

000 001 002 003 004 005 PRORE: A PROACTIVE REWARD SYSTEM FOR GUI 006 AGENTS VIA REASONER–ACTOR COLLABORATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Reward is critical to the evaluation and training of large language models (LLMs).
026 However, existing rule-based or model-based reward methods struggle to generalize to GUI agents, where access to ground-truth trajectories or application
027 databases is often unavailable, and static trajectory-based LLM-as-a-Judge approaches suffer from limited accuracy. To address these challenges, we propose
028 PRORE, a proactive reward system that leverages a general-purpose reasoner and domain-specific evaluator agents (actors). The reasoner schedules targeted state
029 probing tasks, which the evaluator agents then execute by actively interacting with the environment to collect additional observations. This enables the reasoner to assign
030 more accurate and verifiable rewards to GUI agents. Empirical results on over 3K trajectories demonstrate that PRORE improves reward accuracy and F1 score
031 by up to 5.3% and 19.4%, respectively. Furthermore, integrating PRORE with state-of-the-art policy agents yields a success rate improvement of up to 22.4%.
032

1 INTRODUCTION

033 Verifiable rewards are pivotal for enabling the continual evolution of large language model (LLM)-
034 based agents Wang et al. (2024b); Guo et al. (2025); Silver & Sutton (2025). Within this paradigm,
035 LLMs operate as policy networks, undertaking user requests to generate reasoning, invoke tools and
036 functions, and manipulate graphical user interfaces (GUIs) Qi et al. (2024). Rewards function as
037 quantitative feedback signals that steer the agent’s learning process Gao et al. (2024), promoting
038 optimal behaviors while discouraging suboptimal actions.
039

040 Reinforcement learning with verifiable rewards (RLVR) has the potential to significantly advance
041 GUI agents Wang et al. (2024c); Xu et al. (2025); Wang et al. (2025). A simple yet effective binary
042 reward for GUI automation is to assess whether the specified task has been successfully completed.
043 To obtain such a reward signal, existing methodologies could be generally categorized into rule-based and LLM-based, as illustrated in Figure 1. In the rule-based paradigm, human experts
044 manually construct verification code snippets to ascertain the realization of the intended state for
045 each task. For instance, AndroidWorld Rawles et al. (2024) and WindowsAgentArena Bonatti et al.
046 (2024) datasets contain more than 116 and 150 manually engineered unit testing code, respectively,
047 to provide grounded signals of task accomplishment for individual GUI automation tasks. While
048 this approach offers high accuracy, it is inherently limited in scalability, as the manual creation of
049 unit testing scripts demands substantial human effort and resources, thereby preventing its use as a
050 reward mechanism for large-scale GUI agent training.

051 LLM-as-a-judge is thus proposed to enable scalable agentic rewards Gu et al. (2024); Bai et al.
052 (2024). Leveraging the capabilities of advanced LLMs such as GPT-4o, this approach evaluates
053 GUI task trajectories, often represented as screenshots, by prompting the model with queries such
054 as, “*Based on the task trajectory, please determine if the task is completed*”. LLM-as-a-judge offers
055 an autonomous and scalable framework for allocating reward signals Wang et al. (2024c). However,
056 we observe that this approach is considerably less effective for rewarding GUI agents.

057 The rationale underlying the failures of LLM-as-a-judge for GUI agents is twofold: *incomplete state*
058 *observability* of GUI tasks and *limited domain-specific capabilities* of LLMs.

059 First, GUI task states are typically monitored *passively* through specific modalities, such as screenshots Gou et al. (2024). However, owing to the inherent complexity and dynamic nature of GUI

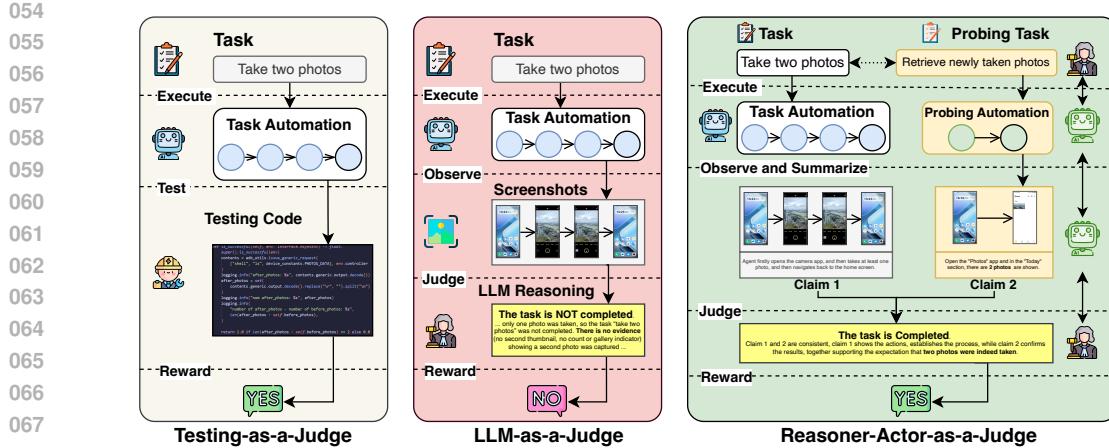


Figure 1: PRORE proposes to reward GUI agents using reasoner-actor-as-a-judge, rather than relying on expert to hand craft testing code or LLM to judge static trajectories.

interactions, these states frequently remain incompletely observable. For instance, as depicted in Figure 1, during the monitoring of the “*taking two photos*” task exclusively through screenshots, the captured lacks critical success indicators, thereby precluding even human evaluators from reliably ascertaining task completion. Moreover, observations are typically conducted at fixed intervals, potentially omitting critical state transition details. Consequently, GUI state observability remains inherently incomplete, thereby compromising the efficacy of the reward system.

Second, evaluating GUI task states requires domain-specific GUI knowledge and expertise, which general-purpose LLMs utilized in reward systems, such as GPT-4o and Gemini, fundamentally lack Dai et al. (2025). Most general-purpose LLMs demonstrate suboptimal performance on GUI-related tasks Qin et al. (2025). Although post-training may enhance their domain-specific proficiency, training of a domain-specific reasoner as the reward model still necessitates annotated datasets, thereby constraining its scalability. Consequently, deploying a general-purpose LLM to assess intricate domain-specific details intrinsically undermines the efficacy of the reward system.

To develop a scalable and accurate reward for GUI agents, this paper introduces PRORE, a proactive reward system based on reasoner–actor collaboration. The key idea of PRORE is to introduce the additional *state probing* tasks planned by the reasoner. These tasks are executed by domain-specific evaluator agents (actors) that interact with the environment to retrieve key states relevant for task verification. Instead of relying solely on the policy agent’s execution trajectory, PRORE assigns rewards through high-level reasoning over the outcomes of these probing tasks.

Specifically, the reasoner, *i.e.*, GPT-4o, schedules the state probing tasks, conditioned on the original task objective and its expected outcome. After the policy agent finishes execution, evaluator agents are invoked to automate these probing tasks. They then summarize both the original task trajectory and the probed UI states into high-level, verifiable claims. The reasoner performs final judgment through chain-of-claims reasoning, which analyzes the *consistency* between the policy agent’s claims and those generated from the evaluators’ probing. An intuitive example is illustrated in Fig. 1: given the original task “*taking two photos*”, a probing task “*retrieving newly taken photos*” is formulated, with the expected outcome that “*two photos should have appeared in the gallery*”. The evaluator agent executes this probing task and observes that “*there are two newly captured photos from 11:00 AM to the present*”. The reasoner then assesses the consistency between the claims, thereby probably concluding that the original task has been successfully accomplished.

These designs address the fundamental challenge of rewarding for GUI agents in the following ways: 1) PRORE transforms the reward system from passive monitoring to proactive probing. The introduction of state probing tasks provides a complementary perspective to ascertain whether the original task has been accomplished; 2) PRORE decouples the general-purpose reasoner from domain-specific GUI judgments. Domain-specific actions are executed by domain-specific actors (evaluator agents), while the general-purpose reasoner concentrates solely on high-level logical consistency verification, which falls within the core competencies of general-purpose LLMs; 3) PRORE introduces a unique opportunity for co-evolution between the policy agent and the reward system. The

108 execution of state probing tasks can be further optimized in tandem with the evaluator (policy)
 109 agent’s improvement, enabling a more sophisticated reward system that, in turn, facilitates acceler-
 110 ated progress for the policy agent.

111 We evaluate the performance of PRORE on typical GUI tasks. Specifically, PRORE is evaluated on
 112 over 3K distinct task traces collected from three benchmarks: AndroidWorld Rawles et al. (2024),
 113 AndroidLab Xu et al. (2024), and MobileAgentBench Wang et al. (2024a). The results demon-
 114 strate that, compared to existing state-of-the-art LLM-as-a-Judge approaches, PRORE enhances reward
 115 accuracy and F1 score by up to 5.3% and 19.4%, achieving an average accuracy of 93.7%, thereby
 116 becoming the first reward system to surpass 90% reward accuracy. In addition, pilot experiments on
 117 OSWorld and OSWorld-Chrome Xie et al. (2024) show that PRORE improves reward accuracy by
 118 4.0% on PC tasks and 6.5% on web tasks. Moreover, when incorporated into policy agents to guide
 119 their test-time scaling strategy, PRORE elevates the success rate by at most 22.4%.

