Published as a conference paper at ICLR 2025

EDIT: A LOCAL-SGD-BASED EFFICIENT DIS-
TRIBUTED TRAINING METHOD FOR LARGE LAN-
GUAGE MODELS

Jialiang Cheng, Ning Gao, Yun Yue, Zhiling Ye, Jiadi Jiang, Jian Sha *
Ant Group

{jichen.cjl, yunsheng.gn, yueyun.yy}@antgroup.com
{yvezhiling.yzl, jiadi.jjd, jian.sha}@antgroup.com

ABSTRACT

Distributed training methods are crucial for large language models (LLMs). How-
ever, existing distributed training methods often suffer from communication bot-
tlenecks, stragglers, and limited elasticity, particularly in heterogeneous or large-
scale environments. Local SGD methods have been proposed to address these
issues, but their effectiveness remains limited to small-scale training due to ad-
ditional memory overhead and lack of concerns on efficiency and stability. To
tackle these issues, we propose EDIT, an innovative Efficient Distributed Training
method that combines a tailored Local SGD approach with model sharding tech-
niques to enhance large-scale training efficiency. EDiT performs layer-wise pa-
rameter synchronization during forward pass, reducing communication and mem-
ory overhead and enabling overlap. Besides, EDiT employs a pseudo gradient
penalty strategy to suppress loss spikes, which ensures training stability and im-
proves performance. Additionally, we introduce A-EDIT, a fully asynchronous
variant of EDiT that accommodates heterogeneous clusters. Building on EDiT/A-
EDiT, we conduct a series of experiments to validate large-scale asynchronous
training for LLMs, accompanied by comprehensive analyses. Experimental re-
sults demonstrate the superior performance of EDiT/A-EDiT, establishing them
as robust solutions for distributed LLM training in diverse computational ecosys-
tems. The code is available at|/Atorch codebase%l

1 INTRODUCTION

With the explosive growth of model scale and data volume (Touvron et al.l 2023} Bai et al.| 2023)),
distributed methods (Rajbhandari et al., [2020; [Narayanan et al.| [2021; [Dean et al., [2012)) become
increasingly critical for training deep neural networks. These approaches rely on synchronous
paradigm, which introduces significant communication overhead during the training process (Douil-
lard et al., 2023)). Besides, the synchronous paradigm also introduces the straggler problem, where
faster workers are idle waiting for the slower ones to catch up. This issue is particularly prevalent
in large/heterogeneous clusters (Lian et al.| 2018]). Lastly, in resource-constrained clusters, there is
a compelling need for elastic training (L1 et al.| [2023). However, synchronous training paradigms
struggle in elastic settings, where dynamic scaling of resources disrupts optimal hyperparameters.

These challenges have spurred significant research into distributed optimization methods. A typi-
cal method is Local Stochastic Gradient Descent (a.k.a Local SGD or Local-Update SGD) (Zhang
et al.,[2016), where each worker independently executes multiple local optimization steps in parallel
before averaging model parameters across all workers. Subsequent studies have improved upon this
foundational paradigm to improve the performance (Lin et al., 2019; Wang et al., |2019; Douillard
et all 2023). However, existing Local SGD methods are not easily applicable to the training of
large language models (LLMs). These methods do not handle model sharding well, preventing their
application to models larger than billions of parameters. Moreover, they have focused on small-

*Corresponding author.
'"https://github.com/intelligent-machine-learning/atorch/

https://github.com/intelligent-machine-learning/atorch/tree/main/atorch/local_sgd
https://github.com/intelligent-machine-learning/atorch/

Published as a conference paper at ICLR 2025

Worker D

Worker A

Forward Pass
A

Backward Pass
A

Module [

- Y
Module [

N An
Gather

Free Full
Params

Worker A
>

! Reduce | Forward

Sync Params (Periodic)

. Al Back- | [Reduce | { Al :[FreeFull] =
Gather [ward | Scatter ! Reduce | Params

Local Update

Update
Params

Sync Grads (Warmup)

i (1)

% Module ! Module I o
x CUANT Y AN Forward |+ Free Full Al Back- | [Reduce |~ Al (Free Full] == P:ra:;
S {_Reduce |_Gather Params Gather |’ ward |7 Scatter |\ Reduce | Params
Worker C Worker B s e ’ T T ,,,,,,, .
Params Params

o Gather Params Gather Params Sync Grads

jo=d S Module ! Modle ¢ o
X Al Forward o Free Full Al Back- | [Reduce | All) (Free Full] === P:r;:"':
g ce 1" Gather Params Gather | ward | Scatter | "’ Params

‘y”": Operation Communication Communication |
{___! (Optional) (Model Sync Group) (Model Shard Group) |

Released :

Figure 1: The schematic illustration of our proposed EDiT method with 4 workers and a 2 X 2 device
mesh as an example. The left part shows the communication groups and parameter sharding, and
the right part presents the detailed computation and communication flows within worker B.

scale, highly curated datasets (Zhang et al., 2016; |[Douillard et al., [2023), making their results less
transferable to LLM training that relies on vast, noisy datasets where instability may be introduced
during training. Besides, although current Local SGD methods diminish the impact of random strag-
glers, they still struggle with the presence of consistent stragglers within heterogeneous devices (Liu
et al., 2024). Additionally, in most existing Local SGD methods, parameter synchronization oper-
ations will introduce non-overlapped communication overhead (Sun et al.| [2023). Lastly, current
Local SGD methods predominantly employ a uniform averaging strategy to synchronize the pa-
rameters, failing to fully capitalize on the inherent differences in training progress across diverse
workers (Douillard et al., [2023)).

To address these challenges, we propose a novel Efficient Distributed Training (EDiT) method for
large language models. As illustrated in Figure[I] EDiT employs a hierarchical distribution strategy
on a two-dimensional device mesh, where all workers are data parallel. Model parameters are fully
sharded along the model shard dimension and synchronized along the model sync dimension. With
the efficient communication links within the model shard groups and the low-frequency periodic
synchronization strategy within the model sync groups, the impact of communication overhead and
random stragglers is effectively alleviated. When synchronizing parameters, EDiT operates layer
by layer during the forward pass and makes use of a prefetch strategy to overlap computation and
communication, thereby reducing the additional communication and GPU memory overhead intro-
duced by parameter synchronization. Additionally, EDiT employs a novel pseudo-gradient penalty
method, which addresses the instability problem caused by diverse large-scale corpus and leverages
the differences among workers to improve performance. Furthermore, we propose an asynchronous
variant of the EDiT method named A-EDiT to deal with the consistent stragglers in heterogeneous
clusters. We conducted a comprehensive evaluation of our proposed methods on LLM tasks, demon-
strating its effectiveness compared to state-of-the-art methods.

Our primary contributions can be summarized as follows:

* Engineering Innovation: We introduce EDIT, an efficient large-scale distributed training
method that integrates Local SGD with the model sharding strategy. EDiT reduces the
impact of stragglers and communication overhead and supports elastic training.

* Algorithmic Novelty: EDiT performs layer-wise parameter sync during forward pass to
reduce communication and memory overhead. With prefetch strategy, the parameter-sync
communication can be further overlapped with computation. Besides, we propose a new
pseudo gradient penalty method to improve the training stability and model performance.
We also provide a fully asynchronous variant of EDiT, called A-EDiT, to address the chal-
lenges of consistent stragglers.

* Practical Contributions: We provide a large-scale verification of asynchronous pre-training
for LLMs, along with an extensive analysis of convergence, generalization, acceleration,
scalability, and stability. This work offers critical insights into optimizing asynchronous
distributed LLM training at scale.

