
Bilinear Convolution Decomposition for Causal RL
Interpretability

Sinem Erisken
Independent

Alice Rigg
Independent

Narmeen Oozer
Martian

Abstract

Efforts to interpret reinforcement learning (RL) models tend to target the activation
space, and fewer recent studies target the weight space. Here we use a dual frame-
work of both the weight and activation spaces in order to interpret and intervene in
a RL network. To enhance RL interpretability, we enable linear decomposition via
linearization of an IMPALA network : we replace nonlinear activation functions
in both convolution and fully connected layers with bilinear variants (we term
BIMPALA). Previous work on MLPs have shown that bilinearity enables quantify-
ing functional importance through weight-based eigendecomposition to identify
interpretable low rank structure [Pearce et al., 2024b]. By extending existing MLP
decomposition techniques to convolution layers, we are able to analyze channel
and spatial dimensions separately through singular value decomposition. We find
BIMPALA networks to be feasible and competitive, as they perform comparably
to their ReLU counterparts when we train them on various ProcGen games. Impor-
tantly, we find the bilinear approach in combination with activation-based probing
provide advantages for interpretability and agent control. In a maze-solving agent,
we find a set of orthonomal eigenvectors (we term eigenfilters), the top-2 of which
act as cheese (solution target) detectors, and another pair of eigenfilters we can
manipulate to control the policy.

1 Introduction

CONV2D
MAX

POOL
Residual

Block

Residual

Block

ReLU
FC

3 x [32, 32, 32]

CONV2D
ReLU

CONV2D

(U)

CONV2D

(V)

FC (F)

FC (H)

Figure 1: BIMPALA: a simplified IMPALA architecture (black) modified by replacing ReLU
operations with bilinear gating (red) for both the convolution (CONV2D; Equation 3) and fully
connected (FC; Equation 1) layers.

While recent advances in reinforcement learning have produced increasingly capable reasoning agents
[Mnih et al., 2013, Gu et al., 2017, Baker et al., 2019], analyzing their internal mechanisms has
proven difficult. This challenge is particularly pronounced in multi-step reasoning tasks, where the
relationship between model architecture and computational strategy is often opaque. Additionally,

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: .

there is a general notion of the performance-interpretability trade-off [Assis et al., 2025], which
argues that more transparent models tend to have lower performance.

We hypothesize that increased interpretability need not come at the cost of performance. We
explore an approach embedded within mechanistic interpretability. Mechanistic interpretability
has emerged as a promising framework for understanding neural networks by identifying and
analyzing features-specific directions in activation space that encode meaningful computational
patterns [Cunningham et al., 2023, Trenton Bricken et al., 2023, Adly Templeton et al., 2024, Rimsky
et al., 2024]. Traditional approaches have focused primarily on activation patterns during inference,
but recent work suggests that analyzing model weights directly may provide complementary insights.

Our work explores a subset of models where nonlinearities are replaced with linear counterparts.
Bilinear MLPs [Dauphin et al., 2017] offer an architectural innovation that enables direct interpretation
of model weights. While initially proposed for language modeling tasks [Pearce et al., 2024b], we
show their benefits extend to understanding an agent’s spatial decision-making. As proof of concept
that the bilinear approach can indeed benefit interpretability of RL models, we simplified a common
RL agent, IMPALA [Espeholt et al., 2018], and compared it with its bilinear counterpart (Figure 1).

We argue the importance of studying weights and activations jointly. Attribution approaches provide
context-dependent heuristics, based on the data, to estimate causal relationships. Weight based analy-
sis is a context-independent complement, where decomposition can allow us to validate attribution
through the importance of components. By analyzing both the weight space through eigenfilters
and the activation space through targeted probes, we find interpretable features that track specific
computational steps, from interpretable convolution features to the action features. Additionally, we
find that while standard basis analyses can appear informative, they often mask the true computational
structure of the network. Instead, we show that bases informed by action spaces and targeted probes
provide more reliable insights into model behavior.

Our contributions (1) We introduce a bilinear architectures (BIMPALA) for RL and show that a
simplified model trains well in "easy" Procgen environments. (2) We show how bilinear convolution
layers can be decomposed into basis of self interacting eigenfilters. (3) We show that the standard
basis is often non-interpretable and less informative compared to basis derived from probes or the
action/logits space. (4) We propose new techniques using weights alongside activations to analyze
mechanisms in bilinear convolution networks. We validate our approach by finding a cheese detector
on a maze solving agent and re-targeting the agent towards counterfactual cheese positions.