120 In summary, the key contributions of this works are as follows:

121

- 122 • We systematically study and empirically demonstrate the limitations of existing trajectories-based
 123 LLM-as-a-judge for GUI agents.
- 124 • We propose PRORE, a proactive reward system with a general reasoner that performs high-level
 125 scheduling and reasoning and domain-specific evaluator agents that actively probe states.
- 126 • PRORE achieves consistently higher reward accuracy and F1 score on different agents and bench-
 127 marks, and significantly improves the success rate of policy agents through test-time scaling.

129 2 RELATED WORKS

130 2.1 GENERAL REWARD MODELS IN BROADER TOPICS

131 General reward models are widely used to support experience-based training of LLMs, without
 132 requiring pre-collected ground truth or handcrafted rules from domain experts Gu et al. (2024); Son
 133 et al. (2024). Such models typically assign either absolute scores to individual answers or relative
 134 scores by comparing answer pairs Lin et al. (2025); Xiong et al. (2025); Liu et al. (2025b). Beyond
 135 these, some works have proposed building *reward systems* through the agent-as-a-judge paradigm,
 136 where agents are equipped with tools such as web search, code execution, or document reading to
 137 assist reward generation Zhuge et al. (2024); Yu (2025). However, these reward systems remain
 138 limited in scope and cannot be directly applied to GUI agents in the wild, which execute diverse
 139 task types that cannot be verified by a predefined toolbox.

140 2.2 GUI AGENTS FOR TASKS AUTOMATION

141 LLM-based GUI agents, which operate across websites, desktops, and smartphones to handle a wide
 142 spectrum of tasks ranging from professional work to everyday activities, have recently attracted sig-
 143 nificant attention Lai et al. (2025b); Dai et al. (2025); Qin et al. (2025); Gu et al. (2025); Ye et al.
 144 (2025). LLMs are primarily employed either as generators to propose actions and decisions or as
 145 verifiers, to evaluate actions Gou et al. (2024); Qin et al. (2025); Liu et al. (2025a); Dai et al. (2025).
 146 To improve the decision-making ability of GUI agents, various training paradigms—including su-
 147 pervised fine-tuning, direct preference optimization (DPO), and reinforcement learning—have been
 148 applied on large-scale datasets Luo et al. (2025); Tang et al. (2025a); Dai et al. (2025); Wang et al.
 149 (2024c). Within this pipeline, accurate reward signals are crucial, as they enable automatic data col-
 150 lection at scale, which in turn underpins both dataset curation and model training Tang et al. (2025a);
 151 Li et al. (2025); Qi et al. (2024).

152 2.3 GAPS BETWEEN GENERAL REWARDS AND REWARDS FOR GUI AGENTS

153 There are some pioneering works on designing reward methods for GUI agents Bai et al. (2024);
 154 Wang et al. (2024c); Luo et al. (2025); Lai et al. (2025a). They develop outcome or step-wise reward
 155 models to judge the success of GUI agents passively using the trajectories of GUI agents Tang et al.
 156 (2025b); Hu et al. (2025). However, their performances are far from satisfying due to the partial
 157 observations of GUI agents to the states and the lack of domain knowledge of general-purpose

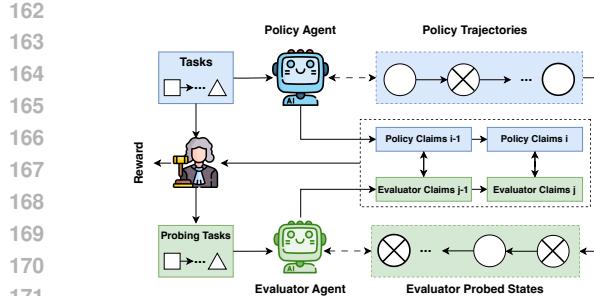


Figure 2: PRORE overview.

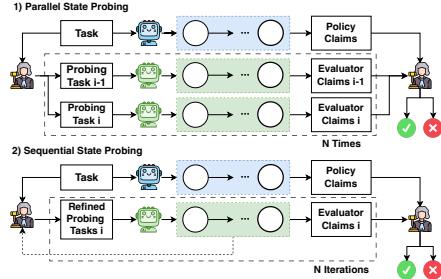


Figure 3: Test-time Scaling of PRORE.

LLM. One concurrent work, Gou et al. (2025) constructs rubic trees for predefined web search tasks and checks key points with url, which lacks generalizability to in-the-wild tasks without such url. Instead, PRORE is the first reward system for GUI agent with a generalist reasoner to schedule state probing and evaluator agents to proactively probe states.

3 PROACTIVE REWARD SYSTEM WITH AGENT-IN-THE-LOOP

3.1 PROBLEM FORMULATION.

Given the users instruction \mathcal{G} , a policy agent π interacts with the environment consecutively, which forms a N steps trajectory $\tau = (s_0, a_0, s_1, a_1, \dots, s_T)$. s is the observation of π on step t and a is the t -th actions. The goal is to generate an accurate binary outcome reward r on τ .

Lemma 1. *Let the success rate of the policy agent be p_a and the reward accuracy be p_c . Then, under test-time scaling with trial budget N , the final success rate P_{final} satisfies*

$$P_{final} = \frac{p_a p_c}{q} [1 - (1 - q)^N] + p_a (1 - q)^N, \quad \text{where } q = p_a p_c + (1 - p_a)(1 - p_c).$$

In particular, given $p_a > 0$, P_{final} monotonically increases with respect to p_c whenever $p_c > 0.5$.

A full proof is deferred to Appendix B. Our work focuses on improving p_c and P_{final} .

3.2 FRAMEWORK OVERVIEW

Instead of applying LLM-as-a-Judge to generate a reward r from trajectories, PRORE introduces a general LLM reasoner \mathcal{J} working in collaboration with domain-specific evaluator agents π_e for state probing, as shown in Figure 2. Given the original tasks, the reasoner \mathcal{J} first schedule probing tasks for the evaluator agents. Then the evaluators π_e further explore the environment to collect key state information. The policy agent's trajectories and the probed states are then summarized by π_e into claims about task progress. Finally, the reasoner \mathcal{J} analyzes the relationships and consistency among these claims, performing chain-of-claims reasoning to generate the outcome reward.

3.3 PROACTIVE AGENT-IN-THE-LOOP PROBING

The partial observation to the GUI task states by the policy agents prevents LLM-as-a-judge to make accurate decisions. To handle this problem, PRORE introduces a set of evaluator agents to proactively probe states and collect additional information. The general-purpose LLM first schedule the state probing tasks for the evaluator agents based on the tasks inputs.

State Probing Tasks Scheduling. The general-purpose LLM reasoner is instructed to analyze the expectations and requirements specified in the original user instructions \mathcal{G} , and to identify the key states necessary for judging task success. Based on this analysis, the reasoner formulates state probing tasks, which are then issued as instructions for the evaluator agents to retrieve the corresponding key states from the environment.

$$G_e \sim \mathcal{J}(G \mid \text{Exp}, \mathcal{E}, L), \quad \text{Exp} = \mathcal{J}(G), \quad G \in \mathcal{G}. \quad (1)$$

216 Table 1: The probing tasks are generally easier than the execution tasks.
217

Task Type	AndroidWorld		MobileAgentBench		AndroidLab	
	SR	Steps	SR	Steps	SR	Steps
State Probing	66.7%	6.2	64.0%	6.8	65.9%	6.1
Execution	53.6%	14.7	44.0%	11.9	27.5%	11.8

224 where Exp is the analyzed expectations for the task G , \mathcal{E} refers to the few shot examples provided
225 and L is the summarized guidelines for mapping the tasks to the probing tasks. To illustrate, when
226 instructing the policy agent to delete a file A , the corresponding state probing task G^e is to search
227 whether A still exists in the target applications. The generation of expectations and state-probing
228 tasks primarily rely on the reasoning capability of general-purpose LLM on analyzing the users
229 expectations without the need of much domain-specific knowledge of APP and UI interactions.
230 More examples on the state probing tasks are provided in Appendix C.

231 **State Probing with Evaluator Agents.** Given the state probing tasks G_e , evaluator agents are
232 provoked to interact with the environment in a step-wise manner to collect additional observations
233 on key states right after the execution of the policy agent.

$$s_{t+1}^e = \mathcal{F}(s_t^e, a_t^e), \quad a_t^e = \pi_e(s_t^{\pi_e}, G_e) \quad (2)$$

234 where \mathcal{F} is the status transition of the environment; s_t^e is the state of captured by the evaluator agents.
235 The probing process mainly leverages the UI-related knowledge in the GUI agent while minimizing
236 the requirements on its reasoning capability on understanding users expectations.

237 **The Execution-Probing Gap.** The state probing task \mathcal{T}_e is generally easier than other types of
238 execution tasks such as creation, status modification, or deletion. As shown in Table 1, V-Droid
239 Dai et al. (2025) achieves a 23.8% higher success rate on state probing tasks and the trajectories are
240 50.3% shorter on average. While both probing and execution tasks involve knowledge on UI and
241 applications, probing only requires navigating to the correct page and does not demand consecutive
242 error-free execution. Because of this relative simplicity, the evaluator agent, and by extension the
243 reward system, is more generalizable than the policy agent. This generalizability allows the reward
244 system to effectively guide both the test-time scaling and the training of policy agents.

245 We also notice that there are some long-horizon tasks that demand checking multiple states across
246 different pages. In those cases, the probing tasks could be formulated into multiple subtasks, based
247 on which the evaluator agent execute sequentially to obtain complete probed states.

