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Abstract

Neural Processes (NPs) are popular meta-learning
methods for efficiently modelling predictive un-
certainty. Recent state-of-the-art methods, how-
ever, leverage expensive attention mechanisms,
limiting their applications, particularly in low-
resource settings. In this work, we propose
Constant Memory Attentive Neural Processes
(CMANPs), an NP variant that only requires con-
stant memory. To do so, we first propose an effi-
cient update operation for Cross Attention. Lever-
aging the update operation, we propose Constant
Memory Attention Block (CMAB), a novel at-
tention block that (i) is permutation invariant, (ii)
computes its output in constant memory, and (iii)
performs constant computation updates. Finally,
building on CMAB, we detail Constant Memory
Attentive Neural Processes. Empirically, we show
CMANPs achieve state-of-the-art results on popu-
lar NP benchmarks while being significantly more
memory efficient than prior methods.

1. Introduction
Neural Processes (NPs) are a popular family of meta-
learning models for uncertainty estimation. They are partic-
ularly useful in low-resource settings due to not requiring
retraining from scratch given new data. Over recent years,
NPs have been applied to a wide variety of settings such
as graph link prediction (Liang & Gao, 2022), continual
learning (Requeima et al., 2019), and recommender sys-
tems (Lin et al., 2021). With the growing popularity of
low-memory/compute domains (e.g., IoT devices and mo-
bile phones), deployed models in these low-resource settings
must be memory efficient. Furthermore, memory access is
energy intensive (Li et al., 2022a). As such, the design of
memory-efficient models is crucial for settings with a lim-
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ited energy supply (e.g., battery-powered devices such as
mobile robots).

However, the state-of-the-art NP methods (Nguyen &
Grover, 2022; Feng et al., 2023) are attention-based meth-
ods that require substantial amounts of memory, limiting
their applicability. For example, Transformer Neural Pro-
cesses (TNPs) (Nguyen & Grover, 2022) leverage Trans-
formers (Vaswani et al., 2017). As such, TNPs are computa-
tionally expensive, scaling quadratically with the size of the
context and query dataset. Latent Bottlenecked Attentive
Neural Processes (LBANPs) (Feng et al., 2023) leverage Per-
ceiver’s iterative attention (Jaegle et al., 2021b) and require
O(k|DC |) memory where |DC | is the size of the context
dataset and k is a hyperparameter that scales with the diffi-
culty of the task and the context dataset size.

Tackling this issue, we propose Constant Memory Attentive
Neural Processes (CMANPs), a novel attention-based NP
that is competitive with prior state-of-the-art while only
requiring a constant amount of memory. To do so, we first
(1) improve the computational efficiency of Cross Attention
and (2) propose a novel efficient attention block.

More specifically, we propose (1) an exact update operation
for Cross Attention that allows it to be efficiently updated
with new context data (Section 3.1.1). Using the efficient
updates operation, we show that Cross Attention can also be
computed memory-efficiently (Section 3.1.2). Leveraging
the aforementioned efficiency properties of Cross Attention,
we propose (2) Constant Memory Attention Block (CMAB)
(Section 3.2), a novel attention block, that (i) is permutation
invariant, (ii) computes its output in constant memory, and
(iii) performs updates in constant computation.

Finally, building on CMABs, we propose Constant Memory
Attentive Neural Processes (CMANPs) (Section 3.3). By
using CMABs, CMANPs (i) only require constant memory,
making it naturally scalable in the number of data points
and (ii) allow for updates to the context to be performed
efficiently unlike prior state-of-the-art NPs. Leveraging
the efficient updates property, we further introduce an Au-
toregressive Not-Diagonal extension (Section 3.3.1) which
only requires constant memory unlike the quadratic memory
required by all prior Not-Diagonal extensions of NPs. In
the experiments, CMANPs achieve state-of-the-art results
on popular NP benchmarks while being significantly more
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memory efficient than prior state-of-the-art methods.

2. Background
2.1. Meta-learning for Predictive Uncertainty

Estimation

In meta-learning for predictive uncertainty estimation, mod-
els are trained on a distribution of tasks Ω(T ) to model a
probabilistic predictive distribution. A task T is a tuple (X ,
Y , L, q) where X ,Y are the input and output space respec-
tively, L is the task-specific loss function, and q(x, y) is
the task-specific distribution over data points. During each
meta-training iteration, B tasks T = {Ti}Bi=1 are sampled
from the task distribution Ω(T ). For each task Ti ∈ T, a
context dataset Di

C = {(x, y)i,j}Nj=1 and a target dataset
Di

T = {(x, y)i,j}Mj=1 are sampled from the task-specific
data point distribution qTi . N is a fixed number of context
data points and M is a fixed number of target data points.
The model is adapted using the context dataset. Afterwards,
the target dataset is used to evaluate the effectiveness of the
adaptation and adjust the adaptation rule accordingly.

2.2. Neural Processes

Neural Processes (NPs) (Garnelo et al., 2018b) are meta-
learned models that define a family of conditional distribu-
tions. Specifically, NPs condition on an arbitrary amount
of context data points (labelled data points) and make pre-
dictions for a batch of target data points, while preserving
invariance in the ordering of the context dataset. NPs consist
of three phases: conditioning, querying, and updating. How-
ever, recent state-of-the-art NP models (Nguyen & Grover,
2022; Feng et al., 2023) leverage attention, causing these
phases to require large amounts of memory and limiting
their applicability.

Conditioning: In the conditioning phase, the model en-
codes the context dataset DC . Neural Processes model
functional uncertainty by encoding the context dataset as a
Gaussian latent variable: zC ∼ q(z|DC) where q(z|DC) =
N (z;µC , σ

2
C) and µC , σC = fencoder(DC). Conditional

variants (Garnelo et al., 2018a) instead compute a determin-
istic encoding, i.e., zC = fencoder(DC).

Querying: In the querying phase, given target data points
xT to make predictions for, the NP models the predictive
distribution p(yT |xT , zC).

Updating: In the updating phase, the model receives new
context data points DU and uses it to compute new encod-
ings, i.e., re-computing zC given DC ← DC ∪ DU .

During training, deterministic NP variants maximize the log-
likelihood directly. In contrast, stochastic variants maximize

an evidence lower bound (ELBO) of the log-likelihood:

log p(yT |xT ,DC) ≥Eq(z|DC∪DT ) [log p(yT |xT , z)]

−KL(q(z|DC ∪ DT )||p(z|DC))

3. Methodology
In this section, we propose Constant Memory Attentive
Neural Processes (CMANPs), a novel attention-based NP
that only requires constant memory for the conditioning,
querying, and updating phases. To do so, we begin by
proposing an efficient update operation for Cross Attention
(Section 3.1). Leveraging the update operation, we propose
Constant Memory Attention Block (CMAB) (Section 3.2),
a memory-efficient attention block. Finally, building on
CMAB, we propose Constant Memory Attentive Neural
Processes (Section 3.3).

3.1. Cross Attention

Cross Attention (CA) is widely used in state-of-the-art Neu-
ral Processes during the conditioning, querying, and up-
dating phases and makes up a significant portion of their
computational complexity. Cross Attention retrieves infor-
mation from a set of DC context tokens for a given set of
query tokens L via a weighted average as follows:

CrossAttention(L,DC) = softmax(QKT )V

where Q = LWq is the query matrix, K = DCWk is
the key matrix, and V = DCWv is the value matrix.
Wq,Wk,Wv ∈ Rd×d are weight matrices (learned param-
eters) that project the input tokens. softmax(QKT ) com-
putes the weight for each context token in the weighted
average.

When given a new set of context tokens DU , computing
the updated output CrossAttention(L,DC ∪ DU ) from
CrossAttention(L,DC) requires O((|DC | + |DU |)|L|)
memory and computation. In practice, |DC | is significantly
larger than |DU | and |L|, making the complexity’s reliance
on |DC | a limitation.

