
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

DIG: Complex Layout Document Image Generation with
Authentic-looking Text for Enhancing Layout Analysis

Anonymous Author(s)

Real Image Layout Generated Images

Figure 1: Generate corresponding document images based on the existing layout. One layout can generate an infinite number
of diverse document images with complex layout and authentic-looking text.

ABSTRACT
Even though significant progress has been made in standardizing
document layout analysis, complex layout documents like maga-
zines and newspapers still present challenges. Models trained on
standardized documents struggle with these complexities, and the
high cost of annotating such documents limits dataset availability.
To address this, we propose the Complex Layout Document Image
Generation (DIG) model, which can generate diverse document
images with complex layouts and authentic-looking text, aiding in
layout analysis model training. Concretely, we first pre-train DIG
on a large-scale document dataset with a text-sensitive loss func-
tion to address the issue of unreal generation of text regions. Then,
we fine-tune it with a small number of documents with complex
layouts to generate new images with the same layout. Additionally,
we use a layout generation model to create new layouts, enhanc-
ing data diversity. Finally, we design a box-wise quality scoring
function to filter out low-quality regions during layout analysis
model training to enhance the effectiveness of using the generated
images. Experimental results on the DSSE-200 and PRImA datasets
show when incorporating generated images from DIG, the mAP
of the layout analysis model is improved from 47.05 to 56.07 and
from 53.80 to 62.26, respectively, which is a 19.17% and 15.72%
enhancement compared to the baseline.
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1 INTRODUCTION
Document layout analysis aims to locate the component structures
in document images [22], these include titles, text, images, tables,
and other elements. Since it is usually the first step in all document
analysis and understanding, the accuracy of this step directly affects
all subsequent tasks [19].

The emergence of large-scale document layout analysis datasets
[18, 23, 42] has advanced the performance of various deep learning
models. However, these datasets are generally constructed through
semi-automatic alignment of structured documents and document
images. Although this provides sufficient data, it still has limita-
tions: 1) The construction of these datasets requires structured
documents like XML and LaTeX, primarily sourced from docu-
ments with standardized layouts like academic papers. This leads to
the trained model failing to achieve satisfactory results on complex
layouts beyond the dataset’s scope. 2) The annotation granularity
is fixed, which means manual data annotation is the only option for
identifying unannotated or more fine-grained components. How-
ever, large-scale image annotation is inefficient and label-intensive.
Therefore, exploring automated methods to acquire annotation
images is crucial for enhancing complex layout analysis.

Recently, significant progress has been made in controllable
image generation, enabling both text and image to control the pro-
cess [26, 36, 40]. Therefore, a spontaneously idea is that can we
use layouts to control the generation of document images,
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thus eliminating the labeling costs? Recent works have utilized
controllable image generation models to generate additional data
for enhancing the image classification and semantic segmentation
tasks. One of the common limitations of these works is that their
target images are natural images. However, document images differ
significantly from natural images in layout, content, and resolution
requirements. Directly applying existing image generation mod-
els to generate document images leads to a huge gap from real
images. Another key issue is the severe distortion in text regions,
which make up a large portion of document images, rendering the
generated images unsuitable for training layout analysis models.

To address these issues, we propose a general document image
generation (DIG) model. DIG is a two-step pre-training and control-
lable image generation model leveraging a large-scale document
dataset. In the first step, we only train the autoencoder of the image
generation model using a text-sensitive loss function, while keeping
the control module frozen. This training strategy enables the model
to generate images with authentic-looking text. In the second step,
we freeze the image generation model and focus on training the
control module. This allows the model to generate images based
on the given layouts. After pre-training, we fine-tune DIG with
complex layout documents to generate images with the same lay-
outs. As shown in Figure 1, DIG can generate a variety of highly
realistic document images with authentic-looking text according to
one layout. To improve the diversity of layouts in generated images,
we also train a layout generation model to generate new complex
layouts as a supplement to DIG. DIG can generate document images
that conform to the new layouts, as shown in Figure 2.

On a real scenario, the generated images may inevitably include
some low-quality regions, which have negative effect on the train-
ing of layout analysis models. To tackle this issue, we design a
box-wise quality scoring function to dynamically filter low-quality
regions. Intuitively, low-quality regions will suffer higher losses,
which inspires us to continuously update the average loss of every
ground truth bounding box in generated images as its quality score.
Bounding boxes higher than the score threshold are discarded, and
their losses do not participate in model training.

