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Abstract

Animating clipart images with seamless motion
while maintaining visual fidelity and temporal
coherence presents significant challenges. Ex-
isting methods, such as AniClipart, effectively
model spatial deformations but often fail to en-
sure smooth temporal transitions, resulting in ar-
tifacts like abrupt motions and geometric distor-
tions. Similarly, text-to-video (T2V) and image-
to-video (I2V) models struggle to handle clipart
due to the mismatch in statistical properties be-
tween natural video and clipart styles. This paper
introduces FlexiClip, a novel approach designed
to overcome these limitations by addressing the in-
tertwined challenges of temporal consistency and
geometric integrity. FlexiClip extends traditional
Bézier curve-based trajectory modeling with key
innovations: temporal Jacobians to correct motion
dynamics incrementally, continuous-time mod-
eling via probability flow ODEs (pfODEs) to
mitigate temporal noise, and a flow matching
loss inspired by GFlowNet principles to optimize
smooth motion transitions. These enhancements
ensure coherent animations across complex sce-
narios involving rapid movements and non-rigid
deformations. Extensive experiments validate the
effectiveness of FlexiClip in generating anima-
tions that are not only smooth and natural but
also structurally consistent across diverse clipart
types, including humans and animals. By inte-
grating spatial and temporal modeling with pre-
trained video diffusion models, FlexiClip sets a
new standard for high-quality clipart animation,
offering robust performance across a wide range
of visual content. Project Page: https://creative-
gen.github.io/flexiclip.github.io/
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1. Introduction

Animating static clipart images while preserving their vi-
sual integrity and ensuring temporal coherence in motion
is a challenging problem in computer graphics. Existing
methods, like AniClipart (Wu et al., 2024) address this by
modeling key point trajectories with cubic Bézier curves
and applying ARAP deformation to maintain geometric con-
sistency. Gal23 (Gal et al., 2024) is also a similar work
learning neural displacement field with pre-trained T2V
(Text-to-Video) diffusion model on cubic Bézier curves.
While AniClipart effectively captures spatial deformations,
it struggles with maintaining temporal consistency across
frames. Specifically, the method suffers from abrupt transi-
tions, geometric distortions, and inconsistencies when gen-
erating complex motions or handling rapid pose transitions
(Fig. 3). These artifacts arise from a rigid parametrization
of the motion process that does not fully account for tem-
poral noise or its correction over time. Additionally, recent
T2V/12V (Image-to-Video) models (Chen et al., 2023; 2024;
Xing et al., 2025; Zhang et al., 2023; HaCohen et al., 2024;
Wang et al., 2024; Lei et al., 2023) enable animation from
text and images, but struggle to produce high-quality clipart
animations due to the significant difference in statistical
properties between natural videos and clipart.

To overcome these limitations, we introduce FlexiClip, a
novel approach that extends the state of the art by address-
ing the key challenges of temporal coherence and geometric
consistency in animated clipart. FlexiClip also builds on
the basic framework of modeling keypoint trajectories with
cubic Bézier curves but introduces significant innovations
to improve temporal dynamics and maintain a consistent
animation pipeline. Central to FlexiClip is the use of tempo-
ral Jacobian for incremental temporal corrections, pfODE
(Lim et al., 2023; de Albuquerque & Pearson, 2024) for
continuous-time integration of these corrections, and a flow
matching loss inspired by GFlowNet (Bengio et al., 2023) to
ensure smooth temporal evolution and reduction of temporal
noise.

Although AniClipart also represents keypoint motion
through Bézier curves but employs ARAP (As Rigid As
Possible) deformation to model spatial consistency, its tem-
poral modeling lacks a mechanism for addressing noise
accumulation across frames. In contrast, FlexiClip intro-
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Figure 1. FlexiClip generates high-quality clipart animations based on text prompts, ensuring visual consistency and smooth temporal

motion. Original clipart images are outlined with dashed boxes.

duces a novel paradigm by learning temporal Jacobians that
incrementally correct the spatial Jacobian over time. This
framework enables precise control over temporal evolution
and prevents drift in the motion dynamics, thereby main-
taining the animation’s naturalness and consistency across
longer sequences. Additionally, we leverage probability
flow ODE (pfODE) (Sec.2.2) to model the temporal cor-
rection process as a continuous-time function, addressing
temporal noise more effectively than discrete-time optimiza-
tion methods.

A critical challenge in temporal animation is the preserva-
tion of motion smoothness without introducing geometric
distortions. In previous works, such as AniClipart, motion
dynamics are modeled independently for each frame, which
can lead to inconsistent transitions and visual artifacts (Fig
3). In contrast, FlexiClip utilizes pfODE (Sec.2.2) to model
the evolution of temporal Jacobian, which are corrected pro-
gressively over time. This continuous correction mechanism
ensures that the temporal noise is mitigated, resulting in
smoother and more consistent motion transitions. Moreover,
this framework provides a novel solution to the problem
of maintaining structural consistency (locality preserving)
during fast spatial transitions, which is often a difficult task
in motion modeling.

Another novel contribution of FlexiClip is the flow matching
loss, which leverages the principles of GFlowNet (Bengio
et al., 2023) to optimize the temporal noise reduction pro-
cess. The flow matching loss operates by comparing the
dynamics of the spatial Jacobian and their temporal cor-
rections over time. This approach ensures that temporal

noise introduced by the spatial model is progressively re-
duced, facilitating smoother transitions between frames and
preventing the accumulation of errors. Unlike earlier ap-
proaches, such as AniClipart, that do not explicitly model
the evolution of temporal noise, FlexiClip provides a robust
mechanism for controlling noise accumulation and preserv-
ing the underlying motion’s coherence.