2 Background

2.1 Model and Environment

We chose IMPALA as our base model as it is a widely known RL architecture and was designed
for both resource efficiency and scalability. The low rank structure of MLPs is already known to be
interpretable, and is likely to also be the case for LSTMs which do not introduce new operators like
a convolution. Our main objective in this paper was to evaluate the feasibility of interpretable RL
with bilinear CNNs (bCNNs). We simplified the original large architecture IMPALA by (1) removing
pooling layers and (2) omitting the LSTM after the FC layer , although note that LSTMs [Kim et al.,
2018] can also be modified with bilinear gating (bLSTMs).

We believe our simplified BIMPALA architecture should, already, be adequate to perform competi-
tively on Procgen games. Hybrid bCNN-bLSTMs have shown promise in medical imaging [Liu et al.,
2024], and bCNNs in general image [Lin et al., 2017], classification tasks.

We chose games from Procgen [Cobbe et al., 2020], a suite of procedurally generated environments
designed to benchmark efficiency and generalization of RL agents. As this work is proof of concept,
we only trained our models on a random subset of games and we only considered "easy" mode.

2.2 Bilinear Gating

The core benefit of the bilinear approach hinges on removing nonlinearities from the neural network,
allowing spectral decomposition. Spectral decomposition of MLPs has revealed interpretable low-

2

rank structure across multiple tasks Pearce et al. [2024a], and we extend this approach to convolution
layers for an RL agent.

In this section, we briefly review multi-layer perceptrons (MLPs), convolutions, and bilinear gating.
Throughout, we denote scalars like s, vectors like v, matrices like M , tensors like T, dot product
with · , pointwise product with ⊙, and convolution with ∗.

Bilinear MLPs A conventional MLP is composed of 3 (or more) fully-connected (FC) layers,
where inputs are up-projected into a hidden layer and then down-projected into the output layer. The
hidden activations of a conventional MLP can be characterized as a Rn → Rm encoder which takes
input x and applies a learned linear transformation, with weights W and bias b, followed by an
activation function σ.

Modern models, such as LLMs, feature an encoder variant called a Gated Linear Unit (GLU),
comprised of the pointwise product of two linear up-projections, with learned weights F and G, and
only one of the projections is passed through an activation function. Omitting biases for simplicity,

EncGLU(x, F,H) = σ(xF)⊙ (xH)

Bilinear encoders, and our bilinear FC in Figure 1, use an identity activation, keeping the overall
transformation linear:

FCBilinear(x, F,H) = (xF)⊙ (xH) (1)

This linearization allows spectral decomposition of the weights and activations, which can have
interpretable value [Pearce et al., 2024b]. Importantly, Pearce et al. [2024b] show bilinear MLPs can
be expressed as a third order tensor B, comprised of interaction matrices for each output dimension,
parameterizing the interactions between pairs of inputs. In Decomposing Convolutions, we provide
an analog B for convolution layers.

Convolution layers A 2D convolution layer (Conv2D) takes an input X of shape [width, height, cin]
where cin is the number of input channels, and applies a learned kernel U of width k with stride s
followed by a pointwise activation function σ:

Conv2D(X,U) = σ(X ∗U)

With s = 1, Conv2D outputs a tensor of shape [width, height, , cout], where cout is the number of
output channels. Kernel U of shape [k, k, cin, cout] acts locally on k × k patches, and we denote the
kernel for a given output channel i as U(i). Assuming an identity activation and letting ℓ = ⌊K

2 ⌋,
kernel weights U(i), as illustrated in Appendix A Figure 12 (top left in blue), act on a local patch
around spatial coordinates (α, β) via:

u(α, β, i) =

cin∑
j=1

∑
|k1|≤ℓ

∑
|k2|≤ℓ

U (i)[j, k1, k2] ·X[j, α+ k1, β + k2] (2)

Here, u(α, β, i) is a scalar, denoting output channel i’s entry at spatial location (α, β), while
U (i)[j, k1, k2] and X[j, α + k1, β + k2] are row and column vectors from k × k matrices repre-
senting the kernel and current input patch respectively for a single input-output channel combination.

Analogous to a bilinear FC (Equation 1), a bilinear convolution layer (BConv2D) would then require
two convolutions. Assuming kernels U and V ,

BConv2D(x,U,V) = (x ∗U)⊙ (x ∗ V) (3)

3 Methods

3.1 Decomposing Convolutions

The main advantage of adopting the bilinear form for a convolution layer is decomposition into sets
of orthonormal eigenvectors for each output channel, which we call eigenfilters. We can express
a BConv2D layer as a tensor B, comprised of interaction matrices (B) for each (scalar) output.

3

Specifically, B parameterizing the input channel interactions between pairs of inputs at a single
spatial location for a single output channel (α, β, i) (Figure 12 in Appendix A).