248 3.4 OUTCOME REWARD WITH CHAIN-OF-CLAIMS

249 **Chain-of-Claims.** To avoid overwhelming the general-purpose LLM with too much low-level GUI
250 details in the probed states, the evaluator agents summarize the trajectories of the policy agent and
251 the probed states into chain-of-claims. Specifically, given a trajectory τ generated by the policy
252 agent π , the evaluator agent observes this sequence and the additional probed UI states to form
253 claims about task progress. We define two sets of claims:

254 1) $\mathcal{C}^\pi = \{c_1^\pi, c_2^\pi, \dots, c_{N_\pi}^\pi\}$: N_π claims generated from the policy agent's trajectory τ .
255 2) $\mathcal{C}^{\pi_e} = \{c_1^{\pi_e}, c_2^{\pi_e}, \dots, c_{N_{\pi_e}}^{\pi_e}\}$: N_{π_e} claims made by the evaluator agents π_e .

256 Each claim c is structured as:

$$c = \text{Claim}(\tau_{g_j} = \{s_t, s_{t+1}, a_t\}), \text{ where } g_j \in G \quad (3)$$

257 where τ_{g_j} is a subtrajectory of the policy agent's trajectory τ or a sequence of probed states pro-
258 duced by the evaluator agents. We instruct the evaluator agents to generate multiple claims covering
259 different parts of the trajectory, which is observed to be more effective than segmenting trajectories
260 via state clustering on learned embeddings.

261 Given these claims, the general-purpose LLM reasoner \mathcal{J} performs chain-of-claims reasoning to
262 produce the final reward by linking and comparing policy and evaluator claims:

$$r = \mathcal{J}(G, \text{Exp}, \mathcal{C}), \quad \mathcal{C} = \{c_i^\pi, c_j^{\pi_e}, r_{ij}\} \quad (4)$$

270
271
272 Table 2: Reward accuracy and F1 across methods and policy agent.
273
274
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2139 2140 2141 2142

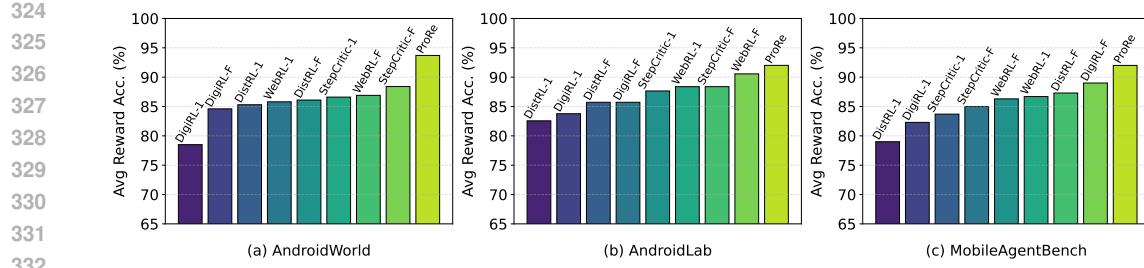


Figure 4: Results Comparison on different benchmarks. The average results on different agents are reported. The *I/F* indicates that the reward uses the last state (*I*) or the full trajectory (*F*).

4 EVALUATION

4.1 EXPERIMENT SETTINGS

Baselines. We compare PRORE with state-of-the-art reward methods, covering both outcome reward models (DigiRL Bai et al. (2024), DistRL Wang et al. (2024c), WebRL Qi et al. (2024)) and one progress reward model (StepCritic Lai et al. (2025a)). To ensure fairness, we rigorously follow the experimental settings and prompts described in the original papers when reproducing their methods and reporting results. Unless otherwise specified, the results of PRORE are reported *without* test-time scaling when compared against baselines for fairness.

Benchmarks. We conduct comprehensive evaluation of PRORE on over 3k traces collected from three dynamic benchmarks, including AndroidWorld Rawles et al. (2024), AndroidLab Xu et al. (2024), and MobileAgentBench Wang et al. (2024a), using state-of-the-art GUI Agents Dai et al. (2025); Qin et al. (2025); Rawles et al. (2024). For UI-TARS Qin et al. (2025), we adopt UI-TARS-1.5-7B in the naive agentic mode to generate thinking and grounding.

Metrics. To evaluate the effectiveness of rewards, we report both the *reward accuracy* and *F1 score* by comparing the predicted rewards from baselines and PRORE with the ground-truth rewards provided by the benchmarks. In addition, we measure the *success rate* of policy agents under test-time scaling when guided by these rewards (See § 3.1 and Appendix B).

Implementation details. We adopt *Gemini-2.5-Pro* as the general-purpose LLM for scheduling state probing tasks and assigning outcome rewards. Unless otherwise specified, V-Droid is employed as the evaluator agent due to its high decision-making quality and prompt execution speed. The step budget for key evidence retrieval is set to be no greater than the length of the policy trajectories.

4.2 RESULTS COMPARISON

Different GUI Agents

Table 2 reports the performance of PRORE compared with state-of-the-art baselines. PRORE achieves an average accuracy of 93.7%, which is 5.3% higher than the best-performing baselines. Moreover, its F1 score is 19.4% higher than those of the baselines, demonstrating its robustness in handling diverse mobile GUI agents. We observe that while baselines achieve relatively high accuracy on UI-TARS

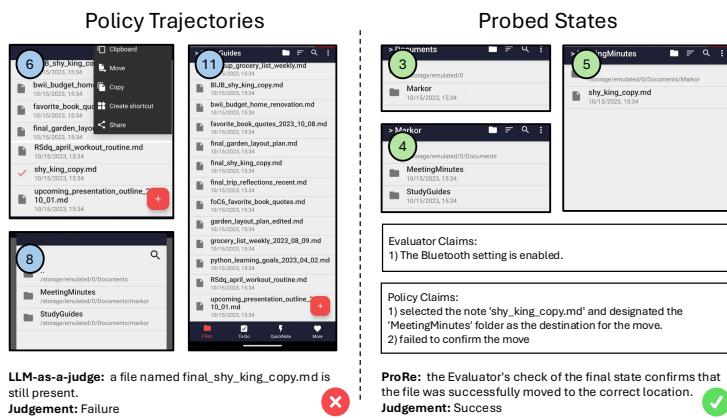
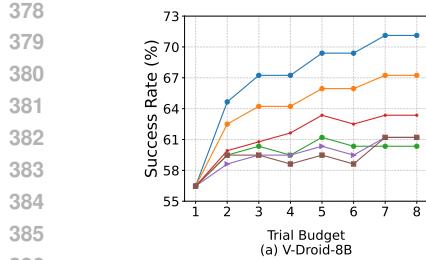
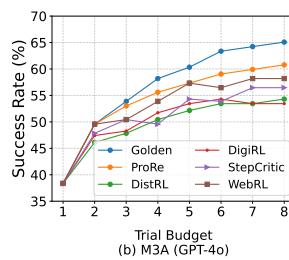


Figure 5: One quantitative example. The task is "Move the note `shy_king_copy.md` from `StudyGuides` to `MeetingMinutes`.".



387
388
389
390
391
392
393
394
395
396
397
398
399
400

Figure 6: Test-time scaling of policy agents with different rewards. (a) V-Droid-8B, (b) M3A (GPT-4o).

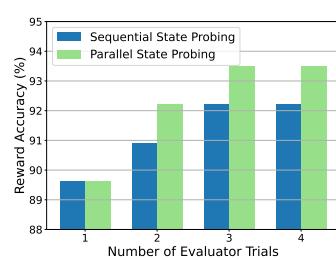


Figure 7: Test-time scaling of PRORe on challenging tasks.

trajectories, their F1 scores remain low. This discrepancy arises from their inability to correctly judge the success of UI-TARS-1.5-7B trajectories, whose naive agentic mode yields only a 7.9% success rate. In contrast, PRORe effectively identifies the correct key states through evaluator agents, leading to superior performance on challenging and imbalanced trajectories.

Different Benchmarks and Tasks. As shown in Figure 4, PRORe achieves accuracy improvements of 5.2%, 1.5%, and 3.0% on AndroidWorld, AndroidLab, and MobileAgentBench, respectively. In terms of F1 score, PRORe outperforms the best baseline by 19.4%, 10.5%, and 7.5% on the three benchmarks. These results highlight the robustness of PRORe across diverse applications and task types. While policy agents often struggle to generalize to unseen tasks or applications, PRORe benefits from the execution–probing gap (see § 3.3), which makes generalization more attainable.

Extension to PC/Web. Owing to the decoupled reasoner-actor reward paradigm, PRORe exhibits significant potential for adaptation across diverse environments and tasks, including both PC and web domains. We have further conducted pilot experiments on OSWorld. Specifically, PRORe is evaluated on 100 randomly sampled tasks from OSWorld-PC and all 46 web-based tasks from OSWorld-Chrome. For evaluation, we employ Claude-Sonnet-4.5 as the evaluator agent to perform proactive state probing, and all other settings are consistent with those outlined in § 4.1.

Table 3: Reward Accuracy on PC and Web tasks.

Benchmark	WebRL	DigiRL	DistRL	StepCritic	PRORe
OSWorld	86.0	88.0	88.0	81.0	92.0
OSWorld-Chrome	87.0	84.8	82.6	87.0	93.5

As shown in Table 3, across both PC and Web tasks, PRORe achieves the highest reward accuracy, surpassing prior methods by 4.0% on OSWorld and 6.5% on OSWorld-Chrome. Existing approaches perform sub-optimally primarily due to incomplete observations of PC/web states and the domain knowledge gap of the reasoners when used as reward models. In contrast, PRORe (i) proactively collects key states/observations by interacting with the PC or website, and (ii) decouples general reasoning from domain-specific GUI judgments through its reasoner–actor paradigm. These results underscore PRORe’s robustness and generalization capability across different platforms and task.