Published as a conference paper at ICLR 2025

2 RELATED WORK

One of the early works that proposed the concept of Local SGD was|Zhang et al.|(2016), establishing
the paradigm of parallel multi-step training followed by periodic averaging. [Lin et al.|(2019) intro-
duced the Post Local SGD method, which starts with standard synchronized training for warm-up
before switching to the Local SGD mode. SlowMo (Wang et al., 2019) utilizes a slow momentum
to transform model averaging into moving average. DiLoCo (Douillard et al., 2023)) demonstrates
that the Nesterov optimizer (Nesterovl, |1983) is suitable as an outer optimizer. Multi-Level Local
SGD (Castiglia et al.,|2020) partition the network into disjoint sub-networks and hierarchically syn-
chronizes the models. |Wang & Joshi| (2019) and [Balles et al.| (2023)) have respectively explored
the optimal hyperparameter settings for Local SGD. [Shen et al.| (2021) advocated for gradually in-
creasing synchronization intervals while decreasing learning rates to optimize model performance.
Extensive theoretical analyses of Local SGD have also emerged. |Yu et al|(2019), Khaled et al.
(2020), |Spiridonoff et al.|(2020), and Deng et al.| (2022) examined convergence rates under various
conditions. |Gu et al.| (2022) found that Local SGD improves generalization with a small learning
rate and long training duration. [Pan & Song|(2023)) demonstrated faster convergence by leveraging
second-order information.

Researchers have also explored the combination of Local SGD with asynchronous training
paradigms that decouple computation and communication. Early works were predominantly based
on the federated learning framework (Xie et al., [2019). FedBuff (Nguyen et al., 2022) updates the
server model only after accumulating a certain amount of pseudo gradients. DN-DyLN (Liu et al.,
2024) improves the buffer mechanism to employ delayed Nesterov update. TimelyFL (Zhang et al.,
2023)) dynamically adjusts the local training workload according to the real-time resource situation.
Subsequently, several works based on other architectures were also proposed. Gossip-PGA (Chen
et al.l 2021) incorporates periodic global averaging into the gossip SGD framework (Lian et al.,
2017). CO2 (Sun et al. 2023) utilizes Local SGD and asynchronous communication to hide the
overhead. A key challenge for asynchronous training is the staled model problem, resulting in infe-
rior performance compared to synchronous training methods (Liu et al.| 2024)).

Notably, current All-Reduce-based Local SGD methods (Lin et al., [2019; [Wang et al., [2019; |Sun
et al.l 2023)) hold complete model parameters on each GPU, making it difficult to handle model
sharding for LLM training. Although [Sun et al.| (2023)) claims that they can combine CO2 with
ZeRO series optimizers (Rajbhandari et al., 2020), the additional communication introduced de-
grades CO2 to a synchronized mode, negating the performance gains from periodic synchronization
and overlapped communication. Furthermore, the extra parameters and outer momentum further
increase memory pressure, limiting their scalability to larger models. In contrast, our proposed
EDiT and A-EDiT methods effectively utilize the characteristics of model sharding, leveraging de-
vice mesh, layer-wise parameter synchronization, prefetch strategy, and CPU offload to minimize
communication and memory overhead, making it more suitable for LLM training.

3 METHOD

3.1 OVERVIEW

Our proposed EDiT method integrates model sharding with periodic synchronization to acceler-
ate the training of LLMs. The detailed procedure of EDiT is illustrated in Figure [I] and for-
mally outlined in Algorithm |1|in Appendix. To start with, EDiT builds an M x N device mesh
across I workers : M model sync groups G" = {G7,--- , G}, } with each comprising N workers
Gi = Wu:Waiys - s Wany b EI, and N model shard groups G° = {G$,--- ,G% } with each
comprising M workers G = {W1.:), Wiz,iy» - » Wia,i) }» where M x N = K. This structured
arrangement aims to tailor communication patterns to the diverse capabilities and network latencies
inherent in the distributed system. For instance, in a multi-node GPU cluster where intra-node com-
munication is significantly faster than inter-node communication, all GPUs within the same node
can be connected as a model shard group, while GPUs of the same rank across different nodes
can be connected as a model sync group. Model parameters are sharded uniformly in each model

>The employment of double subscripts herein is merely a notational convenience to denote the relationship
between workers and groups. Similar considerations apply to the cases discussed below.

Published as a conference paper at ICLR 2025

shard group and each worker W, retains a fraction of each parameter for the complete L modules:
00 = {901 ... 9(-1)} In this way, workers as a whole within a model shard group G$ main-
tain a complete replica of model parameters: § = Concat({8®) :) € G#}), while workers
within a model sync group G maintain an identical shard of the parameters. The EDiT method
centralizes communication-intensive operations within the model shard groups and utilizes peri-
odic synchronization to mitigate the communication overhead in the model sync groups, thereby
achieving training acceleration. To enhance the stability of the initial training process, EDiT utilizes
a two-phase training strategy. This begins with a warmup phase using standard mini-batch SGD,
followed by a periodic synchronization phase utilizing Local SGD. More specifically,

1. During the forward pass of the [-th module, if the current updated step requires model
synchronization, i.e., (tx7+p) > tyarm and p == 0 where ¢ is the outer step, p is the inner
step, twarm 1S the number of warmup steps and 7 is the synchronization interval, parameters
are synced in model sync groups, as outlined in lines 7 to 9 in Algorithm [l} In practice,
the communication overhead is minimal due to the large synchronization interval (7 > 1)
and sharded parameters. Herein a novel pseudo gradient penalty strategy is introduced
to enhance training stability that will be detailed in Section After that, each worker
gathers the full module parameters through its model shard group for forward computations
and promptly frees excess parameters to conserve memory.

2. During the backward pass of the [-th module, workers again aggregate parameters via
model shard groups for gradient calculations, followed by a reduce-scatter operation to
average gradients across each model shard group. If the current step ¢ is within the warmup
phase, i.e., t < tyarm , an additional all-reduce operation will be performed within each
model sync group to synchronize gradients across all workers; otherwise this operation will
be skipped (lines 19 to 21). Afterwards, each worker frees the excess parameters.

3. Once all modules have completed one forward-backward iteration, the optimizer updates
the local parameters of each worker. Note that to distinguish from the outer optimizer
(OuterOpt) used in parameter synchronization, we refer to the optimizer for local updates
as the inner optimizer (InnerOpt).

Different from other Local SGD methodologies that synchronize parameters before next step, EDiT
performs layer-wise parameter synchronization during forward pass. In practice, we normally em-
ploy a prefetch strategy that aggregates parameters for the upcoming module concurrently with
ongoing computations, with which communications within model sync groups can be effectively
overlapped with forward computations. In this way, EDiT further diminishes the additional commu-
nication overhead introduced by parameter synchronization.

It is also noteworthy that EDiT is compatible with most current large-scale distributed training
frameworks. Although this manuscript mainly discusses its integration within ZeRO-3/FSDP frame-
work (Rajbhandari et al[2020), it can be transposed with relative ease to other frameworks such as
3D parallelism (Shoeybi et al., 2019).

3.2 PSEUDO GRADIENT PENALTY

o) 009
Worker A Aim 1 Anomaly |
- » = D i
(@) 2
- :
(2.D) (2.0)| 20 XW2
Worker B |6, s A
@) < +_ (T Clip (7
— |6, e y A, A,
(30 3L 3.0 W3
Worker C |6 aGol— ®
E OuterOpt
_ [gen] £ —
< w o
Worker D | (D,_XWs
= : — A OuterOpt

Figure 2: Tllustration of model synchronization and our proposed pseudo gradient penalty method,
depicted with an example of four workers in a model sync group.

Despite diligent data cleaning efforts, there are still significant amount of low-quality data in the
LLM pre-training corpora (Albalak et al.,|2024), resulting in training instability manifested as loss

Published as a conference paper at ICLR 2025

spikes. This issue can be addressed by large batch sizes typical of synchronous training regimes, but
becomes salient in Local SGD regimes where each worker operates on relatively smaller batches.

To tackle this issue, we introduce a novel pseudo gradient penalty strategy at the parameter syn-
chronization stage, as depicted in Figure [2]and Algorithm 2]in Appendix. This strategy consists of
anomaly elimination, weighted averaging, and gradient clipping. To illustrate the idea, we use a
model sync group G, = {W4,--- , Wy} as an example. We begin by computing the pseudo gradi-

ents Aii’l) = GS;I) — Bt(i’l) for each worker, where Ot(f;l) is the sharded parameters of module [held

by worker W, at outer step ¢ and inner step 7, and Ot(i’l) denotes the corresponding synchronized

parameters at the beginning of outer step ¢.