In this section, we propose an efficient update opera-
tion that computes CrossAttention(L,DC ∪ DU ) from
CrossAttention(L,DC) in only O(|DU ||L|) computation:

CrossAttention(L,DC ∪ DU ) =

UPDATE(DU ,CrossAttention(L,DC))

Leveraging this efficient update operation, we then show
that CrossAttention(L,DC) can be efficiently computed
in only O(|L|) memory. Notably, these complexities are
independent of DC making them computationally efficient
and naturally scalable with respect to the number of context
tokens |DC |. A formal proof and derivation of the efficient
update operation is included in Appendix A.1.
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3.1.1. EFFICIENT UPDATE PROPERTY

When computing the updated value of CA′ =
CrossAttention(L,DC ∪ DU ) with a new set of DU

context tokens, |DU | rows are added to the key, value
matrices. Since the attention weights are computed via
products between the keys (with |DU | added rows) and
queries (unchanged), thus the new output can be computed
from CA = CrossAttention(L,DC) via a rolling aver-
age in O(|DU ||L|). An implementation of the proposed
UPDATE operation for j ∈ {1, 2, . . . , |L|} is as follows:

CA′
j =

cj
c′j
× CAj +

|DC |+|DU |∑
i=|DC |+1

esi

c′j
vi

where si = Qj,:(Ki,:)
T , vi = Vi,:, and c′j = cj +∑|DC |+|DU |

i=|DC |+1 exp(si). c′ are normalizing constants for CA′

that are computed via a rolling sum from cached normaliz-
ing constants c. When computing the updated value CA′,
c′ replaces c as the cached normalizing constants. Comput-
ing CA′

j and c′j via these rolling average and summation
thus only requires O(|DU |) operations when given CAj

and cj . Since there are |L| values for j, the total amount
of computation is thus O(|DU ||L|). In practice, however,
this is not a stable implementation. The computation of
c′j = cj +

∑|DC |+|DU |
i=|DC |+1 exp(si) can quickly run into numer-

ical issues such as underflow and overflow due to being a
sum of exponentials.

As such, instead of computing c′ in the update, we propose
to compute log(c′), resulting in the following update:

CA′
j = exp(log(cj)− log(c′j))× CAj+

|DC |+|DU |∑
i=|DC |+1

exp(si − log(c′j))vi

where log(c′j) = log(cj) + softplus(tj) and tj =

log(
∑|DC |+|DU |

i=|DC |+1 exp(si − log(c))). tj can be computed
accurately using the log-sum-exp trick, avoiding the under-
flow and overflow issues.

3.1.2. REDUCING MEMORY USAGE

A naive computation of CrossAttention(L,DC) would re-
quire linear memory complexity in the number of context
tokens, i.e., O(|DC ||L|). Instead, we propose to leverage
the aforementioned update operation and split the input data
DC into |DC |/bC batches of input data points of size up
to bC (a pre-specified constant), i.e., DC = ∪|DC |/bC

i=1 D(i)
C .

Computing CrossAttention(L,DC) is then equivalent to
performing an update |DC |/bC − 1 times:

CA(L,DC) = UPDATE(D(1)
C ,UPDATE(D(2)

C , . . .

UPDATE(D(|DC |/bC−1)
C ,CA(LB ,D(|DC |/bC

C )))))

Computing CrossAttention(L,D(|DC |/bC)
C ) requires

O(bC |L|) memory. After its computation, the memory
can be freed up, so that each of the subsequent UPDATE
operations can re-use the memory space. Each of the
update operations also only uses O(bC |L|) constant
memory. As such, CrossAttention(L,DC) only needs
O(bC |L|) = O(|L|) memory in total, i.e., a memory
amount that is independent of the number of context data
points. Notably, bC is a hyperparameter constant which
trades off the memory and time complexity.

3.2. Constant Memory Attention Block (CMAB)

Efficiently computing CrossAttention(L,DC ∪ DU ) from
CrossAttention(L,DC) require (1) the query tokens re-
main the same and (2) the new tokens being appended to the
old context tokens. However, these requirements do not hold
for prior attention models (Vaswani et al., 2017; Lee et al.,
2019; Jaegle et al., 2021b). When these attention blocks are
stacked, the query tokens of later attention blocks end up
being conditioned on the context dataset1. As such, when
the context dataset changes, the query tokens of these later
attention blocks change as well, meaning that the efficient
updates property of Cross Attention cannot be applied to
existing stacked attention models such as Perceiver (Jaegle
et al., 2021a;b). As such, in this section, we specially de-
sign the Constant Memory Attention Block (CMAB) that
is capable of leveraging the efficiency properties of cross
attention while being stacked2.

The Constant Memory Attention Block (Figure 1) takes as
input a fixed-sized set of latent vectors LI and the context
data DC and outputs a new set of latent vectors L′

I . Within
each CMAB is a unique fixed-sized set of latents LB learned
during training. When stacking CMABs, the output latent
vectors of the previous CMAB are fed as the input latent
vectors to the next, i.e., LI ← L′

I . The value of LI of the
first stacked CMAB block is learned.

In the first phase, CMAB applies cross attention between
the context data DC and the block-wise latent vectors LB ,
compressing the data representation. Crucially, since LB is
a set of fixed learned latent vectors unique to each CMAB
block, the query tokens are fixed as required regardless
of stacking; as a result, this cross attention possesses the
efficiency properties of Cross Attention. Afterwards, a self
attention is applied to compute higher-order information:

L′
B = SelfAttention(CrossAttention(LB ,DC))

The second phase is designed to make CMABs stackable,
i.e., computing L′

I from LI . Specifically, cross attention

1Further details are included in Appendix A.4.
2See Appendix B for insights regarding the construction of

CMAB.
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Figure 1. Constant Memory Attention Block (CMAB). CMABs are stackable attention blocks that (i) are permutation invariant in the
input data, (ii) compute their output in constant memory, and (iii) compute updates in constant computation per new data point. Notably,
LB is a learned set of latents unique to the block, allowing CMABs to take advantage of the efficient update property of Cross Attention.

is performed by taking in as query tokens the prior latents
LI and as context the compressed data representation L′

B .
Afterwards, an additional self-attention is used to compute
further higher-order information, resulting in the output
vectors L′

I :

L′
I = SelfAttention(CrossAttention(LI , L

′
B))

In terms of the computational complexity of CMAB, the
first phase has an overall complexity of O(|DC ||LB | +
|LB |2) and the second phase has an overall complexity
of O(|LB ||LI |+ |LI |2). Since the number of latents |LB |
and |LI | are hyperparameter constants, therefore these com-
plexities are all constant except for the O(|DC ||LB |) fac-
tor induced by the first phase’s CrossAttention(LB ,DC).
However, due to LB being fixed, CMABs can leverage the
efficiency properties of Cross Attention, resulting in the
following CMAB-specific properties: (1) perform updates
in constant computation and (2) compute their output in con-
stant memory. In contrast, methods like Transformer or Per-
ceiver require linear or quadratic memory and re-computing
from scratch when given new context data. Furthermore,
since Cross Attention is permutation invariant in the context,
CMABs are also (3) permutation invariant by default.

3.3. Constant Memory Attentive Neural Processes
(CMANPs)

In this section, we introduce Constant Memory Attentive
Neural Processes (CMANPs), a memory efficient variant
of Neural Processes (Figure 2) that leverages the stacked
CMAB blocks for efficiency. The conditioning, querying,
and updating phases in CMANPs work as follows:

Conditioning Phase: In the conditioning phase, the CMAB
blocks encode the context dataset into a set of latent vectors
Li. The first block takes as input a set of meta-learned latent
vectors L0 (i.e., LI in CMABs) and the context dataset DC ,
and outputs a set of encodings L1 (i.e., L′

I in CMABs). The

output latents of each block are passed as the input latents
to the next CMAB block.

Li = CMAB(Li−1,DC)

Since CMABs can compute their output in constant mem-
ory, CMANPs can also perform this conditioning phase in
constant memory.

Querying Phase: In the querying phase, the deployed
model retrieves information from the fixed size outputs of
the CMAB blocks (Li) to make predictions for the query
data points (Xquery). Beginning with X0

query ← Xquery,
when making a prediction for the query data points Xquery ,
information is retrieved via cross-attention.

Xi
query = CrossAttention(Xi−1

query, Li)

Updating Phase: In the updating phase, the NP receives
a batch of new data points DU to include in the context
dataset. CMANPs leverage the efficient update mecha-
nism of CMABs to perform this phase efficiently (i.e., con-
stant computation per new data point). Beginning with
Lupdated
0 ← L0, the CMAB blocks are updated sequentially

using the updated output of the previous CMAB block as
follows:

Lupdated
i = CMAB(Lupdated

i−1 ,DC ∪ DU )

Since CMABs perform updates in constant memory irre-
spective of the number of context data points, CMANPs
also perform updates in constant computation and memory.
In Table 1 and 2, we compare the memory complexities
of state-of-the-art Neural Processes, showing the efficiency
gains of CMANPs.

3.3.1. AUTOREGRESSIVE NOT-DIAGONAL EXTENSION

In many settings where NPs are applied such as Image
Completion, the target data points are correlated and their
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Figure 2. Constant Memory Attentive Neural Processes (CMANPs). CMANPs perform the conditioning, querying, and updating phases
in constant memory with respect to the size of the context dataset |DC |.