Test-Time Scaling for Policy Agents. We further evaluate the success rate (SR) of two policy agents, V-Droid Dai et al. (2025) and M3A (GPT-4o) Rawles et al. (2024), under different trial budgets. Figure 6 shows that, guided by PRORe, the success rate (SR) of V-Droid improves from 56.5% to 67.2%. Similarly, the SR of M3A (GPT-4o) increases by 22.4%. The SR gains achieved with PRORe are 3.9% and 4.3% higher than those obtained with other reward methods, demonstrating its superiority in guiding policy rollouts. To further validate this, we conduct large-scale simulations based on Lemma 1, which highlight the effectiveness of accurate rewards in enhancing test-time scaling of policy agents (see Appendix B).

Illustrative Examples. Figure 5 shows that the policy agent successfully locates the target file, performs the necessary move actions, and returns to the `StudyGuides` folder. However, the LLM-as-a-judge is misled by the presence of `final_shy_king_copy.md` due to excessive clutter on the final screen and consequently makes an incorrect judgment. In contrast, PRORe proactively

Table 4: Ablation study of design components in PRORE.

Design Components				Metrics				
Proactive State Probing	State Probing Task Scheduling	Chain-of-Claims	Iterative State Probing	Acc	TP	TN	FP	FN
✗	✗	✗	✗	88.8	49.1	39.7	7.7	3.4
✓	✗	✗	✗	89.5	45.6	43.6	2.6	7.9
✓	✓	✗	✗	91.4	45.7	45.7	1.7	6.9
✓	✓	✓	✗	93.1	49.1	44.0	3.4	3.4
✓	✓	✓	✓	94.8	50.0	44.8	2.6	2.6

Table 5: Reward accuracy of PRORE with different reasoners.

Reasoners	Acc	F1
Gemini-2.5-Pro	93.1	93.4
Gemini-2.5-Flash	87.7	87.7
GPT-5	86.2	86.0
GPT-4o	85.0	86.0

Table 6: Reward accuracy of PRORE with different evaluator agents.

Evaluator Agent	Policy SR	Acc	F1
V-Droid-8B	59.5	93.1	93.4
UI-TARS-72B	35.7	86.2	87.3
Qwen3-VL-4B	45.3	85.7	86.0
M3A (GPT-5)	56.9	90.5	91.7
M3A (GPT-4o)	41.3	88.3	87.4

probes the relevant states within the target folder using an evaluator agent, which provides verifiable evidence of the policy agent’s success. This example also highlights the *execution-probing gap*: while the execution trajectory spans 11 steps, the evaluator only requires 5 steps to probe the key states. More examples are provided in Appendix D.

4.3 ABLATION STUDY

We further validate the effectiveness of each design component in PRORE through ablation studies. When probing task scheduling is removed, we replace it with a simple rule-based strategy by prompting: “*What are the key states to verify whether the task $\{G\}$ is completed?*” Without chain-of-claims reasoning, the reasoner directly receives the raw observations from both the policy and evaluator agents, without structured analysis.

Table 4 demonstrates the contribution of each design component in PRORE. Without explicit guidance from the reasoner, evaluator agents navigate with probing tasks generated with simple rules, which provides marginal improvement. When the reasoner schedules probing tasks for evaluator agents, the accuracy increases substantially to 91.4%, underscoring the effectiveness of separating reasoning and planning (by the reasoner) from execution (by the evaluators). In addition, incorporating chain-of-claims reasoning further improves accuracy by 1.7%, highlighting the importance of summarizing low-level GUI details from trajectories and analyzing the relationships between policy and evaluator claims. Finally, iterative state probing in PRORE boosts performance to 94.8%, as additional probing and refinement yields more complete observations of key states. Besides, without the claim filter, we observe a 1.7% reward accuracy drop on AndroidWorld benchmark, underscoring the necessity of eliminating irrelevant or misleading claims prior to the chain-of-claims.

Figure 7 further illustrates the benefits of parallel and iterative state probing, especially on more challenging tasks. Notably, parallel state probing yields larger performance gains compared with iterative probing. A possible explanation is that the reasoner, lacking domain-specific GUI knowledge, is less effective at leveraging the intermediate observations and action histories provided by the evaluator agents to refine subsequent probing tasks.

Different Reasoners. We further vary the reasoners in PRORE. Table 5 shows that reasoners equipped with built-in chain-of-thought capabilities are more effective at analyzing the relationships between policy and evaluator claims, leading to higher reward accuracy and F1 scores.

Different Evaluator Agents. We further investigate the impact of evaluator agent capability. *Policy SR* denotes the task success rate of an agent when deployed as a policy. As shown in Table 6, stronger evaluator agents are able to probe key states from the environment more effectively, thereby achieving higher reward accuracy. Moreover, fine-tuned small GUI agents can outperform large gen-

486 eralist agentic systems when used as evaluators, owing to their domain-specific GUI knowledge. We
 487 also notice that Qwen3-VL-4B yields notably lower reward accuracy compared with larger models.
 488 We hypothesize that this drop stems from the smaller models' weaker ability to generalize to unseen
 489 probing tasks and identify key observations even with high-quality probing instructions.

490 **Overhead Analysis.** The total cost of PRORE is approximately \$0.06 per agent task. Among the
 491 components, state probing task scheduling and chain-of-claims contribute about \$0.013 and \$0.050,
 492 respectively. Removing redundant information from trajectories can reduce input tokens by about
 493 25.9% without degrading performance. Overall, PRORE remains significantly more cost-efficient
 494 and scalable compared to hiring human annotators. We further provide a detailed per-task cost
 495 comparison and long-term cost estimation between PRORE and the baselines in Appendix F.

497 5 DISCUSSIONS

498 **Online RL with PRORE.** Prior work has shown that online reinforcement learning (RL) can achieve
 499 substantially better performance when guided by accurate reward signals Qi et al. (2024); Wang et al.
 500 (2024c). After policy agents execute actions in an online RL setting, PRORE can be seamlessly
 501 integrated to provide more precise reward assignments with only moderate overhead. Nevertheless,
 502 we defer a full exploration of online RL with PRORE to future work.

503 **Co-evolution of Policy and Evaluator Agents.** In PRORE, the policy agent and the evaluator agent
 504 can be instantiated from the same underlying model, creating a unique opportunity for co-evolution.
 505 Stronger evaluator agents enhance reward accuracy, which in turn improves the policy agent's suc-
 506 cess rate. As the policy agent becomes stronger through test-time scaling or training, it enables the
 507 evaluator to achieve higher success on state probing tasks and further improve reward accuracy. This
 508 mutual reinforcement establishes a virtuous cycle between policy and evaluator agents.

511 6 CONCLUSIONS

512 Unlike existing trajectory-based LLM-as-a-Judge approaches, PRORE introduces a proactive reward
 513 system for GUI agents that integrates a general-purpose reasoner with domain-specific evaluator
 514 agents. The evaluator agents proactively probe key states based on probing tasks scheduled by the
 515 reasoner, while the reasoner make final judgments based on the chain-of-claims from the evaluator
 516 agents. Extensive experiments across diverse tasks, applications, and agents demonstrate the effec-
 517 tiveness of PRORE, as well as its effectiveness in guiding the test-time scaling of policy agents.

519 REFERENCES

520 Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
 521 Training in-the-wild device-control agents with autonomous reinforcement learning. *Advances in
 522 Neural Information Processing Systems*, 37:12461–12495, 2024.

523 Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Justin
 524 Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent arena:
 525 Evaluating multi-modal os agents at scale. September 2024.

526 Gaole Dai, Shiqi Jiang, Ting Cao, Yuanchun Li, Yuqing Yang, Rui Tan, Mo Li, and Lili Qiu. Ad-
 527 vancing mobile gui agents: A verifier-driven approach to practical deployment. *arXiv preprint
 528 arXiv:2503.15937*, 2025.

529 Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
 530 and Yi Wu. On designing effective rl reward at training time for llm reasoning. *arXiv preprint
 531 arXiv:2410.15115*, 2024.

532 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
 533 Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
 534 *arXiv preprint arXiv:2410.05243*, 2024.

535 Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanov, Botao
 536 Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, et al. Mind2web 2: Evaluating agentic search with
 537 agent-as-a-judge. *arXiv preprint arXiv:2506.21506*, 2025.

540 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
 541 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint*
 542 *arXiv:2411.15594*, 2024.

543 Zhangxuan Gu, Zhengwen Zeng, Zhenyu Xu, Xingran Zhou, Shuheng Shen, Yunfei Liu, Beiting
 544 Zhou, Changhua Meng, Tianyu Xia, Weizhi Chen, et al. Ui-venus technical report: Building
 545 high-performance ui agents with rft. *arXiv preprint arXiv:2508.10833*, 2025.

546 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 547 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 548 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

549 Zhiyuan Hu, Shiyun Xiong, Yifan Zhang, See-Kiong Ng, Anh Tuan Luu, Bo An, Shuicheng Yan,
 550 and Bryan Hooi. Guiding vlm agents with process rewards at inference time for gui navigation.
 551 *arXiv preprint arXiv:2504.16073*, 2025.

552 Hanyu Lai, Junjie Gao, Xiao Liu, Yifan Xu, Shudan Zhang, Yuxiao Dong, and Jie Tang. Androidgen:
 553 Building an android language agent under data scarcity. *arXiv preprint arXiv:2504.19298*, 2025a.

554 Hanyu Lai, Xiao Liu, Yanxiao Zhao, Han Xu, Hanchen Zhang, Bohao Jing, Yanyu Ren, Shuntian
 555 Yao, Yuxiao Dong, and Jie Tang. Computerrl: Scaling end-to-end online reinforcement learning
 556 for computer use agents. *arXiv preprint arXiv:2508.14040*, 2025b.

