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Abstract

Contemporary machine learning methods will try to approach the Bayes error, as1

it is the lowest possible error any model can achieve. This paper postulates that2

any decision is composed of not one but two Bayesian decisions and that decision-3

making is, therefore, a double-Bayesian process. The paper shows how this duality4

implies intrinsic uncertainty in decisions and how it incorporates explainability.5

The proposed approach understands that Bayesian learning is tantamount to finding6

a base for a logarithmic function measuring uncertainty, with solutions being fixed7

points. Furthermore, following this approach, the golden ratio describes possible8

solutions satisfying Bayes’ theorem. The double-Bayesian framework suggests9

using a learning rate and momentum weight with values similar to those used in10

the literature to train neural networks with stochastic gradient descent.11

1 Introduction12

Despite the progress in machine learning, several problems stand out for which convincing solutions13

have yet to be found. With massive training sets, enormously sized networks, and immense computing14

power, training machine learning models has become a brute force approach, arguably more concerned15

with memorization than generalization. However, quoting from a post by Y. LeCun (Nov. 23, 2023),16

we know that17

Animals and humans get very smart very quickly with vastly smaller amounts of training data than18

current AI systems. Current large language models (LLMs) are trained on text data that would take19

20,000 years for a human to read. And still, they haven’t learned that if A is the same as B, then B20

is the same as A. Humans get a lot smarter than that with comparatively little training data. Even21

corvids, parrots, dogs, and octopuses get smarter than that very, very quickly, with only 2 billion22

neurons and a few trillion "parameters."23

This raises the question of whether modern training techniques and principles are actually biologically24

implemented in the human brain and, if not, what alternative methods could save resources. More25

efficient methods would be better at generalizing with smaller amounts of training data, which almost26

certainly would also improve the explainability and interpretability of neural networks.27

This paper investigates what it takes for a classifier to be optimal. The starting point is Bayes’ theorem,28

which is the foundation of the Bayes classifier. The Bayes classifier is considered optimal because29

it minimizes the Bayes risk, meaning it has the smallest probability of misclassification among all30

classifiers. However, applying the Bayes classifier directly is often impossible because of the difficulty31

in computing the posterior probabilities. For this reason, most classifiers are trying to approximate32

the Bayes classifier, like the naïve Bayes classifier, for instance. The information-theoretical analysis33

presented in this paper splits the decision of a Bayes classifier into two decisions, each following34

Bayes’ theorem, where one decision can serve as an explanation or verification of the other. Each of35

the two decision processes faces intrinsic uncertainty, as its decision depends on the output of the36

other process. The paper will investigate the theoretical ramifications of this approach. As a practical37
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result, it will discuss the consequences for two hyperparameters of stochastic gradient descent used38

in the training process of a neural network: learning rate and momentum weight.39

The structure of the paper is as follows: After this introduction, Section 2 motivates one of the main40

ideas, namely that learning to make a decision involves solving two sub-problems and, thus, two41

decisions. Section 3 discusses Bayes’ theorem, which is central to statistical decision-making and42

is the starting point of the theoretical approach outlined in the following. Section 4 then introduces43

the double-Bayesian model as the key concept of the paper. The next section, Section 5, shows44

how to represent possible solutions of the double-Bayesian decision model. Section 6 discusses the45

golden ratio, including its functional equations and how it defines a solution to the double-Bayesian46

model. Then, Section 7 discusses the theoretical implications for training double-Bayesian networks47

with stochastic gradient descent. Finally, Section 8 summarizes the key concepts, followed by a48

conclusion.49

2 Dual decisions50

Suppose a sender transmits the image on the left-hand side of Figure 1 to a receiver. This image

Figure 1: An image of Rubin’s vase (left) and its inverted counterpart (right) - (Rubin, 1915)

51
depicts Rubin’s vase by the Danish psychologist Edgar Rubin (Rubin, 1915), which shows a vase52

or two faces looking at each other, depending on the receiver’s perception. The receiver then faces53

an unsolvable conundrum: 1) If the receiver thinks the image represents a vase, the receiver cannot54

be certain that the vase is indeed the intended message the sender wanted to convey. Maybe the55

sender wanted to send the faces. 2) If the receiver is expecting a picture of a vase (or faces) and56

thus knows the intended message, there is no certainty that an image of a vase has been transmitted.57

After all, the image could show faces. Therefore, two decisions are involved in making the final58

interpretation of the image: 1) a decision about the perception of the image (vase or faces), and 2)59

a decision about whether the perceived image coincides with the intended message, meaning the60

image transmitted. Both decisions together are fraught with intrinsic uncertainty because deciding the61

ultimate interpretation of Rubin’s vase, a vase or faces, is impossible. Therefore, neither the sender62

nor the receiver can make both decisions without uncertainty. Instead, the knowledge is distributed.63

The sender knows the intended message (a vase or faces) but not the receiver’s perceived image. On64

the other hand, the receiver knows the perceived image (a vase or faces) but not the intended message.65

Therefore, the sender and the receiver must collaborate to get the true interpretation across their66

communication channel.67

Let the sender and receiver perceive Rubin’s vase differently, with contrary opinions about the68

foreground and background color (black or white), where the foreground represents the perceived69

image, either a vase or faces. Furthermore, let the sender and the receiver both be able to send70

an image of Rubin’s vase to each other so that both become senders and receivers alike and can71

share their knowledge about the perceived image and intended message. The image that the sender72

perceives is then the inverted image that the sender perceives. The goal is to collaborate so that the73

perceived image (foreground) equals the intended message on both ends.74

A sender can either send the image of Rubin’s vase on the left-hand side of Figure 1 or send the75

image with colors inverted, as shown on the right-hand side of Figure 1, depending on the perceived76

image or intended message, respectively. On the other end, the receiver has two options: 1) accept77

the received image if it is identical to the image expected, or 2) tell the sender to invert the image if it78

is different. After this feedback, the image on the receiver end will be the same as the image on the79
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sender side. By making the images on both sides the same, the receiver has completed half of the80

decision process without making a mistake and has thus behaved optimally. The receiver has ensured81

that both sides see the same image. It is now up to the sender to make the final, second decision about82

what image needs to be inverted to arrive at the final interpretation, either the image of the sender83

or the image of the receiver. Thus, the first process tries to make the images identical, whereas the84

second process tries to make the images different on both ends to reflect the different perceptions of85

the sender and receiver.86

Although described as a sequential process, the two dual decision processes leading to the final87

interpretation are running in parallel. The sender is also a receiver, and the receiver is also a sender.88

One of them conveys the correct foreground information (black or white), while the other conveys the89

message. Note that neither the sender nor the receiver will ever see the true interpretation of the image.90