Importantly, spectral decomposition is easily achievable because B has a symmetric form Bsym. In
Appendix A, we decompose Bsym for convolution layers and show it is equivalent to B. In short, for
each of cout output channels, we get a matrix Bsym of dimension k2cin × k2cin. Hence, each spatial
location of the input image contributes to B with shape [cout, k

2cin, k
2cin]. The gated operation,

Bsym, can be decomposed into scalar entries, b, for each output channel at spatial position (α, β):

b(α, β, i) =

cin∑
j=1

cin∑
z=1

x⊤
j u

⊤
j vzxz (4)

uj is a flattened vector of the ith input channel of kernel U applied to the flattened input xj at position
(α, β). vz is a similar vector from V’s zth input channel applied to xz.

Bilinear decomposition into eigenfilters With the spectral theorem, matrix Q decomposes as
Q = F⊤ΛF , where F is an orthonormal matrix (satisfying F−1 = F⊤) of eigenvectors, and Λ is
a real, diagonal matrix of eigenvalues. Since convolution layers are connected locally, within and
not across output channels, we choose our output directions in output channel space. We construct a
tensor Q of interactions matrices, {Qo}cout

o=1 , by multiplying Bsym along a desired output direction
o ∈ Rcout .

For each output channel, Qo = oBsym. Qo, shaped [k2cin, k
2cin], decomposes into an eigenbasis of

k2cin filters, each shaped [k, k, cin], which we term eigenfilters. For the standard basis, o ∈ {ei}cout
i=1 .

Note that we can consider the per-direction computation of Qo matrices and their eigenfilters more
generally: in an arbitrary basis, by multiplying Bsym with a transformation matrix R.

Contributions of eigenfilters To compute the contribution of an eigenfilter to an activation A,
we apply the eigenfilter as a regular convolution filter to A. Since Bsym(o, ·, ·) is bilinear and
symmetric, Qo(x) := Bsym(o,x,x) is quadratic. So, the contributions of Qo towards o for a flattened
patch xpatch centered around a given position in A is: Qo(xpatch) := xpatch

⊤F⊤ΛFxpatch =

(Fxpatch)
⊤Λ(Fxpatch) =

∑k2cin
i=1 λi(fixpatch)

2 , where fi is an individual eigenfilter with shape
[k, k, cin].

As the eigenfilter activations are applied to every valid position uniformly, we can equivalently write
Qo(A) =

∑k2n
i λi(fi ∗A)2.

3.2 Separating channels from spatial coordinates with SVD

The decomposition (subsection 3.1) gives us a full basis of eigenfilters along a direction in output
channel space. If we are interested in the contribution of an activation or weight tensor A, we can
separate the output channels from the spatial dimensions, and we can use singular value decomposition
(SVD) to determine the directions to decompose Bsym along the output channel space.

Consider a [w, h, cout] -shaped tensor , e.g. of activations, A, reshaped into [cout, wh] as matrix A.
Letting d = wh, we can decompose A via SVD:

A = SΣV ⊤ =

d∑
i=1

σisiv
⊤
i (5)

where S has shape [cout, cout], and V has shape [d, d]. We can actually use SVD to decompose along
the output directions of eigenvectors of any suitable A, including a probe. The (left) singular vectors
si live in the output channel space, and can be used as output vectors along Bsym. Since each singular
vector si also has a singular value, si, we can aggregate the contributions of the singular values
and the eigenfilters together when constructing the interaction matrix QA from interaction matrices
{Qs}ds=1 along the the singular vectors in output channel space:

QA(A) =

cout∑
o=1

soQ
o(A) =

cout∑
o=1

so

d∑
i=1

λi(fi ∗A)2 =

cout∑
o=1

d∑
i=1

soλi(fi ∗A)2 (6)

Signed eigenvalues soλi parameterize the importance, |soλi|, of an eigenfilter for its singular channel.

4

3.3 Procgen training

We trained our simplified IMPALA and BIMPALA models with proximal policy optimization (PPO),
which tends to be effective and easy to tune [Schulman et al., 2017], for a subset of Procgen [Cobbe
et al., 2020] environments: Maze, Heist, Plunder, and DodgeBall. Games were procedurally
generated with "easy" distributions, which are computationally inexpensive and converge in less time
steps than harder distributions. For full training parameters, see Table 1 in Appendix B.

3.4 Probe protocol

We suggest a protocol to enhance interpretability for RL with probes by connecting bottom-up
mechanistic and top-down concept-based approaches.