Memory Complexity
Cond. Query Update

In Terms of |DC | |DC | M |DC | |DU |
TNP-D N/A N/A N/A
LBANP
CMANP (Ours)

Table 1. Comparison of Memory Complexities of top-performing
Neural Processes with respect to the number of context data points
|DC |, number of target data points in a batch M , and the num-
ber of new data points in an update |DU |. (Green) Checkmarks
represent requiring constant memory, (Orange) half checkmarks
represent requiring linear memory, and (Red) Xs represent requir-
ing quadratic or more memory. A larger table with all baselines is
included in the Appendix (Table 8).

Memory Complexity
Cond. Query Update

In Terms of |DC | |DC | M |DC | |DU |
TNP-ND N/A N/A N/A
LBANP-ND
CMANP-AND

Table 2. Comparison of Memory Complexities of Not-Diagonal
extensions of Neural Processes.

predictive distribution are evaluated altogether. As such,
prior works (Nguyen & Grover, 2022; Feng et al., 2023)
have proposed Not-Diagonal extensions of NPs which pre-
dicts the mean and a full covariance matrix, typically via a
low-rank approximation. This is in contrast to the vanilla
(Diagonal) variants which predict the mean and a diagonal
covariance matrix. Not-Diagonal methods, however, are
not scalable, requiring quadratic memory in the number of
target data points due to outputting a full covariance matrix.

Leveraging the efficient updates property of CMABs, we
propose CMANP-AND (Autoregressive Not-Diagonal).

During training, CMANP-AND follows the framework of
prior Not-Diagonal variants. When deployed, the model
is treated as an autoregressive model that makes predic-
tions in blocks of size bQ data points. For each block
prediction, a mean and full covariance matrix is com-
puted via a low-rank approximation. Sampled predic-
tions of prior blocks are used to make predictions for later
blocks. The first block is sampled as follows: Ŷ1 ∼
N (µθ(D0

C , X1),Σθ(D0
C , X1)) where Ŷ1 = ŷN+1:N+bQ

and X1 = xN+1:N+bQ . Afterwards, by leveraging the
efficient update mechanism, CMANP-AND performs an
update using the sampled predictions {(xi, ŷi)}

N+bQ
N+1 as

new context data points, meaning that CMANP-AND is
now conditioned on a new context dataset D1

C where
D1

C = D0
C ∪ {(xi, ŷi)}

N+bQ
N+1 . The general formulation

is as follows: Ŷk+1 ∼ N (µθ(Dk
C , Xk+1),Σθ(Dk

C , Xk+1))

where k is the number of blocks already processed, Ŷk+1 =
ŷN+kbQ+1:N+(k+1)bQ , Xk+1 = xN+kbQ+1:N+(k+1)bQ ,

and Dk
C = {(xi, yi)}Ni=1 ∪ {(xi, ŷi)}

N+kbQ
N+1 is the context

dataset. The hyperparameter bQ controls (1) the computa-
tional cost of the model in terms of memory and sequential
computation length and (2) the performance of the model.
Lower values of bQ allow for modelling more complex dis-
tributions, offering better performance but requiring more
forward passes of the model. Since bQ is a constant, this Au-
toregressive Not-Diagonal extension makes predictions sig-
nificantly more efficiently than the prior Not-Diagonal vari-
ants which were quadratic in memory. As such, CMANP-
AND can scale to a larger number of data points than prior
methods (LBANP-ND and TNP-ND). Big-O complexity
analysis is included in Appendix A.3.

4. Experiments
In this section, we aim to evaluate the empirical perfor-
mance of CMANPs and provide an analysis of CMANPs.
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To do so, we compare CMANPs against a large variety
of members of the Neural Process family on standard
NP benchmarks: image completion and meta-regression.
Specifically, we compare against Conditional Neural Pro-
cesses (CNPs) (Garnelo et al., 2018a), Neural Processes
(NPs) (Garnelo et al., 2018b), Bootstrapping Neural Pro-
cesses (BNPs) (Lee et al., 2020), (Conditional) Atten-
tive Neural Processes (C)ANPs (Kim et al., 2019), Boot-
strapping Attentive Neural Processes (BANPs) (Lee et al.,
2020), Latent Bottlenecked Attentive Neural Processes
(LBANPs) (Feng et al., 2023), and Transformer Neural Pro-
cesses (TNPs) (Nguyen & Grover, 2022). We also compare
against the Not-Diagonal extensions of the state-of-the-art
methods (i.e., LBANP-ND and TNP-ND).

For consistency, we set the number of latents (i.e., bottle-
neck size) |LI | = |LB | = 128 across all experiments. We
also set bQ = 5. To fairly compare iterative attention and
CMABs, we report results for LBANPs with the same sized
bottleneck (i.e., number of latents L = 128) as CMANPs
across all experiments. Due to space limitations, additional
hyperparameters and experiments are included in the ap-
pendix3.

4.1. Image Completion

In these experiments, we consider the image completion
setting. The model is given a set of pixel values of an
image and aims to predict the remaining pixels of the image.
Each image corresponds to a unique function (Garnelo et al.,
2018b). In these experiments, the x values are rescaled
to [-1, 1] and the y values are rescaled to [−0.5, 0.5]. For
each task, a randomly selected set of pixels are selected as
context data points and target data points.

EMNIST (Cohen et al., 2017) comprises black and white
images of handwritten letters of 32 × 32 resolution. 10
classes are used for training. The context and target data
points are sampled according to N ∼ U [3, 197) and M ∼
U [3, 200−N) respectively. CelebA (Liu et al., 2015) com-
prises coloured images of celebrity faces. Methods are eval-
uated on various resolutions to show the scalability of the
methods. In CelebA32, images are downsampled to 32×32
and the number of context and target data points are sam-
pled according to N ∼ U [3, 197) and M ∼ U [3, 200−N)
respectively. In CelebA64, the images are down-sampled
to 64 × 64 and N ∼ U [3, 797) and M ∼ U [3, 800 − N).
In CelebA128, the images are down-sampled to 128× 128
and N ∼ U [3, 1597) and M ∼ U [3, 1600−N).

Results. All NP baselines (see Table 3) were able to be
evaluated on CelebA (32 x 32) and EMNIST. However,
many baselines were not able to be trained on CelebA (64
x 64) and CelebA (128 x 128) in the available GPU mem-

3Code: https://github.com/BorealisAI/constant-memory-anp.

ory due to requiring a quadratic amount of memory includ-
ing all prior Not-Diagonal extensions of NPs. In contrast,
CMANP(-AND) was not affected by this limitation due to
being significantly more memory efficient than prior Not-
Diagonal variants. The results show that CMANP-AND
achieves clear state-of-the-art results on CelebA (32x32),
CelebA (64x64), and CelebA (128x128) while being scal-
able to more data points than prior Not-Diagonal variants.
Furthermore, CMANP-AND achieves results competitive
with state-of-the-art EMNIST.

Empirical Computational Complexity Results. In Figure
3, we analyze the empirical memory and runtime used by
CMANPs compared with various state-of-the-art Neural
Process models. Comparing Not-Diagonal extensions of
NPs (Figure 3 (Left)), we see that the memory usage of both
TNP-ND and LBANP-ND scale quadratically with respect
to the number of target data points, making these methods
infeasible to be applied to settings with a larger number of
target data points as shown in our CelebA experiments. In
contrast, CMANP-AND can scale to a far larger number of
target data points. Comparing the vanilla variants of NPs
(Figure 3 (Middle)), we see that TNP-D (transformer-based
model) scales quadratically with respect to the number of
context data points while LBANP (Perceiver-based model)
scales linearly. In contrast, CMANP (CMAB-based model)
only requires a low constant amount of memory regardless
of the number of context data points. As a result, we can see
that CMANPs use a significantly less amount of memory,
allowing them to scale to more data points while achieving
results competitive with state-of-the-art.

In terms of runtime (Figure 3 (Right)), LBANPs and
CMANPs are comparable as they both only require retriev-
ing information from a fixed-size set of latents. In contrast,
TNPs are quadratic due to leveraging transformers during
queries. Due to space limitations, we include in the ap-
pendix the runtime complexity plot of the update operation
which shows that CMANPs’ efficient update mechanism is
significantly more efficient than that of prior state-of-the-art.