The receiver in the example above will never know whether the received image needs to be inverted91

after making the images identical because this would mean the receiver knows the true interpretation92

of the image, which is not possible according to the uncertainty principle described above. A similar93

statement can be made for the sender. The sender and the receiver can be considered dual and94

complementary forces because of their different interpretations of foreground and background. They95

make two binary decisions, deciding on the correct foreground color (black or white) and on the96

message (a vase or faces). They decide whether Rubin’s vase should be interpreted as a white vase, a97

black vase, white faces, or black faces.98

3 Bayes theorem99

Bayes’ theorem is a fundamental law in probability theory that describes the probability of an event100

given prior knowledge. The theorem is of central importance in machine learning, where it guides the101

training of machines for decision-making, such as in Bayesian inference or naïve Bayes classification.102

For two events A and B, with prior probabilities P (A) and P (B), and P (B) ̸= 0, Bayes’ theorem103

states the following:104

P (A|B) =
P (A) · P (B|A)

P (B)
, (1)

where P (A|B) and P (B|A) are the conditional or posterior probabilities. Thus, P (A|B) is the105

probability of event A occurring when B is true, and analogously, P (B|A) is the probability of B106

given that A is true.107

For a machine learning application, A would be the class of an observed input pattern B. The108

probability P (A) is then the prior probability of class A, and P (B) is the prior probability of seeing109

pattern B. Consequently, P (A|B) is the posterior probability of class A when seeing pattern B, and110

P (B|A) is the posterior probability of B within A. According to Bayes’ theorem, three probabilities111

are needed to compute the probability P (A|B) that class A is observed when seeing pattern B: P (A),112

P (B), and P (B|A). However, several obstacles prevent Bayes’ theorem from being applied in this113

way. No particular method can help determine the prior probabilities, which are often unknown.114

Furthermore, the posterior probability is often not readily available and is approximated by making115

assumptions about the distribution of B given A, for example, assuming a normal distribution.116

To cope with these limitations, the next section describes decision-making as a dual process based on117

Bayes’ theorem, with uncertainty intrinsically involved.118

4 Double-Bayesian framework119

The Bayes Theorem is typically stated as in Eq. 1. However, restating the theorem in the following120

equivalent form highlights the two decision processes for the two subproblems involved, as motivated121

in Section 2:122
P (A|B)

P (B|A)
=

P (A)

P (B)
(2)

The left-hand side of Eq. 2 features a fraction of the posterior probabilities, whereas the right-hand123

side shows the prior probabilities. Following the motivation in Section 2, the posterior probabilities,124

P (A|B) and P (B|A), can be understood as the probability that A or B is the intended message,125

respectively. Then, the prior probabilities, P (A) and P (B), would express the probabilities that A or126

B is in the foreground.127
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With only one equation for four parameters, Eq. 2 is underdetermined. However, it is fair to assume128

that 1− (P (A|B) = P (B|A) and 1−P (A) = P (B), which leaves one equation with one parameter129

on each side. This is possible because either A or B can be the message or foreground, not both of130

them at the same time, following again the reasoning in Section 2. Therefore, the intrinsic uncertainty131

in Bayes’ theorem can be described as follows: if the true foreground is known, then whether the132

message needs to be swapped is unknown; on the other hand, if the message is known, then whether133

the foreground needs to be swapped is unknown. The fractions on both sides of Eq. 2 are thus134

"cognitively entangled."135

The two remaining unknown parameters can be computed using two separate processes, each adding136

a constraint to handle the uncertainty. To illustrate this, Eq. 3 restates Bayes’ theorem in yet another137

way:138

1 =
P (A)

P (B)
· P (B|A)

P (A|B)
(3)

Assuming that P (B) = P (B|A), Eq. 3 simplifies to P (A|B) = P (A). This assumption of B being139

independent of A is fair because, according to the motivation in Section 2, the decisions about the140

message and the foreground are independent of each other. Under this assumption, only one unknown141

remains, either P (A|B) or P (A), which follows directly from either P (A) or P (A|B), depending142

on which is input and which is output.143

A similar, symmetric statement can be made when using the reciprocals on both sides of Eq. 2, which144

leads to the following equation:145

1 =
P (B)

P (A)
· P (A|B)

P (B|A)
(4)

Here, assuming that A is independent of B simplifies Eq. 4 to P (B|A) = P (B).146

Solving Eq. 2, Eq. 3, or Eq. 4 will be referred to as solving the outer Bayes equation. On the other147

hand, making both multiplicands on the right-hand side of Eq. 3 or Eq. 4 identical will be referred to148

as solving the inner Bayes equation, or simply solving the inner equation of Eq. 3 or Eq. 4. For Eq. 3,149

the inner Bayes equation thus states as follows:150

P (A)

P (B)
=

P (B|A)

P (A|B)
(5)

Accordingly, the inner Bayes equation for Eq. 4 is obtained by using the reciprocals of the fractions151

on both sides of Eq. 5:152

P (B)

P (A)
=

P (A|B)

P (B|A)
(6)

Consequently, the inner Bayes equations can derived by inverting a fraction on one side of Bayes’153

theorem, as stated in Eq. 2. The inner Bayes equations are thus "entangled" versions of Bayes’154

theorem.155

The two independent decision processes motivated above are solving the inner and outer Bayes equa-156

tions. To further formalize these processes, the following section will add a logarithmic expression157

to Eq. 3 and Eq. 4. Adding a logarithm offers several advantages: 1) using information theory to158

measure uncertainty; 2) using a reciprocal becomes equivalent to changing the sign of a logarithm;159

and 3) solving the equation in Bayes’ theorem is reduced to finding a suitable base for a logarithm.160

5 Fixpoint solutions161

Using a logarithmic expression in Eq. 3 and Eq. 4 is possible when solutions become fixed points162

of a logarithmic function. To illustrate this, let logb(x) be the logarithm for an input x and a base b.163

By definition, the logarithm is the inverse function of taking the power. Therefore, the following164

equation holds:165

x = logb(b
x) (7)

For the base b of a logarithm, any positive real number can be used so long as b ̸= 1. A logarithm166

computed for base b can be converted into a logarithm for base b′ as follows:167

log′b(x) = logb(x)/ logb(b
′) (8)
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Therefore, the simple term log is used for the logarithm in the following.168

By applying the logarithm to probabilities, they become information. For the two dual processes169

above, the information of one process will be its counterpart’s information with a different sign. To170

achieve this, the following identity is required:171

log(x) = x (9)

The following lemma states that this requirement can be met for general input values.172