Our contributions can be summarized as follows:

• We propose a new paradigm for obtaining complex layout
document images by layout-controlled image generation.
We train a document image generation model, DIG, us-
ing a text-sensitive loss function to ensure the generation
of authentic-looking text. Using these generated images
further enhances the performance of document layout anal-
ysis.

• We use a layout generation model to learn existing docu-
ment layouts and generate new layouts. Then we use DIG
to generate images corresponding to the new layout to
improve the layout diversity.

• We design a box-wise quality scoring function that filters
low-quality regions of the generated images during layout
analysis model training, improving the efficiency of using
the generated images.

• We apply the generated images by adding them to the train-
ing set or using them as a pre-training set. Experimental
results demonstrate that generated images can significantly

Original Layout New Layouts Generated Images

Figure 2: Generate document images based on the new layout,
which is generated from the original layout.

improve the layout analysis model’s capabilities on complex
layout document images (mAP 47.05 → 56.07 on DSSE-200
and 53.80→ 62.26 on PRImA).

2 RELATEDWORK
2.1 Document Layout Analysis Datasets
Document layout analysis datasets consist of document images
and document components information. They are categorized into
manually annotated and semi-automatic annotated.

Early datasets were mostly manually annotated and limited in
quantity. SectLabel [20] includes 347 images from papers. PRImA [2]
consists of 478 images from magazines and papers. DSSE-200 [38]
contains 200 images, encompassing magazines, newspapers, slides,
scanned documents, and papers. Recently, a large-scale manually
annotated dataset, DocLayNet [23], has been introduced, consisting
of 80,863 images from scientific, patent, manual, law, tender, and
financial documents.

Before DocLayNet was proposed, large-scale datasets generated
through semi-automatic annotation were widely used. PubLayNet
[42] consists of over 360,000 images by matching papers in PDF
and XML formats. Similarly, DocBank [18] is comprised of 500,000
images by matching papers in PDF and LaTeX formats. Models
trained on these datasets performed well within their scopes but
showed disparities when applied to documents from other domains.

To summarize from the above literature, there are three main
problems with existing datasets: 1) Semi-automatic annotation re-
quires structured documents, which typically have a simple layout.
Therefore, models trained on such datasets are inadequate to handle
complex layout analysis. 2) The high cost of manual annotation lim-
its the scale of datasets. 3) Once the construction is completed, it is
impossible to make any adjustments to the annotation granularity.
Therefore, when applying the dataset to tasks with different anno-
tation rules, reconstructing the entire dataset becomes unavoidable,
representing themost pressing challengewithin the existing dataset.
To this end, a low-cost method for acquiring annotated images with
complex layouts is necessary.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

DIG: Complex Layout Document Image Generation with Authentic-looking Text for Enhancing Layout Analysis ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

train

Images with New Layout

fine-tune

pretrain

Complex Layout
Generation Model

fine-tune

Complex DIG
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Figure 3: The pipeline of generating additional training data for document layout analysis through layout-controlled image
generation. We pre-train DIG using a text-sensitive loss function for authentic-looking text generation. Under the control of
original layouts and new layouts generated through a layout generation model, new images are generated. The quality scoring
function which dynamically filters low-quality regions improves the effectiveness of utilizing the generated images.

2.2 Controllable Image Generation Model
The drawback of uncontrolled image generation models is that
the input only consists of noise. As an improvement, controllable
image generation models consider both text and images, which
mainly involve three different structures: Generative Adversarial
Networks (GANs) [8], Variational Autoencoders (VAE) [14], and
Diffusion Models (DM) [11]. GANs consist of a generator and a dis-
criminator, competing against each other to generate images. VAE
encodes images into the mean and variance of a probability distribu-
tion, then generate latent space vectors through random sampling
to reconstruct images. DMs gradually add noises to images and
learn the reverse diffusion process through a U-net structure [27]
to construct images from noises. Among them, DM-based methods
[26, 35, 36, 40] have achieved the SOTA performance. For example,
SDM [35] input the control conditions into the decoder of the U-net
to guide image generation. Latent Diffusion Models (LDMs) [26]
employ a pre-trained autoencoder to shift diffusion models from
pixel to latent space, and cross-attention layers integrated into the
U-net enable controllable image generation. FreestyleNet [36] ap-
plies Stable Diffusion (SD) [1] (LDMs trained on LAION-5B [29])
as the image generation model, and introduces a rectified cross-
attention module to the U-Net to integrate control. ControlNet [40]
preserves SD’s parameters while incorporating a trainable U-Net
encoder. This encoder connects to SD’s U-Net decoder via zero
convolutions. Control conditions are input into the trainable en-
coder and processed through zero convolutions to generate images,
ensuring noise-free fine-tuning of SD.