4.2. Meta-Regression

In this experiment, the goal is to model an unknown function
f and make predictions for a batch of M target data points
given a batch of N context data points. During each training
epoch, a batch of B = 16 functions are sampled from a GP
prior with an RBF kernel fi ∼ GP (m, k) where m(x) = 0

and k(x, x′) = σ2
f exp(

−(x−x′)2

2l2 ). The hyperparameters
are sampled according to l ∼ U [0.6, 1.0), σf ∼ U [0.1, 1.0),
N ∼ U [3, 47), and M ∼ U [3, 50 − N). After training,
the models are evaluated according to the log-likelihood of
the targets on functions sampled from GPs with RBF and
Matern 5/2 kernels.
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Method CelebA EMNIST
32x32 64x64 128x128 Seen (0-9) Unseen (10-46)

CNP 2.15 ± 0.01 2.43 ± 0.00 2.55 ± 0.02 0.73 ± 0.00 0.49 ± 0.01
CANP 2.66 ± 0.01 3.15 ± 0.00 — 0.94 ± 0.01 0.82 ± 0.01

NP 2.48 ± 0.02 2.60 ± 0.01 2.67 ± 0.01 0.79 ± 0.01 0.59 ± 0.01
ANP 2.90 ± 0.00 — — 0.98 ± 0.00 0.89 ± 0.00
BNP 2.76 ± 0.01 2.97 ± 0.00 — 0.88 ± 0.01 0.73 ± 0.01

BANP 3.09 ± 0.00 — — 1.01 ± 0.00 0.94 ± 0.00
TNP-D 3.89 ± 0.01 5.41 ± 0.01 — 1.46 ± 0.01 1.31 ± 0.00
LBANP 3.97 ± 0.02 5.09 ± 0.02 5.84 ± 0.01 1.39 ± 0.01 1.17 ± 0.01

CMANP (Ours) 3.93 ± 0.05 5.02 ± 0.14 5.55 ± 0.01 1.36 ± 0.01 1.09 ± 0.01
TNP-ND 5.48 ± 0.02 — — 1.50 ± 0.00 1.31 ± 0.00

LBANP-ND 5.57 ± 0.03 — — 1.42 ± 0.01 1.14 ± 0.01
CMANP-AND (Ours) 6.31 ± 0.04 6.96 ± 0.07 7.15 ± 0.14 1.48 ± 0.03 1.19 ± 0.03

Table 3. Image Completion Experiments. Each method is evaluated with 5 different seeds according to the log-likelihood (higher is better).
The ”dash” represents methods that could not be run because of the large memory requirement.

Figure 3. Computational Complexity Comparison Plots. (Left) Empirical memory usage comparison of CMANP-AND with state-of-the-
art Not-Diagonal NPs. (Middle) Empirical memory usage comparison of CMANPs with state-of-the-art NPs. (Right) Empirical runtime
comparison of CMANPs with state-of-the-art NPs.

Results. As shown in Table 4, CMANP-AND achieves
comparable results to TNP-ND and outperforms all other
baselines by a significant margin while only requiring con-
stant memory. Furthermore, we see that the vanilla version
of CMANP (CMAB-based model) and LBANP (Perceiver-
based model (Jaegle et al., 2021b)) achieve similar perfor-
mance, showing that CMANPs achieve competitive perfor-
mance while being significantly more efficient (constant
memory and constant computation updates).

4.2.1. ANALYSIS

Effect of Block Size (bQ): In Figure 4 (Left and Middle), we
evaluate the test-time performance and runtime for CMANP-
AND with respect to the block size (bQ). The smaller the
block size, the better the performance. This is expected
as the autoregressive nature of CMANP-AND allows for
more flexible predictive distribution and hence better per-
formance. This, however, comes at the cost of an increased
time complexity. In conjunction, these plots show that there
is a trade-off between the time cost and performance. As
such, bQ is a hyperparameter that can be adjusted based on

Method RBF Matern 5/2
CNP 0.26 ± 0.02 0.04 ± 0.02

CANP 0.79 ± 0.00 0.62 ± 0.00
NP 0.27 ± 0.01 0.07 ± 0.01

ANP 0.81 ± 0.00 0.63 ± 0.00
BNP 0.38 ± 0.02 0.18 ± 0.02

BANP 0.82 ± 0.01 0.66 ± 0.00
TNP-D 1.39 ± 0.00 0.95 ± 0.01
LBANP 1.27 ± 0.02 0.85 ± 0.02

CMANP (Ours) 1.24 ± 0.01 0.80 ± 0.01
TNP-ND 1.46 ± 0.00 1.02 ± 0.00

LBANP-ND 1.24 ± 0.03 0.78 ± 0.02
CMANP-AND (Ours) 1.48 ± 0.03 0.96 ± 0.01

Table 4. 1-D Meta-Regression Experiments with log-likelihood
metric (higher is better).
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Figure 4. Analyses Plots. (Left) CMANP’s runtime relative to the predictive block size (bQ). (Middle) CMANP’s performance relative to
the predictive block size (bQ). (Right) CMANP’s performance relative to the number of latent vectors (|LI | = |LB |).

the available resources.

Varying Number of Latents: Figure 4 (Right) evaluates
the result of varying the number of latents (|LI | = |LB |),
showing that increasing the number of latents (i.e., the size
of the bottleneck) improves the performance of the model.

Extending CMAB beyond Neural Processes: Constant
Memory Attention Blocks (1) do not leverage any modality-
specific components and (2) are permutation invariant by
default like Transformers. As such, CMABs can naturally
extend beyond that of Neural Processes. As a proof of con-
cept, we experiment with extending CMABs to next-event
prediction (Temporal Point Processes (TPPs)) by replacing
the transformer in Transformer Hawkes Process (THP) (Zuo
et al., 2020), a popular method in the TPP literature, with
our proposed Constant Memory Attention Block, resulting
in the Constant Memory Hawkes Process. In Table 5, we see
that CMHP achieves comparable results with that of THP
on a popular dataset in the TPP literature: Reddit. Crucially,
CMHP only requires constant memory unlike the quadratic
memory required by that of THP. Furthermore, CMHP ef-
ficiently updates its model with new data as it arrives over
time which is typical in event sequence data, making it
significantly more efficient than the quadratic computation
required by THP.

Model Reddit
RMSE NLL ACC

THP 0.238 ± 0.028 0.268 ± 0.098 0.610 ± 0.002
CMHP 0.262 ± 0.037 0.528 ± 0.209 0.609 ± 0.003

Table 5. Temporal Point Processes Experiments.

5. Related Work
Meta-learning has two learning phases (inner/task and
outer/meta). In this work, we consider Neural Processes
(NPs), a member of the model-based (or black-box) meta-
learning family. Model-based/black-box methods’ perform
their inner learning phase via a forward pass through a
model, often a neural network. Several architectures have
been proposed for the inner learning phase such as con-

volutional networks (Mishra et al., 2018), recurrent net-
works (Zintgraf et al., 2021), attention (Feng et al., 2023),
and hypernetworks (Chen & Wang, 2022). For an in-depth
overview of the meta-learning literature, we refer the reader
to the following meta-learning survey (Hospedales et al.,
2022).

NPs have been applied to a wide range of applications which
include sequence data (Singh et al., 2019; Willi et al., 2019),
modelling stochastic physics fields (Holderrieth et al., 2021),
robotics (Chen et al., 2022; Li et al., 2022b), event predic-
tion (Bae et al., 2023), and climate modeling (Vaughan
et al., 2021). In doing so, there have been several methods
proposed for encoding the context dataset. For example,
CNPs (Garnelo et al., 2018a) encode the context set via a
deep sets encoder (Zaheer et al., 2017), NPs (Garnelo et al.,
2018b) propose to encode functional stochasticity via a la-
tent variable. ConvCNPs (Gordon et al., 2019) use convolu-
tions to build in translational equivariance. ANPs (Kim et al.,
2019), LBANPs (Feng et al., 2023), and TNPs (Nguyen
& Grover, 2022) use various kinds of attention. Recent
work (Bruinsma et al., 2023) builds on CNPs and ConvC-
NPs by proposing to make them autoregressive at deploy-
ment. For an in-depth overview of NPs, we refer the reader
to the recent survey work (Jha et al., 2022).

Transformers (Vaswani et al., 2017) have achieved a large
amount of success in a wide range of applications. However,
the quadratic scaling of Transformers limits their applica-
tions. As such, there have been many follow-up works on
efficient variants. However, very few works have achieved
constant memory complexity. Rabe & Staats (2022) showed
that self-attention can be computed in constant memory at
the expense of an overall quadratic computation. In con-
trast, CMABs only require linear computation and constant
memory, making it significantly more efficient. Wu et al.
(2022) and Peng et al. (2023) proposed Memformer and
RWKV respectively, constant memory versions of trans-
former for sequence modelling problems. However, these
methods are dependent on the order of the tokens, limit-
ing their applications. In contrast, CMABs are by default
permutation-invariant, allowing them to be more flexible
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in applications with their data modality. For an in-depth
overview of follow-up works to Transformers, we refer the
reader to the recent survey works (Khan et al., 2022; Lin
et al., 2022).

