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Abstract
Reinforcement learning (RL) using world mod-
els has found significant recent successes. How-
ever, when a sudden change to world mechanics
or properties occurs then agent performance and
reliability can dramatically decline. We refer to
the sudden change in visual properties or state
transitions as novelties. Implementing novelty de-
tection within generated world model frameworks
is a crucial task for protecting the agent when
deployed. In this paper, we propose straightfor-
ward bounding approaches to incorporate novelty
detection into world model RL agents by utiliz-
ing the misalignment of the world model’s hal-
lucinated states and the true observed states as a
novelty score. We provide effective approaches
to detecting novelties in a distribution of transi-
tions learned by an agent in a world model. Fi-
nally, we show the advantage of our work in Mini-
Grid, Atari, and DeepMind Control environments
compared to traditional machine learning novelty
detection methods as well as currently accepted
RL-focused novelty detection algorithms.

1. Introduction
Reinforcement learning (RL) using world models has found
significant recent successes due to its strength in sampling
efficiency and ability to incorporate well-studied Markov
Decision Process techniques (Moerland et al., 2020; Robine
et al., 2021). A world model (Ha & Schmidhuber, 2018b)
is a model that predicts the world state given a current state
and the execution that was executed (or will be executed).

While RL agents are often trained and evaluated in environ-
ments with stationary transition functions, the real world
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can undergo distributional shifts in the underlying transition
dynamics. In this paper, we address novelty detection, a
form of anomaly detection, which is relatively unexplored in
reinforcement learning (Müller et al., 2022; Nasvytis et al.,
2024). Novelties are sudden changes to the observation
space or environment state transition dynamics that occur
at inference time that are unanticipated (or unanticipatable)
by the agent during training (Balloch et al., 2022). Nov-
elties represent a permanent shift in observation space or
environment state transition dynamics, as opposed to one-
off sensory or transition errors; when a novelty occurs it
may not be encountered immediately by an agent, and be-
cause transition dynamics may be uncertain, only become
apparent after several actions (Balloch et al., 2022).

To motivate the work, consider Table 1. The top row shows
what an agent sees when training, when a novelty is intro-
duced at inference time, and post-novelty. The bottom row
shows the reconstructed image from the world model’s pre-
diction of the next state. Post-novelty, the world model’s
predicted state begins differing radically from the ground
truth. In cases where there is a novel change, the RL agent’s
converged policy is no longer reliable, and the agent can
make catastrophic mistakes. The agent may flounder inef-
fectually, or, worse, the agent can mistakenly take action
that put itself or others in harms way.

There are several ways of addressing inference-time novelty
depending on the nature of the agent’s task. One may halt
execution because continuing to run the policy has become
potentially dangerous, for example in the case of a robotic
platform or agent interacting with people, financial systems,
or other high-stakes situations. Once halted, an operator fig-
ures out the best way to retrain the agent. Alternatively, one
may attempt novelty adaptation where the agent attempts
to update its own policy during online inference time (Zhao
et al., 2019; Wilson & Cook, 2020).

In either case, one must detect that novelty has occurred
prior to halting or adapting. The standard approach—
as exemplified by Recurrent Implicit Quantile Networks
(RIQN)1 (Danesh & Fern, 2021)—is to treat novelty as a
distribution shift in either the observation space or the state-
action transition probability. This is traditionally accom-

1RIQN is the baseline method used in Out-of-Distribution Dy-
namics Detection: RL-Relevant Benchmarks and Results.
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Humanoid Freeway Minigrid

Ground Truth

Posterior

Training Novelty Post-Novelty Training Novelty Post-Novelty Training Novelty Post-Novelty

Table 1: Examples of model collapse when encountering novelty in three environments: DeepMind Control Suite Humanoid (noise
introduced), Atari Freeway (cars become invisible), and MiniGrid (lava introduced). The Ground Truth row shows actual screens during
training, when a novelty is introduced, and post-novelty. The posterior row shows the world model’s reconstructed prediction, which
deviates from the ground truth.

plished by setting a threshold hyperparameter to determine
when the distribution shift is significant enough to be con-
sidered a novelty. Setting such a parameter requires at least
implicit foreknowledge of anomalies that can occur, which
violates our assumptions that novelties be unanticipatable
and unencountered during training.

We introduce a novel technique for novelty detection with-
out the need to manually specify thresholds, and without the
need for additional augmented data. Our approach builds on
the capabilities of world models to predict the state of the
world given the current state and an action. When a novelty
occurs, our insight is that the predicted state and actual state
after an action will deviate. Our technique calculates a nov-
elty threshold bound without additional hyper-parameters
by considering how much the actual world observation de-
viates from the distribution of world observations that the
agent predicts it will encounter.

Our technique draws from the notion of Bayesian sur-
prise (Itti & Baldi, 2005). Specifically, as the agent interacts
with the environment, it tracks the KL divergence between
the predicted latent world state representation given a hidden
state and embedded image relative to the predicted latent
world state given just the hidden state (without the embed-
ded image). To develop the bound, we observe that, under
nominal conditions, any divergence should be smaller than
that of the predicted latent world state computed with the
initial hidden state, as the latter prediction becomes increas-
ingly inaccurate. But, as we will show, novelty can flip this
relationship. When this happens, we flag the violation of an
inequality of divergences.

We evaluate our method by injecting novelties into Mini-
Grid (Chevalier-Boisvert et al., 2018), Atari (Machado et al.,
2018), and continuous DeepMind Control (DMC) (Tunyasu-
vunakool et al., 2020) environments. Specifically, we use the
NovGrid (Balloch et al., 2022), HackAtari (Delfosse et al.,
2024), and RealWorld RL Suite (Dulac-Arnold et al., 2020)
that provide novelties to their respective base environments.
Due to the dearth of established novelty detection tech-

niques in reinforcement learning, we compare our method
to the one state-of-the-art RL novelty detection technique,
RIQN (Danesh & Fern, 2021). We ablate our technique to
more closely resemble standard assumptions about detec-
tion to show the possible dangers of finetuning a threshold
fit for a novelty detector. While our primary result is built
on top of the Dreamer world model (Hafner et al., 2021), we
also show that our novelty bound technique can be applied
to other types of world models with similar success.

2. Related Work
Novelty detection has taken on different names depending
on the context (Pimentel et al., 2014). There are important
applications that can benefit from RL novelty detection
frameworks (Fu et al., 2017), yet novelty detection has not
been well-studied in the realm of RL (Nasvytis et al., 2024).

Many complications arise from applying traditional ma-
chine learning novelty detection methods to an online set-
ting (Müller et al., 2022). Generalization techniques exist,
such as procedural generation to train agents to be more
robust to novel situations (Cobbe et al., 2019) and data
augmentation (Lee et al., 2019) to better train the agent,
however these techniques suffer from high sample complex-
ity (Müller et al., 2022). Furthermore, there may not be
sufficient representation of the agent’s evaluation environ-
ment to be able to detect novel Out-of-Distribution (OOD)
transitions. Recent research shows that learning an OOD
model is a difficult problem to solve and may even prove
to be impossible in certain situations (Zhang et al., 2021;
Fang et al., 2022). In addition, novelty detection techniques
in the RL domain need to consider the current context of
the situation. Not considering context becomes problematic
when assuming that data is independently and identically
distributed (i.i.d.), as it overlooks dependencies and contex-
tual information that are often crucial for accurate detection.
Thus it it not simple to apply standard detection techniques
such as (Angiulli et al., 2024) in the RL domain.
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Some methods attempt to use a measure of reward signal
deterioration as a way to detect if a novelty has occurred,
but that can prove to be dangerous in a high stakes envi-
ronment where it may be too late to recover from a nega-
tive signal(Greenberg & Mannor, 2020). This method may
also prove to have an incorrect mapping of the novelty that
caused the reward shift.