At last, FlexiClip integrates learning of spatial and tempo-
ral modules with the concept of video Score Distillation
Sampling (SDS), which allows us to distill the knowledge
of pre-trained video diffusion models to guide the anima-
tion generation process. Extensive experiments and ablation
studies demonstrate FlexiClip’s ability to generate smooth,
natural, and temporally consistent clipart animations across
a wide range of visual content, including humans and ani-
mals (see Fig. 1). FlexiClip also supports handling complex
animations (Fig. 5) where keypoint transitions involve non-
rigid deformations like rotation, complex motion, etc. In
summary, our contributions can be summarized as follows:

¢ Coherent Temporal Corrections: We introduce the
novel concept of temporal Jacobians, which incre-
mentally adjust the spatial geometry over time to ac-
count for temporal variations. This mechanism ensures
smoother and more temporally coherent animations
by addressing the issue of noise accumulation across
frames.

* Locality Preserving Deformation: We propose the
use of pfODE to model the continuous-time evolu-
tion of the temporal Jacobians. This approach allows
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for more precise temporal corrections and ensures
smoother transitions between frames, improving upon
discrete-time methods such as those used in AniClipart.

* Flow Matching Loss for Temporal Noise Reduction:
We introduce the flow matching loss, inspired by the
GFlowNet framework, to optimize the reduction of
temporal noise. This loss function ensures that the
accumulated temporal noise is progressively reduced
over time, leading to smoother, more consistent anima-
tions.

2. Preliminaries
2.1. Representing Shapes as Jacobian Fields

Let Mg = (Vy, Fo) denote the initial mesh, where V €
RV *2 specifies the 2D vertex positions and F, € R¥'*2
describes the triangular faces. Keypoints are defined us-
ing an indicator matrix K. € {0,1}Y<*V, with the cor-
responding vertices represented as V., = K. V. These
keypoints are assigned target positions T. = V. + D,
where D, € RV=*2 defines the displacements.

The deformation of the mesh is characterized by a Jacobian
field Jo = {Jo,s | f € Fo}, where each face f has an
associated Jacobian matrix Jo ; € R?*?. This matrix is
computed as Jg y = V'V, which represents the gradient
of the vertex positions over the triangle f. To compute the
deformed mesh V*, we solve the following optimization
problem:

V* = argrr{i/nHLV—VTAJHQ, (H

where L is the cotangent Laplacian operator, A is the mass
matrix, and J is the specified Jacobian field. To avoid trivial
deformations such as global translations, constraints are
applied to the keypoints, resulting in the following extended
formulation:

V* = argmin LV — V7AT|” + MKV - T, @)

where \ > 0 balances the influence of the constraint term.
The solution is obtained by solving the linear system:

(L'"L+ ) KK, )V =LT'VT AT+ MK T, ()

which can be efficiently solved using techniques such as
Cholesky decomposition. Let this be denoted with g as
a differentiable solver: V* = ¢(J, K., T.). To learn the
input shape Jy we set D, = 0 we learn it by minimiz-
ing the difference between the J and the identity, i.e., no
deformation

|7
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Once the updated vertex positions V* are computed, the
corresponding updated Jacobian for each face f is derived
by taking the gradient of V* over the face:

L= V,V ©)

For a triangular face f with vertices {v;, v;, vy}, the Ja-
cobian matrix captures how the vertex positions within the
triangle are influenced by barycentric coordinates:

ov; ov; vy,

ov; gvi ov;

* _ | ov] i ovy,
Jf - 8V_7‘ 8v7~ 8V_7‘ : (6)

ov} BV; ovy
(9V)€ ka ka

Updated Jacobians give local deformation of each triangle.

2.2. Probability flow ODE (pfODE)

The diffusion process governs the evolution of data points
over time via the stochastic differential equation (SDE):

dz = f(z,t)dt + G(z,t) - dW, 7

where f(z,t) is the drift term and G(z, ) is the noise coef-
ficient. Over time, the distribution transforms from pg ()
to an isotropic Gaussian distribution pr(x). To reverse this
process, we model the reverse SDE as:

dz = (f(z,t) = V - [G(2,£)G(z,)"]

—G(z,t)G(z, )TV, logpt(x)) dt + G(z,t) -dW. (8)

where f(x,t) is the drift term, G(z, t) represents the noise
diffusion matrix, W is time-reversed Brownian motion and
V. log pi(z) is the score function, approximated by the dif-
fusion model. This reverse process reconstructs the data
distribution by denoising, guided by the score function
V. log p:(x). However, in addition to the SDE, Song et
al. (Lim et al., 2023) proposed the probability flow ODE
(pfODE), which satisfies the same Fokker-Planck equation,
but is deterministic (no Brownian term). it is given by:

Cclii; = (f(x,t) — %V- [G(a,)G(z,1)"]

— %G(;m t)G(x, )TV, logpt(x)) )

This pfODE evolves the data points smoothly without the
stochastic Brownian motion term. This process is determin-
istic, and data points evolve smoothly, resulting in a flow
that preserves local neighborhoods.

Under the Gaussian noise assumption, the score function
V. log pi(z) can be trained from a pre-trained diffusion
model via score matching, and hence can guide mesh de-
formation starting with noisy vertices. However, the key
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challenge in learning the mesh deformation directly with
pre-trained diffusion models is that these models reverse
the isotropic Gaussian noise, as described in the SDE-based
formulation, making it harder to directly match the target dis-
tribution (highly structured, like posed mesh). It is straight-
forward to show (App. C) that the class of time-varying
densities satisfies (9) when f = 0 and GGT = C, similar to
(de Albuquerque & Pearson, 2024) we consider the pfODE
with rescaling to avoid variance overflow:

dt

(10)
with C(t) playing the role of injected noise and A(t) the
role of the scale schedule. Similar to (de Albuquerque &
Pearson, 2024) we will leverage dimension-preserving flows
for C(t) and A(t) to learn the exact temporal noise to be
reversed. As the noise reduces, the rescaling A(t) induces
force in the opposite direction as the force induced by score
function. This balance ensures that the distribution stabilizes
asymptotically, maintaining local structure while evolving
smoothly into the target distribution.