Although CMABs have an efficient update mechanism rem-
iniscent of RNNs (Cho et al., 2014; Chung et al., 2014;
Hochreiter & Schmidhuber, 1997), their applications are dif-
ferent. RNNs are sensitive to input order, making their ideal
setting applications which use sequential data. In contrast,
by design, CMABs are by default permutation-invariant.
Due to their long computation graph, RNNs also have issues
such as vanishing gradients, making training these models
with a large number of data points difficult. CMABs do not
have issues with vanishing gradients since their ability to
update efficiently is a fixed property of the module rather
than RNN’s learned mechanism.

6. Conclusion
In this work, we showed that Cross Attention can be updated
efficiently with new context data and computed in a constant
amount of memory irrespective of the number of context
data points. Leveraging these properties, we introduced
CMAB (Constant Memory Attention Block), a novel atten-
tion block that (1) is permutation invariant, (2) computes
its output in constant memory, and (3) performs updates in
constant computation. Building on CMAB, we proposed
Constant Memory Attentive Neural Processes (CMANPs),
a new memory-efficient NP variant. Leveraging the efficient
updates property of CMAB, we introduced CMANP-AND
(Autoregressive Not-Diagonal extension). Empirically, we
show that CMANP(-AND) achieves state-of-the-art results
while being significantly more efficient than prior state-of-
the-art methods. In our analysis, we showed that increasing
the size of the latent bottleneck can improve CMANPs’ per-
formance. Lastly, we showed a proof of concept extending
CMABs beyond Neural Processes.

Impact Statement
In this paper, we improve the memory efficiency of Neural
Processes, a family of deep learning models for uncertainty
estimation. In order to deploy deep learning models to
real-world settings, it is imperative that the models be mem-
ory efficient whilst simultaneously being able to capture
their predictive uncertainty; incorrect or overconfident pre-
dictions can have dire consequences in mission- or safety-
critical settings (Tambon et al., 2022). Furthermore, design-
ing memory efficient deep learning models is important for
a variety of reasons, for example: (1) With the growing pop-
ularity of low-memory/compute domains (e.g., IoT devices
and mobile phones), it is crucial that deep learning models
be designed memory efficiently in order to be deployable

on the device. (2) In addition, memory access is energy in-
tensive (Li et al., 2022a). Since many safety-critical settings
(e.g., autonomous vehicles and mobile robots in disaster re-
sponse) have a limited energy supply, it is therefore crucial
to develop memory efficient models that can simultaneously
model predictive uncertainty such as Neural Processes.
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A. Appendix: Additional Proof Details
In this section, we (1) provide formal proof for Cross Attention’s efficient updates property, (2) derive a practical imple-
mentation of the efficient updates property that avoids numerical issues, (3) show that CMANPs satisfy context and target
invariance properties, and (4) include computational complexity analysis for CMANP-AND.

A.1. Cross Attention’s Efficient Updates Proof

Here, we detail how CrossAttention(L,DC ∪ DU ) can be efficiently computed given CrossAttention(L,DC) in only
O(|DU ||L|) computation, i.e., an amount of memory independent of the number of original context datapoints |DC |. For
brevity, let CA = CrossAttention(L,DC) and CA′ = CrossAttention(L,DC ∪ DU ).

Recall, Cross Attention is computed as follows:

CrossAttention(L,DC) = softmax(QKT )V

where Q = LWq is the query matrix, K = DCWk is the key matrix, and V = DCWv is the value matrix. Wq,Wk,Wv ∈
Rd×d are weight matrices (learned parameters) that project the input tokens. softmax(QKT ) aims to compute the weight to
give the respective context tokens for computing a weighted average.

Without loss of generality, for simplicity, we first consider the j-th output vector of the Cross Attention (CAj). The value of
the j-th output of the Cross Attention is as follows:

CAj =

|DC |∑
i=1

exp(si)

cj
vi

where si = Qj,:(Ki,:)
T , vi = Vi,:, and cj =

∑|DC |
i=1 exp(si) (a cached normalizing constant).

When new data points DU are added to the context in the computation of CA′ = CrossAttention(L,DC ∪ DU ), the key
and value matrices are computed as follows: K ′ ← [DC ,DU ]Wk and V ′ ← [DC ,DU ]Wv where [DC ,DU ] is the stacking
of the new data points DU on the original context data DC . We can simplify the computation of the key value matrices as
follows: K ′ = [DC ,DU ]Wk = [DCWk,DUWk] = [K,DUWk] and V ′ = [DC ,DU ]Wv = [V,DUWv]. As a result, these
key value matrices are simply the original key value matrices with |DU | additional rows corresponding to that of the new
data points. In contrast, the query matrix is unchanged, i.e., Q′ = LWq = Q.

The updated Cross Attention (CA′ = CrossAttention(L,DC ∪ DU )) with DU new data points is computed as follows:

CA′
j =

|DC |+|DU |∑
i=1

exp(s′i)

c′j
v′i =

|DC |∑
i=1

exp(s′i)

c′j
v′i +

|DC |+|DU |∑
i=|DC |+1

exp(s′i)

c′j
v′i

where s′i = Q′
j,:(K

′
i,:)

T , v′i = V ′
i,:, and c′j =

∑|DC |+|DU |
i=1 exp(s′i) (a new normalizing constant).

Since K ′ = [K,DUWk] and Q′ = Q, thus ∀i ∈ {1, . . . , |DC |} s′i = Q′
j,:(K

′
i,:)

T = Qj,:(Ki,:)
T = si. Building on this

and the fact that cj =
∑|DC |

i=1 exp(si), we also have c′j =
∑|DC |+|DU |

i=1 exp(s′i) = cj +
∑|DC |+|DU |

i=|DC |+1 exp(s′i), i.e., c′j can be
computed from cj via a rolling sum in O(|DU |).

Furthermore, since V ′ = [V,DUWv], we also have ∀i ∈ {1, . . . , |DC |} v′i = V ′
i,: = Vi,: = vi.
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Combining the prior derivations, we can re-write the updated CA′
j as a rolling average that only requiresO(|DU |) compute:

CA′
j =

|DC |∑
i=1

exp(si)

c′j
vi +

|DC |+|DU |∑
i=|DC |+1

exp(s′i)

c′j
v′i

=
cj
c′j

|DC |∑
i=1

exp(si)

cj
vi +

|DC |+|DU |∑
i=|DC |+1

exp(s′i)

c′j
v′i

=
cj
c′j
CAj +

|DC |+|DU |∑
i=|DC |+1

exp(s′i)

c′j
v′i

where c′j = cj +
∑|DC |+|DU |

i=|DC |+1 exp(s′i) computed via a O(|DU |) computation rolling sum.

Due to the space limitations of the main paper, we aim to simplify the notation. Note that vi and si were only defined for
i ∈ {1, . . . , |DC |}. Furthermore, ∀i ∈ {1, . . . , |DC |} v′i = vi and s′i = si. As such, we abuse the notation and simply
replace s′i and v′i with si and vi, resulting in the following formulation seen in the main paper:

CA′
j =

cj
c′j
CAj +

|DC |+|DU |∑
i=|DC |+1

exp(si)

c′j
vi

There are L queries, so computing the updated output CA′ given CA uses O(|DU ||L|) computation in total.

Practical Implementation:

In practice, the aforementioned implementation is not stable due to requiring the computation of c′j from cj . Specifically,

c′j = cj +
∑|DC |+|DU |

i=|DC |+1 exp(si) runs into underflow and overflow problems due to being a sum of exponentials. As such,
we derive a different practical formulation to avoid numerical issues.