The RIQN (Danesh & Fern, 2021) framework has shown
to be successful by focusing on the aleoric uncertainty of
the agent and draws upon the generated distributions of Im-
plicit Quartille networks (Dabney et al., 2018). RIQN is an
ensemble based method that detects novelty by predicting
action values from state-action pairs as input, and predicts
the feature distribution at each time step based on the pre-
vious values of the features. First, given an ensemble of e
dynamic models and time t, RIQN computes an anomaly
score through predicting e samples. Given these samples
an anomaly score is computed through the average L1 dis-
tance for each observed feature between the samples and
the actual observation at time t. The anomaly scores for
each feature in the observation are then individually used
as values for the cusum algorithm (Page, 1954) to detect
any disturbances. However, RIQN is also sensitive to the
selection of a threshold λ, and drift ∆ which can vary from
environment to environment and must be tuned; which re-
quires a priori belief of whether anomalies will result in
large or small shifts in aleoric uncertainty.

3. Background
Partially observable Markov Decision Processes We
study episodic Partially Observable Markov decision
processes (POMDPs) denoted by the tuple M =
(S,A, T , r,Ω, O, γ), where S is the state space, A is the ac-
tion space, T is the transition distribution T (st|st−1, at−1),
r is the reward function, O is the observation space, Ω is an
emissions model from ground truth states to observations,
and γ is the discounting factor (Åström, 1965).

DreamerV2 World Model We conduct experiments ap-
plying our methods to a state-of-the-art DreamerV2 (Hafner
et al., 2021) world model framework due to its VAE and
history component, which is similar to traditional world
model architectures (Ha & Schmidhuber, 2018a;b). Dream-
erV2 learns a policy by first learning a world model and
then using the world model to roll out trials to train a policy
model. The framework is composed of an image autoen-
coder and a Recurrent State-Space Model (RSSM). Relevant
DreamerV2 components we will refer to throughout are:

• xt is the current image observation.
• ht is the encoded history of the agent.
• zt is an encoding of the current image xt that incorpo-

rates the learned dynamics of the world.

• st = (ht, zt) is the agent’s compact model state.

Given each representation of state st, DreamerV2 defines
six other learned, conditionally-independent transition dis-
tributions given by the trained world model:

DreamerV2:



Recurrent model:ht = fϕ(ht−1, zt−1, at−1)

Representation model: pϕ(zt|ht, xt)

Transition prediction model: pϕ(ẑt|ht)

Image prediction model: pϕ(x̂t|ht, zt)

Reward prediction model: pϕ(r̂t|ht, zt)

Discount prediction model: pϕ(γ̂t|ht, zt)
(1)

where ϕ describes the parameter vector for all distributions
optimized. The loss function during training (Hafner et al.,
2021) is:

L(ϕ) = E
pϕ(z|a,x)

[
T∑
t

− lnpϕ(xt|ht, zt)

− lnpϕ(rt|ht, zt)

− lnpϕ(γt|ht, zt)

+ βKL [pϕ(zt|ht, xt)||pϕ(zt|ht)]

]
(2)

where βKL[pϕ(zt|ht, xt)||pϕ(zt|ht)] is minimized by im-
proving the prior dynamics towards the more informed pos-
terior through KL Balancing (Hafner et al., 2021).

The goal of the DreamerV2 world model is to learn the
dynamics and predictors for the observation xt, reward, and
discount factor of the training environment. We consider
a single agent online RL setting, where an agent at time t
will traverse through each state st in which observations
are represented in the form of xt. The agent relies on these
along with rt to construct its belief state and make decisions
to achieve the optimal discounted sum of rewards.

We consider an agent that has trained in a stationary training
environment and then been deployed to a non-stationary
evaluation environment that undergoes a change that is a
priori unknown and unanticipated during agent development
and training.

For latent-based detection, we investigate the world model
and its learned probabilities. We construct a bound that is
not dependent on additional hyper-parameters and test
the world model’s learned logic given the effect of the ob-
servation xt at time t. Our goal is to inform the agent in
response to all possible Markovian novel observations. We
do not consider techniques that are reliant on reward deteri-
oration as those methods can involve temporally extended
action sequences to be conducted between sparse rewards.
Even with dense rewards, novelty may only be detected after
a meaningful amount of time of reward decrease.
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We also do not consider generalization techniques that try to
model all possible novelties that the agent may experience,
as it is generally impossible to construct a model that gener-
alizes towards every unseen stimuli; to do so one must be
able to categorize possible novelties in advance and generate
novelties during training time (Wang et al., 2020).

The KL loss equation in (2) implies that, as training pro-
gresses, the divergence between the latent representation
of the hidden state given the latent current state repre-
sentation with and without the direct observation goes to
zero for local transition space (Wang et al., 2019), i.e.,
KL[pϕ(zt|ht, xt)||pϕ(zt|ht)] ≤ ϵ. Given the current train-
ing mechanism in place, learning the transition distribution
may be difficult due to the task of avoiding regularizing
the representations toward a poorly trained prior (Hafner
et al., 2021). A direct consequence of using common KL
balancing techniques such as Equation (2) to bias the loss
towards the prior error is that the world model is initially
reliant on ground truth xt in contrast to a noisy ht. This
stabilizes pϕ(zt|ht, xt) for proper training of pϕ(zt|ht) and
pϕ(x̂t|ht, zt) (Asperti & Trentin, 2020) until the model un-
derstands the role of history ht. Since the world model does
not directly measure this relationship with xt, we introduce
the cross entropy score comparison:

H(pϕ(zt|ht, xt), pϕ(zt|h0))

−H(pϕ(zt|ht, xt), pϕ(zt|h0, xt))
(3)

where h0 is simply an empty hidden state passed to the
model in order to simulate the dropout of ht and compute
the influence that the ground truth xt has on the final predic-
tion of the distribution of latent state zt. This gives us an
empirical measure of the world model’s current reliance and
improved performance based on the ground truth observa-
tion xt, since the cross entropy score comparison increases
if we find the entropy to be minimized with respect to h0.

As the divergence between latent predictions with
and without the ground truth observable decreases,
KL[pϕ(zt|ht, xt)||pϕ(zt|ht)] → ϵ, we expect a reduction
of the impact of xt. We model this relationship with the
novelty detection bound:

KL[pϕ(zt|ht, xt)||pϕ(zt|ht)] ≤
KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]

−KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)]

(4)

where we substitute KL divergence in place of cross entropy
loss to use the world model loss equation (2) (See Appx. D
for a derivation).