1. Train a linear probe for a concept of interest on a Conv2D activation space with shape
[width,height, cout], reshaped as [cout,width · height]

2. Decompose the probes (Equation 5), and use the top left channel-space singular vectors
as output directions for the BConv2D layer of interest. Determine the number of singular
components needed, based on the distribution of singular values.

3. Perform an eigendecomposition of the BConv2D layer (Equation 6) towards the top left
singular vectors in channel space, to identify directions in the filter weights that write to the
probe (similar to Pearce et al. [2024b]).

This protocol will yield a full basis of eigenvectors for each output direction.

Cheese probe In subsection 4.2, We design a cheese probe as a case study of our probe protocol
(subsection 3.4). We trained linear probes to detect the presence of the cheese at position (8, 14) in
the maze by creating a dataset comprising 2000 pairs of mazes, one with with the cheese at position
(8, 14) and the other without a cheese.

We trained position probes on a BConv2D activation space with shape [w, h, cout], reshaped as
[w, h, cout] on the output of the BConv2D layer of interest. We decomposed the probe’s weights via
SVD (Equation 5). We could then use the top (left) singular vectors as output directions along the
BConv2D layer of interest. For probe results, see Appendix C.

3.5 Ablations

We perform 3 separate sets of ablation experiments: (1) for the cheese probe, (2) in the standard
basis and (3) for action features. In each set of experiments, we run multiple ablations. For the
probe and standard basis experiments, we run, separately for each k, ablations for all but the top-k
eigenfilters for each output channel of selected BConv2D layers. For ablation within the standard
basis and action features, we also ablate everything but the top-k eigenfilters in the FC layer. For each
ablated model, we reconstruct the network using the top-k eigenfilters and then run the model in the
Maze environment. To ensure we are comparing the ablated models fairly within each set of ablation
experiments, we run the same mazes, using 20 seeded environments, capping steps per rollout at 200
to save runtime.

3.6 Steering

While the FC layer outputs the value and policy, we are interested in the contribution of the convolution
layers to solving the task. As such, we leave the FC layer intact and try to the steer the model from
the convolution layers alone. We modified steering examples following Mini et al. [2023]. Rather
than averaging activation spaces together, we directly alter the weight contributions from hidden
layers (Res in Equation 7).

Our is aim is to re-target the agent from the maze’s actual location towards a counterfactual cheese
location x′. To do so, we first obtain the activations for the maze’s cheese position (xcheese in
Equation 7) by subtracting the activations for the maze without the cheese from the activations for the
maze with the cheese. Similarly, we get the activations for the counterfactual cheese position (x′

cheese
in Equation 7) by subtracting the activations for the maze without the cheese from the activations for

5

the maze with the cheese in the counterfactual position. We intervene using the top-2 eigenfilters (eig
in Equation 7) and overwrite the contributions, using the equation:

Res′ = Res− eig ∗ (xcheese) + eig ∗ (x′
cheese) (7)

4 Experiments

In order to evaluate the usefulness of the bilinear approach in the context of RL, we ran a series
of experiments. We detail training procedures, experimental protocols, and key findings from both
quantitative and qualitative perspectives. We ask (1) do bilinear architectures achieve competitive
performance compared to standard models like ReLU-based IMPALA and (2) do bilinear layers
provide interpretable representations through spectral decomposition and probe-based analyses?

In order establish feasibility, we first evaluate and compare performance between BIMPALA and
IMPALA on a handful or randomly selected "easy" ProcGen environments.

We next train probes and propose a protocol to decompose probes in conjunction with convolution
layers. This allows us to identify a cheese filter using the top-2 eigenfilters of a convolution layer.

We next explore methods without the need for training probes. First, we turn to the standard channel
basis and perform ablation experiments. Unfortunately, we do not find the standard basis alone to be
informative enough for interpretability.

We then decide to adopt two different approaches using both weights and activations without training
probes. First, we decompose the full connected layer along each policy action and perform ablation
experiments. We find action features to be faithful to actions needed to solve the maze. Finally, we
perform steering experiments where we re-target the agent towards a counterfactual cheese position.

4.1 BIMPALA matches IMPALA performance

Architecture baseline We adapted the existing IMPALA framework Espeholt et al. [2018] by (1)
simplifying the network by removing some convolution layers so that the residual block is a simple
gated convolution with a skip connection as well as removing the LSTM layer after the FC layer and
(2) modifying the original structure to incorporate bilinear gating mechanisms in both Conv2D and
FC layers (Figure 1). We refer to the bilinear variant as BIMPALA (Bilinear IMPALA).

Figure 2: ReLU and Bilinear IMPALA perform compa-
rably across different ProcGen environments.