2.3 Training Data Generation
Due to the impressive performance of controllable image genera-
tion models, some works have acquired additional training data by
using GANs [3, 12, 15, 31, 41] or Diffusion Models [4, 10, 28, 32].
He et al. [10] and Azizi et al. [4] investigated the effectiveness of
generated images for assisting image classification. Trabucco et
al. [32] focused on using image generation models to edit existing
training images. In the latest research, FreeMask [37] shared a sim-
ilar motivation with us and they improved semantic segmentation
performance using generated images.

Compared to tasks in the natural image segmentation domain
like FreeMask, generating data for document layout analysis is
more challenging. Image generation models commonly struggle
with text rendering in images [7, 39], leading to a domain gap be-
tween generated "document images" and real images. Furthermore,
compared to natural images, the visual differences between compo-
nents of different categories are smaller in document images, while
the visual differences between components of the same category are
larger [6]. Hence, additional training of image generation models
is necessary for generating document images.

2.4 Layout Generation Method
Generating images controlled by layouts can enhance the diversity
of images with fixed layouts. However, when the number of exist-
ing layouts is limited, the diversity of layouts themselves becomes
crucial. Therefore, we employ a layout generation model to gener-
ate layouts that conform to the patterns of existing ones, thereby
enhancing the diversity of layouts in the generated images.

3
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Figure 4: a) An image generated by ControlNet pre-trained on natural images. b) An image generated by ControlNet pre-trained
on DocLayNet. c) An image generated by General DIG. d) An image generated by Complex DIG.

The goal of layout generation is to arrange a series of bounding
boxes of different sizes and categories on an image under certain
constraints. This task was first applied in the field of scene de-
sign, so many methods [17, 24, 33, 34] are proposed specifically
for modeling room layouts. In scalable layout generation models,
LayoutGAN [16] employed a GAN framework to generate semantic
and geometric properties for a fixed number of scene elements.
LayoutVAE [13] randomly generated image layouts given a set of
labels. Manandhar et al. [21] utilized a graph network to develop
an automatic encode framework for layout. LayoutTransformer [9]
employed self-attention to construct an auto-regressive model that
learned contextual relationships among layout elements, facilitat-
ing layout generation for a given domain. Its advantage lay in its
ability to generate layouts from scratch or based on existing ones.

3 METHODOLOGY
3.1 Pipeline
Due to significant differences between document images and natu-
ral images, we pre-train a state-of-the-art controllable image gener-
ation model, ControlNet [40], using a large-scale document image
dataset. Meanwhile, due to the lack of authenticity in text genera-
tion, we employ a text-sensitive loss function during pre-training.
After pre-training, a general document image generation model
(General DIG) is constructed. Then, we fine-tune General DIG on
the a few complex layout documents to reduce the domain gap
between simple layouts and complex layouts, resulting in Complex
DIG. Subsequently, with just a few complex layouts, an infinite
number of document images conforming to those layouts can be
generated. Furthermore, we address the issue of insufficient diver-
sity of layouts by incorporating a layout generation model. Finally,
during the training of the layout analysis model, we utilize a box-
wise quality scoring function that dynamically filters low-quality
generated regions to enhance the effectiveness of utilizing the gen-
erated images. Figure 3 illustrates our pipeline.

