXt)

⊤, where Wl
lt and Wt

lt are learnable
parameters.

Drug local & protein quaternary. Ilq = (Wl
lqXl)(W

q
lqXq)

⊤, where Wl
lq and Wp

lq are learnable
parameters.

Drug global & protein primary. Igp = (Wg
gpXg)(W

p
gpXp)

⊤, where Wl
gp and Wp

gp are learnable
parameters.

Drug global & protein secondary. Igs = (Wg
gsXg)(W

s
gsXs)

⊤, where Wg
gs and Ws

gs are learn-
able parameters.

Drug global & protein tertiary. Igt = (Wl
gtXg)(W

t
gtXt)

⊤, where Wg
gt and Wt

gt are learnable
parameters.

Drug global & protein quaternary. Igq = (Wg
gqXg)(W

q
gqXq)

⊤, where Wg
gq and Wq

gq are
learnable parameters.

A.3 IMPLEMENTATION DETAILS FOR REPRESENTATION FUSION

In the main text (Section 4.3), we described the two-stage feature fusion framework. Here, we
provide additional implementation details.

A.3.1 INTRA-LEVEL FEATURE FUSION

For each layer of the protein structure (primary, secondary, tertiary, quaternary), they fuse in the
same way.

• Primary. Sp = Igp + Ilp.m(axis=column), wp = Softmax(Sp), rp = X⊤
p wp.

• Secondary. Ss = Igs + Ils.m(axis=column), ws = Softmax(Ss), rs = X⊤
s ws.

• Tertiary. St = Igt + Ilt.m(axis=column), wt = Softmax(St), rt = X⊤
t wt.
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• Quaternary. Sq = Igq + Ilq.m(axis=column), rq = X⊤
q Sq .

The local/global processing of drugs is handled in the same way:

• Local. Sl = Ilp.m(axis=row) + Ils.m(axis=row) + Ilt.m(axis=row) + Ilq.m(axis=row), wl =
Softmax(Sl), rl = X⊤

l wl.
• Global. Sg = Igp.m(axis=row)+ Igs.m(axis=row)+ Igt.m(axis=row)+ Igq.m(axis=row), rg =
X⊤

g wg .

A.3.2 INTER-LEVEL FEATURE FUSION

After obtaining the representation of each level as a whole, we further fuse different levels from the
same side (drug or protein) into a final side-specific representation.

• Protein. For protein, the interaction intensity of each level is computed as the mean of its intra-
level scores.

wT = Softmax([Sp.m,Ss.m,St.m,Sq.m]),

where Sp,Ss,St,Sq are the interaction intensity vectors of primary, secondary, tertiary and qua-
ternary structures. With these weights, the final protein representation is

rT = [rp, rs, rt, rq]wT .

• Drug. Similarly, for drugs we combine local and global representations by:

wD = Softmax([Sl.m,Sg.m]),

where Sl and Sg are the interaction intensity vectors of local and global drug structures. The final
drug representation is

rD = [rl, rg]wD.

Finally, the joint representation is formed by concatenating rD and rT , i.e.

z = [rD; rT ],

which is passed through a multi-layer perceptron classifier to generate the final prediction ŷ.

B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS

We implement ColdDTI in PyTorch and conduct all experiments on a single NVIDIA RTX 3090
GPU with 24GB memory. The model is trained using the Adam optimizer with an initial learning
rate of 5 × 10−5, weight decay of 1 × 10−4, and a batch size of 64. We train for up to 20 epochs
with early stopping based on validation performance. The learning rate is decayed by a factor of 0.5
every 5 epochs. All the other hyperparameters follow the default settings unless otherwise specified.

B.2 DATASET DETAILS

The number of drugs, proteins and drug-target interactions (positive and negative) of four datasets
are summarized in Table 2.

Datasets Drug Protein Positive Negative

BindingDB 14643 2623 20764 28525
Human 2726 2001 3364 3364

BioSNAP 4505 2181 13830 13634
Drugbank 6643 4252 17511 17511

Table 2: Summary of benchmark datasets.

We classify the cold start scenarios into the following three specific splits:
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• Cold drug. Dtrain, Dval and Dtest contain no overlapping drugs, with no restriction on the target
proteins. The dataset is split by drugs in an 8:1:1 ratio, ensuring that the drugs across these three
subsets are mutually exclusive.

• Cold protein. Dtrain, Dval and Dtest contain no overlapping proteins, with no restriction on the drug
sets. Similarly, the dataset is split by proteins in an 8:1:1 ratio.

• Cold pair. Both drug and protein sets in the training, validation, and test splits have no overlap,
satisfying the no-intersection requirement for both drugs and proteins. Concretely, we first split
the drugs in an 8:1:1 ratio with no overlap, then split the proteins in the same ratio. If no interaction
exists for a drug–protein combination in the resulting subsets, the pair is discarded.

B.3 BASELINE DETAILS

All the baseline methods, GraphDTA1 (Nguyen et al., 2020), Moltrans2 (Huang et al., 2021), Trans-
formerCPI3 (Chen et al., 2020), HyperAttDTI4 (Zhao et al., 2022), DrugBAN5 (Bai et al., 2023) and
MlanDTI6 (Xie et al., 2024) are implemented according to the open-source code attached with the
original paper and employed with their default configurations as specified by the authors. Specifi-
cally, since we don’t conduct cross-domain evaluation in our experiment, we select vanilla DrugBAN
without CDAN module and MlanDTI without pseudo labeling. For GraphDTA, it has four variants
of GNN to extract drug features. We choose GAT GCN to extract drug feature according to the
reports provided in the original paper.

B.4 CASE STUDY DETAILS

ColdDTI used in case study is trained with the DrugBank dataset with hyperparameters tuned on
DrugBank validation dataset under cold pair setting. The three cases are selected from BioSNAP
database, ensuring that the selected drugs and proteins are all unseen in DrugBank dataset. The
drug local structure granularity processed by ColdDTI is smaller than the local structures showed in
Figure 4, thus there are too many local structures, making it not convenient to illustrate in Figure 4.
Therefore, we sum the importance of processed drug local structures to form the importance of
structures in Figure 4 for convenience.

C USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we used a large language model merely as an assistant for polishing the writing of
the manuscript (e.g., grammar refinement). All technical content, experimental design, and analysis
were conceived, implemented, and validated entirely by the authors. All outputs from the LLM were
manually checked, edited, and verified by the authors before inclusion in the paper.

1https://github.com/thinng/GraphDTA
2https://github.com/kexinhuang12345/moltrans
3https://github.com/lifanchen-simm/transformerCPI
4https://github.com/zhaoqichang/HpyerAttentionDTI
5(https://github.com/peizhenbai/DrugBAN
6https://github.com/CMACH508/MlanDTI
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