Anomaly elimination. We first eliminate the significantly anomalous workers to reduce their ad-
verse impacts on the overall model performance. Since anomalies cause substantial parameter fluc-
tuations and lead to large pseudo-gradient norms, we use the pseudo-gradient norm as the criterion.
Here we utilize an Exponential Moving Average (EMA) z-test method for statistical analysis. Let

Ggi’l) = HA,EM) |l2 denotes the pseudo gradient norm for the worker W;, then the EMA z-score can
; G () : :
be calculated by z{"" = G-~ where u{"" and o{"") are the EMA mean and standard devi-
Ot
ation of G\"", respectively. A worker W; with 2" > § is identified as an anomaly and its G\""

will be set to infinity, where § is a threshold, typically set to 3 in practice. Both ,ugi’l) and agi’l) are

updated at each step using an exponential moving average to capture the convergence trend of the
gradient norm during the training process:

il il il il il il il
p5) = 0@ 1 (- ™, ol =\ a)(of)2 +a(G) — e

where « is a weighting coefficient, commonly assigned a value of 0.02 in practical applications.

The update of Equation |1{ will be skipped if Ggi’l) is infinite. In the preliminary stage, a warm-up
period is set to establish stable values for ,u,g“l) and af(,“l), during which no workers are flagged as
anomalies. Notably, to maintain consistent updates within the same module, we compute the pseudo
gradient norm for the entire module, and subsequently introduced gradient norm-related operations
follow the same procedure. Because this process only introduces one scalar communication in the

model shard groups, the overhead is negligible. If all workers are identified anomalous, all the
parameters will be effectively rollbacked to the last synchronized parameters Ot(l’l).

Weighted averaging. Furthermore, considering that large pseudo gradients may still exert consid-
erable impacts on the overall update direction, we propose to weigh the pseudo gradients of each

worker based on the norms, which was similarly demonstrated in Thakkar et al.|(2023). The weight
assigned to the pseudo gradients corresponding to W; € G is calculated by

exp(—G{"")
5, exp(~G™)

In this way, a larger pseudo gradient norm leads to stronger suppression, thereby allowing all workers
to contribute equally to the update direction and thus increasing the likelihood to find the correct
direction. Following that, by performing a weighted summation of all pseudo gradients in G, , we
obtain the synchronized pseudo gradients:

AP =N w ;AP YW e gr,. 3)

J

2)

W5 =

s

Gradient clip. We then adopt a gradient clip strategy to constrain the update step size. Let

C_?,(f’l) = ||A§i’l) |l2 denote the synchronized pseudo gradient norm and ¢ denote the threshold, the
clip coefficient is computed by

. (il
By = min(6/ (G +), 1), (4)
where € is a small positive constant to avoid division by zero. The pseudo gradients are clipped by

A = gAY, 5)

Published as a conference paper at ICLR 2025

Proceeding further, we update 8" by Bt(ill) = OuterOpt (8", A" on each worker.

In EDiT, the extra parameters and outer momentum on each worker are sharded in correspondence
with the sharded parameters. Compared to previous methods that maintain full extra parameters and
outer momentum on each worker, EDiT reduces the additional memory usage. Additionally, based
on layer-wise synchronization and prefetch strategy, EDiT can further offload the extra parameters
and outer momentum to the CPU and only transfer the corresponding layer’s data to GPU as needed,
thereby further minimizing memory overhead. Since the data for each layer is relatively small,
the GPU-CPU data transfer can be effectively overlapped with GPU computations and GPU-GPU
communications, ensuring fast parameter synchronization.

3.3 ASYNCHRONOUS EDIT

! Faster Worker Faster Worker

| I I |

l Local Update | Local Update | Idle |Sync| | Local Update | Local Update | Local Update;l Idle |Sync|
I 1 I T 1

| Slower Worker 1 1 | Slower Worker 1 1
| Local Update | Local Update | Sync | | Local Update | Local Up:date | Sync |
I A I N y I
I N o I v I I

Step Interval Time Interval
(a) The synchronization scheme of EDiT. (b) The synchronization scheme of A-EDiT.

Figure 3: A comparison of the synchronization scheme of EDiT and A-EDiT.

EDiT requires periodic synchronization at every 7 inner iterations. However, the fastest worker
idles awaiting the peers to finish 7 iterations even if it completes its own 7 iterations earlier. As a
consequence, the overall training efficiency is pegged to the slowest worker. This issue becomes
more pronounced in heterogeneous clusters, where nodes are equipped with diverse devices.

Intuitively, it would be beneficial to allow different workers to train at their own pace and remove
the constraint of fixed-step synchronization. Therefore, we propose an asynchronous variant of the
EDiT method, named A-EDiT. The differences are depicted in Figure 3] Herein, we set a fixed
time interval 7;,,¢, and let each worker update locally until surpassing this specified time threshold.
Then, a parameter synchronization ensues. This modification enables faster workers to undertake
more iterations in each inner loop. Theoretically, no worker will wait longer than the single step
time of the slowest worker at each parameter synchronization. We empirically verified that A-EDiT
achieves faster training in all scenarios with comparable model performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Models We consider four different scales of Llama models (Touvron et al., 2023) in our experi-
ments: 350M, 1B, 3B, and 7B. Their specific configurations are detailed in Table [3|in Appendix.

Datasets We use a new large-scale open-source dataset, FineWeb-Edu (Lozhkov et al.,[2024) in our
experiments. Additionally, we also utilize an in-house private out of production pre-training dataset,
which we will refer to as in-house dataset below.

Baselines We consider several state-of-the-art methods, including standard mini-batch (Baseline),
Post Local SGD (Lin et al., 2019), DiLoCo (Douillard et al.l 2023), and CO2/CO2* (Sun et al.,
2023). Here CO2* is the memory-efficient version of CO2 that shards extra parameters and outer
momentum across workers (Sun et al., [2023)).

Training Following DiL.oCo (Douillard et al.| [2023)), we use AdamW (Loshchilov & Hutter, [2019)
as the inner optimizer and Nesterov momentum (Nesterov} [1983)) as the outer optimizer. The models
are initialized with pP (Yang et al.l 2021) for efficient hyperparameter search. Synchronization
intervals 7 and 7, are set to 128 and 600s, respectively. Experiments are conducted on eight
Nvidia A100 GPU nodes with 64 GPUs and an 8 x 8 device mesh. ¢ is 10 for pseudo gradient clip.

For more detailed setups, please refer to the Appendix

Published as a conference paper at ICLR 2025

4.2 CONVERGENCE AND GENERALIZATION

s o
o o

Training Loss
P
& 5

(a) FineWeb-Edu loss.

Validation Perplexity

Steps

75k 100k 125k 15

26k 50k 75k 100k 125k 150k

Steps

(b) FineWeb-Edu PPL.

(¢) In-house loss.

(d) In-house PPL.

Figure 4: The loss and PPL curves of different methods on the (a) & (b) FineWeb-Edu dataset and
(c) & (d) in-house dataset. The final values are marked, with the best ones in bold. Here we use the
average of the last 10 values as results to prevent randomness. PLS is short for Post Local SGD.

Table 1: The evaluation results for different methods on the public benchmarks (Fourrier et al., 2023
OpenCompass Contributors, [2023)), with the best results in bold and second-best underlined. PLS is
short for Post Local SGD.