Lemma: For every x ∈ R+ \ {1}, there exists a base λ so that logλ(x) = x.173

Proof: Let b ∈ R+ \ {1} be an arbitrary basis for which logb(x) = y. Furthermore, let k be174

a multiplier so that ky = x. Then, logλ(x) = x for λ = b1/k. This follows from Eq.8, with175

logλ(x) = logb(x)/ logb(λ) = logb(x)/ logb(b
1/k) = logb(x) · k = x.176

Note that the common logarithmic rules apply for a fixed λ. However, when requiring a λ that always177

satisfies logλ(x) = x, computations become ambiguous, as seen here: − logλ(x) = −x ̸= 1/x =178

logλ(1/x). The base λ should be understood as a dynamic parameter that a learning system can179

modify over time so that logλ(x) converges to the input x.180

Using the logλ expression of the above Lemma, the Bayes’ equation in Eq. 3 can be written as181

follows:182

1 =
P (A)

P (B)
· logλ

(
P (B|A)

P (A|B)

)
(10)

Then, the following sequence of transformations can be derived from Eq. 10:183

P (A|B) =
P (A)

P (B)
· logλ

(
P (B|A)

1

)
(11)

=
1− P (B)

P (B)
· logλ

(
P (B|A)

)
(12)

=
(
1− P (B)

)
· logλ

(
P (B)2

)
(13)

= P (B) · logλ
(
1− P (B)2

)
(14)

= 2 · P (B) · logλ
(√

1− P (B)2
)

(15)

= 2 · sin(ϕ) · logλ
(
cos(ϕ)

)
, (16)

where the last expression holds for an angle ϕ ∈
[
0 ; π

2

]
. The reasoning behind these transformations184

is as follows:185

The first step, Eq. 11, moves the posterior probability P (A|B) back to the left-hand side of the186

equation. The result is Bayes’ theorem in its original form, as shown in Equation 1.187

The next step, Eq. 12, replaces P (A) with 1− P (B), removing one degree of freedom as motivated188

above.189

In the same way, Eq. 13 reformulates Eq. 12, assuming that P (B) = P (B|A) and that the two190

multipliers on the right-hand side of the equation are equal to meet the inner Bayes equation.191

Then, Eq. 14 rewrites the right-hand side of Eq. 13, transforming 1 − P (B) = P (B)2 into the192

equivalent P (B) = 1− P (B)2, which must hold true to satisfy the inner Bayes equation.193

Finally, Eq. 15 extracts a factor of two from the logλ expression to get a radical input expression for194

the logarithm, following the standard rules for logarithms. The new input term to the logλ expression195

in Eq. 15 allows visualizing all possible solutions to the outer and inner Bayes equations.196

To illustrate this further, Eq. 16 rewrites Eq. 15 using trigonometric functions and the Pythagorean197

relationship between sin and cos: sin2 ϕ + cos2ϕ = 1, and thus sin ϕ = ±
√

1− cos2ϕ and198

cos ϕ = ±
√
1− sin2ϕ. Solutions to the outer and inner Bayes equations then correspond to an199

angle ϕ in Equation 16, depending on the base λ. Thus, solutions are points on the unit circle.200

By changing the angle ϕ in Equation 16, all the possible solutions to the outer and inner Bayes201
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equations can be visualized. Following the reasoning above, the right-hand side of Eq. 16 represents202

the inner Bayes equation. Accordingly, after bringing the factor 2 on the other side of Eq. 16,203

the inner Bayes equation is satisfied when sin(ϕ) = cos(ϕ), which is the case for ϕ = π/4, with204

sin(π/4) = cos(π/4) = 1/
√
2.205

For the dual process, the logλ expression can be used in combination with the other term of the inner206

Bayes equation in Eq. 3, as shown here:207

1 = logλ

(
P (A)

P (B)

)
· P (B|A)

P (A|B)
(17)

Note that the logλ expression has moved to the left compared to the right-hand side of Eq. 10. From208

this equation, the following sequence of transformations can be derived similar to the transformations209

above.210

P (B) = logλ

(
P (A)

1

)
· P (B|A)

P (A|B)
(18)

= logλ

(
P (A)

)
· 1− P (A|B)

P (A|B)
(19)

= logλ

(
P (A|B)2

)
·
(
1− P (A|B)

)
(20)

= logλ

(
1− P (A|B)2

)
· P (A|B) (21)

= 2 · logλ
(√

1− P (A|B)2
)
· P (A|B) (22)

= 2 · logλ
(
sin(ϕ)

)
· cos(ϕ) (23)

During this sequence, assumptions similar to the ones in Eq. 12 and Eq. 13 are made. In Eq. 19,211

P (B|A) was replaced by 1 − P (A|B), and Eq. 20 assumes that P (A) = P (A|B). Again, all212

transformations assume that both multiplicands on the right-hand side are equal to satisfy the inner213

Bayes equation.214

The intrinsic uncertainty for the dual processes can again be seen in Eq. 16 and Eq. 23, where it215

manifests like this: if the base λ is known, then the angle ϕ is unknown; and vice versa, if ϕ is known,216

then λ is unknown. Each process contributes knowledge about λ and ϕ, which the other process does217

not know.218

The process knowledge about λ and ϕ does not need to be "all-or-nothing." The uncertainty ranges219

continuously between two extremes, and both dual processes can be somewhat knowledgeable about220

both parameters. When sin(ϕ) = cos(ϕ), with ϕ = π/4, one process has no or full knowledge221

about one parameter. With ϕ approaching 0 or π/2, where sin(ϕ) and cos(ϕ) become different, this222

knowledge increases or decreases, respectively.223

6 Golden ratio224

The solution to the inner Bayes equation is connected to the golden ratio (Livio, 2002), which becomes225

evident from the transformations of equations above and the assumptions made for both processes.226

Based on their right-hand equations, both dual processes must meet the same requirement to satisfy227

the inner Bayes equation, assuming that logλ(x) produces x. For Eq. 12, with P (B) = P (B|A),228

and for the corresponding Eq. 19 of the dual process, with P (A) = P (A|B), this requirement can be229

written as230

p =
1− p

p
, (24)

where the variable p is a placeholder for one of the probabilities. Eq. 24 holds true if p is the golden231

ratio, which is defined by the equivalent quadratic equation,232

p2 + p− 1 = 0, (25)

which has two irrational solutions p1 and p2:233

p1 =

√
5− 1

2
≈ 0.618, (26)
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and234

p2 =
−
√
5− 1

2
≈ −1.618 (27)

A key observation is that the complement of both solutions, 1− p, equals their square:235

1− p = p2 (28)