2.3. GFlowNets

Generative Flow Networks (GFlowNets) (Bengio et al.,
2023) enable training generative models with unnormal-
ized target densities. GFlowNet is represented as a directed
acyclic graph G = (S, A), where S is the set of states and
A C S x S is the set of actions. Transitions between states
are deterministic, with an initial state sy and terminal states
sn - The forward policy Pr(s’|s) defines the transition from
s to s, while the backward policy Pg(s|s’) defines the re-
verse. The goal is to learn a forward policy such that the
terminal state distribution Pr(x) o< R(x), where R(x) is
the unnormalized reward function.

The flow function F'(7) includes the normalizing factor, and
F(s) models the unnormalized probability flow for each
state. Training uses the detailed balance (DB) condition,
ensuring F'(s) Pr(s'|s) = F(s')Pp(s|s’) for all transitions
(s — §') € A. For terminal states x, the condition F'(z) =
R(x) must hold. This ensures the terminal distribution
Pr(x) matches the desired target, proportional to R(x).

Generative Flow Networks (GFlowNets) (Bengio et al.,
2023) provide a framework for training generative models
with an unnormalized target density function. A GFlowNet
is represented as a directed acyclic graph G = (.5, A), where
S is the set of states and A C S x .S is the set of actions. The
transition between states is deterministic, and the network
has an initial state sg and terminal states s . The forward
policy Pr(s’|s) defines the transition probability from state
s to s, while the backward policy Pg(s|s’) defines the re-
verse transition. The goal is to learn a forward policy such
that the terminal state distribution Pr(z) o R(x), where

Ay (—éc‘*(t) v, 1ogpt<x>) (A A7)

R(x) is an unnormalized reward function.

The flow function F'(7) incorporates the normalizing factor,
and the state flow function F'(s) models the unnormalized
probability flow for each state. GFlowNet’s training uses the
detailed balance (DB) condition, which ensures that for any
transition (s — s’), the following holds: F'(s)Pr(s'|s) =
F(s")Pg(s|s’), V(s — s') € A. For terminal states z,
the condition F'(x) = R(z) is required. Satisfying this
DB criterion ensures that the terminal distribution Pr(z)
matches the desired target distribution, proportional to R(x).
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Figure 2. System Design of FlexiClip: A novel framework for
generating temporally coherent and geometrically consistent an-
imated clipart. FlexiClip leverages pfODE for continuous-time
modeling on top of spatial posing, and a flow matching loss for re-
ducing temporal noise, enabling smooth, natural animations across
complex motion sequences.

3. FlexiClip

In this section, we introduce our mesh deformation frame-
work, FlexiClip (Fig.2). We begin with a method overview
(Sec. 3.1), followed by a spatial posing with Jacobian Fields
on parameterized Bézier trajectories (Sec. 3.2). Next, we
discuss how temporal signals are modeled using pfODE to
ensure temporally coherent motion (Sec. 3.3). Finally, we
outline the loss functions used (Sec. 3.4).

3.1. Method Overview

In FlexiClip, we detect keypoints and construct skeletons
using UniPose (Yang et al., 2023) and skeleton generation
(Cacciola, 2004), similar to AniClipart (Wu et al., 2024). Cu-
bic Bézier trajectories define spatial motion, while pfODE
and temporal Jacobian handle temporal noise. Attention
networks estimate C'(¢) and A(¢), and flow matching from
GFlowNets reduces temporal noise. Video SDS loss enables
learning from the single image input.

3.2. Spatial Posing

We begin by describing the mathematical framework to an-
imate a clipart image, z(, characterized by M keypoints
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{po(i)}}5* and associated cubic Bézier trajectories param-
eterized by control points {c(i)}X5'. These trajectories
dictate the temporal evolution of the keypoints {p; (i)} ;!
over N timesteps, wheret € {0,1,..., N —1}. At timestep
t, keypoint positions p; (i) are sampled along Bézier trajecto-
ries ¢(7) as: p;(i) = Z?:o Bj(uy)c; (i), where uy € [0, 1]
is the normalized time and B;(u;) = (i’) (1 — ug)3Juf.
These updated keypoint positions {p;(i)} anchor the cli-
part’s deformation for ¢ > 0 and hence they are used as
anchor vertices T, in (Eq.2) to compute the spatial defor-
mation of the object geometry across discrete time steps.
Before learning the deformation for ¢ > 0, we fix the input
shape Jg using (Eq.4). While this method efficiently models
the spatial deformation, it often fails to maintain temporal
coherence across frames. Prior research (Wu et al., 2024,
Gal et al., 2024) highlights that predicting future Bézier
control points at discrete timesteps frequently results in dis-
torted object identities, loss of geometric consistency, and
abrupt transitions between frames. Even with parameterized
learning methods (Wu et al., 2024), such as those optimized
using Score Distillation Sampling (SDS) loss, unseen pose
configurations often result in jerky or unnatural motion dy-
namics. (Fig.3).

3.3. Temporal Smoothing

Lets denote the Jacobians for N time steps obtained
from spatial posing is denoted as {JZ', J©" I ... IL |}
called as spatial Jacobians. We reformulate the temporal
smoothing problem to predict temporal Jacobian J f as cor-
rective terms to spatial Jacobian J©. The total Jacobian at
time ¢ is given by:

J, =JF + Ik (11)

This decomposition focuses on learning localized correc-
tions, enabling precise control and mitigating drift through
incremental adjustments.