3.2 Complex Layout Document Image
Generation Pre-training

Though image generation models achieved tremendous success in
natural images, applying ControlNet directly for generating docu-
ment images yields poor quality, as illustrated in Figure 4a). This

discrepancy stems from the fact that image generation models are
primarily trained on natural images, whereas document images
exhibit distinct layouts and structures like abundant text, lines,
and tables. Considering the comprehensive coverage of document
types and annotation categories in DocLayNet [23], we follow the
training approach of ControlNet, freeze the parameters of Stable
Diffusion and employ DocLayNet to pre-train ControlNet. This
step helps mitigate overfitting that may arise from directly training
ControlNet on a few complex layout documents. Layout images
and text prompts used in pre-training are constructed using anno-
tation files. The form of a text prompt is: ”a document image of
a [Document Category], including [number] [element], [number]
[element], [number] [element],...”. After pre-training ControlNet
with DocLayNet, the generated images are more likely to have a
correct layout, as shown in Figure 4b).

3.3 Authentic-Looking Text Rendering
To preserve the capabilities acquired from training on large-scale
images, all parameters of Stable Diffusion within ControlNet are
frozen, including the autoencoder used to decode latent space fea-
tures back into pixel space. However, this autoencoder is trained on
natural images and is not suitable for decoding outputs for text-rich
document images. Therefore, after pre-training on DocLayNet, the
generated images suffer from severe distortion in text regions.

To enhance the ability of Stable Diffusion to generate authentic-
looking text, we conduct a two-step pre-training process by pre-
training the autoencoder of Stable Diffusion before the pre-train
step described in Section 3.2. In prior work, OCR-VQGAN [25]
utilized a pre-trained text detector, CRAFT [5], as a text feature
extractor to reconstruct figures rich in text. Inspired by this idea, we
pass document images through the encoder E of autoencoder, ob-
taining latent space representations. These representations bypass
the U-Net and are directly input into the decoderD of autoencoder
to reconstruct images. Then, both the original and reconstructed
images are fed into the pre-trained VGG [30] and CRAFT models
to extract their perceptual features and text perceptual features, re-
spectively. Perceptual features are obtained by taking the weighted
average of output features from every convolutional layers in VGG.
Then, we obtain text perceptual features from CRAFT the same
way, since it also uses VGG as its backbone. By combining the re-
construction loss, perceptual loss, and text perceptual loss, we train

4
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Figure 5: Train a general document image generation model
through two-step pre-training: a) Pre-train the autoencoder
of Stable Diffusion using a text-sensitive loss function while
freezing other parameters, enabling the model to generate
authentic-looking text regions. b) Pre-train ControlNet while
freezing other parameters to generate document images with
correct layouts.

the autoencoder until texts in the reconstructed images become
authentic-looking:

L𝑟𝑒𝑐 = | |𝑅𝑒𝑐 − 𝑂𝑟𝑔 | |2

L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 =
∑︁
𝑙

1
𝐼

∑︁
𝑖

|𝑉𝐺𝐺𝑙 (𝑅𝑒𝑐)𝑖 − 𝑉𝐺𝐺𝑙 (𝑂𝑟𝑔)𝑖 | |

Ltext−perceptual =
∑︁
𝑙

1
𝐼

∑︁
𝑖

∥𝐶𝑅𝐴𝐹𝑇𝑙 (𝑅𝑒𝑐)𝑖 − 𝐶𝑅𝐴𝐹𝑇𝑙 (𝑂𝑟𝑔)𝑖 ∥

L = L𝑟𝑒𝑐 + 𝛼L𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 + 𝛽Ltext−𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙
(1)

where 𝑂𝑟𝑔 is the original image, 𝑅𝑒𝑐 is the reconstructed im-
age. 𝑉𝐺𝐺𝑙 (𝑂𝑟𝑔)𝑖 and 𝑉𝐺𝐺𝑙 (𝑅𝑒𝑐)𝑖 are the values of point 𝑖 of the
feature map output by the convolutional layer 𝑙 in VGG of the
original and reconstructed images, respectively.𝐶𝑅𝐴𝐹𝑇𝑙 (𝑂𝑟𝑔)𝑖 and
𝐶𝑅𝐴𝐹𝑇𝑙 (𝑅𝑒𝑐)𝑖 are defined analogously. 𝛼 and 𝛽 are the weights of
perceptual loss and text perceptual loss. The complete two-step
pre-training for ControlNet is shown in Figure 5.