Alternatively, another quadratic equation that may be more frequently encountered in textbooks can236

be used to arrive at the golden ratio. This equation is obtained by substituting −p for p in Eq. 25:237

p2 − p− 1 = 0 (29)

The alternative equation also possesses two irrational solutions, namely the negations of p1 and p2:238

−p1 ≈ −0.618 and − p2 ≈ 1.618 (30)

For these solutions, the complement 1− p is the negative reciprocal:239

1− p = −1

p
(31)

Computing the complement of the golden ratio allows changing viewpoints and switching between240

the solutions to the inner and outer Bayes equations. This will become important in the next section241

for training neural networks.242

The golden ratio is sometimes represented by the letter φ in the literature. It is often defined as a243

single value, usually φ ≈ 1.618, and negative values are not considered (Livio, 2002; Huntley, 1970).244

However, each of the four solutions to the aforementioned quadratic equations will be referred to as245

the golden ratio in the context of this paper.246

7 Theoretical implications247

Supervised training methods first present a teaching input to a neural network and then try to make248

the network’s output the same as the input by adjusting the network weights. This equalizing of249

input and output can be related to equalizing multiplicands to satisfy the inner Bayes equation. For250

example, in Eq. 18, the term P (B|A)/P (A|B) can be considered as input and the term P (A) in251

the lambda expression as output. The task of the lambda expression is then to make both terms the252

same to satisfy the inner Bayes equation. Moreover, the lambda expression logλ
(
P (A)

)
becomes253

the gradient of a linear function for the outer Bayes equation. These relationships help to determine254

the optimal learning rate and momentum weight for training based on backpropagation and stochastic255

gradient descent (SGD).256

A training method based on backpropagation estimates the gradient of a loss function with respect to257

each network weight, where the loss function measures the difference between input and network258

output. Backpropagation methods try to minimize the loss by following the gradient and updating the259

network weights accordingly (LeCun et al., 2012). They accomplish this for one network layer at260

a time, iteratively propagating the gradient back from the output layer to the input layer. To move261

along the gradient towards the minimum of the loss function, a delta is added to each weight, which262

often has the following form, including a momentum term:263

∆wij(t) = −η
∂L

∂wij(t)
+ α ·∆wij(t− 1) (32)

In (32), L is the loss function, and ∆wij(t) denotes the delta added to each weight wij between a264

node i and a node j in the network at training iteration (or time) t. The term ∂L/∂wij(t) is the partial265

derivative of the loss function with respect to wij , at time t, which is multiplied with the learning266

rate η. The sign of ∆wij(t) is negative, so the loss function approaches its minimum. In practice, a267

momentum term describing the weight change at time t− 1, ∆wij(t− 1), is commonly added. This268

term is typically multiplied by a weighting factor α, as seen in (32).269

The traditional understanding is that the momentum term improves stochastic gradient descent by270

dampening oscillations. However, the dual process model offers another explanation for the per-271

formance improvement brought about by the momentum term. As of yet, a conclusive theory for272

the optimal values of the learning rate η and the momentum weight α has been lacking. Although273
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second-order methods (Bengio, 2012; Sutskever et al., 2013; Spall, 2000) as well as adaptive meth-274

ods (Jacobs, 1988; Kingma and Ba, 2014; Duchi et al., 2011; Tieleman and Hinton, 2012) have been275

tried with various degrees of success, an ultimate answer has still to be found. Both parameters are276

usually determined heuristically through empirical experiments or systematic search (Bergstra and277

Bengio, 2012). Training results can be very sensitive to the value of the learning rate. For example, a278

small learning rate may result in slow convergence, whereas a larger learning rate may result in the279

search passing over the minimum loss. Negotiating this delicate trade-off in the regularization of the280

training process can be time-consuming in practical applications. The literature seems to prefer initial281

learning rates around 0.01 or smaller for SGD, although reported values differ by several orders of282

magnitude. For the momentum weight, higher initial values around 0.9 are more common (Li et al.,283

2020; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016).284

As shown in the following, the proposed dual process model allows deriving theoretical values for285

both regularization parameters: learning rate η and momentum weight α. In the weight adjustment286

given by Eq. 32, each summand represents a gradient of one of the two dual processes. These are287

the partial derivative ∂L/∂wij(t) and the momentum term ∆wij(t− 1). The momentum weight α288

follows from the results above, where the lambda expression can be considered as the gradient of289

the current iteration at time t. The other multiplicand of the inner Bayes equation corresponds to the290

gradient of the other dual process at time t− 1, assuming that both dual processes are interleaved, if291

not in parallel.292

The previous sections showed that the inner Bayes equation is met when both summands are equal to293

sin(π/4) = cos(π/4) = 1/
√
2 and when they are equal to the golden ratio. Therefore, the delta at294

t− 1, ∆wij(t− 1), needs to be multiplied by a constant to obtain the golden ratio. This constant is295

the momentum weight α, which needs to satisfy α/
√
2 = p1, and can thus be computed as follows.296

α =
√
2 · p1 ≈ 0.874, (33)

where p1 is the value of the golden ratio in Eq. 26. So, this logic provides the value of the first297

regularization term, namely the momentum weight α, with α ≈ 0.874.298

The learning rate η can be derived from the momentum weight α by converting the latter to the299

corresponding value for the dual process. The dual process does not aim to satisfy the inner Bayes300

equation with ϕ = π/4. Instead, it aims to satisfy the outer Bayes equation, with ϕ = 0 or ϕ = π/2,301

and thus sin(ϕ) = 0 and cos(ϕ) = 1, or sin(ϕ) = 1 and cos(ϕ) = 0. By moving in the opposite302

direction of the gradient of its dual counterpart, the first process can minimize its loss in satisfying303

the inner Bayes equation. Accordingly, taking the complement of the momentum weight α twice304

results in the learning rate η for the gradient change at time t. Taking the complement of α twice can305

be understood as looking at the same process from a dual point of view. Mathematically, this can be306

achieved by squaring the simple complement, 1−α. Squaring the complement follows the functional307

equation of the golden ratio described by Eq.28. Squaring also means bringing the multiplier 2 back308

in, which was extracted from the lambda expression in Eq. 15 and Eq. 22 to represent all solutions309

graphically. Applying these steps to the momentum weight α then results in the following equation310

for the learning rate η:311

η = (1− α)2 ≈ 0.016 (34)

So, this computation provides the value for the second regularization term, learning rate η, with η ≈312