ODE Formulation: Since the first frame is stationary and
given as input, we set the first frame’s temporal Jacobian
as, JI' = 0 € RF*2X2_ Furthermore, we are required
to remove only temporal noise from spatial Jacobians and
wanted to add only temporal correction term (temporal Jaco-
bian), we propose to reformulate the ODE given in (Eq.10)
given as:

A _ fr(IE. CE.CE_  t:0
P r(Jo, Cw, Cy 1, t; 0R), (12)
where J& is the base Jacobian of the first frame, C, and
C"I}V_l are attention-encoded features of current-window
pose predictions and past-window temporals, respectively.
The function fg, parameterized by 6, outputs temporal
corrections. The temporal Jacobian at time ¢, J 1 is obtained

via integration:
t
I =37 +/ fRQAE.Cl,CR 1 m0R) dr. (13)
0

Here, J (1)% is initialized to zero for the first frame, ensur-
ing a neutral starting state. Numerical methods such as
Euler’s method are used for integration. In comparison to
(Eq.10) we model the time-varying noise C(t) with C{;,
and rescaling A(t) with Cf,_,. C¥, is the attention over
spatial Jacobians over a time window W i.e. till the cur-
rent time step. And, C{f._, is the attention over temporal
Jacobian in a time window W — 1 i.e. till previous step. In
(Eq.10) we need score function which can estimate a de-
noised version of a noise-corrupted data sample given noise
level C(t). Comparatively, (Eq.13) also denoise the input
noise accumulated over spatial Jacobians C{;, — C(t) and
the corrections applied to them C, | — rescaling A(t) we
are estimating the denoised Jacobian which is the correction
term for spatial Jacobian. For convergence, as in (Eq.10) as
soon as the corrections applied starts to contract it balance
the opposing force from the error in spatial Jacobians and
finally the corrections term reduced to zero. To ensure this
correction term reduces to zero only for temporal noise we
apply the flow matching (detailed balance) objective from
GFlowNets, detailed subsequently.

3.4. Loss function

We distill the prior knowledge of a pretrained video diffu-
sion model via Video Score Distillation Sampling (SDS).
Let J = {J;})! (Eq.11) represent the predicted Jacobian
fields over time, and V* = {V;}Y ! be the temporally
consistent set of vertices computed via differentiable func-
tion g given J; and T, for each time step (Sec.2.1). For
each time step ¢, the deformed mesh My = (V] , F) is used
to warp W initial clipart image and then rendered using a
differentiable renderer R (Li et al., 2020), producing frames
I, = ROW(1y), M;). The sequence of frames forms the
video X = {I;}V;!. The pretrained video diffusion model
€4 with the input video X as parameters, it produces a gra-
dient w.r.t # which are the spatial and temporal parameters
driving the animation:

0X
a0 |’
(14)
where t' ~ U(0,T), e ~ N(0,I), and zy is a noisy la-
tent embedding of X, €4(-) is the U-Net denoising network
in the T2V model, conditioned on the text prompt y and
the diffusion time step ¢’. The optimization of SDS loss in-
volves back-propagating through the UNet €, (-), and then to
spatial and temporal parameters, which is computationally
expensive. Hence we leverage gradients as per (Poole et al.,
2022) by omitting the UNet Jacobian. Specifically, in our

VoLsps(9,X) = Ey o |w(t’) (eg(zp;y,t') —¢€)
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case gradient updates the Bézier parameters (spatial) and
{attention, ODE} parameters (temporal) which refines the
geometry of the meshes M* = {M}¥/. For better text-
video alignment, classifier-free guidance (Ho & Salimans,

2022) is applied:
€p(ze3y.t') «— (L+s)eg(zp;y, t') —sep(ze; 0,1), (15)

where s is the guidance scale, () denotes null text prompt.

Flow Matching Loss Optimizing the mesh deformation
with Video SDS loss using Gaussian noise assumption can
produce animations with abrupt transitions, exhibit local
geometric distortions as the displacement for each keypoint
is predicted independently and hence not be able to match
the target distribution (as explained in Sec.2.2). In con-
clusion, we are required to optimize the temporal noise
(Sec.3.3) for smooth evolution of keypoints and maintain
local structure, however these pre-trained video diffusion
models under isotropic Gaussian noise assumption increase
the effective dimensionality of the data, which may begin as
a low-dimensional manifold embedded within same dimen-
sionality. Thus, maintaining intrinsic data dimensionality
requires a choice of flow that preserves this dimension. We
define the dimensionality as the denoising objective, for
example, consider the noise quantified as C'(t)

|D(X +n;C(t) — X||?
50)

Ex ~dataen~nr(0,0(1)) (16)

where D(-) de-noised version of a noise-corrupted data sam-
ple X given noise level C'(¢). In practice we used the same
denoiser €4 U-Net of pre-trained video diffusion model,
hence (Eq.16) is essentially the score function Vx log p(X).

To preserve the dimension for the temporal noise, despite
learning the deformation under the Gaussian noise assump-
tion, we propose to take the difference between the score
function obtained for frames I, produced through overall
Jacobian J; and spatial Jacobian J7". This loss is inspired
from the detailed balance (DB) objective from GFlowNets
where, the backward process (Spatial Jacobian) keeps on
introducing the temporal noise and the forward process
keeps on reducing the added temporal noise for each state
transition. Since the score function is already normalized
and comparable there is no normalizing factor F'(s) as in
Sec.2.3, thus the loss function is given as:

Lfiow = By 1| Vx log pr (X, J;) — Vx log pyr (X, 37) |12

a7)
Here, as well the gradient %—’g is taken while back propagat-
ing from this loss. Moreover, we wanted the parameterized
Bézier to capture temporal movement of keypoints as much
as possible and hence we want the temporal Jacobian (cor-
rective term) to be as small as possible, hence we add the

correction minimizing loss given as:

Ltiow = Ep ¢||Vx log p (X, J;)—Vx log pyr (X, I} ||?
+E |3 = I7)F (1)

The Overall Loss for FlexiClip is defined as the weighted
sum loss in Eq.14, 16, 17:

Lsps + A* Lfiow (19)

where A is the weight to balance the loss magnitudes. Flex-
iClip is end-to-end differentiable to be able to learn the
keypoint movement and temporal smoothing required.