FineWeb-Edu dataset in-house dataset

Benchmark Baseline PLS DiLoCo CO2 EDIiT A-EDiT | Baseline DiLoCo EDIiT A-EDiT
MMLU (1) 32.28 30.86 32,55 3133 3229 3196 24.12 24.63 2447 2456
ARC-E (1) 59.90 57.60 58.60 57.00 60.00 57.70 36.80 36,70 38.70 37.40
ARC-C (1) 3020 28.60 31.00 30.50 3240 30.20 22.50 22.80 23.00 2240
HellaSwag (1) 5099 48.03 51.64 48.66 5175 51.60 40.60 40.80 40.90 40.20
PIQA (1) 6990 67.80 69.50 67.00 68.10 69.90 67.10 66.80 67.00 66.40
CommonSense-QA (1) | 3740 33.80 3540 3440 3630 3530 18.50 18.20 18.50 17.90
OpenBookQA (1) 2540 2280 2520 2440 26.00 24.00 18.00 17.80 18.00 18.20
WinoGrande (1) 50.70 49.20 47.80 50.70 51.70 50.50 49.10 49.20 49.10 48.80
Average (1) 44.60 4234 4396 43.00 44.82 43.90 34.59 34.62 3496 34.49

We first applied different methods to train the Llama 1B model on the FineWeb-Edu dataset and
in-house dataset separately. Here we only compared the best-performing methods, i.e., Baseline,
DiLoCo, EDiT, and A-EDiT, on the in-house dataset. The training loss ({.) E] and validation PPL (])
results are shown in Figure 4]

As can be seen, our proposed EDiT and A-EDiT both achieve consistently good performance.
Specifically, EDiT achieves the lowest training loss on both datasets and achieves the lowest val-
idation PPL on the FineWeb-Edu dataset, even surpassing the Baseline. A-EDiT marginally lags
behind the sync version due to the lagging workers, but it still performs better than other methods in
most scenarios. Because the in-house dataset contains diverse data types and lower-quality corpora,
DiLoCo (Douillard et al., [2023) experienced a noticeable decline in performance. In contrast, EDiT
and A-EDiT filtered out low-quality data with the pseudo gradient penalty strategy, achieving results
that were nearly comparable to the Baseline.

We evaluated the trained models on public benchmarks (Fourrier et al.| 2023 |(OpenCompass Con-
tributors}, 2023). Table |1| presents the evaluation results. As can be seen, the models trained with
EDiT both achieve the best average performance, and A-EDiT also performs well on the eight eval-
uation benchmarks. These results demonstrate that both EDiT and A-EDiT exhibit strong conver-
gence and generalization capabilities.

Besides, we additionally trained the Llama 350M, 3B, and 7B models on the FineWeb-Edu dataset
using EDiT, the results in Figure [§] and Table 5| demonstrate that EDIT performs consistently well
across different model scales.

4.3 ACCELERATION

We measured the speeds of different methods when training Llama models of four different scales
on two A100 nodes. The synchronization interval was set to 5, and the results are the average

3In this manuscript the 1 means the bigger the better and the | means the smaller the better.

Published as a conference paper at ICLR 2025

Table 2: The speeds of different methods on training models of various scales. The values in the
table correspond to throughput (tokens/sec) and TFLOPS, respectively.

Baseline Post Local SGD DiLoCo CO2 CO2* EDiT A-EDiT

350M | 4.52¢5/107 4.67e5/111 4.56e5/108 4.84e5/116 4.66e5/110 4.81e5/114 4.82e5/115
1B 2.08e5/146 2.12e5/149 1.87e5/131* OOM 2.12e5/148 2.25e5/158 2.27e5/160
3B 1.05e5/177 OOM OOM OOM ooM 1.11e5/187 1.12e5/189
7B 5.14e4/200 ooOM OOM OOM ooM 5.42e4/211 5.45e4/213

throughput (tokens/sec) and TFLOPS over 100 steps. As shown in Table |2 all Local SGD-based
methods achieved higher throughput than the Baseline. It should be noted that when training the
Llama 1B model with DiLoCo, extra parameters and outer momentum were placed on CPUs to
prevent out of memory (OOM), resulting in non-overlapped extra GPU-CPU data transfer overhead.
While CO2 achieved the highest throughput on the smallest model, holding its extra parameters and
outer momentum caused significant memory overhead preventing the method to be scaled beyond
350M model. CO2* alleviates memory pressure by sharding extra parameters and outer momentum,
but introduces additional non-overlapping communication, causing a throughput drop. Our pro-
posed methods synchronize sharded parameters layer-by-layer during the forward pass, and utilize
a prefetch strategy to overlap computation with communication, achieving nearly the same through-
put as CO2 (—0.5%). We also performed a profiling analysis of the synchronization operations for
different methods, and detailed results can be found in Appendix [A.3.2]and Figure 9]

= Baseline i = Baseline
= EDIT EDi = EDIT
= A-EDIT 0 = A-EDIT 0 = A-EDIT

0 1.5 2.5 3.5 4.5 ' 15 25 3.5 4.5 ' 10 20 30 40

Lag Time (s) Lag Time (s) Repeat Times

(a) Random Straggler. (b) Consistent Straggler. (c) Limited Bandwidth.

Figure 5: The TFLOPS of different methods under different training scenarios.

We further evaluated the training speed of our proposed EDiT and A-EDiT methods against the
Baseline method in various more challenging training scenarios. Here we manually introduced
stragglers and communication delays. Specifically, we simulated stragglers by pausing the training
process of one selected node at each step, and simulated inter-node bandwidth constraints by artifi-
cially repeating inter-node communications. Experiments were conducted on the Llama 7B model.
Detailed experimental results are presented in Figure [5|and Table [6]in Appendix.

The results reveal a consistent trend where A-EDiT and EDiT outperforms the Baseline method.
As anticipated, the Baseline’s training speed declines rapidly with increased lag time or inter-node
congestion. In the random straggler scenario, EDiT and A-EDiT experience only slight speed re-
ductions. This is attributed to the periodic synchronization that ensures relatively uniform training
speeds across workers. In the consistent straggler scenario, since the cumulative delay at a single
node cannot be eliminated by periodic synchronization, the performance of EDiT declines visibly.
A-EDiT, leveraging its asynchronous nature, maintains a high training speed. In the bandwidth-
constrained scenario, both EDiT and A-EDiT are not affected. This is due to the large synchro-
nization interval, which minimizes inter-node communication overhead. In summary, our proposed
methods consistently demonstrate superior training speed compared to the Baseline method across
various scenarios, and A-EDiT further effectively addresses the issue of consistent stragglers.

4.4 SCALABILITY

Elastic training is the ability to dynamically adjust the resources in accordance with workload fluc-
tuations. However, varying the resources alters the global batch size and requires additional learning
rate tuning. Intuitively, the optimal learning rate of the Local SGD methods may be solely related to

Published as a conference paper at ICLR 2025

[}
13
<]
3

_Baseline(1-2-4-8) 18.41
EDIT(1-2-4-8) 17.59

— Baseline(8-4-2-1) 18.92
EDIT(8-4-2-1) 18.43
1 20.1

2]

=]

/
[}
=]

o
o
/
/
/
o
o

N W w
® = X

Validation Perplexity
(52
o

Validation Perplexity

Validation Perplexity
N
o

— worker-1 50 \\\% Z — worker-1
451 _ worker-2 ' — worker-2 22
— worker-4 45 H — worker-4
401 _— worker-8 | — worker-8 19
arl— worker-16 i 40 I — worker-16 15
“°-12.0-13.5-13.0-125-12.0-11.5-11.0 -14.0-13.5-13.0-12.5-12.0-11.5-11.0 °0 25k 50k 75k 100k
Learning Rate (Log2) Learning Rate (Log2) Steps
(a) PPL-LR curves of Baseline. (b) PPL-LR curves of EDiT. (c) PPL curves in elastic training.

Figure 6: (a) & (b) The PPL results against learning rates (log 2 scale) under different number of
workers for the Baseline and EDiT methods. (c) The PPL curves in the simulated training scenarios.

the per-worker batch size, which has not been extensively studied in prior research. To validate this
hypothesis, we conducted experiments on the Llama 350M model to investigate the optimal learn-
ing rate shift for the Baseline method and EDiT method under different worker numbers, fixing the
batch size per worker at 128. The validation PPL results are shown in Figure [6a] and Figure[6b] and
the detailed training losses are shown in Figure [I0]in Appendix. It can be seen that as the worker
number increases, the optimal learning rate for Baseline gradually increases, whereas that for EDiT
consistently remains at 1.5e-4. These results validate our hypothesis. The scalability of EDiT makes
it suitable for elastic training scenarios. Besides, this property enables us to economize resources
by initially tuning the learning rate on a single worker before scaling up to hundreds of workers.
We also note that the training loss for EDiT is more stable than that of the Baseline method across
different worker numbers and learning rates, as shown in Figure [I0] This not only demonstrates
the robustness of EDiT but also highlights its potential to maintain consistent performance across
diverse training configurations.