0.016.313

8 Discussion314

Starting from Bayes’ theorem, this paper develops a theoretical framework that describes any decision315

of a machine classifier as the result of two processes. The first decision process determines the input316

message; specifically, it decides whether the input is encoded according to its true value or needs to317

be inverted. On the other hand, the second decision process decides whether the output should be318

equal to the input or needs to be inverted. Although both decision processes run simultaneously, they319

are independent processes, with each possessing knowledge not accessible to the other process. What320

is uncertain for one process is certain for the other, and vice versa. The first process does not know321

whether the input should be equal to the output, and conversely, the second process does not know322

whether the input needs to be inverted. This means a binary decision always involves two bits, one323

indicating the encoding of the input and the other defining the relationship between input and output.324
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However, practically, only one of the two processes can be performed at a time, leaving one bit of325

uncertainty for one of the processes.326

Theoretically, the framework proposed here formulates this duality with two processes having327

different perceptions of zero and one (black and white). The output of one process is the input to328

the other process. While one process tries to make its output equal to its input, the other aims for329

the opposite and tries to make its output as different as possible. The mathematical definitions of330

these processes are defined by the outer and inner Bayes equation, the latter of which is an entangled331

version of the original Bayes’ theorem. By introducing the logarithm, each process is given a control332

parameter, namely the base of the logarithm, to achieve its goal. This parameter, which is essentially333

a multiplier, allows each process to control the magnitude of the input/output.334

The solution space of the proposed double-Bayesian decision framework can be visualized with the335

trigonometric functions sin and cos. Furthermore, the golden ratio defines solutions to the inner336

Bayes equation. Connecting these two observations leads to specific values for momentum weight337

and learning rate for stochastic gradient descent, which tries to minimize the difference between338

training input and output during training.339

The supplemental material to this paper contains experiments for the MNIST dataset (LeCun et al.,340

accessed May 21, 2024), where the proposed double-Bayesian learning framework is practically341

evaluated. The theoretical parameters found in this paper did, in fact, provide the best performance342

for a network trained with stochastic gradient descent in a large grid search for learning rate and343

momentum weight.344

9 Conclusion345

Three primary characteristics define the work presented in this paper: First, a double-Bayesian346

approach that understands learning as a process involving two Bayesian decisions instead of a single347

decision, like in contemporary approaches. Second, solving a Bayesian decision problem is equivalent348

to finding a fixed point for a logarithmic function measuring uncertainty. Third, the golden ratio349

defines solutions to a Bayesian decision problem. These three characteristics make the proposed350

approach novel and unique.351

The double-Bayesian framework leads to new theoretical results for training neural networks, particu-352

larly specific hyperparameter values for backpropagation and gradient descent. These results are in353

contrast with other gradient descent heuristics in the literature that either use dynamic hyperparame-354

ters or second-order methods for adjusting parameters during training. It will be interesting to see how355

this conceptual difference will be resolved in the future. The proposed framework offers new ways to356

understand how neural networks make decisions and may thus contribute to the interpretability and357

explainability of neural networks, an actively investigated research area.358

The proposed framework may also help build bridges to other disciplines like neuroscience or359

physics. For example, representing all possible solutions to a double-Bayesian decision by means360

of trigonometric functions, as done in this paper, introduces waves. Incorporating brain waves into361

machine learning, a feature that traditional machine learning approaches are arguably lacking, would362

likely entail a better understanding of learning in general. This better understanding could mean363

training methods for smaller networks that could achieve the same performance with less training364

data, as motivated at the beginning of this paper.365

Another example of a discipline that could be related to this work is quantum mechanics. One of the366

fundamental concepts in quantum mechanics is Heisenberg’s uncertainty principle, which states that367

certain pairs of physical properties, such as the position and momentum of an electron, cannot be368

measured with absolute certainty. The more accurately one property is measured, the less is known369

about the other property. The proposed double-Bayesian framework incorporates such an intrinsic370

uncertainty and makes a connection to Bayesian decision theory, which could lead to new insights.371

Although empirical evidence in the literature supports the theoretical hyperparameter values derived372

in this paper, and the experiments in the supplemental material show that these values outperform373

other value pairs, more practical experiments are needed to corroborate these values. To address this374

limitation, future work will validate the practicality of the derived hyperparameter values in additional375

experiments across different domains and compare their performance with the performance of other376

values and other optimization strategies.377
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NeurIPS Paper Checklist422

1. Claims423

Question: Do the main claims made in the abstract and introduction accurately reflect the424

paper’s contributions and scope?425

Answer: [Yes]426

Justification: This is a theoretical paper that tries to explain hyperparameter values that427

have been successfully used in the literature. The paper investigates what it takes for a428

classifier to be optimal, as stated in the introduction. Although the literature and the429

practical experiments provided in the supplemental material support the theoretical430

results, providing more practical experiments would be desirable.431

Guidelines:432

• The answer NA means that the abstract and introduction do not include the claims433

made in the paper.434

• The abstract and/or introduction should clearly state the claims made, including the435

contributions made in the paper and important assumptions and limitations. A No or436

NA answer to this question will not be perceived well by the reviewers.437

• The claims made should match theoretical and experimental results, and reflect how438

much the results can be expected to generalize to other settings.439

• It is fine to include aspirational goals as motivation as long as it is clear that these goals440

are not attained by the paper.441

2. Limitations442

Question: Does the paper discuss the limitations of the work performed by the authors?443

Answer: [Yes]444

Justification: The limitations are discussed at the very end of the paper in the con-445

clusion. A comparison with other hyperparameter optimization strategies would be446

desirable to corroborate the theoretical results even more. Specifically, a systematic447

comparison with second-order methods and other methods that dynamically adapt448

hyperparameters during training should shed more light on the performance of this449

approach.450

Guidelines:451

• The answer NA means that the paper has no limitation while the answer No means that452

the paper has limitations, but those are not discussed in the paper.453

• The authors are encouraged to create a separate "Limitations" section in their paper.454

• The paper should point out any strong assumptions and how robust the results are to455

violations of these assumptions (e.g., independence assumptions, noiseless settings,456

model well-specification, asymptotic approximations only holding locally). The authors457

should reflect on how these assumptions might be violated in practice and what the458

implications would be.459

• The authors should reflect on the scope of the claims made, e.g., if the approach was460

only tested on a few datasets or with a few runs. In general, empirical results often461

depend on implicit assumptions, which should be articulated.462

• The authors should reflect on the factors that influence the performance of the approach.463