Evaluation As proof of concept for in-
terpretable bilinear RL, we trained (Meth-
ods subsection 3.3) simplified IMPALA
and BIMPALA alongside each other on the
"easy" distributions of some (Maze, Heist,
Plunder, and DodgeBall) of the procedu-
rally generated environments within the es-
tablished Procgen benchmark[Cobbe et al.,
2020].

We find BIMPALA matched and occasion-
ally outperformed IMPALA across the en-
vironments we tested (Figure 2), validat-
ing the feasibility of using bCNNs for RL
tasks. Specifically, BIMPALA generally
demonstrated faster learning, higher final
performance in terms of expected return,
and maintaining lower entropy.

4.2 Protocol to enhance
interpretability for RL with probes

Having established that the bilinear ap-
proach can perform competitively in RL
environments, we next want to use this architecture to enhance interpretability. In subsection 3.4, we

6

describe a protocol to yield a full basis of eigenfilters for each output direction relevant for a concept
of interest. Briefly, we train a linear probe for a concept of interest on a Conv2D activation space.
With SVD (subsection 3.2), we can identify the probe’s top singular vectors, which we can use as
output directions for a BConv2D layer. We can then perform eigendecomposition towards the top left
singular vectors in output channel space to identify eigenfilters which contribute to the probe.

It’s possible for the important eigenvectors between output directions to not be fully orthogonal,
especially if interpreting multiple probes in parallel. Although we do not investigate overlapping
filters here, analyzing the cosine similarity between important (as measured by |sjλi

uj
|) eigenvectors

relating to different singular channels may further inform the function of the eigenvectors.

4.3 Case study: cheese probe

With the protocol defined, the next step is to implement it by training concept probes for specific
features and analyzing their decomposition. For the remainder of the paper, we focus on Maze, where
the player, a mouse, must navigate a maze to find the sole piece of cheese and earn a reward. We
generate a dataset of sets of mazes with and without a cheese and train linear probes to detect the
presence of the cheese at some position subsection 3.4.

Figure 3: Singular values and explained
variance for cheese probe

Figure 4: Spectral decomposition of
the final BConv2D towards the cheese
probe’s top singular output channel (left)
and in the standard channel basis (right)

Probes trained well on the outputs of the residual blocks,
and had > 99% accuracies and F1 scores (Table 2 in
Appendix C).

Dominant singular probe channels Decomposing the
probe, we see a spectra (Figure 3). The top singular com-
ponent alone explains 30% of the variance, and 16 com-
ponents are needed to explain ≥ 90% of the variance.

Eigenfilter decomposition for singular probe channels
Decomposing the last BConv2D layer towards the top
(left) singular channel, we see the standard channel basis
spectra has just two eigenvalues (Figure 4, right). The
singular spectrum for the cheese probe (Figure 4, left),
however, was nondegenerate, and thus more likely to be
informative.

In order to verify the importance of the singular spectrum
for solving the maze, we repeated the decomposition for
the first and second BConv2D layers and performed abla-
tion (subsection 3.5). We ablated all but the topk eigenfil-
ters for each output channel of each of the BConv2D layers.
We reconstructed our networks and ran each of ablated
models on the same 20 Maze environments. (Figure 5).

Figure 5: metrics when ab-
lating parts (bottom - k+1)
of different convolution lay-
ers’ eigenfilter spectrum asso-
ciated with the cheese probe.
Here and subsequent plots, er-
ror bars are SEM

We find that maze performance recovers close to 100% with just the top-2 eigenfilters in the last
BConv2D layer. In this last convolution layer, additional eigenfilters help solve the maze in less steps.
For the first and second BConv2D layers, we see a different trend, where it takes 16 eigenfilters for
maze performace to be recovered, and the contributions of each added eigenfilter is less step-like and
more continuous. This continuous distribution may suggest that decomposing the layers towards the
cheese probe’s top singular channel is informative.

7

Figure 6: Activations for
the top positive (left)
and negative (right)
eigenfilters in the
second BConv2D layer,
for the cheese probe’s
top singular channel.
Activations for a maze
with cheese (top) vs
without cheese (bottom).
Middle plots show the
difference between the
activations with and
without cheese.

In fact, in the second BConv2D layer,
we can already find information about
the cheese location already from just
the top positive eigenfilter. In Fig-
ure 6, we visualize the top positive
and negative eigenfilter activations for
a set of pairs of mazes, one with the
cheese at the selected position and the
other without the cheese. While the
positive filter activates on non-cheese
patterns, the negative filter down-
weighs non-cheese patterns without
erasing the cheese activation. The pos-
itive and negative activations of the
respective filters result in a cheese detector filter. We found similar cheese filters when we considered
other mazes and BConv2D layers.