In the practical formulation, instead of computing CA′ from CA using C ′ and C, we can instead use log(C ′) and log(C) as
follows:

CA′
j = exp(log(cj)− log(c′j))× CAj +

|DC |+|DU |∑
i=|DC |+1

exp(si − log(c′j))vi

log(c′j) is computed from log(cj) in a rolling sum manner: log(c′j) = log(cj) + softplus(tj) where tj =

log(
∑|DC |+|DU |

i=|DC |+1 exp(si − log(cj))). tj can be computed accurately using the log-sum-exp trick. This method of im-
plementation avoids the underflow and overflow issue while still computing the same updated Cross Attention result CA′.
We detail the derivation of this practical implementation below:

Practical Implementation (Derivation):

cj =

|DC |∑
i=1

exp(si)

c′j =

|DC |+|DU |∑
i=1

exp(si)

=

|DC |∑
i=1

exp(si) +

|DC |+|DU |∑
i=|DC |+1

exp(si)
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log(c′j)− log(cj) = log(

|DC |+|DU |∑
i=1

exp(si))− log(

|DC |∑
i=1

exp(si))

log(c′j) = log(cj) + log(

∑|DC |+|DU |
i=1 exp(si)∑|DC |

i=1 exp(si)
)

log(c′j) = log(cj) + log(1 +

∑|DC |+|DU |
i=|DC |+1 exp(si)∑|DC |

i=1 exp(si)
)

log(c′j) = log(cj) + log(1 +

∑|DC |+|DU |
i=|DC |+1 exp(si)

exp(log(cj))
)

log(c′j) = log(cj) + log(1 +

|DC |+|DU |∑
i=|DC |+1

exp(si − log(cj)))

Let tj = log(
∑|DC |+|DU |

i=|DC |+1 exp(si− log(cj))). Note that tj can be computed efficiently and accurately using the log-sum-exp
trick in O(|DU |). Also, recall the softplus function is defined as follows: softplus(k) = log(1 + exp(k)). Leveraging
these, we have the following:

log(c′j) = log(cj) + log(1 + exp(tj))

= log(cj) + softplus(tj)

Now recall the original update formulation:

CA′
j =

cj
c′j
× CAj +

|DC |+|DU |∑
i=|DC |+1

exp(si)

c′j
vi

Re-formulating it using log(C) and log(C ′) instead of C and C ′ we have the following update formulation:

CA′
j = exp(log(cj)− log(c′j))× CAj +

|DC |+|DU |∑
i=|DC |+1

exp(si − log(c′j))vi

where log(c′j) = log(cj) + log(1 +
∑|DC |+|DU |

i=|DC |+1 exp(si − log(cj))) and tj = log(
∑|DC |+|DU |

i=|DC |+1 exp(si − log(cj))) such
that tj is computed using the log-sum-exp trick. Notably, this formulation avoids the underflow and overflow issues while
still only requiring O(|DU |) computation to compute CA′

j .

A.2. Additional Properties

In this section, we show that CMANPs uphold the context and target invariance properties.

Property: Context Invariance. A Neural Process pθ is context invariant if for any choice of permutation function π,
context data points {(xi, yi)}Ni=1, and target data points xN+1:N+M ,

pθ(yN+1:N+M |xN+1:N+M , x1:N , y1:N ) = pθ(yN+1:N+M |xN+1:N+M , xπ(1):π(N), yπ(1):π(N))

Proof Outline: Since CMANPs retrieve information from compressed encodings of the context dataset DC computed using
CMABs (Constant Memory Attention Blocks). It suffices to show that CMABs compute their output while being order
invariant in the context dataset.
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In brief CMAB’s work as follows:

CMAB(LI ,DC) = SA(CA(LI ,SA(CA(LB ,DC))))

where LI is a set of vectors outputted by prior blocks, LB is a set of vectors whose values are learned during training, and
DC are the set of inputs in which we wish to be order invariant in.

The first cross-attention to be computed is CA(LB ,DC). A nice feature of cross-attention is that its order-invariant in the
keys and values; in this case, these are embeddings of DC . In other words, the output of CA(LB ,D) is order invariant in
the input data D.

The inputs to the remaining self-attention and cross-attention blocks take as input a combination of: LI and the output of
CA(LB ,DC), both of which are order invariant in DC . As such, the output of CMAB is order invariant in DC . Therefore,
CMANPs are also context invariant as required.

Property: Target Equivariance. A model pθ is target equivariant if for any choice of permutation function π, context data
points {(xi, yi)}Ni=1, and target data points xN+1:N+M ,

pθ(yN+1:N+M |xN+1:N+M , x1:N , y1:N ) = pθ(yπ(N+1):π(N+M)|xπ(N+1):π(N+M), x1:N , y1:N )

Proof Outline: The vanilla variant of CMANPs makes predictions similar to that of LBANPs (Feng et al., 2023) by
retrieving information from a set of latent vectors via cross-attention. After retrieving information, the final output is
computed using an MLP (Predictor). The architecture design of LBANPs ensure that the result is equivalent to making the
predictions independently. Since CMANPs use the same querying mechanism as LBANPs, therefore CMANPs preserve
target equivariance the same way LBANPs do.

However, for the Autoregressive Not-Diagonal variant (CMANP-AND), the target equivariance is not held as it depends
on the order in which the data points are processed. This property is in common with that of several other NP methods by
Nguyen & Grover (2022) and Bruinsma et al. (2023).

A.3. Complexity Analysis for CMANP-AND

For a batch of M data points and a prediction block size of bQ (hyperparameter constant), there are ⌈MbQ ⌉ batches of
data points whose predictions are made autoregressively. Each batch incurs a constant complexity of O(bQ)2 due to
predicting a full covariance matrix. As such for a batch of M target data points, CMANP-AND requires a sub-quadratic
total computation of O(⌈MbQ ⌉b

2
Q) = O(MbQ) with a sequential computation length of O(MbQ ). Crucially, CMANP-AND

only requires constant memory in |DC | and linear memory in M , making it significantly more efficient than prior works
which required at least quadratic memory.

A.4. Cross Attention Efficient Updates Property is inapplicable to popular attention mechanisms

Cross Attention’s efficient updates property allows CrossAttention(L,DC ∪ DU ) to be efficiently computed given
CrossAttention(L,DC). This property is conditional on the following: (1) the query tokens remaining the same and (2)
the new tokens being stacked on the old context tokens. However, this is not the case for popular attention methods.

For example, the closest to our work is the family of methods based on Perceiver (Jaegle et al., 2021a;b). Perceiver encodes
the context dataset via a series of iterative attention blocks. Each iterative attention block consists of a Cross Attention layer
to retrieve information from the context dataset for a given set of latents and self-attention layer(s) applied to the latents to
compute higher-order information. As a result of stacking these layers, Perceiver fails condition (1) due to the query vectors
changing while being stacked.

In brief, Perceiver’s iterative attention layers work as follows:

Li = SelfAttention(CrossAttention(Li−1,DC))

where Li is a fixed-sized set of latents computed iteratively.

When the context dataset is updated with new data DU , the computation is as follows:
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L′
i = SelfAttention(CrossAttention(L′

i−1,DC ∪ DU ))

To achieve the efficient updates, it requires that CrossAttention(L′
i−1,DC ∪ DU ) be efficiently computed

from CrossAttention(Li−1,DC). However, L′
i−1 ̸= Li−1 for i > 1. For example, L′

1 =
SelfAttention(CrossAttention(L′

0,DC ∪ DU )) and L1 = SelfAttention(CrossAttention(L0,DC ∪ DU )).

As such, the efficient updates property of Cross Attention cannot be applied to Perceiver-style architectures.

Another example is that of Transformers. In Transformer Encoders self-attention is repeatedly applied starting from the
context tokens, resulting in the outputs of the layers changing drastically when new tokens are added to the context, failing
property (2). In the case of the decoder, the argument is the same as Perceiver where the stacked layers cause the queries to
change overtime.

B. Appendix: Intuition for Constant Memory Attention Block’s construction
In this work, we aim to leverage an efficient attention block for Neural Processes that achieves competitive performance
with prior state-of-the-art. As such, the attention block has the following requirements:

1. Computational Efficiency. Prior attention-based models require linear or quadratic memory in the number of tokens,
limiting their effectiveness in low-resource scenarios. Furthermore, they often require re-computing from scratch when
receiving new tokens, i.e., expensive updates. Improving on this, we desire a constant memory version of attention that
also allows for constant computation updates.

2. Permutation invariant in the context. Neural Processes (NPs) (Garnelo et al., 2018) are permutation invariant in the
context.

3. Stackable. Modern deep learning leverages the stacking of the same kind of modules (e.g., Transformers) to construct
deep models and achieve strong performance.

4. Computes higher-order information between tokens. A powerful feature of Transformers that allows it to achieve
strong performance.

In Section 3.1, we showed that Cross Attention with a fixed query vector can compute its output in constant memory and
can compute updates in constant computation. Notably, this solves the first requirement (Computational Efficiency).

However, since previous attention-based models do not have a fixed query, this efficiency property does not apply to them.
As such, we design our own attention block to address these requirements. We begin with a Cross Attention module learned
with a fixed query, i.e., L′

B ← CrossAttention(LB ,DC) where LB is the fixed query and DC is the context data. Since
attention is by default permutation-invariant in the context, this module resolves the second requirement (Permutation
Invariant), i.e., L′

B is permutation invariant in DC .

However, this module by itself is not stackable since it comprises of only two inputs: LB the fixed query (i.e., a learned
constant) and DC is the context data. Thus to achieve the third requirement (Stackable), we introduce another cross attention
block with a new input latent LI as follows: Li+1

I ← CrossAttention(Li
I , L

′
B) where Li

I is the output of the previous
block and Li+1

I is the output of the current block.