4. Experiments

We evaluate FlexiClip through comprehensive experiments.
First, we describe the experimental setup (Sec.4.1) and
evaluation metrics (Sec.4.2). Next, we compare FlexiClip
with AniClipart (Wu et al., 2024), sketch-animation method
Gal23 (Gal et al., 2024), as well as leading T2V models
(Sec.4.3). Ablation studies (Sec.4.5) validate our design
decisions, and we showcase FlexiClip’s ability to handle
complex animations (Sec.4.6).

4.1. Experimental Setup

FlexiClip enables high-resolution, complex animations by
leveraging SVGs, where paths defined by control points are
animated via mesh deformation and rendered into bitmaps
using DiffVG (Li et al., 2020) for video SDS loss. For
bitmap clipart, pixels within each triangle are warped. We
used 30 clipart images from AniClipart (Wu et al., 2024)
and additional ones from Freepik' across various categories
(humans, animals, and objects), resized to 256x256 pixels.
First, we learn Jo with Eq.4 for 10K iters. After that, motion
trajectories with 8—11 control points were optimized upto
700 steps using Adam (learning rate: 0.5). We applied Mod-
elScope T2V (Wang et al., 2023) with a guidance parameter
of 50 for SDS loss. For spatial posing, cubic Bézier control
points, we use a 4-layer MLP with LeakyReLU activation,
with the final layer being linear. Temporal Jacobians from
pfODE were predicted with a 3-layer MLP, while two at-
tention networks with 32-dimensional keys/values and two
heads modeled motion and deformation effectively. Stan-
dard 24-frame animations were rendered on an NVIDIA
V100 in 40 minutes using 26 GB.

4.2. Metrics

We evaluated FlexiClip on same metrics from AniClipart
(Wu et al., 2024), namely, 1) bitmap metrics (cosine similar-
ity via CLIP for visual identity and X-CLIP for text-video
alignment) and 2) animation metrics (Motion Vibrancy

'hitps://www.freepik.com/
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Table 1. Quantitative results of FlexiClip in terms of bitmap met-
rics against AniClipart and T2V/I2V models.

Visual Identity Text-Video
Method Preservation Alignment

(CLIP Score 1) | (X-CLIP Score 1)
DynamiCrafter (Xing et al., 2025) 0.8031 0.1732
Gal23 (Gal et al., 2024) 0.8395 0.1865
VideoCrafter2 (Chen et al., 2024) 0.8410 0.1988
12VGen-XL (Zhang et al., 2023) 0.8798 0.2015
ModelScope (Wang et al., 2023) 0.8632 0.2037
ToonCrafter (Xing et al., 2024) 0.9280 0.1997
AnimateLCM-I12V (Wang et al., 2024) 0.9274 0.2020
Pyramid Flow (Lei et al., 2023) 0.9312 0.2045
LTXVideo (HaCohen et al., 2024) 0.9325 0.2054
AniClipart (Wu et al., 2024) 0.9401 0.2075
FlexiClip (Ours) 0.9563 0.2102

Table 2. Quantitative results of FlexiClip in terms of animation
metrics against AniClipart.
Method MVt TC, GD] DS| AE(x10%1

AniClipart 20.87 851 5098 18.49 75.23
FlexiClip (Ours) 25.33 8.14 5234 13.76 113.44

(MYV), Temporal Consistency (TC), and Geometric Devia-
tion (GD)). To better evaluate methods for free-flowing and
smooth animation we propose the following metrics:

Deformation Smoothness(DS): This metric evaluates
how smoothly the control points deform along Bézier paths.
It computes the average difference in displacement vectors
of consecutive frames:

1 N—-1M-1 ] )
DS = —year 2 2 I = dil
t=1 i=0

where dii) is the displacement of control point 7 at frame ¢.
Lower values indicate smoother deformation.

Animation Energy(AE): To evaluate the energy dis-
tributed across control points, we calculate the mean squared
displacement across all frames:

M—-1

_ 1 (i) _ ()2
AE—WZZHM —po II°-

t=1 i=

Higher values indicate more dynamic animations.

4.3. Comparison to State-of-the-Art Methods

FlexiClip versus AniClipart: We compare FlexiClip with
AniClipart based on the results observed in the tables (Tab.1,
2 & 3) and visual examples (Fig.3). One of the key dif-
ferences between the two models lies in their ability to
preserve visual identity and create more coherent text-video
animations. While AniClipart demonstrates impressive per-
formance in visual identity preservation and text-video align-
ment, it encounters challenges when it comes to handling
complex deformations. For instance (Fig.3), in the case of

hand deformation (e.g., during dance movements), AniCli-
part exhibits noticeable distortions, which negatively impact
the naturalness of the animation. FlexiClip, on the other
hand, maintains better consistency in object shape and defor-
mation, showing smoother transitions without compromis-
ing visual identity. In particular, when handling leg folding
during jumping and dynamic hand movements, FlexiClip
ensures these actions are portrayed realistically (whereas
AniClipart shows the distorted hand for girl/boy jumping),
which is a critical requirement for creating natural anima-
tions.