The intuition behind the bound is as follows. If this
relationship becomes disturbed given an unforeseen ob-
servation x̂t—that is, if the model is incapable of con-
structing a mapping such that the cross entropy of

H(pϕ(zt|ht, xt), pϕ(zt|h0, xt)) is not minimized with re-
spect to the performance of H(pϕ(zt|ht, xt), pϕ(zt|h0))—
the threshold (the right-hand side of the equality in (4))
will decrease. But it is also expected that the left-hand
side, KL[pϕ(zt|ht, xt)||pϕ(zt|ht)], reaches extremely high
values, depending on the current reliance of ht.

Thus, there are two cases of detection arise upon seeing an
observation xt:

Proposition 3.1. If the cross entropy score comparison
becomes negative when introducing the vector xt, then the
right side of (4) will become negative, which immediately
flags xt as novelty due to the property of non-negativity of
the left side KL divergence.

Proposition 3.2. If the cross entropy score comparison be-
comes nonnegative when introducing the vector xt, then 4
defines a decision boundary in the latent space over the mea-
sure of robustness to partial destruction of the input (Vincent
et al., 2008; Srivastava et al., 2014), i.e.:

KL[pϕ(zt|ht, xt)||pϕ(zt|ht)]+

KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)] ≤
KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]

(5)

where the model is tasked to simultaneously have suf-
ficiently low KL divergence with the dropout of xt

and with the dropout of ht. Therefore, our bound
is both combating posterior collapse, i.e., pϕ(zt|xt) =
pϕ(zt|h0), as well as measuring possible over-fitting i.e
KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)] ≫ c for some large c.

We find the above empirically to be true, as illustrated in
Figure 1. As the agent trains in a stationary (no novelty) en-
vironment, the surprise (orange) (Itti & Baldi, 2005) settles
and steadily decreases. Initially, the difference of KL diver-
gences (blue) is below the orange line, and all new stimuli
are flagged as novel, but the world model quickly learns
that the environment is predictable. As the agent progresses
through training, the green line represents how effective
inputs (h0, xt) are to the model in terms of predicting a dis-
tribution that minimizes KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)].
Initially this value is close to the orange line because the
model has learned to predict what will happen based mostly
on the observation xt. At some point the model discovers
that incorporating history ht further drives loss decrease,
and the KL divergence with the history dropout rises. A
properly trained model is one in which its learned represen-
tations, ht and xt, are useful in the prediction of distribution
pϕ(zt|ht, xt). Figure 1 illustrates that failure to do so may
result in xt being interpreted as a noisy signal (blue differ-
ences collapse to orange) or the transition prediction model
with ht has not yet met sufficiently low KL divergence (or-
ange exceeds blue).
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Figure 1: Visualization of the average levels of divergence given
xt samples from the nominal MiniGrid (Chevalier-Boisvert et al.,
2018) environment as training progresses: proposed bound (Blue);
divergence of the RSSM predicted distributions given (ht) and
(ht, xt) (Orange); divergence between the RSSM given (ht, xt)
and the RSSM given only the image (h0, xt) (Green line) in the
Nominal environment; and the divergence of the RSSM given (ht,
xt) and receiving zero input (h0) (Red) as training progresses. For
a training time-step t, a given xt is said to be a normal observation
if the value of KL[pϕ(zt|ht, xt)||pϕ(zt|ht)] is below blue (within
the green shaded area), otherwise xt is said to be a novel obser-
vation given the current context. See Appendix C.1 for similar
visualizations corresponding to other environments.

4. Experiments
To empirically evaluate our bound, experiments are con-
ducted in the MiniGrid (Chevalier-Boisvert et al., 2018),
Atari (Machado et al., 2018), and continuous Deep Mind
Control suite (DMC) (Tunyasuvunakool et al., 2020)2. We
introduce novelties by, after a certain amount of time,
generating novel observations from alternative environ-
ment configurations from NovGrid (Balloch et al., 2022),
HackAtari (Delfosse et al., 2024) and the RealWorldRL
Suite (Dulac-Arnold et al., 2020). We detail each of novel
environments in Appendix E. We use the exact hyper-
parameters introduced in Hafner et al. (2021) for training
DreamerV2, our base world model (c.f. our Appendix F).

We first train an agent to learn a ϵ-optimal policy in the
nominal environment then transfer the agent to one of the
novel environments during testing time and let the trained
agent take steps in each novel environment, capturing 300
independent and identically distributed episodes. We track
each time step where novelty is detected to imitate possi-
ble agent halting situations. The agent’s trained policy is
expected to be sub-optimal in the novel environments but it
is not re-trained at any point to adapt to the novel environ-
ments’ dynamics. A novelty is experienced in every episode

2DMC experiments are conducted in pixel space, whereas most
common usage is via position, velocity and orientation vectors.

traversed and all detection methods use the same policy.

4.1. Baselines

RIQN We compare our bound against the Recurrent
Implicit Quantile Network anomaly detection model
(RIQN) (Danesh & Fern, 2021), a traditional and accepted
RL-focused novelty detection approach, taking note of some
of the practical desiderata discussed in (Müller et al., 2022)
to ground our evaluation techniques. We explicitly train
the RIQN model using 106 nominal transitions given by
the trained policy as recommended (Danesh & Fern, 2021).
We test the trained RIQN algorithm with the recommended
hyper-parameters, as well as use the recommended cusum
algorithm to detect novelties (Page, 1954), and the same
trajectories used by the world model. In addition, we adjust
the threshold λ, and drift ∆ (value listed next to method
name in tables) to improve the performance on larger obser-
vation dimensions. We use an ensemble size of 5 within the
framework. RIQN represents the class of ensemble-based
baselines when correcting for the RL setting.

PP-Mare We derive a novel ablation reconstruction error
technique over the induced DreamerV2’s RSSM prior and
posterior reconstructions for a single realized step. This
is a straightforward application of a world model wherein
reconstructed states are directly compared; it is a simple, but
effective, way to detect novelties and anomalies. However, it
does require a tuned hyperparameter. We derive the method
by first observing that locally successful training of the
world model implies βKL[pϕ(zt|xt, ht)||pϕ(ẑt|ht))] ≤ ϵ.
To properly utilize reconstruction error for trained world
models, we induce pϕ(xt|ht, ẑt) from Eq. 2 where ht =
fϕ(ht−1, zt−1, at−1), zt−1 ∼ pϕ(zt−1|ht−1, xt−1), and
ẑt ∼ pϕ(zt|ht) to compare the i pixel reconstruction losses
between the generated 1-step prior and posterior xt observa-
tions and bound the difference by a small λ defined by the
user during deployment:∑N

i |x̂t
i
prior − x̂t

i
posterior|

N
≤ λ (6)

where x̂tprior ∼ pϕ(x̂t|ht, ẑt), and x̂tposterior ∼
pϕ(x̂t|ht, zt). This removes direct dependence on the replay
buffer by using only the final performance of the encoder
and the current state (zt, ht). As discussed further in Ap-
pendix A (see Figure 3 in the Appendix in particular), the
prior and posterior observations can have dramatic changes
in representation when the predicted latent representation
zt is revealed.