We further simulated a realistic elastic training scenario. We conducted experiments on the Llama
1B model, setting the batch size per worker to 128 and fixing the learning rate at 1.5e-4. We system-
atically scaled the worker number upwards (1-2-4-8) and downwards (8-4-2-1), training for 25,000
steps at each worker number, and observed the validation PPL for both the Baseline and EDiT meth-
ods. As illustrated in Figure [6c| although the Baseline method initially decreases faster than EDiT,
EDiT maintains a significant decline rate in the later stages and achieves the optimal PPL values in
both scaling scenarios, yielding a 4.5% and 2.6% improvement, respectively. These findings affirm
the EDiT’s viability and advantage in real-world, elastic training scenarios.

4.5 ABLATION STUDY

w
S

—Baseline 12.59 — Worker1
— Worker2
Worker3 5.0
— Worker4
— Worker5 8as
— Workers| \
— Worker7 =3
— Worker8 40

N
N

— wio WA 13.20
— w/o GC 13.30
— wioALL 14.89

— Worker4
— Worker5

N
i

®

Validation Perplexity
~ o
o ~

Sttt

7k 10k 13k 16k 19k 22k 25k 4k 7k 10k 13k 16k 10k 23k 25k 2k 4k 16k 19k 22k 25k
Steps Steps

(a) Validation PPL. (b) Training loss of DiLoCo. (c) Training loss of EDiT.

N
=
IS
=

Figure 7: (a) The validation PPL curves of different versions of EDiT with the final PPL values
marked. (b) & (c) The training loss curves for DiLoCo and EDiT, respectively.

We conducted ablation studies on the pseudo gradient penalty strategy to better understand its capa-
bilities. In this experiment, we employ the in-house dataset as it is of higher diversity and thus serves
as an ideal testbed. We individually removed anomaly elimination (w/o AE), weighted averaging
(w/o WA), and gradient clip (w/o GC) from EDIiT, as well as all three components simultaneously
(w/o ALL). The validation PPL results are shown in Figure@ It can be observed that without the
pseudo gradient penalty strategy (w/o ALL), the PPL curve exhibits noticeable spikes and deviates
considerably from the Baseline. Individually removing anomaly elimination, weighted averaging,

Published as a conference paper at ICLR 2025

or gradient clip each adversely affects stability and validation PPL, demonstrating that every compo-
nent of the pseudo gradient penalty strategy is effective. We further investigated the training losses
across eight different workers. As depicted in Figure [/b| and Figure all workers in DiLoCo si-
multaneously encounter loss spikes and take a long time to recover. In contrast, EDiT can swiftly
rectify deviations in individual workers. Even when all workers experience abnormal losses, they
can promptly revert to normal loss levels through the rollback strategy. These results demonstrate
the effectiveness of the pseudo gradient penalty strategy.

5 THEORETICAL ANALYSIS

In this section, we choose SGD (Robbins & Monrol [1951) as the inner optimizer and the outer opti-
mizer for simplicity. Under the framework developed in|Wang et al.| (2019), we have the following
convergence theorem.

Theorem 1. Suppose that the following assumptions are satisfied:
1. L is differential and lower bounded, i.e., L(0*) > —oco where 0* is an optimal solution. L is

also L-smooth, i.e., Yu,v € R, we have L(u) < L(v) + (VL(v),u — v) + L|u — v|%.

2. At the outer step t and inner step p, VW; € G, m € 1,--- | M, the algorithm can access a

bounded noisy gradient and the true gradient is bounded, i.e., g,ﬁ?,”oo < Goo, HIE[g,EZI),]HOO <
Goo,Vte [T —-1]:={0,--- , T—1}Vpe[r—-1]:={0,--- ,7 — 1}.

3. The noisy gradient is unbiased and the noise is independent, i.e., ggg = E[gt(?,} + Ct(fg, E[Ct(?)] =
0 and Ct(l; is independent of Cf(,l 7)[), ift#t orp#£yp.

4. The learning rate of the inner optimizer is 1, = 1/+/tT + p + 1, and the learning rate of the
outer optimizer is v.

Then Algorithm|I] yields
min]E[||Vﬁ(9t,p)||2]

te[T—1],pe[r—1
_ 1 (z(eo,o) | InG2rén?(1+In(rT)) | LynG26P(1 + 1n(TT))) - ©
“2ym(VT 1)
where the meaning of n, ¢ and e are listed in Table[7|of Appendix[|A.4]

v € 2¢2

The proof of Theorem|[I]is presented in Appendix[A.4] Therefore, the convergence (to the stationary
point) rate of EDiT is O(log(T)/v/T).

6 CONCLUSION

In this work, we investigate the challenge of training LLMs on large-scale clusters. We analyze the
fundamental characteristics of large scale clusters and the limitations of the existing Local SGD-type
methods. On this basis, we propose a novel Efficient Distributed Training method for LLMs called
EDiT. This method effectively integrates model sharding strategies with tailored Local SGD mech-
anisms. We propose layer-wise synchronization to achieve overlap of computation and communica-
tion and reduce communication and memory overhead. We enhance the convergence and stability of
EDiT by introducing a pseudo gradient penalty strategy. We also present an asynchronous variant of
EDiT (A-EDiT) to tackle the problem of consistent stragglers in heterogeneous clusters. Extensive
experimental results demonstrate the superior capabilities of our proposed methods across multiple
dimensions, and the convergence analysis provides a theoretical foundation for our method.

Several potential avenues for future research are identified. First, for the A-EDiT, the stragglers
negatively impact the overall performance. Mitigating the impact of these stragglers warrants further
investigation. Second, our simulation of elastic training currently entails halting and restarting the
training process upon node addition or subtraction. We look forward to a truly elastic framework
that can swiftly adjust training resources without disrupting the ongoing training process.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We thank Ke Zhang for bringing the straggler and communication issues in distributed training to
our attention and fully supporting our research on this topic. We thank Ji Zhang for providing us
with insights into Local SGD. We thank Haitao Zhang for his technical advice and assistance. We
thank Chunjie Shen for helping to apply our techniques to practical training scenarios.

REFERENCES

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language models.
arXiv preprint arXiv:2402.16827,2024. https://arxiv.org/abs/2402.16827,

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Lukas Balles, Cedric Archambeau, et al. On the choice of learning rate for local sgd. Transactions
on Machine Learning Research, 2023.

Timothy Castiglia, Anirban Das, and Stacy Patterson. Multi-level local sgd: Distributed sgd for
heterogeneous hierarchical networks. In International Conference on Learning Representations,
2020.

Yiming Chen, Kun Yuan, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin. Accelerating gossip
sgd with periodic global averaging. In International Conference on Machine Learning, pp. 1791—
1802. PMLR, 2021.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in neural information processing systems, 25, 2012.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Local sgd optimizes overpa-
rameterized neural networks in polynomial time. In International Conference on Artificial Intel-
ligence and Statistics, pp. 6840-6861. PMLR, 2022.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

Clémentine Fourrier, Nathan Habib, Thomas Wolf, and Lewis Tunstall. Lighteval: A lightweight
framework for llm evaluation, 2023. URL https://github.com/huggingface/
lightevall

Xinran Gu, Kaifeng Lyu, Longbo Huang, and Sanjeev Arora. Why (and when) does local sgd gen-
eralize better than sgd? In The Eleventh International Conference on Learning Representations,
2022.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. Tighter theory for local sgd on identi-
cal and heterogeneous data. In International Conference on Artificial Intelligence and Statistics,
pp. 4519-4529. PMLR, 2020.

Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang. Lyra: Elastic
scheduling for deep learning clusters. In Proceedings of the Eighteenth European Conference on
Computer Systems, pp. 835-850, 2023.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in neural information processing systems, 30, 2017.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In International Conference on Machine Learning, pp. 3043-3052. PMLR,
2018.

11

https://arxiv.org/abs/2402.16827
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

Published as a conference paper at ICLR 2025

Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use local sgd. In International Conference on Learning Representations, 2019.

Bo Liu, Rachita Chhaparia, Arthur Douillard, Satyen Kale, Andrei A Rusu, Jiajun Shen, Arthur
Szlam, and Marc’ Aurelio Ranzato. Asynchronous local-sgd training for language modeling.
arXiv preprint arXiv:2401.09135, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6oRiCqgY7.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu, May 2024.
URL https://huggingface.co/datasets/HuggingFaceFW/fineweb—edu.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1-15, 2021.