Additionally, FlexiClip excels at producing smoother and
more realistic deformations, as evidenced by the parrot ani-
mation, where the wing flapping looks much more natural
and consistent. The wings of the parrot exhibit a smooth,
continuous motion, enhancing the visual realism compared
to AniClipart’s deformation, which is flapping its tail rather
than wings showing lack of text alignment. Looking at
the quantitative results (Tab.1 and 2), FlexiClip outperforms
AniClipart in both the bitmap and animation metrics. Specif-
ically, FlexiClip achieves a higher CLIP score (0.9563 vs.
0.9401) and X-CLIP score (0.2102 vs. 0.2075), signifying
better visual identity preservation and text-video alignment.
Furthermore, FlexiClip’s animation quality metrics, includ-
ing MV, TC, GD, DS, and AE, also surpass AniClipart’s
results, with FlexiClip yielding more motion variation, lower
distortions, and higher animation efficacy. Notably Flexi-
Clip GD has increased but DS decreased showing smoother
animations. FlexiClip versus I2V Models: See App.B.

User Study To assess the improvements made by Flexi-
Clip, we conducted a subjective user study with 55 static cli-
part images animated by six methods: FlexiClip (Ours), An-
iClipart, LTXVideo, PyramidFlow, AnimateLCM-I2V, and
DynamiCrafter. Participants were asked to rate the anima-
tions on visual identity preservation, text-video alignment,
and smoothness using a six-point scale from 0 (strongly
disagree) to 1.0 (strongly agree). The study was conducted
online with 30 participants, and ratings were averaged across
the 55 clipart images. The results in Tab.3 show that Flexi-
Clip significantly outperforms the other methods.

Table 3. Subjective user study results
User Selection% 1

Identity Text-Video Smoothness
Preservation Alignment
FlexiClip (Ours) 94.90 94.54 93.81
AniClipart 83.63 80.72 76.36
LTXVideo 61.82 60.36 58.18
PyramidFlow 56.36 54.90 52.36
AnimateLCM-12V 49.09 48.72 45.09
DynamiCrafter 2.18 1.82 1.09
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Figure 3. FlexiClip vs AniClipart: Four consecutive frames are shown for comparison. AniClipart distorts the objects (e.g., boy/girl
jumping, woman dancing), lacks proper text conditioning (e.g., parrot), and shows poor temporal consistency (e.g., boy jumping). In
contrast, FlexiClip preserves the visual identity, maintaining consistent shapes and producing high-quality, smooth, and text-aligned
animations. Detailed animations can be seen at: https://creative-gen.github.io/flexiclip.github.io/

4.4. Effect of \ on Motion Quality and Convergence

In our experiments, we found that the )\ parameter plays a
critical role in balancing the alignment of generated motion
with the text prompt and ensuring smooth, natural motion
trajectories. Specifically, tuning ) influences both the qual-
ity of the animation and the convergence behavior during
training. We set A = 15 for all reported results to maintain
consistency across examples.

When A is set too low, such as around 1, the model struggles
to generate coherent motion aligned with the textual descrip-
tion, often requiring up to 1000 gradient descent steps to
produce acceptable outputs. Increasing A incrementally to
values up to 5 does not result in a significant reduction in the
required number of training steps, indicating limited benefit
in that range. However, a more noticeable impact emerges
when ) is raised to values between 5 and 10, where we ob-
serve variability in convergence, some animations achieve
satisfactory quality in as few as 600 steps, while others still
require up to 900 steps.

At A = 15, the motion generation becomes consistently
more reliable, with most animations aligning well with the
text prompt after approximately 700 training steps. This
value represents a practical trade-off between convergence
speed and motion quality. Pushing A beyond 15 leads to
noticeably sharper and faster motions, but this comes at the
expense of temporal smoothness, resulting in less natural-

looking animations. Thus, A = 15 serves as an effective
default for balancing alignment, smoothness, and training
efficiency.

4.5. Ablation Study

We conducted an ablation study to validate the significance
of each critical component in FlexiClip. The quantitative re-
sults of the study are detailed in Table 4, while Figure 6 and 7
showcases a qualitative comparison of the different variants.
We performed ablation to describe importance of tempo-
ral Jacobian obtained from pfODE and the flow matching
loss, which constitute the core of our system. Notably, the
geometric deviation (GD) in FlexiClip is higher compared
to AniClipart due to the absence of ARAP deformation,
which inherently minimizes shape distortion observed from
reduced deformation smoothness(DS).

Temporal Jacobian To evaluate the effectiveness of in-
corporating temporal Jacobian, we removed this component
and instead used a baseline keypoint transformation with-
out considering the continuous dynamics provided by the
pfODE framework. Without temporal Jacobian, the ani-
mation exhibited noticeable artifacts (Fig.6), including a
lack of smoothness in movements and unnatural keypoint
transitions, as seen in the parrot, ghost, and cloud exam-
ples in (Fig.6). The quantitative results corroborate these
findings: the "w/o Temporal Jacobian” variant exhibited a
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lower motion variance (MV = 23.00) and higher temporal
inconsistency (TC = 8.80). Additionally, the geometric dis-
tortion (GD) score for this variant decreased to 51.50 (vs
Default) showing rigid transformation as seen from ghost,
parrot example it failed to show movement of hands and
wings flapping respectively. In contrast, the default setting,
with temporal Jacobians, yielded superior results across all
metrics, highlighting its necessity for realistic and accurate
animations.