557 Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du, Xingyu Lou, Qiuy-
 558 ing Peng, and Weinan Zhang. Mobileuse: A gui agent with hierarchical reflection for autonomous
 559 mobile operation. *arXiv preprint arXiv:2507.16853*, 2025.

560 Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify: A
 561 self-play framework for code and test generation. *arXiv preprint arXiv:2502.14948*, 2025.

562 Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
 563 and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
 564 reasoners. *arXiv preprint arXiv:2504.14239*, 2025a.

565 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 566 Inference-time scaling for generalist reward modeling. *arXiv preprint arXiv:2504.02495*, 2025b.

567 Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
 568 action model for gui agents. *arXiv preprint arXiv:2504.10458*, 2025.

569 Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
 570 Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curricu-
 571 lum reinforcement learning. *arXiv preprint arXiv:2411.02337*, 2024.

572 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 573 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 574 agents. *arXiv preprint arXiv:2501.12326*, 2025.

575 Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
 576 beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
 577 dynamic benchmarking environment for autonomous agents. *arXiv preprint arXiv:2405.14573*,
 578 2024.

579 David Silver and Richard S Sutton. Welcome to the era of experience. *Google AI*, 1, 2025.

580 Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim, and Seunghyeok Hong. Llm-as-a-judge &
 581 reward model: What they can and cannot do. *arXiv preprint arXiv:2409.11239*, 2024.

582 Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
 583 Wenqi Zhang, Yongliang Shen, Weiming Lu, et al. Gui-g²: Gaussian reward modeling for gui
 584 grounding. *arXiv preprint arXiv:2507.15846*, 2025a.

585 Liang Tang, Shuxian Li, Yuhao Cheng, Yukang Huo, Zhepeng Wang, Yiqiang Yan, Kaer Huang,
 586 Yanzhe Jing, and Tiaonan Duan. Sea: Self-evolution agent with step-wise reward for computer
 587 use. *arXiv preprint arXiv:2508.04037*, 2025b.

594 Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
 595 Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
 596 agent with multi-turn reinforcement learning. *arXiv preprint arXiv:2509.02544*, 2025.

597

598 Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen,
 599 and Shoufa Chen. Mobileagentbench: An efficient and user-friendly benchmark for mobile llm
 600 agents. *arXiv preprint arXiv:2406.08184*, 2024a.

601 Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Benchmark
 602 self-evolving: A multi-agent framework for dynamic llm evaluation. *arXiv preprint
 603 arXiv:2402.11443*, 2024b.

604

605 Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An asyn-
 606 chronous distributed reinforcement learning framework for on-device control agents. *arXiv
 607 preprint arXiv:2410.14803*, 2024c.

608 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
 609 Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
 610 for open-ended tasks in real computer environments. *Advances in Neural Information Processing
 611 Systems*, 37:52040–52094, 2024.

612 Wei Xiong, Wenting Zhao, Weizhe Yuan, Olga Golovneva, Tong Zhang, Jason Weston, and Sain-
 613 bayar Sukhbaatar. Stepwiser: Stepwise generative judges for wiser reasoning. *arXiv preprint
 614 arXiv:2508.19229*, 2025.

615

616 Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
 617 Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android au-
 618 tonomous agents. *arXiv preprint arXiv:2410.24024*, 2024.

619 Yifan Xu, Xiao Liu, Xinghan Liu, Jiaqi Fu, Hanchen Zhang, Bohao Jing, Shudan Zhang, Yuting
 620 Wang, Wenyi Zhao, and Yuxiao Dong. Mobilerl: Online agentic reinforcement learning for
 621 mobile gui agents, 2025. URL <https://arxiv.org/abs/2509.18119>.

622

623 Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
 624 Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation.
 625 *arXiv preprint arXiv:2508.15144*, 2025.

626 Fangyi Yu. When ais judge ais: The rise of agent-as-a-judge evaluation for llms. *arXiv preprint
 627 arXiv:2508.02994*, 2025.

628

629 Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbulin, Yunyang
 630 Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-
 631 a-judge: Evaluate agents with agents. *arXiv preprint arXiv:2410.10934*, 2024.

632

633 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

635 This work studies rewarding LLM-based GUI agents with a proactive reward system. LLMs were
 636 involved in three aspects of our research: (i) serving as the backbone for the GUI agent and baseline
 637 implementations, (ii) supporting framework design, and (iii) assisting with polishing the writing of
 638 the manuscript. All research ideas, contributions and evaluations were developed and validated by
 639 the authors. No LLM is considered an author.

641 B TEST-TIME SCALING FOR POLICY AGENTS

643 B.1 PROOF OF LEMMA 1

645 We define *test-time scaling* as the procedure where a policy agent is rolled out on a given task with
 646 a maximum trial budget N . After each trial, a reward method evaluates the trajectory produced
 647 by the policy agent. If the reward method determines the trajectory to be successful, the process
 terminates early and the corresponding trial is submitted as the final output. Otherwise, the policy

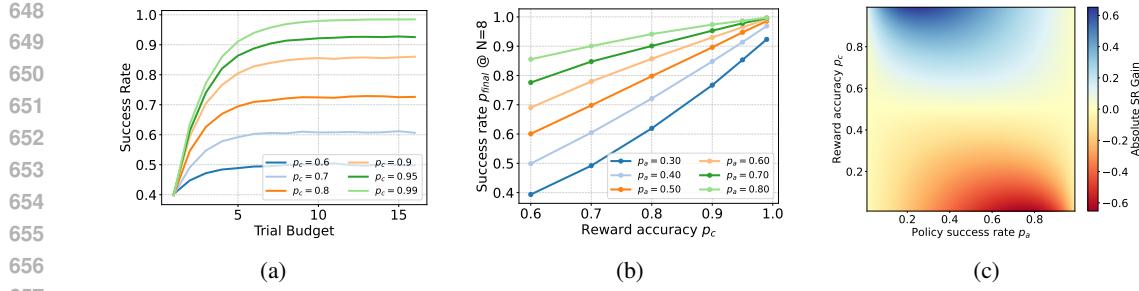


Figure 8: Simulation for test-time scaling of Policy Agents. (a) The success rate of a policy agent increases steadily as the trial budget grows. (b) The final success rate p_{final} monotonically improves with higher reward accuracy across different policy agents, highlighting the importance of reliable evaluation. (c) Reward accuracy contributes the largest absolute success rate (SR) gain for policy agents with moderate baseline SR (0.2–0.6).

agent continues to the next trial, until either a successful trajectory is identified or the trial budget N is exhausted. If no positive judgment is given within N trials, the final trial is submitted as the output.

Lemma 1 (Restated). *Let the success rate of the policy agent be p_a and the reward accuracy be p_c . Then, under test-time scaling with trial budget N , the final success rate P_{final} satisfies*

$$P_{final} = \frac{p_a p_c}{q} [1 - (1 - q)^N] + p_a (1 - q)^N, \quad \text{where } q = p_a p_c + (1 - p_a)(1 - p_c).$$

In particular, given $p_a > 0$, P_{final} monotonically increases with respect to p_c whenever $p_c > 0.5$.

Proof. In each trial, the policy agent succeeds with probability p_a . The reward model outputs a positive judgment with probability

$$q = \Pr(\text{TP}) + \Pr(\text{FP}) = p_a p_c + (1 - p_a)(1 - p_c).$$

where TP and FP refers to true positives and false positives.

(i) *Formula.* The probability that at least one positive reward appears is $1 - (1 - q)^N$. Given a positive reward, the probability that the trajectory corresponds to a truly successful one is

$$\Pr(\text{success} \mid \text{positive}) = \frac{\Pr(\text{TP})}{\Pr(\text{positive})} = \frac{p_a p_c}{q}.$$

Hence when there is at least one positive reward in the N trials, the success probability is $\frac{p_a p_c}{q} [1 - (1 - q)^N]$.

If no positive reward appears, the last submitted trial is an unfiltered trial whose success probability is p_a . Summing the two cases yields

$$P_{final} = \frac{p_a p_c}{q} [1 - (1 - q)^N] + p_a (1 - q)^N.$$

(ii) *Monotonicity in p_c for $p_c > \frac{1}{2}$.* When $p_c > \frac{1}{2}$, a positive reward is more likely to be a true success than a failure. Increasing p_c simultaneously increases the true positive rate among judged positives and decreases false positives, thereby making the first positive more likely to be a true success. Formally, differentiating P_{final} with respect to p_c shows $\partial P_{final} / \partial p_c > 0$ whenever $p_a > 0$ and $p_c > \frac{1}{2}$ (details omitted for brevity). Thus P_{final} monotonically increases in p_c on $(\frac{1}{2}, 1]$. \square

Implications of Test-time Scaling of GUI Agents. Test-time scaling of GUI agents is closely connected to both the exploration capabilities of GUI agents on applications and tasks, as well as their training efficiency. On complex out-of-domain tasks, a GUI agent may actively explore applications, accumulate experience, and iteratively refine its trajectories to achieve the task instructions. During training, more effective rollouts enabled by test-time scaling can generate larger-scale datasets with higher quality, while keeping the overall budget fixed.