We tune λ (value listed next to method name in tables) to
improve the performance of our PP-Mare baseline during all
experiments. PP-Mare represents the class of observation-
based baselines when correcting for the RL setting.
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Atari Boxing Kangaroo Freeway SeaQuest
KL Bound ≤ 10−2 ≤ 10−2 ≤ 10−2 ≤ 10−2

PP-Mare .04 ≤ 10−2 ≤ 10−2 ≤ 10−2

RIQN .17 .39 .24 .43

DMC Cartpole-B. Quadruped-R. Humanoid-S. Walker-W.
KL Bound ≤ 10−2 ≤ 10−2 ≤ 10−2 ≤ 10−2

PP-Mare .01 .01 ≤ 10−2 ≤ 10−2

RIQN .68 .19 .05 .18

Table 2: False positive rates (lower is better) for nominal (no
novelty) environments. PP-Mare and RIQN hyperparameters are
tuned for each environment and correspond to those reported in
Tables 3, 4, and 4 for each environment.

4.2. Metrics

We use the following metrics. Novelty detection delay error
is the difference between the earliest time step that novelty is
first observable and the time step that the novelty is detected.
Average delay error (ADE) is the measure of how many
steps off the detection method is from the true environment
time step of the novelty. We calculate the agent’s average
delay error by averaging the novelty detection delay error
across all novel environment episodes. False positives: We
use the original nominal training environment to test for
false positives. We do not consider false negatives when in
the training environment. Ideal performance primarily mini-
mizes the average delay error and false positive rates (Müller
et al., 2022). In addition to average delay error, we also mea-
sure the real time inference speed to compare the raw speed
of each method when computational resources are held fixed.
Finally, we measure AUC to evaluate the discriminative abil-
ity of anomaly scores (left-hand side of Eqn. 4) generated
by each method.

4.3. Results

False Positives Table 2 shows false positive rates for Atari
and DeepMind Control suite environments. The false posi-
tive rates for Minigrid-DoorKey-6x6 is ≤ 10−2, .03,
and .52 for the KL bound method, PP-Mare, and RIQN.

The KL bound method false positives rate is ≤ 10−2 across
all environments tested, allowing for minimal confronta-
tion from a potential user. We hypothesize that KL’s high
performance in avoiding false positives coincides with the
behavior observed from Figure 1 and is a direct result of the
bounds formulation. RIQN’s high false positive rate was
also observed by Danesh & Fern (2021).

Average Delay Error and AUC Scores Average Delay
Error and AUC Scores are reported in Tables 3 (Atari),
4 (DeepMind Control Suite), and 5 (Minigrid). The KL
bound appears to demonstrate a strong potential as a versa-
tile approach for novelty detection, across all environments,
particularly due to its ability to detect nuanced differences
in anomaly score scales. Despite tuning λ and ∆ parameters

ADE↓ AUC↑ ADE↓ AUC↑ ADE↓ AUC↑

Boxing OneArm BodySwitch Doppleganger

KL Bound 52.6 .708 ≤ 10−2 ≥ .99 ≤ 10−2 ≥ .99
PP-Mare (2) 22.5 .605 6.30 .915 5.4 .862
RIQN (10−5, 10−7) 347.5 .505 509.3 .380 103.1 .401

Kangaroo Floorswap Difficulty+ DisableMonkey

KL Bound 9.9 .787 ≤ 10−2 ≥ .99 .960 ≥ .99
PP-Mare (.5) 85.2 .281 42.5 ≥ .99 41.3 .937
RIQN (10−2,10−2) 166.3 .541 94.2 ≥ .99 93.1 .710

Freeway InvisibleCars ColorCars FrozenCars

KL Bound ≤ 10−2 ≥ .99 ≤ 10−2 ≥ .99 ≤ 10−2 .985
PP-Mare (.5) 2.33 ≥ .99 1.84 ≥ .99 2.60 .931
RIQN (10−7, 10−9) 2.87 .938 2.62 ≥ .99 .502 .980

SeaQuest DisableEnemy Gravity UnlimitedOxygen

KL Bound .202 .962 45.8 .949 ≤ 10−2 ≥ .99
PP-Mare (.7) 111.6 .678 24.1 .882 3.73 .938
RIQN (10−2, 10−3) 45.3 .272 157.3 .390 16.0 .701

Table 3: Average Delay Error and AUC results for Atari environ-
ments, with best tuned parameters when appropriate.

for RIQN, our proposed KL and PP-Mare methods achieved
lower or comparable average delay error (ADE) and higher
AUC to RIQN across all MiniGrid and Atari environments,
while maintaining competitive performance in the DMC do-
main. RIQN’s faster ADE scores in DMC may be achieved
by its willingness to trade-off higher false positive rates in
certain environments, such as Cartpole-3D-Balance
where the false positive rate is as high as 68%, but never
lower than 5% and usually somewhere in the middle. Ar-
guably, high false-positive anomaly detection rates are un-
desirable. Additionally, RIQN exhibits greater sensitivity to
subtle observation changes, as reflected in its strong perfor-
mance in low-noise environments.

PP-Mare generally falls behind our KL bound, likely due
to reconstruction error not being a measure optimized for
computing semantic differences between the observations.
Further, PP-Mare assumes a false correlation between pixels
with high reconstruction error and novel regions of input im-
ages (Feeney & Hughes, 2021). In order to achieve a greater
AUC for the PP-Mare method, a better similarity/difference
metric would be needed to quantify the differences between
the observations.

The AUC score also presents possible improvements that
can be made over each method, as at times RIQN’s cusum
detection was unable to take advantage of decent AUC
scores generated by each observation feature. The KL bound
was effectively able to translate its higher AUC scores far
more often than RIQN, despite no user interference.

Real Time Halting Speed We analyze the real time halt-
ing speed to put ADE and FP rate into perspective for real
world detection scenarios. Table 6 presents the real time
halting speed increase in comparison to the RIQN algorithm.
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ADE↓ AUC↑ ADE↓ AUC↑ ADE↓ AUC↑

Cartpole-3D-Balance LowPerterb HighPerterb LowNoise

KL Bound 51.9 .799 49.2 .774 24.1 .853
PP-Mare (.7) 45.4 .529 43.7 .522 61.3 .600
RIQN (10−1,10−1) 6.20 .915 5.75 .890 3.67 ≥ .99

HighNoise LowDamp HighDamp

KL Bound 2.86 ≥ .99 20.2 .784 25.0 .770
PP-Mare (0.7) 22.7 .840 110.8 .395 94.5 .448
RIQN (10−1,10−1) 3.33 .923 5.33 .543 1.66 .520

Quadruped-3D-Run LowPerterb HighPerterb LowNoise

KL Bound 1.00 .908 1.30 .901 24.8 .839
PP-Mare (1.5) 1.00 .793 1.26 .830 17.3 .645
RIQN (10−1,10−1) 13.3 .806 12.7 .883 4.70 .850

HighNoise LowDamp HighDamp

KL Bound 3.82 ≥ .99 89.8 .512 112.9 .507
PP-Mare (1.5) 3.94 .821 49.1 .448 52.86 .415
RIQN (10−1,10−1) 4.02 .980 94.3 .426 103.0 .489

Humanoid-3D-Stand LowPerterb HighPerterb LowNoise

KL Bound 44.4 .925 ≤ 10−2 ≥ .99 9.05 .755
PP-Mare (4) 17.9 .833 15.2 .849 157.0 .363
RIQN (10−1,10−1) 64.8 .854 32.3 .983 2.16 .919

HighNoise LowFriction HighFriction

KL Bound ≤ 10−2 ≥ .99 59.8 .748 18.75 .845
PP-Mare (4) 258.5 .372 17.3 .853 8.10 .822
RIQN (10−1,10−1) 1.50 .982 53.1 .549 12.7 .480

Walker-3D-Walk LowPerterb HighPerterb LowNoise

KL Bound ≤ 10−2 ≥ .99 ≤ 10−2 ≥ .99 17.6 .573
PP-Mare (7) 18.7 .725 7.16 .798 50.9 .407
RIQN (10−1,10−1) 8.11 .743 7.80 .715 2.73 .883

HighNoise LowFriction HighFriction

KL Bound 1.48 .911 17.25 .961 5.93 ≥ .99
PP-Mare (7) 21.1 .546 2.37 .943 1.98 .962
RIQN (10−1,10−1) 2.10 .986 10.55 .700 13.6 .722

Table 4: Average Delay Error and AUC results for DeepMind
Control environments, with best tuned parameters when appropri-
ate.