After the two steps of pre-training, General DIG is constructed.
The generated images are very close to real document images in
terms of layout and text authenticity, as shown in Figure 4c). How-
ever, a domain gap is still remaining compared to complex layout
documents. So we fine-tune General DIG on a few complex lay-
out documents while keeping Stable Diffusion fixed, resulting in
Complex DIG. Images generated by it are shown in Figure 4d).

3.4 Document Layout Diversification
Utilizing existing layouts to generate images significantly increases
the amount of trainable data. However, given the scarcity of sam-
ples in most complex layout document datasets, layout diversity

Input
Image

Backbone

RPN Filter

ROI Align + FCN+Features

proposal

Filter

filtered predict bboxpredict bbox

×
×

filtered proposal

×
×

Figure 6: The pipeline of filtering low-quality regions using
the box-wise quality scoring function during layout analysis
model training. After RPN and FCN, Each bounding box is
assigned some proposals based on IoU. Then we calculate the
average loss for the assigned proposals as the quality score
for that bounding box. Bounding boxes with scores higher
than the dynamically changing average threshold are filtered
out. In this figure, proposals assigned to the same bounding
box have the same color.

is limited, potentially leading to overfitting during training. To ad-
dress the overfitting issue, we employ a layout generation model to
generate more diverse layouts. Nonetheless, generated layouts must
conform to the patterns of real documents and cannot be entirely
random. Therefore, we preserve a certain number of components
from accurate layouts and utilize a layout generation model to com-
plete them, thereby robustly increasing the diversity of layouts. We
select LayoutTransformer [9] to fulfill this requirement.

LayoutTransformer discretizes coordinates in the image and
models them using a categorical distribution to represent the proba-
bility of each discrete value. Each layout component is represented
as (𝑠𝑖 , 𝑥𝑖 , 𝑦𝑖 ,𝑤𝑖 , ℎ𝑖 ), where 𝑠𝑖 is the category, (𝑥𝑖 , 𝑦𝑖 ) is the coordi-
nate of the center point, (𝑤𝑖 , ℎ𝑖 ) is the size. Connect 𝑛 components
into a sequence and embed start and end markers to form a se-
quence representation of length 5𝑛 + 2. Use 𝜃 𝑗 , 𝑗 ∈ {1, . . . , 5𝑛 + 2}
to represent any element in the sequence, and use chain rules to
model the joint distribution of all components in the layout as:

𝑝 (𝜃1:5𝑛+2) =

5𝑛+2∏
𝑗=1

𝑝 (𝜃 𝑗 |𝜃1;𝑗−1) (2)

We pre-train the model using layouts from DocLayNet and fine-
tune it using a few complex layout documents. After generating a
layout, we simultaneously save the layout image and bounding box
information. The former serves as the control condition for DIG,
while the latter serves as the ground truth during the training of the
layout analysis model. Sometimes, overlapping components may
occur in a generated layout, resulting in mismatches between the
images generated from the layout and the ground truth. Therefore,
post-processing of the generated layout is necessary. We sort the
layout components in descending order based on their size and
remove smaller components covered by larger ones. Figure 2 il-
lustrates new layouts generated based on a portion of the original
layout components.
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Figure 7: Low-quality regions filtered by the box-wise quality scoring function are represented by different colored boxes: red
for titles, blue for figures, magenta for captions, cyan for lists, and green for text.

3.5 Box-wise Quality Scoring Function for
Dynamic Filtering of Low-Quality Regions

Inevitably, some low-quality regions are in the generated images,
and we aim to minimize their negative impact. If the layout analy-
sis model’s prediction of a bounding box is highly inaccurate for
real images, it indicates a hard case. However, this often suggests
inadequate quality in the generated region for generated images.
Motivated by this, we propose a box-wise quality scoring func-
tion for dynamically identifying and filtering such regions while
training a layout analysis model based on object detection.

The typical approach of object detection generates anchors on
feature maps obtained by a backbone, and uses a region proposal
network (RPN) for binary classification and position regression on
anchors, resulting in proposals. RPN loss is computed by comparing
proposals with ground truths. Then, two fully connected networks
(FCN) are used to classify proposals and refine their coordinates,
and FCN loss is calculated by comparing these refined proposals
with ground truths. The model is trained by optimizing both RPN
loss and FCN loss; we call it the proposal-wise loss function.