702 B.2 LARGE-SCALE SIMULATION ANALYSIS.
703704 To further study the impact of the reward accuracy on the performance of policy agent during test-
705 time scaling, we conduct large scale simulation for different P_a and P_c based on Lemma 1. The
706 simulation is repeated for 50K times and the average results are reported in Figure. 8.707 As shown in Figure 8, when the reward accuracy is greater than 50%, a higher reward accuracy
708 consistently leads to a higher success rate of the policy agent, since additional rollouts increase
709 the likelihood of discovering a successful trajectory. We also observe that in most cases p_{final} ,
710 indicating the upper capability boundary of the policy agent and underscoring the importance of
711 continuously improving the decision-making ability of GUI agents. The results on realistic tasks
712 and applications in Figure 6 exhibit a similar trend, further highlighting the importance of reward
713 quality in boosting performance.714
715 C STATE PROBING TASKS EXAMPLES
716717 We further provide illustrative examples of the scheduled state probing tasks in Table 7. Compared
718 to the original tasks, these probing tasks are generally easier (shown in Table 1), as they only require
719 the evaluator agent to navigate to the relevant UI page without performing content editing or modi-
720 fication. When necessary, the general-purpose LLM reasoner further decomposes probing tasks into
721 subtasks for the evaluator agent, thereby reducing their difficulty. Moreover, the evaluator agents ex-
722 ecute based on the prior interactions of the policy agent, which helps to further mitigate navigation
723 challenges.724 Table 7: Examples for the original tasks and the corresponding probing tasks
725

726 Original Task 727	Generated Probing Tasks
728 Open the file task.html in Downloads in the file 729 manager; when prompted open it with Chrome. 730 Then click the button 5 times, remember the 731 numbers displayed, and enter their product in 732 the form.	What is the value in the input field on the task.html page in Chrome?
733 Take one photo. 734	Find the most recently taken photo in the gallery.
735 Create a timer with 0 hours, 16 minutes, and 35 736 seconds. Do not start the timer.	Confirm the timer is set to 16 minutes and 35 seconds and is not running.
737 Create a new contact for Hugo Pereira. Their 738 number is +13920741751.	What is the phone number for the contact Hugo Pereira?
739 Add the expenses from expenses.jpg in Simple 740 Gallery Pro to pro expense. 741	Show the expenses from expenses.jpg in the pro expense app.
742 Go through the transactions in my_expenses.txt 743 in Markor. Log the reimbursable transactions 744 in the pro expense.	What are the logged transactions in the pro ex- pense file in Markor?
745 Delete all but one of any expenses in pro ex- 746 pense that are exact duplicates, ensuring at 747 least one instance of each unique expense re- 748 mains.	Verify the pro expense list contains no dupli- cate entries.
749 Delete the following expenses from pro ex- 750 pense: Rental Income.	Find the “Rental Income” expense in the pro expense app.
751 Delete the file q2a8.fancy_banana.mp3 from 752 the Android filesystem located in the Notifi- 753 cations folder within the sdk_gphone_x86_64 754 storage area.	Check the Notifications folder for the file q2a8.fancy_banana.mp3.

756	Move the file <code>holiday_photos.jpg</code> from <code>Podcasts</code> within the <code>sdk_gphone_x86_64</code> storage area to the <code>DCIM</code> within the same <code>sdk_gphone_x86_64</code> storage area in the <code>Android</code> filesystem.	Check if <code>holiday_photos.jpg</code> is in the <code>DCIM</code> folder and not in the <code>Podcasts</code> folder.
761	Update the <code>Markor</code> note <code>2023_08_10_neat_wolf.txt</code> by adding the following text, along with a new blank line before the existing content: <code>"RnI8sP34yDzJQbvkfplR"</code> , and rename it to <code>busy_wolf_2023_07_23.txt</code> .	In <code>Markor</code> , open the note <code>busy_wolf_2023_07_23.txt</code> and show its content.
767	Create a new note in <code>Markor</code> named <code>2023_01_26_wise_yacht.md</code> with the following text: <code>Ignorance is bliss.</code>	In <code>Markor</code> , what is the content of the note <code>2023_01_26_wise_yacht.md</code> ?
770	Merge the contents of <code>Markor</code> notes <code>tough_frog_2023_08_05.txt</code> , <code>proud_cat_edited.txt</code> and <code>2023_08_21_friendly_koala.md</code> (in the same order) into a new <code>Markor</code> note named <code>mIObBbo4</code> and save it. Add a new line between the content of each note.	What are the contents of the <code>Markor</code> note <code>mIObBbo4</code> ?
777	In <code>Markor</code> , move the note <code>shy_king_copy.md</code> from <code>StudyGuides</code> to <code>MeetingMinutes</code> .	Find the note <code>shy_king_copy.md</code> in the <code>MeetingMinutes</code> folder.
779	Is the note titled 'To-Do List' in the <code>Joplin</code> app marked as a todo item? Respond with either 'True' if it is a todo or 'False' if not.	Check the to-do status of the 'To-Do List' note in <code>Joplin</code> .
783	What quantity of spirulina do I need for the recipe 'Chicken Alfredo' in the <code>Joplin</code> app? Express your answer in the format amount unit where both the amount and unit exactly match the format in the recipe.	What is the quantity of spirulina in the <code>Joplin</code> recipe 'Chicken Alfredo'?
788	Open the contacts app. Clear any pop-ups that may appear by granting all permissions that are required.	Verify the contacts app is open and no permission pop-ups are visible.
791	Add a favorite location marker for <code>47.1303814, 9.5930117</code> in the <code>OsmAnd</code> maps app.	Find the favorite location marker for <code>47.1303814, 9.5930117</code> in <code>My Places</code> .
793	Add a location marker for <code>Planken, Liechtenstein</code> in the <code>OsmAnd</code> maps app.	Find the map marker for <code>Planken, Liechtenstein</code> .
795	Add the recipes from <code>recipes.jpg</code> in <code>Simple Gallery Pro</code> to the <code>Broccoli</code> recipe app.	Confirm recipes from <code>recipes.jpg</code> are in the <code>Broccoli</code> app.

D ADDITIONAL EXAMPLES

801 We further include additional illustrative examples in Figure 9, Figure 10, Figure 11, and Figure 12
802 to demonstrate the limitations of LLM-as-a-judge and the effectiveness of PRORE.

803 The primary limitations of trajectory-based LLM-as-a-judge approaches for GUI agents are: i) Incomplete state observations of the environment, which hinder accurate reasoning and judgment;
804 and ii) Lack of GUI domain expertise, making it difficult for LLMs to interpret complex UI-related
805 details and the UI logic.

808 **Incomplete State Observations.** Figure 9, Figure 11, and Figure 12 illustrate that the policy agents
809 only observe a partial view of the environment due to the limited UI elements visible on screen and
the APPs design. As a result, the trajectories miss critical information necessary for determining

810 task success or failure. For example, in Figure 11, the policy agent's observation includes only part
 811 of the event names, which leads to an incorrect answer.
 812

813 **Lack of GUI Domain Expertise.** Figure 10 shows that the policy agent chooses to turn on Blue-
 814 tooth by clicking the Pair new device button. However, the reasoner lacks the GUI-specific
 815 knowledge to recognize that this action implicitly triggers the activation of Bluetooth, and therefore
 816 fails to make the correct judgment.

817 Both limitations have been widely observed in different kinds of applications and tasks. To handle
 818 both problems, PRORE proactive probe states with the collaboration between the general reasoner
 819 and the domain-specific evaluator agents. Those examples highlight the effectiveness of the probed
 820 states on making the correct judgement on the policy agents executions.
 821

822 E PROMPTS OF PRORE

824 For reproducibility, we provide the prompts used in our experiments, covering probing task scheduling,
 825 claim generation, and the final judgment with chain-of-claims. During state probing, the Evaluator
 826 Agent is invoked with the original prompt format from prior works, but conditioned on the
 827 specific evaluation goal.
 828