Table 4. Ablation Study with FlexiClip variants.
FlexiClip Variant MVt TC| GD| DS| AEt

w/o Temporal Jacobian 23.00 8.80 51.50 14.00 105.00
w/o Flow Match. Loss ~ 24.50 840 53.00 14.20 95.00
Default 2533 814 5234 1376 113.44

Flow Matching Loss The flow matching loss plays a cru-
cial role in aligning the generated motion trajectories with
the temporal coherence and dynamics inferred from text de-
scriptions. To assess its impact, we omitted the flow match-
ing loss from the total loss. As shown in the man and woman
dance examples in Fig.7, this substitution led to erratic and
exaggerated movements, deviating significantly from the in-
tended motion semantics. Quantitatively, ”w/o Flow Match.
Loss” variant showed increased geometric distortion (GD =
53.00) and reduced average energy (AE = 95.00), indicative
of less expressive and abrupt motion dynamics. Addition-
ally, temporal consistency (TC) degraded slightly (TC =
8.40), reinforcing the importance of this loss in maintain-
ing stable frame-to-frame transitions. The absence of flow
matching loss caused inconsistencies visible in the chaotic
limb movements and unstable/abrupt posture transitions in
the dancing examples. The default setting, which incorpo-
rates flow matching loss, demonstrated a balanced trade-off
between dynamism and coherence, achieving the highest
average energy (AE = 113.44) and a competitive motion
variance (MV = 25.33) with smooth animation.

4.6. More Results

FlexiClip has been able to support diverse and complex
animations (Tab.5), broadening its applications in creating
visually captivating and textually coherent animations.

Rotation Demonstrated rotational movements. The flower
swaying its petals in the breeze showcases FlexiClip’s ability
to handle smooth rotational dynamics. Without any rota-
tional mechanism explicitly, the system captures the gentle
oscillation of petals, creating a lifelike representation of
natural motion.

Multiple Text Conditions Demonstrated complex mo-
tions via multiple text conditioning. The woman in a green
dress with black polka dots demonstrates FlexiClip’s capa-

bility to animate based on complex textual conditions. Here,
she dances and folds her hands in rhythm with the descrip-
tion, reflecting the system’s ability to integrate fine-tuned
motion semantics with precise keypoint dynamics.

Multiple Objects Demonstrated coordinated interactions.
The couple dancing exemplifies FlexiClip’s support for ani-
mating multiple objects simultaneously. The synchronized
movements of the man and woman highlight the system’s
proficiency in managing interactions between objects while
maintaining spatial and temporal coherence.

Layered Animations FlexiClip supports layered anima-
tions (see in Fig.1 Breakdancer animation) for depth and
complexity. This allows for the creation of dynamic ani-
mations enhancing its applicability for interactive media.

Table 5. FlexiClip: Diverse and Complex Animations.

Input Complex Animation Illustrations

A flower sways
its petals in the
breeze.

A woman in a green
dress with black polka
dots and black boots is
dancing and folding hen

hands in her move.

£

5. Conclusion

3L
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We introduced FlexiClip, a cutting-edge framework for text-
to-animation generation, excelling in visual identity preser-
vation, text-video alignment, and animation smoothness.
Extensive evaluations, including user studies, demonstrate
that FlexiClip outperforms existing methods like AniClipart
and LTXVideo, particularly in handling complex deforma-
tions, maintaining temporal consistency, and producing re-
alistic motions. Ablation studies validated the importance
of temporal Jacobians and flow matching loss, essential for
smooth transitions and accurate motion dynamics. FlexiClip
supports diverse scenarios, including rotational dynamics,
multi-object interactions, and layered animations, making it
versatile for interactive media and entertainment. By setting
a new standard in text-to-animation frameworks, FlexiClip
paves the way for future advancements in real-time applica-
tions, 3D integration, and personalized animations.
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Impact Statement

This paper introduces FlexiClip, a novel framework for ani-
mating static clipart images with enhanced temporal coher-
ence and geometric integrity. By integrating temporal Jaco-
bians, continuous-time modeling via probability flow ODEs
(pfODEs), and a flow matching loss inspired by GFlowNet
principles, FlexiClip addresses longstanding challenges in
clipart animation, such as abrupt motions and geometric
distortions.

Potential Positive Impacts

¢ Advancement in Digital Animation: FlexiClip’s
methodology can significantly benefit industries in-
volved in digital animation, including education, en-
tertainment, and digital marketing, by enabling the
creation of smooth and natural animations from static
images.

* Accessibility for Content Creators: By simplifying
the animation process for clipart images, FlexiClip
can empower individual creators and small businesses
to produce high-quality animations without extensive
resources.

* Educational Tools Enhancement: The ability to an-
imate educational clipart can lead to more engaging
learning materials, potentially improving educational
outcomes.

Potential Negative Impacts and Mitigations

* Misinformation Risks: The ease of animating static
images could be misused to create deceptive content.
To mitigate this, it’s essential to develop and integrate
detection tools that can identify Al-generated anima-
tions.

¢ Intellectual Property Concerns: Animating copy-
righted clipart without proper authorization could in-
fringe on intellectual property rights. Users should
be educated on copyright laws, and systems should
include checks to prevent unauthorized use.

* Bias in Animation Outputs: If the training data for
FlexiClip contains biased representations, the anima-
tions produced might perpetuate these biases. It’s cru-
cial to use diverse and representative datasets and im-
plement bias detection mechanisms.

Ethical Considerations

While FlexiClip primarily aims to advance the field of ma-
chine learning and animation, it is important to remain vig-
ilant about its applications. Developers and users should
adhere to ethical guidelines, ensuring that the technology is
used responsibly and does not contribute to societal harm.
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A. Ablation Studies
Input (w/o Temporal Jacobian) Vs Default Input (w/o Flow Matching Loss) Vs Default
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Table 6. Ablation: w/o Temporal Jacobian vs Default- This figure
compares animations with and without the temporal Jacobian. With-
out it, noticeable artifacts such as jerky movements and unnatural
keypoint transitions appear (e.g., parrot, ghost, cloud). In contrast,
the temporal Jacobian yields smoother, more consistent, and realis-
tic animations.