Our box-wise quality scoring function evaluates the quality of
each ground truth bounding box. Concretely, assume there are 𝑁
ground truth bounding boxes and𝑀 proposals output by RPN or
FCN. For the 𝑛-th bounding box 𝑔𝑡−𝑏𝑜𝑥𝑛 , we assign 𝐾 proposals
above an IoU threshold to it thusly:

𝐾 =
∑︁
𝑀

T (𝐼𝑜𝑈 (𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙−𝑏𝑜𝑥𝑚, 𝑔𝑡−𝑏𝑜𝑥𝑛) > 𝑡ℎ𝑟𝑒𝑠𝐼𝑜𝑈 ) (3)

where 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙−𝑏𝑜𝑥𝑚 is the 𝑚-th proposal, T (𝑥) = 1 if 𝑥 is
True, otherwise 0. Then we calculate the average RPN/FCN loss of
𝐾 proposals as the quality score of 𝑔𝑡−𝑏𝑜𝑥𝑛 :

S𝑏𝑜𝑥−𝑤𝑖𝑠𝑒𝑛 =
1
𝐾

∑︁
𝐾

F (𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙−𝑏𝑜𝑥𝑘 , 𝑔𝑡−𝑏𝑜𝑥𝑛) (4)

where F represents the RPN/FCN loss function. Next, we contin-
uously update the mean quality score of all ground truth bounding
boxes as a threshold:

S𝑏𝑜𝑥−𝑤𝑖𝑠𝑒 =
1
𝑁

∑︁
𝑁

S𝑏𝑜𝑥−𝑤𝑖𝑠𝑒𝑛 (5)

If S𝑏𝑜𝑥−𝑤𝑖𝑠𝑒𝑛 > 𝜆S𝑏𝑏𝑜𝑥−𝑤𝑖𝑠𝑒 , then 𝑔𝑡−𝑏𝑜𝑥𝑛 is identified as a
low-quality region and filtered. Consequently, the proposals as-
signed to it are ignored in the calculation of the proposal-wise loss.
Then the proposals generated by RPN are no longer forwarded to

the subsequent FCN. Additionally, we set 𝜆 to a relatively large
value because smaller values of 𝜆 might mistakenly filter some hard
cases that could contribute to model training.

Throughout the training process, 𝑁 and 𝑀 accumulate con-
tinuously, causing the average box-wise quality score to change
smoothly. This dynamic filtering mechanism gradually and ac-
curately filters low-quality regions during training, allowing the
model to focus more on learning correct layout features, thereby en-
hancing the efficiency of using generated images for layout analysis
model training. Figure 6 shows the pipeline of filtering low-quality
regions using the box-wise quality scoring function, and Figure 7
shows the filtered regions during training.

3.6 How to use the generated data
We utilize the generated images in two ways: joint training on both
generated and real images and pre-training on generated images,
followed by fine-tuning on real images. The former exposes the
model to a broader data distribution, enhancing its generalization.
The latter improves generalization while minimizing the impact of
noise from generated images. During experimentation, we observed
that images generated by original layouts performed better in joint
training, whereas those generated by new layouts showed improved
effectiveness in pre-training, as detailed in Section 4.2.

4 EXPERIMENT
4.1 Implement Details
Document layout analysis is mainly accomplished using instance
segmentation or object detection. Considering that segmentation-
based methods require additional post-processing steps to obtain a
bounding box, we opt for object detection-based methods, whose
results can be more easily applied to subsequent tasks. We select
the widely used Faster R-CNN as an object detector, and do not use
feature extractors pre-trained on a large-scale document dataset to
eliminate the influence of other variables.

We utilize DocLayNet for pre-training ControlNet and Layout-
Transformer, and choose DSSE-200 and PRImA as our target com-
plex layout document datasets. For both datasets, we randomly
select 100 images as the test set, the remaining images are used as
the training set for fine-tuning ControlNet and LayoutTransformer,
as well as training the layout analysis model. We use ControlNet
to control the standard Stable Diffusion 1.5 model [1]. During the
pre-training of ControlNet, we set the values of 𝛼 and 𝛽 in Equa-
tion (1) to 1. After completing the pre-training and fine-tuning
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Table 1: The layout analysis performance of models trained solely on the generated images.