We observe that the KL computation increases the speed
performance in both the Atari and DMC domains, by a
magnitude of 102 and 103 respectively. Despite the heavier
architecture of a world model, the advantage of using KL or
PP-Mare over RIQN appears to be the removal of the need
to compute an individual anomaly score over each m feature
(of the observation) for e samples, as well as operating the
cusum calculation over all m features for each transition. In-
deed, we see the increase in observation dimension between
Atari and DMC vastly slows the RIQN algorithm as feature
dimension begins to rise.

Alternative World Models In this section we explore
world model architectures other than the RNN-based Dream-
erV2 architecture. World models can alternatively be built
on top of diffusion (Ho et al., 2020; Alonso et al., 2024),
and transformer (Vaswani et al., 2017; Micheli et al., 2023)
models. We provide detailed instructions (see Appendix B
for details) required to replicate results on different world

ADE↓ AUC↑ ADE↓ AUC↑ ADE↓ AUC↑

DoorKey-6x6 LavaGap BrokenDoor DoorGone

KL Bound .110 .732 ≤ 10−2 .939 .120 .940
PP-Mare (1) .170 .765 .017 .784 .080 .685
RIQN (10−2, 10−2) ≤ 10−2 .760 2.56 .920 .066 .600

Teleport ActionFlip

KL Bound ≤ 10−2 .992 ≤ 10−2 .991
PP-Mare (1) .080 .959 .105 .962
RIQN (10−2, 10−2) 6.29 .950 2.34 .890

Table 5: Average Delay Error and AUC results for Minigrid
environments, with best tuned parameters when appropriate.

Method Average False Positive Rate Inference Run-time Speedup

DMC Atari DMC Atari

RIQN .275 .308 ×1 ×1
PP-Mare ≤ 10−2 ≤ 10−2 ×1.16 · 102 ×4.45 · 101
KL bound ≤ 10−2 ≤ 10−2 ×1.34 · 103 ×5.12 · 102

Table 6: Real time performance of RIQN versus our proposed
RL-specific detection methods, in DeepMind Control Suite and the
Arcade Learning Environment (Atari) under all respective tested
novelties.

model architectures, We report ADE, FP, and AUC in Ta-
ble 7 for the Atari-Freeway environment.

The KL bound works with transformer-based world mod-
els and has very low false-positive rates as consistent with
the bound on other architectures. The transformer-based
IRIS (Micheli et al., 2023) is slower to build evidence of the
novelty, which is consistent with observations by Micheli
et al. (2023) (Appendix B) about under-sampled states on
the Atari-Freeway environment; the effect on novelty
detection is described further in our Appendix C.2. Our KL
bound method cannot be used with diffusion-based world-
models that directly generate prior and posterior images
instead of latent hidden states. Instead, we use PP-Mare, the
closest ablation that operates directly on predicted observa-
tion differences.

Exploration Effects We turn our attention toward the
hypothetical KL divergence of:

KL[p(zt|ht, xt) ∥ pϕ(zt|ht, xt)] ≤ ϵ

where p(zt|ht, xt) is the theoretical true distribution of the
training environment.

If a world model is trained alongside a policy, the world
model is restricted to train on the local transition space as
the agent zeros in on particular trajectories of states with
high value as the policy improves (Kauvar et al., 2023).
This can result in the phenomenon where the policy restricts
what the world model is able to observe and learn from.
In these cases, aspects of the environment that have not
been observed enough may appear novel even. This is
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ADE↓ AUC↑ ADE↓ AUC↑ ADE↓ AUC↑ FP↓

Atari Freeway InvisibleCars ColorCars FrozenCars

RNN (DreamerV2) ≤ 10−2 ≥ .99 ≤ 10−2 ≥ .99 ≤ 10−2 .985 ≤ 10−2

Diffusion-based ≤ 10−2 .978 ≤ 10−2 .977 ≤ 10−2 .988 ≤ 10−2

Transformer-based 8.35 .771 2.83 .876 13.4 .681 ≤ 10−2

Table 7: We compare our KL-bound results implemented on
RNN-based DreamerV2 (Hafner et al., 2021) to alternative world
model architectures: diffusion-based (Alonso et al., 2024) and
transformer-based (Micheli et al., 2023).

Table 8: Metrics for Fake Goal Environment

Method Accuracy

KL 0.49
PP-Mare 0.46
RIQN 0.21
KLExplored 0.91

technically correct because the agent is observing aspects of
the environment that it failed to learn about during training.
However, it is also not always what is intended because the
novelty detection is triggering off of the wrong aspects.

To give a concrete example, in MiniGrid-
DoorKey-6x6, an agent that is trained to always
go from the left-hand side of the map to a goal on the
right-hand side of the map will never need to turn to look at
the back side of a door. However, if the novelty is that it
starts on the right side of the door, it will see the back side
of the door, as in Figure 2. This transition was possible
during the training of the world model, but it was illogical
to consistently explore looking backwards and the policy
quickly learned to discourage that behavior, depriving the
world model of observations that should have been able to
occur naturally. After the novelty, the world model’s locally
learned dynamics classifies this transition as a novelty.

To illustrate that it is an artifact of how the agent is learned,
we provide an alternative training paradigm, KLExplored
where we train the agent from both sides of the map pre-
novelty. Table 8 shows that this increases novelty detection
accuracy because this transition is no longer flagged. We
leave the decision of declaring a novel transition as novel
based on the local environment dynamics or the agent’s
beliefs for an entirely different discussion (Miljković, 2010;
Balloch et al., 2022). This highlights the significance that
novelties are unanticipatable because a training paradigm
that is prepared for this case will be more accurate. However,
we assume that novelties cannot be anticipated in advance
and thus factored into the training paradigm.

Figure 2: Minigrid full render of a simple FakeGoal environ-
ment. Here we empirically observe when the agent detects novelty
in an task that has already been completed by disabling the goal.
For this ablation experiment, we tentatively define ground truth
novel transitions as transitions that interact with the fake goal. The
most common transition initially flagged is from left to right. We
suspect that this is due to the observation (light gray) that there
appears to be nothing on the other side of an open door.

5. Limitations
Experimentation with novelty detection algorithms can be
difficult as it requires environments that have novel alter-
native environments. To detect a novelty, one must be able
to alter the dynamics of the environment. This creates a
conundrum where experimentally we know the alternatives
but must not allow data about the alternatives to inform the
training of agents in the nominal, pre-novelty environment.
Experimenter bias is also a risk faced by those that research
novelty detection—our PP-Mare and KL-Bound methods
were developed before we identified Atari and DeepMind
Control Suite as sources of environments with alternatives.