For example, a facial recognition algorithm may perform poorly when image resolution464

is low or images are taken in low lighting. Or a speech-to-text system might not be465

used reliably to provide closed captions for online lectures because it fails to handle466

technical jargon.467

• The authors should discuss the computational efficiency of the proposed algorithms468

and how they scale with dataset size.469

• If applicable, the authors should discuss possible limitations of their approach to470

address problems of privacy and fairness.471

• While the authors might fear that complete honesty about limitations might be used by472

reviewers as grounds for rejection, a worse outcome might be that reviewers discover473

limitations that aren’t acknowledged in the paper. The authors should use their best474
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judgment and recognize that individual actions in favor of transparency play an impor-475

tant role in developing norms that preserve the integrity of the community. Reviewers476

will be specifically instructed to not penalize honesty concerning limitations.477

3. Theory Assumptions and Proofs478

Question: For each theoretical result, does the paper provide the full set of assumptions and479

a complete (and correct) proof?480

Answer: [Yes]481

Justification: All assumptions are discussed in detail, and one proof has been included.482

Guidelines:483

• The answer NA means that the paper does not include theoretical results.484

• All the theorems, formulas, and proofs in the paper should be numbered and cross-485

referenced.486

• All assumptions should be clearly stated or referenced in the statement of any theorems.487

• The proofs can either appear in the main paper or the supplemental material, but if488

they appear in the supplemental material, the authors are encouraged to provide a short489

proof sketch to provide intuition.490

• Inversely, any informal proof provided in the core of the paper should be complemented491

by formal proofs provided in appendix or supplemental material.492

• Theorems and Lemmas that the proof relies upon should be properly referenced.493

4. Experimental Result Reproducibility494

Question: Does the paper fully disclose all the information needed to reproduce the main ex-495

perimental results of the paper to the extent that it affects the main claims and/or conclusions496

of the paper (regardless of whether the code and data are provided or not)?497

Answer: [Yes]498

Justification: Experimental results are listed in the supplemental material, with infor-499

mation to reproduce the results, including the code itself.500

Guidelines:501

• The answer NA means that the paper does not include experiments.502

• If the paper includes experiments, a No answer to this question will not be perceived503

well by the reviewers: Making the paper reproducible is important, regardless of504

whether the code and data are provided or not.505

• If the contribution is a dataset and/or model, the authors should describe the steps taken506

to make their results reproducible or verifiable.507

• Depending on the contribution, reproducibility can be accomplished in various ways.508

For example, if the contribution is a novel architecture, describing the architecture fully509

might suffice, or if the contribution is a specific model and empirical evaluation, it may510

be necessary to either make it possible for others to replicate the model with the same511

dataset, or provide access to the model. In general. releasing code and data is often512

one good way to accomplish this, but reproducibility can also be provided via detailed513

instructions for how to replicate the results, access to a hosted model (e.g., in the case514

of a large language model), releasing of a model checkpoint, or other means that are515

appropriate to the research performed.516

• While NeurIPS does not require releasing code, the conference does require all submis-517

sions to provide some reasonable avenue for reproducibility, which may depend on the518

nature of the contribution. For example519

(a) If the contribution is primarily a new algorithm, the paper should make it clear how520

to reproduce that algorithm.521

(b) If the contribution is primarily a new model architecture, the paper should describe522

the architecture clearly and fully.523

(c) If the contribution is a new model (e.g., a large language model), then there should524

either be a way to access this model for reproducing the results or a way to reproduce525

the model (e.g., with an open-source dataset or instructions for how to construct526

the dataset).527
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(d) We recognize that reproducibility may be tricky in some cases, in which case528

authors are welcome to describe the particular way they provide for reproducibility.529

In the case of closed-source models, it may be that access to the model is limited in530

some way (e.g., to registered users), but it should be possible for other researchers531

to have some path to reproducing or verifying the results.532

5. Open access to data and code533

Question: Does the paper provide open access to the data and code, with sufficient instruc-534

tions to faithfully reproduce the main experimental results, as described in supplemental535

material?536

Answer: [Yes]537

Justification: Please see the supplemental material for the code and information about538

reproducing the experimental results. The publicly available MNIST database has539

been used for the experiments.540

Guidelines:541

• The answer NA means that paper does not include experiments requiring code.542

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/543

public/guides/CodeSubmissionPolicy) for more details.544

• While we encourage the release of code and data, we understand that this might not be545

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not546

including code, unless this is central to the contribution (e.g., for a new open-source547

benchmark).548

• The instructions should contain the exact command and environment needed to run to549

reproduce the results. See the NeurIPS code and data submission guidelines (https:550

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.551

• The authors should provide instructions on data access and preparation, including how552

to access the raw data, preprocessed data, intermediate data, and generated data, etc.553

• The authors should provide scripts to reproduce all experimental results for the new554

proposed method and baselines. If only a subset of experiments are reproducible, they555

should state which ones are omitted from the script and why.556

• At submission time, to preserve anonymity, the authors should release anonymized557

versions (if applicable).558

• Providing as much information as possible in supplemental material (appended to the559

paper) is recommended, but including URLs to data and code is permitted.560

6. Experimental Setting/Details561

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-562

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the563

results?564

Answer: [Yes]565

Justification: Please see the information in the supplemental material.566

Guidelines:567

• The answer NA means that the paper does not include experiments.568

• The experimental setting should be presented in the core of the paper to a level of detail569

that is necessary to appreciate the results and make sense of them.570

• The full details can be provided either with the code, in appendix, or as supplemental571

material.572

7. Experiment Statistical Significance573

Question: Does the paper report error bars suitably and correctly defined or other appropriate574

information about the statistical significance of the experiments?575

Answer: [NA]576

Justification: The paper provides theoretical results. For the experimental results in577

the supplemental material, only the relative performance to other hyperparameter578

combinations was investigated, significant or not, to see whether the proposed values579
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define the optimum or are at least close to it. To compare the proposed method and580

values with other optimization methods, future experiments may require significance581

tests.582

Guidelines:583

• The answer NA means that the paper does not include experiments.584

• The authors should answer "Yes" if the results are accompanied by error bars, confi-585

dence intervals, or statistical significance tests, at least for the experiments that support586

the main claims of the paper.587

• The factors of variability that the error bars are capturing should be clearly stated (for588

example, train/test split, initialization, random drawing of some parameter, or overall589

run with given experimental conditions).590

• The method for calculating the error bars should be explained (closed form formula,591

call to a library function, bootstrap, etc.)592

• The assumptions made should be given (e.g., Normally distributed errors).593

• It should be clear whether the error bar is the standard deviation or the standard error594

of the mean.595

• It is OK to report 1-sigma error bars, but one should state it. The authors should596

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis597

of Normality of errors is not verified.598

• For asymmetric distributions, the authors should be careful not to show in tables or599

figures symmetric error bars that would yield results that are out of range (e.g. negative600

error rates).601

• If error bars are reported in tables or plots, The authors should explain in the text how602

they were calculated and reference the corresponding figures or tables in the text.603