Dataset Training data mAP↑ Dataset Training data mAP↑

DSSE-200

Real 47.05

PRImA

Real 53.80
syn(1) 33.97 syn(1) 43.79
syn(5) 41.42 syn(5) 53.81
syn(10) 45.72 syn(10) 55.81
syn_layout(1) 24.43 syn_layout(1) 31.31
syn_layout(5) 33.46 syn_layout(5) 32.20
syn_layout(10) 36.72 syn_layout(10) 32.91

Table 2: The layout analysis performance of joint training.

Dataset Training data mAP↑ Δ Dataset Training data mAP↑ Δ

DSSE-200

Real 47.05

PRImA

Real 53.80
Real+syn(1) 52.52 ↑5.47 Real+syn(1) 57.96 ↑4.16
Real+syn(10) 55.23 ↑8.18 Real+syn(10) 59.50 ↑5.70
Real+syn_layout(1) 51.66 ↑4.61 Real+syn_layout(1) 55.43 ↑1.63
Real+syn_layout(10) 53.82 ↑6.77 Real+syn_layout(10) 56.25 ↑2.45

Table 3: The layout analysis performance of models pre-trained on the generated images and fine-tuned on the real training set.

Dataset Training data mAP↑ Δ Dataset Training data mAP↑ Δ

DSSE-200

Real 47.05

PRImA

Real 53.80
syn(10)→Real 54.27 ↑7.22 syn(10)→Real 60.78 ↑6.98
syn_layout(10)→Real 54.27 ↑7.22 syn_layout(10)→Real 61.31 ↑7.51
syn(10)→Real+syn_layout(10) 53.44 ↑6.39 syn(10)→Real+syn_layout(10) 59.69 ↑5.89
syn_layout(10)→Real+syn(10) 56.07 ↑9.02 syn_layout(10)→Real+syn(10) 62.26 ↑8.46
syn(10)→Real+syn(10) 53.08 ↑6.03 syn(10)→Real+syn(10) 60.84 ↑7.04

Table 4: The performance of using images generated by a
model that has not undergone pre-training with the text-
sensitive loss function.

Training Data mAP↑

syn_without_text(10) 43.71
Real + syn_without_text(10) 50.46
syn_without_text(10)→Real 51.93

of ControlNet and LayoutTransformer, we generate 10 images for
each layout in the training set, denoted as syn (10). The number in
parentheses represents the multiple of data used relative to the real
data. Additionally, we generate 5 new layouts for each layout and
then generate 2 images for each new layout, denoted as syn_layout
(10). During the generation of new layouts, we follow the rule of
preserving 1 to 5 components from the accurate layout randomly.
When filtering low-quality regions, we set 𝜆 to 10 for DSSE-200 and
15 for PRImA. All training processes are conducted for 10,000 itera-
tions. The metric used to evaluate the accuracy of layout analysis
is mAP (mean Average Precision).

Table 5: FID scores between datasets generated by different
models and the real dataset.

Generated dataset fid↓

syn(10) 43.71
syn_layout(10) 40.86

syn_without_text(10) 75.19
syn_without_ft(10) 48.37

4.2 Enhancing Layout Analysis through
Generated Images

First, we train Faster R-CNN solely using the training set of DSSE-
200 and PRImA as baselines. Next, we train the model solely using
generated images, employing various amount of syn and syn_layout
as the training set. According to the results shown in Table 1, the
performance improves as the number of generated images used
increases, whether for syn or syn_layout. When using an equal
number of the generated images, the result of syn are all higher
than syn_layout, indicating that while syn_layout introduces layout
diversity, it also introduces some noise. The best result obtained
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solely from the generated images is achieved by syn (10). For DSSE-
200, the mAP score is 45.72, which is only 1.33 lower than the
baseline of 47.05. For PRImA, the mAP score reached 55.32, even
surpassing the baseline of 53.80 by 2.01.