Y. E. Nesterov. A method for solving the convex programming problem with convergence rate
@) (k%) Proceedings of the USSR Academy of Sciences, 269:543-547, 1 1983. URL https:
//ci.nii.ac.jp/naid/10029946121/.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pp. 3581-3607. PMLR, 2022.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open—compass/opencompass), 2023.

Linxuan Pan and Shenghui Song. Local sgd accelerates convergence by exploiting second order
information of the loss function. arXiv preprint arXiv:2305.15013, 2023.

Guilherme Penedo, Hynek Kydli¢ek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400407, 1951.

Shuheng Shen, Yifei Cheng, Jingchang Liu, and Linli Xu. Stl-sgd: Speeding up local sgd with stage-
wise communication period. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 9576-9584, 2021.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Artin Spiridonoff, Alex Olshevsky, and Ioannis Ch Paschalidis. Local sgd with a communication
overhead depending only on the number of workers. arXiv preprint arXiv:2006.02582, 2020.

Weigao Sun, Zhen Qin, Weixuan Sun, Shidi Li, Dong Li, Xuyang Shen, Yu Qiao, and Yiran Zhong.
Efficient distributed training with full communication-computation overlap. In The Twelfth Inter-
national Conference on Learning Representations, 2023.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139-1147. PMLR, 2013.

12

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://ci.nii.ac.jp/naid/10029946121/
https://ci.nii.ac.jp/naid/10029946121/
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2406.17557

Published as a conference paper at ICLR 2025

Megh Thakkar, Tolga Bolukbasi, Sriram Ganapathy, Shikhar Vashishth, Sarath Chandar, and Partha
Talukdar. Self-influence guided data reweighting for language model pre-training. arXiv preprint
arXiv:2311.00913, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best error-runtime
trade-off in local-update sgd. Proceedings of Machine Learning and Systems, 1:212-229, 2019.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving
communication-efficient distributed sgd with slow momentum. In International Conference on
Learning Representations, 2019.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934, 2019.

Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. Advances in Neural Information Processing Systems, 34:17084-17097,
2021.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pp. 5693-5700, 2019.

Jian Zhang, Christopher De Sa, lIoannis Mitliagkas, and Christopher Ré. Parallel sgd: When does
averaging help? arXiv preprint arXiv:1606.07365, 2016.

Tuo Zhang, Lei Gao, Sunwoo Lee, Mi Zhang, and Salman Avestimehr. Timelyfl: Heterogeneity-
aware asynchronous federated learning with adaptive partial training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5064—5073, 2023.

13

Published as a conference paper at ICLR 2025

A APPENDIX

Al

METHOD

Here we provide the formal descriptions of EDiT method and model synchronization with pseudo
gradient penalty strategy in Algorithm|l{and Algorithm 2| respectively, to help readers better under-
stand our work.

Algorithm 1 EDiT Algorithm

Require: K workers W = {W,,--- , Wk} with each worker W; contains L sharded modules

05y = 65" = {657, ,6{""}; K datashards D = {Dy,--- , D }; M x N device mesh
with the columns forming model shard groups G° = {G5,--- , G} and rows forming model
sync groups G" = {G7,--- , G}, }; outer training steps T'; sync period 7; warmup steps tyarm;
1: fort =0to7T — 1do
2: forp=0toT — 1do
3: for worker W, parallel do
4: Confirm W; is in the model sync group G, and model shard group G
5: (a:y’o) y(i)) ~ D;
p 1 Itp v
6: for(=1to L do > Forward Pass
7: if (¢t %7+ p) > twarm and p == 0 then
8: Sync parameters in G7: 015?61) =o\"! = Sync(@t(ﬁll)ﬁ; Gr)
9: end if '
10 Gather module parameters in G, : Ht(fz)) = AllGather(Ot(fl;l); Ggs)
11: Forward calculation: a:ffl’,l) =f (01&2, a:&lil))
12: Free module parameters: 0&’;) = Shard(et(fz),)
13: end for))
14: Calculate loss: £ = E(mgfz’,f“), yt(tz),)
15: for! = Lto1ldo) > Backward Pass
16: Gather module parameters in G2 : 9,52, = AllGather(Ht(;;l); Gg:)
17: Backward calculation: §t(l2, = Vo0 ﬁ(@gg, wgfz’,l_l))
t,p
18: Sync grads in G gt(fz’)l) = ReduceScatter(fg\,fg; Gs)
19: if (t+x74+p) <twarm then
20: Sync grads in G}, (Warmup): gt(;;l) = AllReduce(g,gfI’,l); Gr)
21: end if _
22: Free module parameters: 0181;1) = Shard(egg)
23: end for
24: end for _
25: for module Bt(f};l) parallel do > Local Update
26: Update parameters: Gt(f]’glll = InnerOpt(Bg'}’,l), gt(j'z’,l))
27: end for
28: end for
29: end for

14

Published as a conference paper at ICLR 2025

Algorithm 2 Sync() in Algorithm

Require: The m-th model sync group G/, = {W, -+, Wn}; the sharded parameters Ot(f;l) of the
[-th module in the i-th worker W; at outer step ¢ and inner step 7; the corresponding last synced

sharded parameters 05“) at outer step t;

1: Calculate the pseudo gradient: A(i D Bfi 4 O(i’l)

2: Calculate the pseudo gradient norm: G(Z D= ||A(l b Il2

3: if IsAnomaly(GEZ l)) then > Eliminate Anomalies
4: G,El’l) =00

5: end if .

6: Sync the pseudo gradient norms: y; = >, exp(—Gg ’)) for W; in G},

7: if v == 0 then ,

8: Rollback parameters: 05 f10= 9,5“”

9: else "
10: Calculate the weight: w; ; = exp(— G(l’)) Yar > Weighted Average
11: Sync the pseudo gradients: A{") = > Wt AP for W, in Gr,
12: Clip the pseudo gradlent A(Z D= ch (A(i l)) > Clip Grad, Eq. &
13: Update parameters: 0 t+1 = Ou‘cerOp‘u(G(Z DA
14: Sync parameters: 0t+1 0 =01
15: end if

. return Ot(lll) o

—_
o))

A.2 EXPERIMENTAL SETUPS

Here we provide a more detailed description of the experimental setups to facilitate readers in re-
producing the experimental results of this paper.

Models We consider four different scales of Llama models (Touvron et al., |2023) in our experi-
ments: 350M, 1B, 3B, and 7B. Their specific configurations are detailed in TableE} We configure
the models to have the same number of layers and head dimensions, which facilitates the utilization
of uP (Yang et al.,|2021) for hyperparameter search.

Table 3: Configurations for the four scales of Llama models.

Hyperparameter 350M 1B 3B 7B
Number of Layers 32 32 32 32
Hidden Size 768 1,536 2,560 4,096
Intermediate Size 2,048 4,096 6912 11,008
Number of Heads 6 12 20 32
Number of K/V Heads 6 12 20 32
Vocab Size 79,800

Datasets Departing from small language datasets used in prior works (Douillard et al., [2023)), we
employ a new large-scale open-source dataset, FineWeb-Edu (Lozhkov et al., 2024)) in our exper-
iments. This dataset comprises 1.3T tokens of premium educational web pages filtered from the
extensive FineWeb repository (Penedo et al.|[2024). Additionally, we also utilize an in-house private
pre-training dataset, which consists of a diverse collection of corpus of varying quality.

Baselines We compare the proposed EDiT and A-EDiT method against several state-of-the-
art methods, including standard mini-batch (Baseline), Post Local SGD (Lin et al. [2019),
DiLoCo (Douillard et al. 2023), and CO2/CO2* (Sun et al., 2023). Here CO2* is the memory-
efficient version of CO2 that shards extra parameters and outer momentum across workers (Sun
et al., 2023). Since Parallel SGD (Zhang et al.l 2016) and SlowMo (Wang et al.| |2019) are equiva-

15

Published as a conference paper at ICLR 2025

lent to Post Local SGD (Lin et al.; |2019) and DiLoCo (Douillard et al., 2023)), respectively, we do
not include them in comparisons.