4.4 Ablation within the standard bases

Figure 7: Maze metrics during standard
basis ablation.

While the probe approach is rather promising and we are
successful in finding a cheese detector in the second con-
volution layer, it may not be feasible nor scalable to train
probes for each feature we may want to interpret. This is
especially true once we move beyond toy-like tasks such
as the Maze environment. Hence, despite the degenerate
spectrum (Figure 4), we turn back to the standard basis.

We ask how many eigenfilters are necessary for perfor-
mance? We ablated all but the topk eigenfilters for the FC
layer, all the BConv2D layers, or just the last BConv2D
layer. As we may have predicted from Figure 4, the spec-
trum of the last BConv2D layer is not informative and
is marginally necessary for full performance. The agent,
when compared to the BIMPALA, has a similar success
rate, in a relatively low number of extra steps, and receives
similar rewards when we ablate the last BConv2D entirely
(topk=0), (Figure 7).

When we ablate all the BConv2D layers together, we see
that the top-2 eigenfilters (per output channel) are suffi-
cient to recover full performance (Figure 7). Full performance in the FC layer is achieved with the top
eigenfilter. This eigenfilter is more important for performance than all the BConv2D layers combined,
resulting in lower success in more steps with less reward when ablated.

While the contribution of the FC layer relative to the BConv2D layer may be an important insight, it
is also expected. We could expect the FC , as the last layer of the network that outputs the policy and
value, to contain most the information about the next step and therefore be the largest contributor
to performance. Beyond that, the standard channel basis by itself may not be very fruitful for
decomposing the network for interpretability. For example, while we can deduce that in the last
BConv2D layer, the top positive and negative eigenfilters work together (Figure 4, 7), we do not know
anything more granular.

4.5 Interpretability based on action features

Figure 8: UP spectrum

For example, Figure 8 shows the eigenvalues in the action spectrum for
the UP action. We can see many UP action eigenvectors in the FC layer,
with one very large positive eigenvalue. We next used these action
spectra of the FC layer in ablation experiments. Decomposition may
still be useful for interpretability beyond the standard basis and without
training probes. The FC layer outputs the directions of movement for
the policy (UP, DOWN, RIGHT, LEFT). Instead of training probes,

8

we could alternatively decompose the directions relevant for actions directly by decomposing in the
direction of each action output.

Ablation In ablation experiments, we found that, despite the dense spectrum (Figure 8), preserving
the top eigenvector for each action in the FC layer was sufficient for a 100% success rate (Figure 13
in Appendix E). When we inspected impact of the eigenvectors by visualizing the vector fields, we
saw the same trends across the multiple mazes and directions we inspected.

In Figures 9- 10, we show example vector fields for ablations in two action spectra, UP and LEFT. In
Figure 9, we see how a single UP eigenvector proves sufficient to encode the optimal path through the
maze. Specifically, we see that the upward logit values are selectively increased along the solution
path and suppressed near dead ends. Similarly, in Figure 10 we see the effect of the LEFT action

Figure 9: Vector field visu-
alizing maze navigation with-
out any (left) and with a sin-
gle (middle) UP eigenvector,
and the difference highlighted
in green (right). The top
UP eigenvector is sufficient
to solve the maze and with-
out UP eigenvectors, the agent
does not move upwards

spectrum. Note that the mouse, who is typically located at the bottom left corner at the start of an
episode, can solve the maze without any LEFT eigenvectors (Figure 10, Top 0 LEFT). Yet, we see
that increasing the number of LEFT eigenvectors allows the agent to reach the cheese from other
locations, such as at the top. As we add more left eigenvectors, we see that the misleading right
arrows diminish and the agent gradually reconstructs its left arrows (Figure 10, Diff: Top 4 from ALL
LEFT), making the maze solvable for more configurations.

Figure 10: LEFT action spectrum visualization in a maze environment. While the maze is solvable
without any LEFT eigenvector, adding LEFT eigenvectors allows solving the maze from other starting
positions (e.g. top or right of the cheese)

4.6 Steering

Having seen the effect of action spectra on maze solving and the importance of the FC layer to solving
the maze in general, we wondered if it was possible to redirect the agent while leaving the FC intact.
In particular, we wondered if we could redirect the agent by intervening in the convolution layers.

Our steering experiment (subsection 3.6) aims to re-target the agent away from the actual cheese
position (cheese in Figure 11) towards a counterfactual cheese position (red dot in Figure 11). We
followed the steering examples of Mini et al. [2023], with a modification: rather than averaging
activation spaces together, we directly alter the weight contributions from BConv2D layers.