Finally, to achieve the fourth requirement (Higher-order information), we wrap the CrossAttention modules with a Self-
Attention module. Together, these modules result in the final version of the Constant Memory Attention Block which we
proposed in the paper:

L′
B ← SelfAttention(CrossAttention(LB ,DC))

Li+1
I ← SelfAttention(CrossAttention(Li

I , L
′
B))
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Mooc Reddit
RMSE NLL ACC RMSE NLL ACC

THP 0.202 ± 0.017 0.267 ± 0.164 0.336 ± 0.007 0.238 ± 0.028 0.268 ± 0.098 0.610 ± 0.002
CMHP 0.168 ± 0.011 -0.040 ± 0.620 0.237 ± 0.024 0.262 ± 0.037 0.528 ± 0.209 0.609 ± 0.003

Table 6. Temporal Point Processes Experiments.

C. Appendix: Additional Experiments and Analyses
C.1. Applying CMABs to Temporal Point Processes (TPPs)

Constant Memory Attention Blocks (1) do not leverage any modality-specific components and (2) are permutation invariant
by default like Transformers. As such, CMABs appear to be naturally applicable to a broad range of applications beyond that
of Neural Processes. As a proof of concept, we showcase the efficacy of CMABs on next-event prediction (Temporal Point
Processes (TPPs)). In brief, Temporal Point Processes are stochastic processes composed of a time series of discrete events.
Recent works have proposed to model this via a neural network. Notably, models such as THP (Zuo et al., 2020) encode
the history of past events to predict the next event, i.e., modelling the predictive distribution of the next event pθ(τl+1|τ≤l)
where θ are the parameters of the model, τ represents an event, and l is the number of events that have passed. Typically, an
event comprises a discrete temporal (time) stamp and a mark (categorical class).

C.1.1. CONSTANT MEMORY HAWKES PROCESSES (CMHPS)

Building on CMABs, we introduce the Constant Memory Hawkes Process (CMHPs) (Figure 5), a model which replaces
the transformer layers in Transformer Hawkes Process (THP) (Zuo et al., 2020) with Constant Memory Attention Blocks.
Unlike THPs which summarise the information for prediction in a single vector, CMHPs summarise it as a set of latent
vectors. As such, a flattening operation is added at the end of the model. Following prior work (Bae et al., 2023; Shchur
et al., 2020), the predictive distribution for THPs and CMHPs is a mixture of log-normal distribution.

Figure 5. Constant Memory Hawkes Processes

C.1.2. CMHPS: EXPERIMENTS

In these experiments, we compare CMHPs against THPs on standard TPP datasets: Mooc and Reddit.

Mooc Dataset (Kumar et al., 2019) comprises of 7, 047 sequences. Each sequence contains the action times of an individual
user of an online Mooc course with 98 categories for the marks.

Reddit Dataset (Kumar et al., 2019) comprises of 10, 000 sequences. Each sequence contains the action times from the
most active users with marks being one of the 984 the subreddit categories of each sequence.

The results (Table 6) suggest that replacing the transformer layer with CMAB (Constant Memory Attention Block) achieves
comparable performance. Crucially, CMHP only requires constant memory unlike the quadratic memory required by that
of THP. Furthermore, CMHP efficiently updates its model with new data as it arrives over time which is typical in event
sequence data, making it significantly more efficient than THP.
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Method δ = 0.7 δ = 0.9 δ = 0.95 δ = 0.99 δ = 0.995
Uniform 100.00 ± 1.18 100.00 ± 3.03 100.00 ± 4.16 100.00 ± 7.52 100.00 ± 8.11

CNP 4.08 ± 0.29 8.14 ± 0.33 8.01 ± 0.40 26.78 ± 0.85 38.25 ± 1.01
CANP 8.08 ± 9.93 11.69 ± 11.96 24.49 ± 13.25 47.33 ± 20.49 49.59 ± 17.87

NP 1.56 ± 0.13 2.96 ± 0.28 4.24 ± 0.22 18.00 ± 0.42 25.53 ± 0.18
ANP 1.62 ± 0.16 4.05 ± 0.31 5.39 ± 0.50 19.57 ± 0.67 27.65 ± 0.95
BNP 62.51 ± 1.07 57.49 ± 2.13 58.22 ± 2.27 58.91 ± 3.77 62.50 ± 4.85

BANP 4.23 ± 16.58 12.42 ± 29.58 31.10 ± 36.10 52.59 ± 18.11 49.55 ± 14.52
TNP-D 1.18 ± 0.94 1.70 ± 0.41 2.55 ± 0.43 3.57 ± 1.22 4.68 ± 1.09
LBANP 1.11 ± 0.36 1.75 ± 0.22 1.65 ± 0.23 6.13 ± 0.44 8.76 ± 0.15

CMANP (Ours) 0.93 ± 0.12 1.56 ± 0.10 1.87 ± 0.32 9.04 ± 0.42 13.02 ± 0.03

Table 7. Contextual Multi-Armed Bandit Experiments with varying δ. Models are evaluated according to cumulative regret (lower is
better). Each model is run 50 times for each value of δ.

C.2. CMANPs Experiment: Contextual Bandits

In the Contextual Bandit setting introduced by (Riquelme et al., 2018), a unit circle is divided into 5 sections which contain
1 low reward section and 4 high reward sections δ defines the size of the low reward section while the 4 high reward sections
have equal sizes. In each round, the agent has to select 1 of 5 arms that each represent one of the regions. For context during
the selection, the agent is given a 2-D coordinate X and the actions it selected and rewards it received in previous rounds.

If ||X|| < δ, then the agent is within the low reward section. If the agent pulls arm 1, then the agent receives a reward of
r ∼ N (1.2, 0.012). Otherwise, if the agent pulls a different arm, then it receives a reward r ∼ N (1.0, 0.012). Consequently,
if ||X|| ≥ δ, then the agent is within one of the four high-reward sections. If the agent is within a high reward region and
selects the corresponding arm to the region, then the agent receives a large reward of N ∼ N (50.0, 0.012). Alternatively,
pulling arm 1 will reward the agent with a small reward of r ∼ N (1.2, 0.012). Pulling any of the other 3 arms rewards the
agent with an even smaller reward of r ∼ N (1.0, 0.012).

During each training iteration, B = 8 problems are sampled. Each problem is defined by {δi}Bi=1 which are sampled
according to a uniform distribution δ ∼ U(0, 1). N = 512 points are sampled as context data points and M = 50 points are
sampled for evaluation. Each data point comprises of a tuple (X, r) where X is the coordinate and r is the reward values for
the 5 arms. The objective of the model during training is to predict the reward values for the 5 arms given the coordinates
(context data points).

During the evaluation, the model is run for 2000 steps. At each step, the agent selects the arm which maximizes its UCB
(Upper-Confidence Bound). After which, the agent receives the reward value corresponding to the arm. The performance of
the agent is measured by cumulative regret. For comparison, we evaluate the modes with varying δ values and report the
mean and standard deviation for 50 seeds.

Results. In Table 7, we compare CMANPs with other NP baselines. We see that CMANP achieves competitive performance
with state-of-the-art for δ ∈ {0.7, 0.9, 0.95}. However, the performance degrades as δ reaches extreme values close to the
limit such as 0.99 and 0.995 – settings that are at the extremities of the training distribution.

C.3. Additional Analyses

Memory Complexity: In Table 8, we include a comparison of CMANPs with all NP baselines, showing that CMANPs
are amongst the best in terms of memory efficiency when compared to prior NP methods. Notably, the methods with a
similar memory complexity to CMANPs perform significantly worse in terms of performance across the various experiments
(Tables 3 and 4). As such, CMANPs provide the best trade-off regarding memory and performance.

Effect of CMANP’s bottleneck on performance: As with any method that uses a bottleneck (e.g., perceiver, set transformer,
LBANPs, etc...), CMAB’s bottleneck usage results in some amount of information loss. Whether or not this affects the
performance is dependent on (1) the amount of information loss (e.g., number of context tokens related to the bottleneck
size) and (2) the intrinsic dimensionality of the task (i.e., task complexity).

For example, in a task with a low intrinsic dimensionality, only a small amount of information from the context tokens
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Conditioning Querying Updating
In Terms of |DC | |DC | M |DC | |DU |

CNP
CANP

NP
ANP
BNP

BANP
TNP-D N/A N/A N/A
LBANP

CMANP (Ours)

TNP-ND N/A N/A N/A
LBANP-ND

CMANP-AND (Ours)

Table 8. Comparison of Memory Complexities of Neural Processes with respect to the number of context data points |DC |, number of
target data points in a batch M , and the number of new data points in an update |DU |. (Green) Checkmarks represent requiring constant
memory, (Orange) half checkmarks represent requiring linear memory, and (Red) Xs represent requiring quadratic or more memory.