Training Follow DiLoCo (Douillard et al., 2023)), we use AdamW (Loshchilov & Hutter, [2019)) as
the inner optimizer and Nesterov momentum (Sutskever et al., [2013) as the outer optimizer. The
models are initialized with pP (Yang et al.| 2021)), enabling the hyperparameters transfer from the
smallest scale model (350M) to models of larger magnitude. To balance efficiency and performance,
the synchronization interval 7 and 74, are set to 128 and 600s, respectively. Across all experi-
ments, a context length of 4,096 tokens and a cosine learning rate decay schedule are consistently
applied. For the FineWeb-Edu dataset (Lozhkov et al.l 2024)), the total batch size is set to 1,024 and
the training step is set to 100,000 (~420B tokens). The learning rate for Baseline, inner learning
rate, outer learning rate, and outer momentum are set to 3e-4, 1.5e-4, 0.8, and 0.85, respectively.
For the in-house dataset, the total batch size is set to 1,536 and the training step is set to 150,000
(~950B tokens). The learning rate for Baseline, inner learning rate, outer learning rate, and outer
momentum are set to 6e-4, 6e-4, 1.0, and 0.8, respectively. We list the searched hyperparameters in
detail in Table[d] The experimental infrastructure comprised eight Nvidia A100 GPU nodes with 64
GPUs and an 8 x 8 device mesh. For the hyperparameters in the pseudo gradient penalty strategy,
we set ¢ = 10.

Table 4: The hyperparameters searched in the experiments.

Hyperparameter Value
Inner Learning Rate 3e-5 6e-5 1.5e-4 3e-4 6e-4
Synchronization Interval | 16 64 128 256 512

Outer Learning Rate 0.5 0.7 0.8 0.9 1.0
Outer Momentum 06 038 0.85 09 095

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 CONVERGENCE AND GENERALIZATION

In the main text, we present the performance of EDiT and other Local SGD methods in training
the Llama 1B model in Figure 4| and Table|I| To demonstrate that EDIiT performs consistently well
across different model scales, we additionally trained Llama 350M, 3B, and 7B models using EDiT
on the FineWeb-Edu dataset, each with a total of 420B tokens. The corresponding training loss,
validation PPL, and evaluation results are shown in Figure [§] and Table [5] It can be observed that
EDiT is robust across various model scales. Besides, to our knowledge, this is the first time to train
a 7B model on a large-scale dataset with a Local SGD-related method. Although CO2 (Sun et al.)
2023)) also claimed that they trained a 7B model, they only used about 50B tokens and provided only
the final validation PPL results.

5.0 —350M 3.239 39 —350M 24.97
— 1B 2.848 2> — 1B 17.38
4.5 382629 =34 —3B14.03
@ — 7B 2421 %— — 7B 10.91
3 4.0 d‘? 29
235 c 24
£ k)
© 3.0 T 19
= T
25 § 14
2.0 9
0 20k 40k 60k 80k 100k 0 20k 40k 60k 80k 100k
Steps Steps

(a) Training loss curves.

(b) Validation PPL curves.

Figure 8: The training loss and validation PPL curves for the 350M, 1B, 3B, and 7B models trained
with the EDiT method on the FineWeb-Edu dataset. The final loss and PPL values are marked in the
figures, which are the average values of the last 10 values to prevent randomness.

16

Published as a conference paper at ICLR 2025

Table 5: The evaluation results on the public benchmarks (Fourrier et al., 2023} |OpenCompass
Contributors}, [2023)) for the 350M, 1B, 3B, and 7B models trained with the EDiT method.

Benchmark 350M 1B 3B 7B
MMLU (1) 2896 3229 3470 36.20
ARC-E (1) 53.00 60.00 67.60 68.30
ARC-C (1) 2540 3240 36.10 39.20
HellaSwag (1) 3944 5175 5855 6231
PIQA (1) 65.00 68.10 7240 73.70

CommonSense-QA (1) | 29.50 36.30 37.30 42.60
OpenBookQA (1) 21.40 26.00 27.40 28.60
WinoGrande (1) 50.50 51.70 52.00 52.40
Average (1) 39.15 4482 4826 5041

A.3.2 ACCELERATION

In the main text, we analyzed the throughput and TFLOPS of different acceleration methods. Here,
we further profile the synchronization operations of different methods when training the Llama 1B
model. As shown in Figure 0] Post Local SGD introduces a significant additional communication
overhead of 160ms during model synchronization. Although CO2* successfully overlaps model
synchronization communication with the forward computation of the next step, it incurs two seg-
ments of non-overlapping communication overhead to deal with the sharded extra parameters and
outer momentum, causing a delay of approximately 300ms. This delay negates the acceleration ben-
efits gained from overlapped parameter synchronization. However, without the memory-efficient
mode, the complete copies of model parameters and outer momentum in CO2 lead to severe mem-
ory usage, resulting in OOM in this scenario. In contrast, EDiT synchronizes sharded parameters
layer-by-layer during the forward pass, reducing communication volume and overlapping compu-
tation with communication through a prefetch strategy. It achieves the same performance as CO2
without introducing additional communication burdens or memory overhead. As a result, EDiT only
introduces 19ms delay in this scenario.

Besides, we provide the detailed TFLOPS corresponding to the Figure[5]in Table [6]

Table 6: The TFLOPS of different methods under different training scenarios.

Random Straggler Consistent Straggler Limited Bandwidth
Lag (s) Baseline EDIiT A-EDiT | Lag(s) Baseline EDIiT A-EDiT | Repeat Baseline EDIiT A-EDiT
0 22575 236.50 237.45 0 22575 236.50 237.45 0 22575 236.50 23745

1.5 175.21 228.06 230.05 1.5 175.12 181.20 230.12 10 205.71 23474 237.85
2.5 15026 219.72 224.38 25 150.03 154.12 227.58 20 136.64 236.20 238.04
35 130.94 21436 219.49 3.5 130.80 134.00 225.08 30 105.06 23646 237.73
4.5 11529 20944 214.53 4.5 115.94 11847 223.07 40 85.18 236.39 238.03

A.3.3 SCALABILITY

Here we provide the detailed training loss curves of the Baseline and EDiT methods under different
numbers of workers and distinct learning rates in Figure[I0] which correspond to the Figure [f]in the
main text.

17

Published as a conference paper at ICLR 2025

1 17.000ms. 17500 ms. 18.000 ms. 18.500 ms. 19.000 ms. [9.500 ms.
~ python (pid 481): CPU i
747816704
756209408
~ thread 481 (python)

~ thread 709 (python)

= python (pid 0): GPU 0
stream 7
stream 20 I A A
stream 21 I I | I I [[
stream 26

stream 28 [[e A [O B B (I I
stream 29

stream 32 | | 1

(a) Baseline.

L [psooms, 8000 ms, 8500 ms, 18000 ms, 18500 ms, 10,000 mg 10500 me.

~ python (pid 528): CPU
1832487168
~ thread 528 (python)

~ thread 816 (python)

Computatiol

~ python (pid 0): GPU O Il
stream 7
stream 20

Model Synchronization

(b) Post Local SGD.

|[rsoms [8000me. 8500 ms. 18000 ms [s500me. 0000 ms 10500 ms 1000 ms

~ python (pid 477): CPU
1306626304
~ 685344512

729802496
1017239296
1266673408
~ thread 477 (python)

~ thread 788 (python)

= python (pid 0): GPU 0

stream 20
stream 24
stream 28
stream 32
stream 36

Model Synchronization [neoKemel ARoduce.ANGLL... | -
|
Model Synchronization for Efficient Memory [T

(c) CO2*.

. aren e s s oo pors
 pyon i o5 cou B ———
-343939328
-335546624
~ thread 469 (python)

~ thread 736 (python)

Computation

~ python (pid 0): GPU 0
stream 7

stream 20 I I 4 | |1 11 L T A (1
stream 21 I I | I | [I |
W

|
stream 24 I Model izati
| rrrrrrrrrrrrrrrrrrrrrrrrrrree

stream 25 e
I HIECEEETN TRy

stream 29
(d) EDIiT.

stream 36 [

Figure 9: The profiling results of Baseline, Post Local SGD, CO2, and EDiT during synchronization
while training the Llama 1B model. The parts corresponding to model synchronization and compu-
tation are highlighted with red boxes.