We obtain the activations for the maze’s cheese position (xcheese) by subtracting the activations for
the maze without the cheese from the activations for the maze with the cheese at its actual location.
Similarly, we get the activations for the counterfactual cheese position (x′

cheese) by subtracting the
activations for the maze without the cheese from the activations for the maze with the cheese in the
counterfactual position. We intervene by overwriting the contributions on the BConv2D layer by
subtracting the top-2 eigenfilters of xcheese and adding the top-2 eigenfilters of x′

cheese.

We ran our steering experiment on various different counterfactual cheese positions, and had similar
qualitative results, which we share here via an example (Figure 11), where the counterfactual cheese
position is on the opposite side of the maze (red dot in Figure 11). In this example, the steering
was successful and mouse could not solve the maze. We can see that the vector fields indicating

9

movement are altered. Specifically, we can see arrows pointing towards the counterfactual cheese
position during intervention (Figure 11, middle) lead the mouse from the bottom left towards the red
dot. And if we look at the difference between the original and intervened mazes, we can see that the
green arrows draw paths away from the real cheese towards the counterfactual cheese position.

5 Discussion

Figure 11: Re-targeting the agent by intervening to redirect to-
wards a counterfactual cheese position (red dot)

Summary We introduce an ap-
proach to interpreting convolu-
tion neural networks, by replac-
ing nonlinearities with bilinear
variants that achieve comparable
and occasionally superior perfor-
mance. Our approach allows us
to find a closed form for self-
interacting convolution features
that can be combined with a top
down concept based approach to
derive causally relevant mecha-
nisms used by RL agents in their decision making process. Through decomposition, we were able
to find the relevant component and use them to identify the cheese target in a Maze environment.
We were able to also show a causal relationship between the representation of the cheese in the top
components of the convolution layers by steering the mouse towards a counterfactual cheese position.
In short, we see great potential and value in bilinear variants that offer more interpretability prospects
while achieving competitive performance to their non-analytic variants.

Future work As proof of concept, the scope of this paper is rather limited and leaves room
to expand the methods and generalize interpretability approaches. A significant addition to our
interpretability methods would be to incorporate multiple steps in the RL task, enabling us to track
eigenfilters across decision steps. This could easily be done even in the Maze environment by using
Procgen’s "memory" mode where the mouse gets a partial view of the maze while exploring.

While we do not study models featuring batch norms in this paper, we believe they can be readily
incorporated into our framework. During inference, batch normalization applies a fixed affine
transformation to activations, which is compatible with our decomposition approach. Additionally,
our work currently uses max pooling, which is performant but not analytically decomposable and
thus remains a blackbox in our work. Future work should explore alternative pooling operations
that are both analytically tractable and performant, enabling end-to-end decomposition of the full
architecture.

Limitations We found significant challenges in interpreting the units of computation in an entirely
data independent fashion. Instead, we found that top activating dataset examples for eigenfilters
tend not to be informative. Still, the decomposition allows us to break concept probes into more
granular units of computation. We considered only one architecture, IMPALA, for our policy,
although we expect the general approach of replacing nonlinearities with bilinear variants to be
widely applicable. Due to computational requirements, we trained on the "easy" mode of a handful
of ProcGen environments and we only analyzed the BIMPALA network for interpretability in the
context of the Maze environment. It is not clear if the methods we presented here will transfer well to
more complex environments with multiple objectives. Studying activations of probes, eigenvectors
and eigenfilters across the temporal dimension may help in identifying interesting phenomenon such
as reasoning and planning in RL environment. However, this might not be tractable with our current
method as interactions between eigenfilters grow exponentially with each time step. Additionally,
we do not concretely show how to derive insights specifically for multi-step processes, and aim to
address this in future work. Similarly, we do not address a range of components often found in
convolution neural networks, such as batch norm, dropout, or pooling. Their implications, such as
the performance tradeoffs between different pooling strategies, should be considered when evaluating
architecture variants in the future.

10

References
Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam

Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,
Callum McDougall, Monte MacDiarmid, Alex Tamkin, Esin Durmus, Tristan Hume, Francesco
Mosconi, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Batson, Adam Jermyn,
Shan Carter, Chris Olah, and Tom Henighan. Scaling Monosemanticity: Extracting Interpretable
Features from Claude 3 Sonnet, May 2024. URL https://transformer-circuits.pub/
2024/scaling-monosemanticity/index.html. tex.ids= zotero-348.

André Assis, Jamilson Dantas, and Ermeson Andrade. The performance-interpretability trade-off: A
comparative study of machine learning models. Journal of Reliable Intelligent Environments, 11
(1):1, 2025.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. In International conference on
learning representations, 2019.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning, 2020. URL https://arxiv.org/abs/1912.01588.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse Au-
toencoders Find Highly Interpretable Features in Language Models, October 2023. URL
http://arxiv.org/abs/2309.08600. arXiv:2309.08600 [cs].