8. Experiments Compute Resources604

Question: For each experiment, does the paper provide sufficient information on the com-605

puter resources (type of compute workers, memory, time of execution) needed to reproduce606

the experiments?607

Answer: [Yes]608

Justification: Please see the supplemental material for more information.609

Guidelines:610

• The answer NA means that the paper does not include experiments.611

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,612

or cloud provider, including relevant memory and storage.613

• The paper should provide the amount of compute required for each of the individual614

experimental runs as well as estimate the total compute.615

• The paper should disclose whether the full research project required more compute616

than the experiments reported in the paper (e.g., preliminary or failed experiments that617

didn’t make it into the paper).618

9. Code Of Ethics619

Question: Does the research conducted in the paper conform, in every respect, with the620

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?621

Answer: [Yes]622

Justification: There is no violation of the NeurIPS Code of Ethics.623

Guidelines:624

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.625

• If the authors answer No, they should explain the special circumstances that require a626

deviation from the Code of Ethics.627

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-628

eration due to laws or regulations in their jurisdiction).629

10. Broader Impacts630
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Question: Does the paper discuss both potential positive societal impacts and negative631

societal impacts of the work performed?632

Answer: [NA]633

Justification: The paper proposes a generic method to find hyperparameter values634

for optimizing the performance of neural networks. Its societal impacts, therefore,635

correlate with the risks of machine learning in general, which does not need to be636

pointed out in particular according to the guidelines below.637

Guidelines:638

• The answer NA means that there is no societal impact of the work performed.639

• If the authors answer NA or No, they should explain why their work has no societal640

impact or why the paper does not address societal impact.641

• Examples of negative societal impacts include potential malicious or unintended uses642

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations643

(e.g., deployment of technologies that could make decisions that unfairly impact specific644

groups), privacy considerations, and security considerations.645

• The conference expects that many papers will be foundational research and not tied646

to particular applications, let alone deployments. However, if there is a direct path to647

any negative applications, the authors should point it out. For example, it is legitimate648

to point out that an improvement in the quality of generative models could be used to649

generate deepfakes for disinformation. On the other hand, it is not needed to point out650

that a generic algorithm for optimizing neural networks could enable people to train651

models that generate Deepfakes faster.652

• The authors should consider possible harms that could arise when the technology is653

being used as intended and functioning correctly, harms that could arise when the654

technology is being used as intended but gives incorrect results, and harms following655

from (intentional or unintentional) misuse of the technology.656

• If there are negative societal impacts, the authors could also discuss possible mitigation657

strategies (e.g., gated release of models, providing defenses in addition to attacks,658

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from659

feedback over time, improving the efficiency and accessibility of ML).660

11. Safeguards661

Question: Does the paper describe safeguards that have been put in place for responsible662

release of data or models that have a high risk for misuse (e.g., pretrained language models,663

image generators, or scraped datasets)?664

Answer: [NA]665

Justification: There is no risk of misusing the proposed method beyond misusing666

machine learning in general.667

Guidelines:668

• The answer NA means that the paper poses no such risks.669

• Released models that have a high risk for misuse or dual-use should be released with670

necessary safeguards to allow for controlled use of the model, for example by requiring671

that users adhere to usage guidelines or restrictions to access the model or implementing672

safety filters.673

• Datasets that have been scraped from the Internet could pose safety risks. The authors674

should describe how they avoided releasing unsafe images.675

• We recognize that providing effective safeguards is challenging, and many papers do676

not require this, but we encourage authors to take this into account and make a best677

faith effort.678

12. Licenses for existing assets679

Question: Are the creators or original owners of assets (e.g., code, data, models), used in680

the paper, properly credited and are the license and terms of use explicitly mentioned and681

properly respected?682

Answer: [Yes]683
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Justification: The main paper cites relevant references for the scientific content and the684

supplemental material provides more details about the data and software sources.685

Guidelines:686

• The answer NA means that the paper does not use existing assets.687

• The authors should cite the original paper that produced the code package or dataset.688

• The authors should state which version of the asset is used and, if possible, include a689

URL.690

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.691

• For scraped data from a particular source (e.g., website), the copyright and terms of692

service of that source should be provided.693

• If assets are released, the license, copyright information, and terms of use in the694

package should be provided. For popular datasets, paperswithcode.com/datasets695

has curated licenses for some datasets. Their licensing guide can help determine the696

license of a dataset.697

• For existing datasets that are re-packaged, both the original license and the license of698

the derived asset (if it has changed) should be provided.699

• If this information is not available online, the authors are encouraged to reach out to700

the asset’s creators.701

13. New Assets702

Question: Are new assets introduced in the paper well documented and is the documentation703

provided alongside the assets?704

Answer: [Yes]705

Justification: The paper provides new assets in the form of knowledge about hyperpa-706

rameter values to train neural networks with gradient descent and software to find707

the best combination of momentum weight and learning rate with a grid search. Each708

asset is documented in the paper and supplemental material, respectively.709

Guidelines:710

• The answer NA means that the paper does not release new assets.711

• Researchers should communicate the details of the dataset/code/model as part of their712

submissions via structured templates. This includes details about training, license,713

limitations, etc.714

• The paper should discuss whether and how consent was obtained from people whose715

asset is used.716

• At submission time, remember to anonymize your assets (if applicable). You can either717

create an anonymized URL or include an anonymized zip file.718

14. Crowdsourcing and Research with Human Subjects719

Question: For crowdsourcing experiments and research with human subjects, does the paper720

include the full text of instructions given to participants and screenshots, if applicable, as721

well as details about compensation (if any)?722

Answer: [NA]723

Justification: The paper does not involve crowdsourcing nor research with human724

subjects.725

Guidelines:726

• The answer NA means that the paper does not involve crowdsourcing nor research with727

human subjects.728

• Including this information in the supplemental material is fine, but if the main contribu-729

tion of the paper involves human subjects, then as much detail as possible should be730

included in the main paper.731

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,732

or other labor should be paid at least the minimum wage in the country of the data733

collector.734
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human735

Subjects736

Question: Does the paper describe potential risks incurred by study participants, whether737

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)738

approvals (or an equivalent approval/review based on the requirements of your country or739

institution) were obtained?740

Answer: [NA]741

Justification: The paper does not involve crowdsourcing nor research with human742

subjects.743

Guidelines:744

• The answer NA means that the paper does not involve crowdsourcing nor research with745

human subjects.746

• Depending on the country in which research is conducted, IRB approval (or equivalent)747

may be required for any human subjects research. If you obtained IRB approval, you748

should clearly state this in the paper.749

• We recognize that the procedures for this may vary significantly between institutions750

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the751

guidelines for their institution.752

• For initial submissions, do not include any information that would break anonymity (if753

applicable), such as the institution conducting the review.754

A Appendix / supplemental material755

Two grid searches for the publicly available MNIST dataset were performed to corroborate the756

learning rate and momentum weight derived in the main paper (LeCun et al., accessed May 21, 2024).757

The MNIST dataset contains gray-scale images of handwritten digits and is one of the prominent758

datasets used to evaluate machine learning methods. It is split into a training and a test set, where the759

latter serves as a standard of comparison. Figure 2 shows an example of the MNIST data.