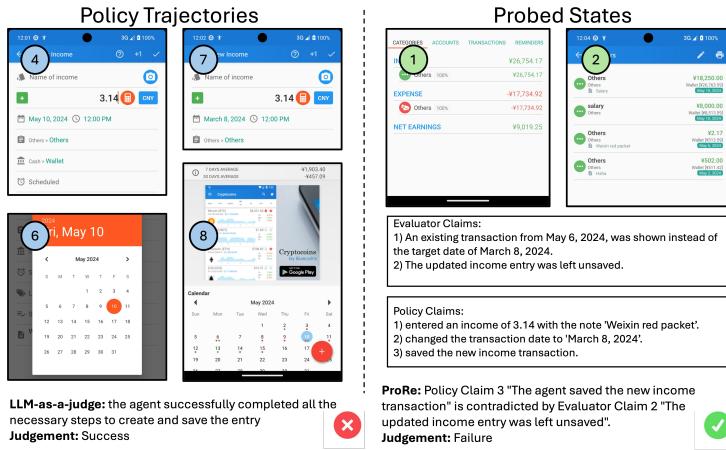
829 E.1 PROBING TASKS SCHEDULING

831 You are an expert in mobile-UI task verification.
 832 There are two agents:

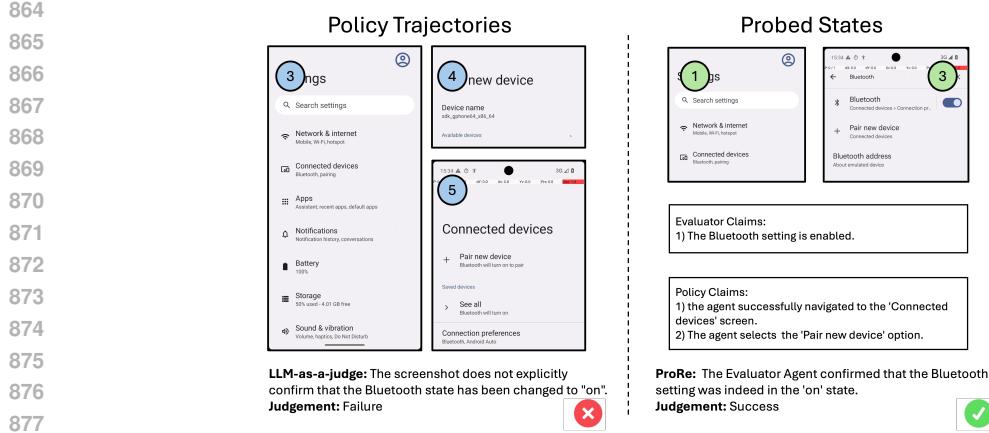
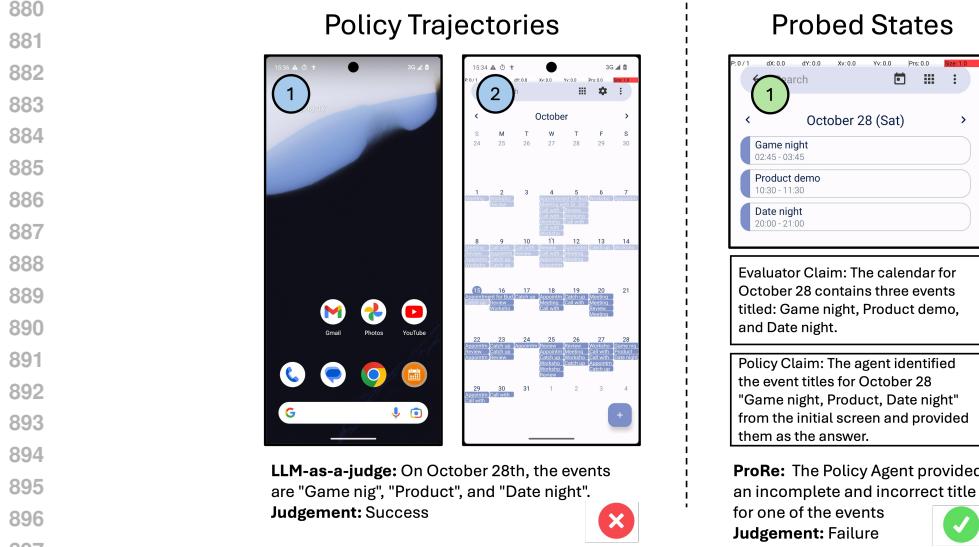
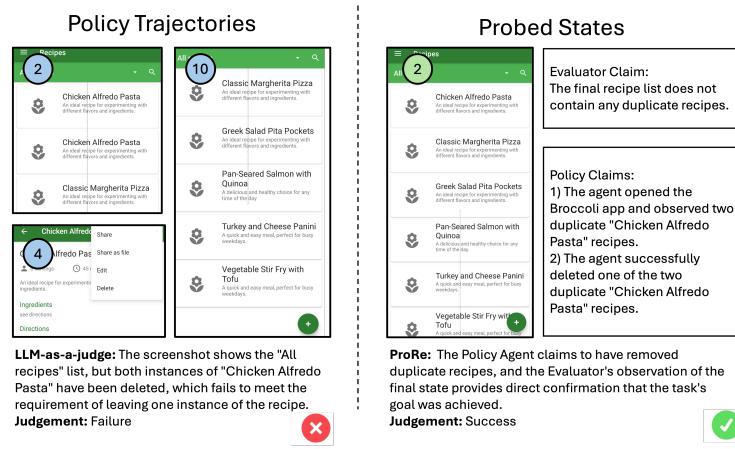
- 833 - The Policy Agent already attempted the task.
- 834 - The Evaluator Agent ONLY navigates the UI to probe states about
 835 whether the task was or wasn't completed. It does NOT repeat
 836 the task; it just locates additional proof (screens, labels,
 837 icons).
 838

839 Your job:

- 840 1. Write some analysis explaining what UI evidence/states would
 841 confirm the task is done.
- 842 2. Output ONE concise goal (<= 20 words) that tells the evaluator
 843 agent exactly what states to look for.
- 844 3. When the original task involves multiple key states, you may
 845 decompose the verification into a sequence of probing goals,
 846 with each goal focusing on a specific state.
 847



862 Figure 9: Additional examples. The task is "Switch the May 13, 2024, transaction from 'expense' to
 863 'income' and add 'Gift' as the note in Bluecoins."
 864

Figure 10: Additional examples. The task is *"Turn bluetooth on."*Figure 11: Additional examples. The task is *"Do I have any events October 28 in Simple Calendar Pro? Answer with the titles only. If there are multiples titles, format your answer in a comma separated list."*Figure 12: Additional examples. The task is *"Delete all but one of any recipes in the Broccoli app that are exact duplicates, ensuring at least one instance of each unique recipe remains"*

```

918
919 The goal must sound like the examples below, short, direct, and in
920 the same tone.
921
922 ### Style Examples
923 "What is the cheapest flight from Los Angeles to Tokyo using
924 Skyscanner?"
925 "What are the 1M to 3M GBP to EUR exchange rates?"
926 "go to settings and make weeks start on Monday in simple calendar"
927 "Mark Hamlet as read in Cantook."
928
929 ### Your turn
930 Original task: {goal}
931
932 A previous state probing task was:
933 {previous_state_probing_task}
934
935 The Evaluator Agent probed the following states:
936 {collected_info}
937
938 Revise the probing task based on the previous probing task and the
939 original task:
940 Respond exactly as:
941 Analysis: <outline the users expectations and exact UI evidence
942 needed, pinpoint why the earlier collection failed, and
943 suggest how to refine the evaluation goal for comprehensive
944 verification>
945 Goal: <revised concise goal>
946 Do not add anything else.
947
948
```

E.2 CHAIMS GENERATIONS

```

949 You are an expert in evaluating the performance of a mobile GUI
950 agent.
951 **Workflow overview:**
952 1. **User** provides a task intent.
953 2. The **Policy Agent** executes UI actions to fulfil that task;
954 its steps are recorded as *Action History*.
955 3. The **Evaluator Agent** runs after the Policy Agent has
956 finished, and proactively interact with the environment to
957 gather additional observations.
958 4. **You** will now produce concise **claims** for the
959 **{role.capitalize()} Agent** only.
960
961 You must follow a step-by-step analysis:
962 1. Read the **Task Goal** and the {role.capitalize()} Agent's
963 action history (if available).
964 2. Examine the provided {role.capitalize()} screens (HTML +
965 screenshots are attached in order).
966 3. Synthesize related observations into claims. Each claim must:
967 - List the supporting step indices.
968 - Give a brief, evidence-grounded rationale.
969 - State a concise, goal-relevant claim.
970 4. Include any details critical to the final judgment directly in
971 the claims (e.g., specific titles, timestamps, targets,
972 confirmations, error messages).
973 6. Do **not** judge final success/failure here; only produce
974 claims.
975
```

```

972
973     ----- INPUTS -----
974     TASK GOAL:
975     {intent}
976
977     ACTION HISTORY ({role.capitalize()} Agent):
978     {action_history if action_history else "[No action history
979     provided]"}
980
981     HTML STATES (TRACE of {role.capitalize()} Agent):
982     {html_text_block}
983
984     ----- OUTPUT GUIDELINES -----
985     {guidelines}
986
987     ----- OUTPUT SCHEMA -----
988     {{{
989         "{role_key}": [
990             {{
991                 "steps": [<list of step numbers>],
992                 "reasoning": "<brief explanation of why this claim is
993                 justified>",
994                 "claim": "<concise, goal-relevant claim>"
995             },,
996             ...
997         ]
998     } }
999
1000     Return only the JSON under **Claims:**
```

1001 Guidelines for Policy Agent to write claims:

```

1002
1003     **Guidelines for writing claims (Policy Agent):**
1004     ### Core Mandate: The Actor's Report
1005     - Think of yourself as the agent actively performing the task.
1006         Your claims are a direct report of your own actions and their
1007         immediate results.
1008     - Your goal is to narrate your journey through the task, focusing
1009         only on the steps you took and the UI states you directly
1010         observed or caused.
1011     - Be concise, factual, and strictly focused on the task goal.
1012         Avoid speculation or opinions about why something happened.

1013     ### Claim Generation Rules:
1014     - Aim for {min_claims}-{max_claims} claims total.
1015     - **For Tasks Involving Information Sources (e.g., "from an
1016         image," "using the details in the file"):**:
1017         - **1. Access the Source:** Generate a claim confirming you
1018             **accessed and viewed the specified information source**.
1019             - *Example:* "The agent opened 'expenses.jpg' in the gallery
1020                 to view the expense details."
1021             - **2. Confirm Data Match:** In the claim about entering the
1022                 data, explicitly state that the **data entered matches the
1023                 data from the source**.
1024                 - *Example:* "The two expenses entered, 'Office Supplies for
1025                     150' and 'Travel Expenses for 200', match the content of
1026                     'expenses.jpg'.".
1027
1028     - **For Editing, Modifying, or Deletion Tasks:**
```

1026 - ****1. Capture the 'Before' State:**** First, generate a claim
 1027 that **describes** the initial state of the item **BEFORE** the
 1028 modification**.
 1029 - **Example:** "Before editing, the contact's phone number was
 1030 '555-123-4567'."
 1031 - ****2. Report the 'After' State:**** Then, generate a separate
 1032 claim **describing** the **successful modification or**
 1033 deletion**.
 1034 - **Example:** "The contact's phone number was successfully
 1035 updated to '555-987-6543'."
 1036 - **Report All Critical Actions:**
 1037 - Describe your key actions and their direct consequences using
 1038 state/action phrasing (e.g., "Recording saved and appears
 1039 in list").
 1040 - Highlight any mismatches, errors, or unintended actions you
 1041 performed (e.g., "Opened the wrong menu," "A 'Permission
 1042 Denied' error appeared").
 1043 - **Be Efficient and Relevant:**
 1044 - Merge duplicate claims that describe the same state.
 1045 - Ignore trivial system indicators (battery, clock, signal),
 1046 home/launcher screens, and redundant repeated actions
 1047 unless they are evidence of an error or loop.
 1048 - Output must be valid JSON following the schema below.