While the research challenge of novelty detection is inspired
by the real world, where sudden, unanticipatable, and per-
manent changes to how the world works occur relatively
frequently, experimentation in the real world is often infea-
sible, requiring virtual surrogate testbeds.

While our proposition using KL divergence has proven ef-
fective empirically, future work might explore alternative
divergence measures with metric properties, such as the
Jensen-Shannon divergence or Wasserstein distance, which
could provide stronger theoretical guarantees. Additionally,
exploring the relationship between latent space dimension-
ality and the reliability of variational approximations (of
which our bound is based on see Appendix D) could yield
insights into optimizing model architecture for novelty de-
tection.

6. Conclusions
Novelties are sudden changes to the observation space or
environment state transition dynamics that occur at infer-
ence time that are unanticipated (or unanticipatable) by the
agent during training. Novelties are permanent distribution
shifts, distinguishing them from anomalies that are local-
ized one-time out-of-domain occurrences. Novelties happen
frequently in the real world and this paper addresses the
detection of novelties, as defined above, but leaves the re-

8



Novelty Detection with World Models

sponse to novelties as out of scope.

This paper proposes a novel way to detect novelty in re-
inforcement learning settings using a world model. The
KL bound method we introduce is demonstrably resilient
to false positives while simultaneously detecting novelty
quickly and accurately. Crucially, our KL bound method
does not require thresholds or other hyperparameters. This
is essential because tuning thresholds and hyperparameters
requires some a priori intuition about the nature, scope, and
scale of anomalies, which is an assumption that is disal-
lowed in our research setting on novelty.

Our paper supports the overall value of world model based
RL implementations because the world model can be re-
purposed to anomaly and novelty detection. Our method
appears robust enough to provided the basis for future re-
search on addressing inference-time novelties such as those
that occur in the real world.
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A. Reconstruction Error Comparisons

Figure 3: From left to right, x̂tprior, x̂tposterior and xt observations of agent trying to open door in the BrokenDoor custom minigrid
environment where the door fails to open despite having the correct key. The intuition of PP-Mare is to distinguish high reconstruction
loss between samples.

Figure 4: Reconstruction error alongside the three tested thresholds: Random Model, Trained Model and Combination model. Reconstruc-
tion error from the nominal MiniGrid-DoorKey-6x6 environment (Left), and Reconstruction error novel LavaGap environment
(Right). Each vertical line refers to the cut off value for the corresponding threshold. Samples to the right of the line are classified as
novelty. Reconstruction Error was generated from a trained agent. It appears that no threshold (even tuned) would separate the space.

B. Novelty Detection For Other World Model Frameworks
We consider world models architectures that learn representations of past and present states, alongside a distinct predictive
model of the future distribution of states (Werbos, 1987), preferably a powerful predictive model implemented on a general
purpose computer such as a recurrent neural network (RNN) (Schmidhuber, 1990) (Ha & Schmidhuber, 2018a; Hafner
et al., 2021). We show how our technique can be used on a RNN-based, Transformer-based, and Diffusion-based World
Model respectively:

• IRIS: (Micheli et al., 2023) At a high level, the Transformer G captures the environment dynamics by modeling
the language of the discrete autoencoder over time. We expect that the categorical probability distribution prompted
from the predicted observation logits when generating zt can be used to compute the divergence between two outputs.
Since the two world models are sufficiently different we briefly experiment with a possible interpretation of KL to
the IRIS framework. We first construct the bound similarly to Eq 4. We model pϕ(zt|h0, xt) as an auto-regressive
prediction of the logits z0t to zkt where z0t is predicted from the true observation xt. We disable kv caching to mimic
h0. We model pϕ(zt|h0) as an auto-regressive prediction of the logits z0t to zkt where z0t is predicted from the zero
vector substituting for xt in the IRIS framework, we also disable kv caching to mimic h0. We experiment with
interpreting pϕ(zt|ht, xt) as pϕ(zt|h0, xt) except pϕ(zt|ht, xt) utilizes kv caching. For our results, we experimented
with bounding by KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]−KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)]. We interpret the Bayesian surprise
as KL[pϕ(zt|z≤t, a≤t)||pϕ(zt|ẑt−1, z≤t−2, a≤t)], where ẑt−1 is generated from a previous sampling of pϕ(zt|ht, xt).
For our results, we experimented with utilizing KL[pϕ(zt|z≤t, a≤t)||pϕ(zt|ẑt−1, z≤t−2, a≤t)] as a score for each
auto-regressive step. Although our initial interpretation had moderate success, we expect that future work should be
able to improve by adjusting the bound as well as addressing the exploration concerns given the exploration trick used
in (Micheli et al., 2023), of which the "up" action was heavily sampled in favor of helping the agent complete the game,
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rather than improving the world model performance. Ultimately, we leave the task of enhancing novelty detection in
the IRIS world model for future work.

• Diamond: (Alonso et al., 2024) constructs a conditional generative model of the environment dynamics,
pϕ(xt+1|x≤t, a≤t), and considers the general case of a POMDP, in which the Markovian state st is unknown and can
be approximated from past observations and actions. To construct p, the authors condition a diffusion model on the
history, to estimate and generate the next observation directly. Since Diamond operates primarily in the observation
space, we use PP-Mare to employ a interpretation of our technique. We utilize pϕ(xt+1|x≤t, a≤t) as our prior, and
x ∼ pϕ(xt+1|x≤t+1, a≤t+1) = p(xt+1|st+1) as our posterior at each step.

C. Policy Exploration and Uncertainty Effects On Detection
C.1. Base Divergences in the Nominal Environment as Training Progresses

Figure 5 shows how the KL bound evolves with training for Atari environments. Each row is equivalent to Figure 1 but with
each component of the bound split into a separate graph:

• KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]−KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)], right-hand side of Eqn 4.

• KL[pϕ(zt|ht, xt)||pϕ(zt|ht)], left-hand side of Eqn 4

• KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)], the subtracted component of the left-hand side of Eqn 4

• KL[pϕ(zt|ht, xt)||pϕ(zt|h0)], the component of Eqn 4 that is subtracted against.

Note that the scale of the y-axes differ. The significant observation is that in the nominal environment, the right-hand side of
the bound is always higher than the left-hand side of the bound.

C.2. Exploration effects

We turn our attention toward the hypothetical KL divergence of: KL[p(zt|ht, xt)||pϕ(zt|ht, xt)] ≤ ϵ where p(zt|ht, xt) is
the theoretical true distribution of the training environment. If a world model is trained alongside a policy, the world model
is restricted to train on the local transition space as the agent zeros in on particular trajectories of states with high value as
the policy improves (Kauvar et al., 2023).

This can result in the phenomenon where the policy restricts what the world model is able to observe and learn from. In
these cases, aspects of the environment that have not been observed enough may appear novel even. This is technically
correct because the agent is observing aspects of the environment that it failed to learn about during training. However, it is
also not always what is intended because the novelty detection is triggering off of the wrong aspects.