18

Published as a conference paper at ICLR 2025

12 43 ~ 365 12 4.3 — 3e-5
ot \ 5 AN
w10 3AMW — 1504 010 3,"‘{% — 154
. 2e-4 Py 2e-4
S 4500, 4750 5000 a4 S 4500 4750 5000 —ed
o 8 de-4 o 8 4e-4
£ | 5Se-4 £ 5e-4
% e-4 % e-4
E 6 6
4 i 4 :
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Steps Steps
(a) Baseline worker 1. (b) EDiT worker 1.
12 % 35 12 43 —
40 b 41
P 24 | 910
3 3e-4 8
- — de-4 - |
o 5e-4 o 8
£ 6e-4 £
£ £
© ©
= Ee
L 4 vafemenis el
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Steps Steps
(c) Baseline worker 2. (d) EDiT worker 2.
—3e5 12 i
6e-5
1.56-4
@ 204 10
8 5000 Se4 8
A —de4 a
o — 5e-4 o 8
£ 6e-4 £
£ £
© ©
= ; =
A — " 4 B =|
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Steps Steps
(e) Baseline worker 4. (f) EDIT worker 4.
12 3 12 41
— 3e-5 — 3e-5
N ’\ bos 50 A 605
X e~ 9NV AN -
0 10 i | 910 oy _ioes
& 33 4750 5000 o 8 35 4750 5000 o4
— - — 3e-4
o 8 T o 8 6e-4
c f=
= - =
[0 \ [
& ol Ul i g
4 -LA:\IN P 4
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Steps Steps
(g) Baseline worker 8. (h) EDiT worker 8.
12 3 I \ ‘ — o5 12 Ea —6e5
6e-5 1e-4
37 vWJ\V 1504 sopd Ay 154
10 s W& 304 010 s A 2e-4
(; 4e-d ; — 3e-4
S | 25 4750 5000 e S {500 4750 5000 ©
=) — 6e-4
£ 8 82-4 CED 8
£ £
© ©
= 6 \ = 6
e \\;\ L g =
4 S = 4
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Steps Steps
(i) Baseline worker 16. (j) EDiT worker 16.

Figure 10: The training loss curves of the Baseline and EDiT methods under different numbers of
workers and distinct learning rates.

19

Published as a conference paper at ICLR 2025

A.4 PROOF OF THEOREM[I]

Table 7: The hyperparameters of Theorem

Symbol Meaning

n The initial learning rate of the inner optimizer

v The learning rate of the outer optimizer

T The synchronization interval

10 The gradient norm clip threshold

L The loss function is L-smooth

€ The small positive constant to avoid division by zero

n The dimension of model parameters

Goo The upper bound of the gradients

Proof. Since the inner and outer optimizer are both SGD, VW, € G/ 'm € {1,--- , M}, we have
010 = 6,)
0!) 1 =06") — 1,9\, (8)
0t+1 = Ht - VAt, (9)

where 7, ,, and v are the inner optimizer learning rate and the outer optimizer learning rate, respec-
tively. Here, we omit the superscripts of variables in Equation [9] as they remain identical across
all workers in G, . The following proof will also adopt this simplified notation without risk of
confusion. Hence, by the Equations [2] 3]] [5] [7]and [8] we have

At = By =B Zwt,gA(D= =B Zwt,g B(J 015,]0))

(10)
=By wii(nepgi) i + 0, —0%) =B, Zwt j Z MpGin-
J
Let
hip = B Z wt,ggtJ,» 1D
then ()
Elh:,) = E[5, Z we,j91y) = BeElge.p). (12)
Combining Equation [7] Equation[I0and Equatlon [[T]into Equation[9] we have
T—1
0110 —610=—v Z Nt pht p- (13)
p=0

For proving the convergence of {0,52}, we need to define the auxiliary sequence {1, ,}. Denote

o0 = 00,0, .
Y410 = Yro — VZ;:() Ne,phep,
Yipy1 = Yrp — Vi phe p.

It is easy to prove ¥;1,0 = 1 . Then we have

p—1 p—1 p—l
E[ttp] — E[0:p] = Eltpro — v Z Nekher] — E[0r0 — Zm,kgt,k] =1 -vB) Zm,kE[gt,k]
k=0 k=0 k=0 (14)

20

Published as a conference paper at ICLR 2025

By assumption 1, we have

L
Lt pr1) < L(Yep) + (VL rp), Yepr1 — Pep) + 5H¢t,p+1 — Pl

2,2
v nt,p

L
= ﬁ("»bt,p) — Unt,p <V£(1/’t7p), ht,p> + B ||ht7p||2

2.2
1
UETTANTE

(i) (i) L
= L(rp) — vy (VEWup) = VLB huy) = vy (VLOL)) huy) +
V2n2
"2 |hy |

15)
Rearranging Equation [15|and taking expectation both sides, by assumption 2, assumption 3, Equa-
tion[T2]and Equation we get

v BBl VLB) |]

A i L
< Lup) + vy Llitpey = Ol 1ol = viey (VLOLD) By) +

Ll/zn,ap 5
<E[L(ep) = LOepr1)] + Vi p LE[[$rp — OepllllPepl] + — = Elllhe p]|]
Lvn? B2nG?,
<E[L(%p) = L(trpen)] + v p LB nGoEl |1y — O] + ——2 75—
Lv2n? B32nG2,
CEIL (1) L)) + 10 LAVTG (1~ v80) S msEllgual] + e G
k=0
Lv?n? BEnG?%
<E[L(t1p) — L(Prpr1)] +vni o LBmGE T + %
(16)
Telescoping Equation[I6]forp =0to7 —1and ¢t = 0to T — 1, we have
T-17-1
DO vne o BEIVLO:,)II°]
t=0 p=0
T-1 Iy nG2 T—17-1
<E[L(%h00) = L(Pr—1.7)] +VInGoT> Y Binfo+ ———=> Y Bini, (D)
t=0 t=0 p=0
T-1 T-17-1
Lv nG'2
<L(60,) + vInG2 7* Z Bimpo+ ——= Z Z Bing -
t=0 t=0 p=0

Since from Equation we have 1 < §; < % Combining with Equation we can get

T—-17—1 T—-1 T-1T1
(7] LnG?.72¢ LI/nG2 2 $?
>3 n BIVED,)|7) < F000) G g+ PGS SIS g
t=0 p=0 t=0 t=0 p=0
Since
T—-17-1
Nep 2T D Mer—1 = V71
2 2 Zt - Z\/ﬁ
f 1 T+1 1 \/» T+1 1
=/ /—ds+~~-+ —=ds | =/ —=ds
1 V1 T VT 1 NG
zzfn(\/T+1—1)>2ﬁn(\/T—1),
T—17-1 T— 1 T-1
1 1 1
2
YD iy Z 0="1 Z =7 <1+/ —1ds+---+/ 1ds>
t=0 p=0 t=0 ottt T 1+7 T2 T—1+7
(il) 21+ In(rT — 74+ 1)) < n?(1 + In(7T)),
S

19)

21

Published as a conference paper at ICLR 2025

substituting Equation[I9]into Equation[I7] we have
min E[|VL(8,,)|’]

te[T—1],pe[r—1]

1 £(000) | LnGZr ¢ — Lz/nG ¢2T i
$ et (42 S S5,
tozpont,p t=0 p=0
< 1 (C(Ooyo) LnG? t¢n*(1 + (TT)) LuvnG? ¢*n?(1 +ln(TT))>
~2ym(VT - 1) v € 2¢2 ’
(20)
This completes the proof. O

22

	Introduction
	Related Work
	Method
	Overview
	Pseudo Gradient Penalty
	Asynchronous EDiT

	Experiments
	Experimental Setups
	Convergence and Generalization
	Acceleration
	Scalability
	Ablation Study

	Theoretical Analysis
	Conclusion
	Appendix
	Method
	Experimental Setups
	Additional Experimental Results
	Convergence and Generalization
	Acceleration
	Scalability

	Proof of Theorem 1