1048 **Guidelines for the Evaluator Agent to write claims.**

1050 **Guidelines for writing claims (Evaluator Agent):**
 1051
 1052 **### Core Mandate: The Detective Analogy**
 1053 - Think of yourself as a detective arriving at a scene ***after***
 1054 the suspect (the Policy Agent) has left.
 1055 - The action history and screenshots you see are your own
 1056 investigation, using your 'magnifying glass' and 'tools' to
 1057 inspect the scene.
 1058 - Your goal is to make claims about the state of the scene ***as**
 1059 **the Policy Agent left it**.**
 1060 - **You must NEVER create a claim about your own investigative**
 1061 **actions.**** For example, if you tap 'Save' or 'Delete' to
 1062 check a confirmation dialog, you must not claim "The agent
 1063 saved the file" or "The agent deleted the item." Your actions
 1064 are not part of the evaluated task.

1065 **## Claim Generation Rules:**
 1066 - Aim for **{min_claims}-{max_claims}** claims total.
 1067 - **Focus on the evidence:** All claims must describe the final
 1068 state resulting from the Policy Agent's work, using your
 1069 observations as proof.
 1070 - **Be factual and concise:** Merge duplicates and report on what
 1071 is present or missing. Avoid speculation.
 1072 - **Identify mismatches:** If your investigation reveals that the
 1073 final state contradicts the task goal (e.g., wrong file type,
 1074 incorrect note name, content not saved, settings not
 1075 changed), these are critical claims to include.
 1076 - **Ignore trivial states:** Do not report on system indicators
 1077 (battery, clock), home screens, or app launchers unless
 1078 directly relevant to the task goal.
 1079 - **Phrase claims effectively:** Prefer state/action summaries
 1079 (e.g., "Recording saved and appears in list") over simple
 1079 lists of UI elements.

1080 - Output must be valid JSON following the schema below.
 1081
 1082
 1083 **E.3 JUDGE WITH CHAIN-OF-CLAIMS**
 1084
 1085 You are an expert judge evaluating whether a mobile GUI agent
 1086 (Policy Agent) has completed the user's task.
 1087
 1088 **Workflow overview:**
 1089 1. **User** provides a task intent.
 1090 2. The **Policy Agent** executes UI actions to fulfil that task;
 1091 its steps are recorded as **Action History**.
 1092 3. The **Evaluator Agent** runs after the Policy Agent has
 1093 finished, and proactively probes the resulting states to
 1094 gather additional observations.
 1095 4. Your job is to analyze these claims together, identify their
 1096 relationships, and determine whether the Policy Agent
 1097 successfully completed the task.
 1098
 1099 You must follow a two-stage analysis:
 1100
 1101 **### Stage 1 – Filter Evaluator Claims**
 1102 - Carefully review the evaluator claims.
 1103 - **Discard** any claim that describes actions or outcomes caused
 1104 by the Evaluator Agent itself (e.g., accidental saves,
 1105 unintended edits, stray taps/scrolls).
 1106 - Keep only evaluator claims that serve as **evidence** about the
 1107 Policy Agent's actual outcome.
 1108 - If in doubt, prefer to exclude rather than include.
 1109
 1110 **### Stage 2 – Compare Policy vs. Evaluator Claims**
 1111 1. **Read** the Task Goal carefully to understand what success
 1112 means.
 1113 2. **Compare** Policy Claims and (filtered) Evaluator Claims:
 1114 - Mark as **confirmed** if an evaluator claim supports a
 1115 policy claim.
 1116 - Mark as **contradicted** if an evaluator claim directly
 1117 disproves a policy claim.
 1118 - Mark as **complementary** if the evaluator provides
 1119 additional relevant evidence.
 1120 - Mark as **unsupported** if no evaluator claim addresses a
 1121 policy claim.
 1122 3. **Highlight** any **critical confirmations or contradictions**
 1123 that directly determine success.
 1124 4. Decide the outcome reward: did the Policy Agent achieve the
 1125 user's task goal?
 1126
 1127 **Guidelines:**
 1128 - Before labeling a contradiction, check if the agents are simply
 1129 observing different aspects of the same content (e.g., Policy
 1130 saw page 1, Evaluator scrolled to page 2).
 1131 - If so, their claims are **complementary**. Your job is to
 1132 **synthesize** them into a single, more complete
 1133 understanding.
 1134 - When claims are in direct conflict, act as a critical arbiter
 1135 rather than a passive matcher. Evaluate reliability and
 1136 consistency; do not assume both sides are equally valid.
 1137 - Consider the correctness of the **target** (e.g., the right
 1138 file, event, app).

```

1134 - For question-answer tasks, the Policy Agent must include an
1135   explicit claim stating the answer it provided, expressed
1136   exactly as required by the task.
1137 - Ignore evaluator stray/accidental claims unrelated to the goal.
1138 - If claims indicate progress but also critical issues (wrong
1139   extension, malicious steps), treat as compensated or failure
1140   depending on severity.

1141 ----- INPUTS -----
1142 TASK GOAL:
1143 {intent}

1145 POLICY CLAIMS:
1146 {policy_claims}

1148 EVALUATOR CLAIMS:
1149 {evaluator_claims}

1151 ----- OUTPUT INSTRUCTIONS -----
1152 Write your reasoning in two sections:

1153 Analysis:
1154 - Stage 1: List which evaluator claims you discarded and why.
1155 - Stage 2: Compare the remaining evaluator claims against the
1156   policy claims, showing relations (confirmed, contradicted,
1157   complementary, unsupported).
1158 - Explain how these relations support your judgment.

1159 Status: success or failure

1160 Return only these two sections, exactly in this format.

1161

1162

1163

1164
```

F COST COMPARISON

We further analyze and compare the cost between PRORE and the baselines from per-task cost and the long-term cost perspective. The per-cost cost comparison is detailed in Table 8.

Table 8: Per-task cost comparison across baselines.

Methods	DistRL	DigiRL	WebRL	StepCritic	PRORE
Cost (\$)	0.010	0.014	0.013	0.017	0.063

While PRORE incurs additional computational overhead, primarily due to proactive probing and the chain-of-claims mechanism, it achieves significantly higher reward accuracy and F1 scores, as demonstrated in Table 2 and Figure 4. We believe that enhanced reward accuracy ultimately translates to greater efficiency when deploying such a reward system. Therefore, we conducted the additional measurements and analysis.

Firstly, the reward system can be employed to guide test-time scaling of policy agents. As illustrated in Fig. 6, PRORE facilitates markedly more efficient test-time scaling: the policy agent attains a 63% success rate with only 2 trials under PRORE, whereas the baseline approaches require at least 5 trials, resulting in a 2.5 \times speedup.

Secondly, the reward system can be employed during training to guide the roll-outs of policy agents. In this setting, the total cost consists of both the rollout cost and the reward evaluation cost. To quantify this, we estimate the cost of collecting 1,000 correctly identified successful trajectories.

1188 A correctly identified successful trajectory requires both (i) a successful rollout by the policy agent,
 1189 and (ii) the evaluator correctly recognizing it as success. Assuming a 60% policy success rate and
 1190 using the average accuracies in Table 2 (93.7% for PRORE and 88.4% for StepCritic), the probability
 1191 of obtaining one useful trajectory is $0.60 \times \text{Acc}$. Consequently, PRORE requires approximately 1,780
 1192 rollouts, whereas StepCritic requires 1,885 rollouts—i.e., StepCritic needs 110 additional rollouts to
 1193 achieve the same amount of useful data. The corresponding evaluator costs are \$112.1 for PRORE
 1194 and \$32.1 for StepCritic.

1195

1196 Table 9: Long-term cost comparison (1,000 useful trajectories)

1197

Method	Avg Acc (%)	Rollouts	Rollout Cost	Reward Cost	Total Cost
PRORE	93.7	1778.7	1636.4	112.1	1748.5
StepCritic	88.4	1885.4	1734.5	32.1	1766.6
WebRL	86.9	1917.9	1764.5	24.9	1789.4
DistRL	86.1	1935.7	1780.9	19.4	1800.2
DigiRL	84.6	1970.1	1812.5	27.6	1840.0

1204

1205 This leads to the following cost difference:

1206

1207
$$Cost_{\text{StepCritic}} - Cost_{\text{PRORE}} = 110 \times Cost_{\text{Rollout}} - 85.6$$

1208

1209 PRORE becomes more economical once the rollout cost exceeds \$0.78. Using Azure A100 pric-
 1210 ing ($\approx \$3.67/\text{hour}$), a typical 72B GUI agent rollout with 30 steps (30 s/step) costs roughly \$0.92,
 1211 already above this threshold. Thus, under realistic deployment conditions where rollout cost domi-
 1212 nates (GPU hosting, LLM inference, environment rendering), PRORE becomes more cost-effective
 1213 for large-scale training and evolution, despite its higher per-task evaluation overhead.

1214

1215 Similar deductions apply to all other baselines. Table 9 summarizes the total cost of collecting 1,000
 useful trajectories for each method.

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241