To give a concrete example, in MiniGrid-DoorKey-6x6, an agent that is trained to always go from the left hand side of
the map to a goal on the right hand side of the map will never have need to turn to look at the back side of a door. However,
if the novelty is that it starts on the right side of the door, it will see the back side of the door, as in Figure 2. This transition
was possible during the training of the world model, but it was illogical to consistently explore looking backwards and the
policy quickly learned to discourage that behavior, depriving the world model of observations that should have been able
to occur naturally. After the novelty, the world model’s locally learned dynamics classifies this transition as a novelty. To
illustrate that it is an artifact of how the agent is learned, we provide an alternative training paradigm, KLExplored where
we train the agent from both sides of the map pre-novelty. Table 8 shows that this increases novelty detection accuracy
because this transition is no longer flagged. We leave the decision of declaring a novel transition as novel based on the local
environment dynamics or the agent’s beliefs for an entirely different discussion (Miljković, 2010; Balloch et al., 2022). This
highlights the significance that novelties are unanticipatable because a training paradigm that is prepared for this case will
be more accurate. However, we assume that novelties cannot be anticipated in advance and thus factored into the training
paradigm.

C.3. Policy Behavior against KL Divergence

World Model vs Agent Uncertainty Since the policy is configured to make decisions solely on the world model’s
predicted belief states (zt, ht), in Figure 6 we analyze the effect of the world model on the policy’s entropy (the degree of
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Figure 5: Divergences during training (Note the scale of the y axis)

Figure 6: Novelty score (x-axis) against the entropy of the policy (y-axis) during different stages of training. Here we show that regardless
of novelty being predicted (Top) or not (Bottom), the entropy of the policy does not appear to be strongly affected by the divergence of the
posterior and prior, regardless of current training performance.
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Figure 7: The normalized anomaly score trend of each detection method as the episode progresses 50 time-steps in the nominal
environment.

disorder or uncertainty in a system) during the case of novelty detection and vice versa. From our experiments, it appears
that regardless of the measured surprise from the world model, the policies entropy maintains a weak relationship with
the world model throughout the entirety of training. This suggests that simply relying on the policy may be powerless in
determining if a novel transition has occurred.

Detection Score Trend Over Time Figure 7 presents the normalized anomaly scores, (the left-hand side of Eqn 4 for
KL, and Eqn 6 for PP-MARE) for each environment in the Atari and DMC domains as timestep progresses in the nominal,
novelty-free environments. KL Bound and PP-Mare detection methods are expected to have higher anomaly scores in the
first few steps of a training episode because the world model struggles to generate reasonable predictions due to its arbitrary
prior initialization. Anomaly detection drops rapidly or was never high to begin with. This is in contrast to RIQN, where
the anomaly score fluctuates and is higher for all environments except one. It appears that leveraging learned surrogates
conditioned on the agent’s actions appears to provide more informative signals of normality in higher-dimensional spaces,
enabling the detection of novelties with minimal delay error.
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D. Derivations
Mapping from cross entropy to KL divergence:

H(pϕ(zt|ht, xt), pϕ(zt|h0))−H(pϕ(zt|ht, xt), pϕ(zt|h0, xt)) =

(KL[pϕ(zt|ht, xt)||pϕ(zt|h0)] +H(pϕ(zt|ht, xt)))

−KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)]−H(pϕ(zt|ht, xt)) =

KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]

−KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)]

Proposition 3.1 (restated) If the cross entropy score comparison becomes negative when introducing the vector xt, then
the right side of (4) will become negative, which immediately flags xt as novelty due to the property of non-negativity of the
left side KL divergence.

H(pϕ(zt|ht, xt), pϕ(zt|h0))−H(pϕ(zt|ht, xt), pϕ(zt|h0, xt)) < 0 =⇒
KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]−KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)] < 0. Then,
KL[pϕ(zt|ht, xt)||pϕ(zt|ht)] < KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]−KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)] =⇒

KL[pϕ(zt|ht, xt)||pϕ(zt|ht)] < 0; Which is impossible.

Proposition 3.2 (restated) If the cross entropy score comparison becomes nonnegative when introducing the vector
xt, then 4 defines a decision boundary in the latent space over the measure of robustness to partial destruction of the
input (Vincent et al., 2008; Srivastava et al., 2014), i.e:

KL[pϕ(zt|ht, xt)||pϕ(zt|ht)]+KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)] ≤
KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]

H(pϕ(zt|ht, xt), pϕ(zt|h0))−H(pϕ(zt|ht, xt), pϕ(zt|h0, xt)) > 0:

H(pϕ(zt|ht, xt), pϕ(zt|h0))−H(pϕ(zt|ht, xt), pϕ(zt|h0, xt)) ≥ 0 =⇒
KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]−KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)] ≥ 0 =⇒
KL[pϕ(zt|ht, xt)||pϕ(zt|h0)]−KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)] ≥ ϵ =⇒
KL[pϕ(zt|ht, xt)||pϕ(zt|h0)] ≥ ϵ+KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)] =⇒
KL[pϕ(zt|ht, xt)||pϕ(zt|h0)] ≥ KL[pϕ(zt|ht, xt)||pϕ(zt|ht)]

∗ +KL[pϕ(zt|ht, xt)||pϕ(zt|h0, xt)]

(Iff the local training of KL[pϕ(zt|ht, xt)||pϕ(zt|ht)] ≤ ϵ holds for some ϵ)∗

(7)

Let the full posterior pϕ(zt|xt, ht) be the most informed distribution and the desired distribution with support over the latent
space Z at any given t, and let fθ map to the representation of a distribution with the support of Z as well.

Utilizing notation similar to that in Vincent et al. (2008), denote (ht, xt) as the clean input x (not to be confused with xt),
and define three variants of x′: {x′

(−ht)
, x′

(−xt)
, x′

(−ht,−xt)
}, which denote the removal of features (ht), (xt), and (ht, xt)

from the clean input x, respectively.

Since the loss is at the latent level, the robustness to partial destruction of a single input x for a desired distribution is
measured as:

L(pϕ(zt|ht, xt), fθ(x
′))

Therefore, if L is chosen to be the KL divergence, and x′ becomes explicit, then Proposition 3.2 as can be rewritten as:

L(pϕ(zt|ht, xt), pϕ(zt|h0)) > L(pϕ(zt|ht, xt), pϕ(zt|ht))
∗ + L(pϕ(zt|ht, xt), pϕ(zt|h0, xt))

KL(pϕ(zt|ht, xt) ∥ pϕ(zt|h0)) > KL(pϕ(zt|ht, xt) ∥ pϕ(zt|ht))
∗ +KL(pϕ(zt|ht, xt) ∥ pϕ(zt|h0, xt))

where pϕ corresponds to the distribution modeled by fθ given some x
′
, and h0 represents the state of h when no conditioning

information is available.
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Theoretical Guarantee of Equation 4 Assumption: Suppose the objective defined by Equation 2 is minimized such that:

β KL
[
pϕ(zt|ht, xt)

∥∥pϕ(zt|ht)
]
= 0,

implying that zt is conditionally independent of xt given ht. Furthermore, assume that the model distribution pθ is correctly
specified, meaning there exists a set of parameters θ∗ such that:

pϕ(·|·) = p∗(·|·),

where p∗(·|·) denotes the well defined true conditional distribution. Then we can rewrite Proposition 3.2 as:

KL(pϕ(zt|ht, xt) ∥ pϕ(zt|h0)) > KL(pϕ(zt|ht, xt) ∥ pϕ(zt|h0, xt))

Note that the explicit definition is:

KL
(
pϕ(zt | ht, xt)

∥∥∥pϕ(zt | h0)
)
= Epϕ(zt|ht,xt)

[
log

pϕ(zt | ht, xt)

pϕ(zt | h0)

]
,

KL
(
pϕ(zt | ht, xt)

∥∥∥pϕ(zt | h0, xt)
)
= Epϕ(zt|ht,xt)

[
log

pϕ(zt | ht, xt)

pϕ(zt | h0, xt)

]
.