Figure 6. CMANP’s bottleneck size on performance. (Left) |LB |’s effect on performance. (Middle) |LI |’s effect on performance. (Right)
Latent dimensions’ effect on performance.

is needed to solve it. As such, a smaller bottleneck (i.e., low values for LB and LI ) suffices. However, in a task with a
high intrinsic dimensionality, more information is needed from the context tokens. As such, a larger bottleneck (i.e., higher
values for LB and LI ) would be needed to hold the information.

In the main paper (Figure 4 (Right)), we included an analysis of the bottleneck size’s effect on task performance where
LI = LB . To analyze this further, we performed an additional three analyses, measuring the performance of the model with
respect to individual varying values of LI , LB , and latent dimension. In the plots (Figure 6), we see similar results where
the performance increases as the bottleneck size increases, saturating slowly. Since the performance generally increases, the
bottleneck size should be selected according to the available computational resources. Regardless of the bottleneck sizes
that we tried, the model achieves strong performance outperforming all non-attention based models (NP, CNP, and BNP)
and several attention-based models (ANP, CANP, and BANP), making it highly applicable to low-resource scenarios.

To analyze the effect of a large number of contexts relative to the number of latents, we additionally run an experiment in the
higher resolution setting CelebA (128x128), varying the number of contexts while fixing the number of latents to 128. In the
plot (Figure 7), we see that the performance increases as the number of contexts increases, saturating eventually. As more
pixels are being added in this experiment, the model naturally receives more relevant information for image completion,
resulting in the performance increase. However, since there is ultimately a bottleneck in the model, the performance
ultimately saturates given a very large number of contexts.

Empirical Time Comparison with Baselines: In Figure 8, we compare the runtime of CMANPs with various state-of-the-
art NP baselines.

In Figure 8a, we compare the runtime of NPs’ update phase. Specifically, we find that CMANPs’ efficient (fast) update
process based on the efficient updates property of Cross Attention only requires constant computation regardless of the
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Figure 7. Number of context datapoints on performance.

(a) Empirical runtime of the update phase. (b) Empirical runtime of the query phase.

Figure 8. Analyses Graphs comparing the runtime of CMANPs with various baselines. (a) Comparison of the update procedure of
CMAB-based NP (CMANPs) with Perceiver’s iterative attention-based NP model (LBANPs) and a transformer-based NP model (EQTNP).
CMANP (fast) refers to the CMAB’s efficient update mechanism. CMANP (slow) refers to the traditional update mechanism. (b)
Comparison of the query/inference process of CMANPs with LBANPs (Perceiver’s iterative attention-based model), TNPs (Transformer-
based model), and EQTNPs (Transformer-based model with an efficient query mechanism).

number of context data points. In contrast, the traditional (slow) update process scales linearly with respect to the number
of context data points. Furthermore, the Transformer-based (EQTNP) model requires quadratic time complexity and the
Perceiver-based (LBANP) model requires linear time complexity. As such, CMANPs scale significantly better than prior
state-of-the-art methods.

In Figure 8b, we compare the querying (inference) runtime of CMANP with LBANPs (Perceiver’s iterative attention-based
model), TNPs (Transformer-based model). Notably, TNPs scale quadratically in runtime, making it prohibitively expensive
for a large number of context data points. EQTNP (Efficient Queries Transformer Neural Processes) scales linearly. In
contrast, CMANPs and LBANPs are the most efficient when performing queries since they are constant complexity (see
Table 8) regardless of the number of context data points.

Visualizations: In Figure 9, we show visualizations for the Meta-Regression task. In Figure 10, we show out-of-distribution
visualizations for the Meta-Regression task. In Figure 11, we show visualizations for the Image Completion task.

D. Appendix: Discussion
D.1. Likelihood computation of Autoregressive Not-Diagonal extension compared with that of Not-Diagonal

extension:

In the Autoregressive Not-Diagonal extension the predictions are made autoregressively, allowing for the modelling of
more flexible distributions than prior Not-Diagonal variants. As such, the autoregressive not-diagonal variant’s likelihood is
typically higher than that of the non-autoregressive baselines which only model an unimodal gaussian distribution.
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(a) y = sin(x) + sin(10/3) ∗ x (b) y = e−x ∗ sin(π ∗ x)/2 (c) y = −x ∗ sin(3 ∗ x)

Figure 9. CMANPs Meta-Regression Visualizations.

(a) y = sin(x) + sin(10/3) ∗ x (b) y = e−x ∗ sin(π ∗ x)/2 (c) y = −x ∗ sin(3 ∗ x)

Figure 10. CMANPs Meta-Regression Out-of-Distribution Visualizations. The model is evaluated between [−2.0, 2.0]. However, context
data points are sampled from only (a) [−1.0, 2.0], (b) [−2.0, 1.0], and (c) [−2.0,−1.0] ∪ [1.0, 2.0].

Figure 11. CMANPs Image Completion Visualizations
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Consider the following didactic example where BQ = 1 (the block prediction size). Since -AND feeds earlier samples
back into the model for making predictions, the likelihood of the target data points: {(xi, yi)}Mi=1 for our -AND model is
computed as follows:

log pAND(y1:M |x1:M ,DC) = log

M∏
i=1

p(yi|x1:i−1, y1:i−1, xi,DC)

=

M∑
i=1

log p(yi|x1:i−1, y1:i−1, xi,DC)

In contrast, consider the likelihood of -ND: log pND(y1:M |x1:M ,DC). By Boole’s Inequality (or Union Bound), we have
that

log pND(y1:M |x1:M ,DC) ≤
M∑
i=1

log p(yi|x1:M ,DC) =

M∑
i=1

log p(yi|xi,DC)

(x1:i−1, y1:i−1) provides relevant information for predicting the value of the function at xi, e.g., nearby pixel values in
image completion. As a result, it is likely the case that:

p(yi|xi,DC) ≤ p(yi|x1:i−1, y1:i−1, xi,DC)

Summing from i = 1 . . .M , this means:

log pND(y1:M |x1:M ,DC) ≤ log pAND(y1:M |x1:M ,DC)

As such, the Autoregressive Not-Diagonal variant’s likelihood is typically higher than that of the Not-Diagonal baselines
(i.e., non-autoregressive variants).

E. Appendix: Implementation, Hyperparameter Details, and Compute
E.1. Implementation and Hyperparameter Details

We use the implementation of the baselines from the official repository of TNPs (https://github.com/tung-nd/TNP-pytorch)
and LBANPs (https://github.com/BorealisAI/latent-bottlenecked-anp). The datasets are standard for Neural Processes and
are available in the same link. We follow closely the hyperparameters of TNPs and LBANPs. In CMANP, the number of
blocks for the conditioning phase is equivalent to the number of blocks in the conditioning phase of LBANP. Similarly, the
number of cross-attention blocks for the querying phase is equivalent to that of LBANP. We used an ADAM optimizer with
a standard learning rate of 5e− 4. We performed a grid search over the weight decay term {0.0, 0.00001, 0.0001, 0.001}.
Consistent with prior work (Feng et al., 2023) who set their number of latents L = 128, we also set the number of latents to
the same fixed value LI = LB = 128 without tuning. Due to CMANPs and CMABs architecture, they allow for varying
embedding sizes for the learned latent values (LI and LB). For simplicity, we set the embedding sizes to 64 consistent with
prior works (Nguyen & Grover, 2022; Feng et al., 2023). The block size for CMANP-AND is set as bQ = 5. During training,
CelebA (128x128), (64x64), and (32x32) used a mini-batch size of 25, 50, and 100 respectively. All experiments are run
with 5 seeds. For the Autoregressive Not-Diagonal experiments, we follow TNP-ND and LBANP-ND (Nguyen & Grover,
2022; Feng et al., 2023) and use cholesky decomposition for our LBANP-AND experiments. Focusing on the efficiency
aspect, we follow LBANPs in the experiments and consider the conditional variant of NPs, optimizing the log-likelihood
directly.

E.2. Compute

All experiments were run on a Nvidia GTX 1080 Ti (12 GB) or Nvidia Tesla P100 (16 GB) GPU. Meta-regression
experiments took 4 hours to train. EMNIST took 2 hours to train. CelebA (32x32) took 16 hours to train. CelebA (64x64)
took 2 days to train. CelebA (128x128) took 3 days to train.
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