We further conduct joint training by incorporating the generated
images into the real training set. According to the results shown
in Table 2, all joint training results are significantly higher than
the baseline. The best performance in joint training is achieved
with DSSE-200+syn (10) and PRImA+syn (10), reaching 55.23 and
59.50, respectively, which is 8.18 and 5.70 higher than the baseline,
demonstrating the effectiveness of joint training. In both scenarios
of training solely with the generated data and joint training, the per-
formance of syn surpasses that of syn_layout. Therefore, consider
using syn_layout as pre-training data to enhance the generalization
ability while reducing the impact of noise.

Finally, we utilize the generated images for pre-training. As in-
dicated in Table 3, for DSSE-200, the results of pre-training with
syn (10) and syn_layout (10) are both 54.27. For PRImA, models
pretrained by syn (10) and syn_layout (10) reach 60.78 and 59.17,
respectively. Compared to the baseline, all models have evidently
boosted by larger than 6. Considering that both joint training and
pre-training can enhance model performance, we combine the two
ways. Specifically, we use one of syn and syn_layout for pre-training,
and the other for joint training, namely syn (10)→ Real+syn_layout
(10) and syn_layout (10)→Real+syn (10). The former performs simi-
larly compared to solely conducting joint training or pre-training.
However, the latter achieves the best results among all combina-
tions of data for both datasets, reaching 56.07 and 62.26, which is
a 19.17% and 15.72% enhancement compared to the baseline. This
confirms that syn_layout is better suited for pre-training, whereas
syn is more suitable for joint training, as hypothesized. To further
demonstrate that view, we also use syn for both pre-training and
joint training as a comparison. The experiment showed a decrease
in performance on both datasets.

4.3 Ablation Studies
To validate the effectiveness of employing the text-sensitive loss
function, we opt not to pre-train the autoencoder of Stable Diffusion
but instead directly perform the second step of pre-training. We
use DSSE-200 as the target dataset. Based on the results shown in
Table 4, whether for joint training or pre-training, the performance
significantly decreases (55.23→ 50.46, 54.27→ 51.93). Nevertheless,
the results are still higher than the baseline, proving the robustness
of using the generated images to assist the layout analysis training.

To validate the effectiveness of box-wise quality scoring funtion
and determine the most effective filtering threshold, we conduct
experiments with the syn_layout (10)→Real + syn (10) setup, which
yields the highest mAP score. We test values of 𝜆 at 2, 5, 10, 15,
20 and 25, as well as the baseline without using a scoring func-
tion. According to the results shown in Figure 8, the mechanism
for filtering low-quality regions demonstrates strong robustness,
as the results under various values exceed the baseline. The best
performance is observed when set 𝜆 to 10 in DSSE-200 and 15 in
PRImA.

Using generated images as training data to obtain the mAP met-
ric for layout analysis models is the most direct way to evaluate the
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Figure 8: The impact of different filter factors on (a) DSSE-200
dataset and (b) PRImA dataset.

quality of generation, but FID score can still serve as a supplemen-
tary indicator of generation quality. We computed the FID scores for
syn (10), syn_layout (10), syn_without_text (10) and syn_without_ft
(10) with the real data from DSSE-200, where syn_without_ft (10)
are generated by the General DIG without fine-tuning on DSSE-200
training set. As shown in Table 5, syn_layout (10) exhibit the best
FID score, with syn (10) and syn_without_ft (10) slightly inferior to
it. However, syn_without_text (10) falls far behind the other gener-
ated datasets, highlighting the importance of the text-sensitive loss
function for generating document images.

5 CONCLUSION
We introduce a method of utilizing controllable image generation
models to generate document images as additional training data,
thereby enhancing the model’s capability to analyze complex lay-
out documents. Leveraging a text-sensitive loss function and a
large-scale document dataset, we train a general document image
generation model, DIG, capable of producing document images
with authentic-looking text. Next, we leverage a layout generation
model to enhance the diversity of document layouts in the gener-
ated dataset. When using generated images for training, we develop
a box-wise quality scoring function to filter out low-quality regions
in the generated images. This ensures the model prioritizes high-
quality information during training, enhancing the effectiveness
of utilizing the generated images. Experiments demonstrate signif-
icant enhancements in layout analysis performance, whether by
using the generated images for pre-training or joint training with
real images. Furthermore, images generated from new layouts are
better suited for pre-training, while those generated from existing
layouts are more appropriate for joint training.
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