Now consider the difference:

∆ = KL
(
pϕ(zt | ht, xt)

∥∥∥pϕ(zt | h0)
)
− KL

(
pϕ(zt | ht, xt)

∥∥∥pϕ(zt | h0, xt)
)
.

∆ = Epϕ(zt|ht,xt)

[
log

pϕ(zt | ht, xt)

pϕ(zt | h0)

]
− Epϕ(zt|ht,xt)

[
log

pϕ(zt | ht, xt)

pϕ(zt | h0, xt)

]
= Epϕ(zt|ht,xt)

[
log

pϕ(zt | ht, xt)

pϕ(zt | h0)
− log

pϕ(zt | ht, xt)

pϕ(zt | h0, xt)

]
= Epϕ(zt|ht,xt)

[
log

pϕ(zt | h0, xt)

pϕ(zt | h0)

]
.

Thus, we have a key result:

∆ = Epϕ(zt|ht,xt)

[
log

pϕ(zt | h0, xt)

pϕ(zt | h0)

]
.

The inequality

KL
(
pϕ(zt | ht, xt)

∥∥∥pϕ(zt | h0)
)
≥ KL

(
pϕ(zt | ht, xt)

∥∥∥pϕ(zt | h0, xt)
)

thus holds whenever

Epϕ(zt|ht,xt)

[
log

pϕ(zt | h0, xt)

pϕ(zt | h0)

]
≥ 0.

Which can be interpreted as holding iff the Expected Information Gain (EIG) of xt is nonnegative under the distribution of
pϕ(zt | ht, xt).

Discussion on KL Divergence Properties We briefly note that KL divergence is not a true metric. The bound in
Proposition 3.2 compares the posterior to three different priors and provides a useful approximation for detection, rather
than a strict mathematical guarantee. Formally, for distributions P, Q, and R, the KL divergence does not generally satisfy
DKL(P ∥ R) ≤ DKL(P ∥ Q) + DKL(Q ∥ R). This means our bound might be violated not only due to novelty but
potentially due to the inherent non-metric behavior of KL divergence, particularly in high-dimensional or complex latent
spaces.
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E. Novel Environments
Below we state each novel environment alongside what timestep T was used to evaluate our method (Note that frame
number is different from T ):

• MiniGrid

– DoorKey-6x6

* BrokenDoor: The door no longer opens, even with the key. T is set to the timestep when the agent attempts
to open the door.

* ActionFlip: All movement actions are set to the opposite direction. T is set to when the agent chooses to
rotate.

* Teleport: Teleport the agent randomly then perform the selected action. T is set to 5.

* HeavyKey: The key can no longer be picked up. T is set to when the agent tries to pick up the key.

* LavaGap: A lava gap is introduced around the goal. T is set to when the lava is in the agent’s sight.

* DoorGone: The door is removed from the environment and is replaced with empty space. T is set when the
empty space is in the agent’s sight.

• Atari

– Freeway

* InvisibleCars: All cars are invisible but still move. T = 100.

* ColorCars: All cars are changed to black. T=100.

* FrozenCars: All cars are suddenly frozen, reset, and do not move. T=100.
– Kangaroo

* FloorSwap: The agent suddenly switches onto a different floor. T = 300.

* Difficulty+: The games difficulty switches to the hardest. T = 300.

* DisableMonkey: All monkeys are removed from the game. T is set to when the monkeys are fully on the
screen.

– SeaQuest

* DisableEnemy: Enemies are removed from the game. T is set when the enemies are fully on the screen. T
= 300.

* UnlimitedOxygen: The player suddenly gains unlimited oxygen. T = 500.

* GravityDrift: The gravity begins to become stronger. T = 300.
– Boxing

* OneArm: One of the agent’s arms are disabled. T is set to the time-step when the agent first attempts to use
the disabled arm.

* BodySwitch: The agent and the opponent switch places visually. T = 300.

* Doppleganger: The agent and opponent look exactly the same. T = 300.

• DeepMind Control Suite

– All environments use the following:

* Perturb: The agent suddenly has a limb length increase. T = 1.
· Walker: Thigh length increase to .3 (Low) or 1 (High).
· Humanoid: Head size increase to .2 (Low) or .3 (High).
· Cartpole: Pole mass increase to 5 (low) or 10 (High).
· Quadruped: Shin length increase to 1 (low) or 2 (High).

* Noise: The agent’s observations begin to be filled with gaussian noise. Standard Deviation: 5 (Low) or
Standard deviation: 30 (High). T = 30.

* Friction: The agent’s environment has 6 (Low) or 10 (High) increased friction. T = 1.

* Damping: The agent’s joints have 1 (Low) or 2 (High) increased damping. T = 30.
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We first train an agent to learn a ϵ-optimal policy in the nominal environment, then transfer the agent to one of theenvironments
with novelties during testing time. We then let the trained agent take steps in each novel environment, capturing 50,000 steps
within various independent and identically distributed episodes; tracking each time step where novelty is detected to imitate
possible agent halting situations. The agent’s trained policy is expected to be sub-optimal in the novel environments and is
not re-trained at any point to adapt to the novel environments’ dynamics. All novelties are experienced in every episode
traversed.

F. Hardware Requirements
All experiments can be sufficiently reproduced utilizing a NVIDIA GeForce GTX 1080 GPU with at least 8 GB of VRAM
for environment complexity, a AMD Ryzen 5 5600X 6-Core Processor and at least 50 MB for files, excluding training data
which is dependent on environment and model hyper-parameters.

Future work would likely go beyond the scope of these hardware requirements, and we expect that cloud computing is a
necessity to experiment in larger domains.

F.1. Dreamer World Model Training Parameters

Name Symbol Value

World Model

Dataset size (FIFO) — 2 · 106
Batch size B 50
Sequence length L 50
Discrete latent dimensions — 32
Discrete latent classes — 32
RSSM number of units — 1024
KL loss scale β 1
KL balancing α 0.8
World model learning rate — 2 · 10−4

Reward transformation — tanh

Behavior

Imagination horizon H 15
Discount γ 0.99
λ-target parameter λ 0.95
Actor gradient mixing ρ 1
Actor entropy loss scale η 1 · 10−3

Actor learning rate — 4 · 10−5

Critic learning rate — 1 · 10−2

Slow critic update interval — 100

Common

Policy steps per gradient step — 4
MPL number of layers — 4
MPL number of units — 400
Gradient clipping — 100
Adam epsilon ϵ 10−5

Weight decay (decoupled) — 10−6

Table 9: We utilize the default training parameters specified in https://github.com/danijar/dreamerv2. Manipulating how the model is
trained could help understand the sensitivity of the bound.
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