Table 7. Ablation: w/o Flow Matching Loss vs Default - Removing
the flow matching loss leads to erratic, exaggerated motion with
chaotic limb movements and unstable transitions. Including the flow
matching loss preserves smooth, dynamic, and coherent animations,
ensuring stable frame-to-frame transitions

w/o Temporal Jacobian: To evaluate the effectiveness of incorporating temporal Jacobian, we removed this component
and instead used a baseline keypoint transformation without considering the continuous dynamics provided by the pfODE
framework. Without temporal Jacobian, the animation exhibited noticeable artifacts (Fig.6), including a lack of smoothness
in movements and unnatural keypoint transitions, as seen in the parrot, ghost, and cloud examples in Fig.6. The quantitative
results corroborate these findings: the ”w/o Temporal Jacobian” variant exhibited a lower motion variance (MV = 23.00)
and higher temporal inconsistency (TC = 8.80). Additionally, the geometric distortion (GD) score for this variant decreased
to 51.50 (vs Default) showing rigid transformation as seen from ghost, parrot example it failed to show movement of hands
and wings flapping respectively. In contrast, the default setting, with temporal Jacobians, yielded superior results across all
metrics, highlighting its necessity for realistic and accurate animations.

w/o Flow Matching Loss: The flow matching loss plays a crucial role in aligning the generated motion trajectories with
the temporal coherence and dynamics inferred from text descriptions. To assess its impact, we omitted the flow matching
loss from the total loss. As shown in the man and woman dance examples in Fig.7, this substitution led to erratic and
exaggerated movements, deviating significantly from the intended motion semantics. Quantitatively, the ”w/o Flow Match.
Loss” variant showed increased geometric distortion (GD = 53.00) and reduced average energy (AE = 95.00), indicative
of less expressive and abrupt motion dynamics. Additionally, temporal consistency (TC) degraded slightly (TC = 8.40),
reinforcing the importance of this loss in maintaining stable frame-to-frame transitions. The absence of flow matching
loss caused inconsistencies visible in the chaotic limb movements and unstable/abrupt posture transitions in the dancing
examples. The default setting, which incorporates flow matching loss, demonstrated a balanced trade-off between dynamism
and coherence, achieving the highest average energy (AE = 113.44) and a competitive motion variance (MV = 25.33) with
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smooth animation.

B. FlexiClip Vs T2V/I2V Models
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Figure 4. FlexiClip vs T2V/I2V Models: LTXVideo and PyramidFlow show moderate performance, with scores higher than methods like
DynamiCrafter and AnimateLCM-I2V, but still lagging behind FlexiClip. While these methods manage basic identity preservation, they
struggle with animation movement and text alignment, resulting in lower ratings. DynamiCrafter, in particular, performs poorly across all
metrics, reflecting its inability to preserve visual details and adapt effectively to text prompts.

The methods evaluated in this study exhibit varying performance levels when it comes to key animation quality aspects, such
as identity preservation, text-video alignment, and smoothness. While certain techniques are successful in preserving the
overall semantics of the input clipart, they often fall short in maintaining finer details, leading to lower identity preservation
scores. These methods tend to produce animations that are static or lack significant motion, which negatively impacts the
alignment with the given text prompts, ultimately resulting in less engaging and less accurate animations. Other methods,
such as AniClipart and LTXVideo, perform relatively well but still struggle with capturing finer details and translating text
prompts into dynamic animations with sufficient movement. These approaches yield more static animations, which limits
their ability to accurately reflect the intended transformations and reduces the overall visual appeal.

On the other hand, methods like DynamiCrafter exhibit the weakest performance in all areas, with noticeably poor identity
preservation and minimal alignment with text descriptions. The animations generated by these techniques tend to lack both
the required detail and movement, making them less suitable for generating high-quality, contextually accurate animations.

Overall, the comparison highlights the significant improvements offered by FlexiClip over other methods, demonstrating its
ability to generate high-quality, detailed, and smooth animations that align more effectively with input prompts.
C. Derivation of the Fokker-Planck Equation Under time varying densities

We start with the smoothing kernel defined as:

1

e.0) = Nsi, ) = o (50 = 070 =),

where:
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e 1 is the mean,
* C(t) is the covariance matrix,

o z € R%

C.1. Derivatives of the Kernel
C.1.1. TIME DERIVATIVE
The time derivative of k(x, t) is given by:
Ok 1 —1/ 1 -1 T—1p
— =k(x,t) |-z tr(CTC)+ - tr (C’ (x—p)(z—p)'C C’) .
ot 2 2
C.1.2. GRADIENT
The gradient of k(z, t) is:
Vi =—C Yx — p)k.
C.1.3. SECOND DERIVATIVE
The second derivative is:
0%k B
63@895]- N

R [(C7H o = w)i(C7H = w); = ()] -

C.2. Evolution of the Probability Density
The time varying probability density p(z, t) evolves as:
p(z,t) = po(x) * k(x,t),

where * denotes convolution. The evolution is governed by:

C.2.1. TIME DERIVATIVE OF p(x,t)

op (z) * Ok

— =po(x) * —.

ot~ POV gy
Substituting the time derivative of x, we have:

% =po(x) * Kk —% tr(C71C) + %tr (C’l(x —p)(z — u)TC’lC‘)} :

C.2.2. DIVERGENCE OF THE DRIFT TERM

For a drift vector field f(x), the divergence term is:

=V (fp) = =po(x) * V - (fr),

where:

V-(fr)=(V-fls=f V&

C.2.3. DIFFUSION TERM

The diffusion term, assuming the diffusion matrix G(x, t), becomes:

1
ViV

Z GiGikp| = %po(fﬂ) * I%Z ViV, Z GG
% i %
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C.3. Simplifications and Final Form
Assume f(z) = 0 (no drift) and V;G,, = 0 (spatially homogeneous diffusion). The condition simplifies to:

—% tr(C71C) + %tr (C'*l(x —p)(z — u)TCflC") = —% tr(C71GGT) + %tr (C Yz —p)(z—p)TCTIGGT).

This condition is satisfied when: )
GG (x,t) = C(t).
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