Figure 2: A slightly enlarged example from the MNIST dataset showing a handwritten digit (4).

760

A.1 Experiments761

The grid searches were performed on the full-size MNIST dataset and a smaller version of MNIST762

containing only 50% of the training data. In the latter case, a stratified sampling method named763

StratifiedShuffleSplit was used to create a stratified random subset of the training samples (Scikit-764

learn developers , BSD License; Pedregosa et al., 2011; Buitinck et al., 2013). This ensured that the765

class distribution in the training subset was the same as in the original full-size training set. The766

degradation in dataset size allowed observing how each optimizer performed under varying amounts767

of training data, assuming that providing less training data posed a harder problem.768

A deep learning model was trained based on a convolutional neural network (CNN). The model769

consisted of two convolutional layers, each followed by a ReLU activation function and a max770

pooling operation. The first convolutional layer had a single-channel input (grayscale image) and771

applied 16 filters, followed by a second convolutional layer that expanded the channel size to 32.772

Both convolutional layers used a 3x3 kernel size, a stride of one, and a padding of one. After each773

convolution, a ReLU activation function introduced non-linearity, and a max pooling operation with774
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a 2x2 kernel and stride reduced the spatial dimensions by half. A dropout layer with a rate of 0.25775

was applied after flattening the output to prevent overfitting. The network concluded with two fully776

connected layers with a final output of 10 classes, where the maximum output value determined the777

class of an input image. The number of parameters was around two hundred thousand for an MNIST778

input image of size 28x28. A weight initialization was performed using the Kaiming uniform method.779

No data augmentation techniques were applied; however, the input was normalized to the range [-1,1].780

The training used a batch size of 64 and was conducted over 30 epochs, employing cross entropy781

as the loss function. The sizes of the training, validation, and test datasets were 54,000, 6,000, and782

10,000, respectively. Finally, the model’s performance was assessed through 10-fold cross-validation.783

A.2 Results784

The results of both grid searches are shown in Figure 3 for the full-size training set and in Figure 3785

for the smaller training set with 50% of the size. The following values were used as momentum

Figure 3: Grid search results for MNIST

786
weights for each grid search: 0, 0.2, 0.4, 0.6, 0.8, 0.825, 0.85, 0.874, 0.9, and 0.925. On the other787

hand, the following values were used as learning rates: 0.0001, 0.001, 0.01, 0.016, 0.1, 0.2. These788

values included the momentum weight derived in the paper (α ≈ 0.874) and the derived learning789

rate (η ≈ 0.016). Other values were chosen based on their use in the literature or to increase the790

resolution around the derived theoretical values. All possible combinations of values span a 6x10791

grid. The color of each square in the grids of Figure 3 and Figure 4 represent the performance of the792

corresponding pair of momentum weight and learning rate, with lighter colors representing higher793

performance. Green rectangles indicate the top ten performing pairs, whereas blue rectangles show794

the best-performing pair. Note that more than one pair can share the best performance, as in Figure 3.795

Figure 3 shows that no pair of momentum weight and learning rate provides better performance on796

the full-size MNIST set than the pair derived in the paper, (0.016, 0.874), although this pair has to797

share its first place with other pairs. The classification accuracies for the reduced training set size798

are slightly lower in the table of Figure 4, as one would expect for a problem with less training data.799
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Nevertheless, the theoretical values derived in the paper for momentum weight and learning rate show

Figure 4: Grid search results for MNIST using only 50% of the training data

800
again the best performance.801

A.3 Computational environment and runtime802

The software was developed using Python 3.10, and the Convolutional Neural Network (CNN) model803

was implemented in Pytorch 2.2.2. For each combination of learning rate and momentum weight (60804

combinations in total), the training time was approximately three hours for 100% of the training set805

size and about 1.5 hours for 50% of the training set. Consequently, the cumulative GPU time for all806

experiments was approximately (3 + 1.5) × 60 hours, which is 270 hours. The average memory usage807

was roughly 1 GB for each combination. For more information about the software requirements and808

workflow, see the Readme file uploaded as supplemental material together with the code.809

A.4 Computing cluster810

Figure 5 shows an overview of the GPU computing cluster that was available for the experiments,811

including the type of GPUs among which the processing was distributed.812
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GPU nodes Processor cores per node Memory Network 

36 

32 x 2.8 GHz (AMD 

Epyc 7543p) 

hyperthreading enabled 

256 MB level 3 cache 

4 x NVIDIA A100 GPUs 

(80 GB VRAM, 6912 

cores, 432 Tensor cores) 

NVLINK 

256 GB 
200 Gb/s HDR Infiniband 

(1:1) 

56 

36 x 2.3 GHz (Intel Gold 

6140) 

hyperthreading enabled 

25 MB secondary cache 

4 x NVIDIA V100-

SXM2 GPUs (32 GB 

VRAM, 5120 cores, 640 

Tensor cores) 

NVLINK 

384 GB 
200 Gb/s HDR Infiniband 

(1:1) 

8 

28 x 2.4 GHz (Intel E5-

2680v4) 

hyperthreading enabled 

35 MB secondary cache 

4 x NVIDIA V100 GPUs 

(16 GB VRAM, 5120 

cores, 640 Tensor cores) 

128 GB 

 

56 Gb/s FDR Infiniband 

(1.11:1) 

48 

28 x 2.4 GHz (Intel E5-

2680v4) 

hyperthreading enabled 

35 MB secondary cache 

4 x NVIDIA P100 GPUs 

(16 GB VRAM, 3584 

cores) 

128 GB 
56 Gb/s FDR Infiniband 

(1.11:1) 

72 

28 x 2.4 GHz (Intel E5-

2680v4) 

hyperthreading enabled 

35 MB secondary cache 

2 x NVIDIA K80 GPUs 

with 2 x GK210 GPUs 

each (24 GB VRAM, 

4992 cores) 

256 GB 
56 Gb/s FDR Infiniband 

(1.11:1) 

 

 

 

 

 

 

 

 

Figure 5: GPU computing cluster
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