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks, 2017. URL https://arxiv.org/abs/1612.08083.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures, 2018. URL
https://arxiv.org/abs/1802.01561.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international conference
on robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.

Chanho Kim, Fuxin Li, and James M Rehg. Multi-object tracking with neural gating using bilinear
lstm. In Proceedings of the European conference on computer vision (ECCV), pages 200–215,
2018.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnns for fine-grained visual
recognition, 2017. URL https://arxiv.org/abs/1504.07889.

Shan Liu, Jiang Wang, Shanshan Li, and Lihui Cai. Multi-dimensional hybrid bilinear cnn-lstm mod-
els for epileptic seizure detection and prediction using eeg signals. Journal of Neural Engineering,
21(6):066045, 2024.

Ulisse Mini, Peli Grietzer, Mrinank Sharma, Austin Meek, Monte MacDiarmid, and Alexander Matt
Turner. Understanding and Controlling a Maze-Solving Policy Network. October 2023. URL
https://openreview.net/forum?id=vNkUeTUbSQ.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Michael T. Pearce, Thomas Dooms, and Alice Rigg. Weight-based Decomposition: A Case for
Bilinear MLPs, June 2024a. URL http://arxiv.org/abs/2406.03947. arXiv:2406.03947
[cs].

Michael T. Pearce, Thomas Dooms, Alice Rigg, Jose M. Oramas, and Lee Sharkey. Bilinear MLPs
enable weight-based mechanistic interpretability, October 2024b. URL http://arxiv.org/
abs/2410.08417. arXiv:2410.08417 [cs].

11

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/1912.01588
http://arxiv.org/abs/2309.08600
https://arxiv.org/abs/1612.08083
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1504.07889
https://openreview.net/forum?id=vNkUeTUbSQ
http://arxiv.org/abs/2406.03947
http://arxiv.org/abs/2410.08417
http://arxiv.org/abs/2410.08417

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt Turner.
Steering Llama 2 via Contrastive Activation Addition, March 2024. URL http://arxiv.org/
abs/2312.06681. arXiv:2312.06681 [cs].

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Trenton Bricken, Adly Templeton*, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna
Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina Nguyen, Brayden
McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Chris Olah. Towards
Monosemanticity: Decomposing Language Models With Dictionary Learning, October 2023. URL
https://transformer-circuits.pub/2023/monosemantic-features/index.html.

12

http://arxiv.org/abs/2312.06681
http://arxiv.org/abs/2312.06681
https://transformer-circuits.pub/2023/monosemantic-features/index.html

A Tensor Decomposition of Bilinear Convolution Tensors

Figure 12: Transformation from spatial convolution operations (left) to a bilinear interaction matrix
B (right) associated with scalar entry y(α, β, i) in output channel i. The diagram emphasizes how
local spatial convolutions (shown in the cubes) are transformed into a bilinear form B. (Left, top,
blue) Computation of spatial convolutions U(i) with input xj, producing terms aj . (Left, bottom, red)
Computes convolutions V(i) with input xk, producing terms bk. (Right) The previous operations
can be reformulated as a product of three block matrices, where the outer product of input channel
responses (u⊤v) forms a bilinear matrix, (B(i) = B). We show in this appendix that B has a
symmetric form Bsym

.

As in Equation 2, consider the output of a convolution layer at location (α, β) for the i-th output
channel:

u(α, β, i) =

cin∑
j=1

∑
|k1|≤ℓ

∑
|k2|≤ℓ

U (i)[j, k1, k2] ·X[j, α+ k1, β + k2]

We define the contribution of the filter applied to the jth input channel as

aj =
∑

|k1|≤ℓ

∑
|k2|≤ℓ

U (i)[j, k1, k2] ·X[j, α+ k1, β + k2] ,

which contributes to the ith channel output of the first convolution as

u(α, β, i) =

cin∑
j=1

aj

We consider a flattened vector xj: the input tensor X[j, α : α + k, β : β + k] flattened into a
k2-dimensional vector for each spatial location (α, β). Similarly, uj is the flattened filter U (i)[j, :, :].
Note tha the filter is independent of the position (α, β).

Using these flattened representations, we can express aj as
aj = uj · xj

Note that we have removed the notation for the output channel i, as all the operations we discuss here
are for a single output channel.

As the gated operation is given by
y(α, β, i) = u(α, β, i)⊙ v(α, β, i),

we can,similarly, consider the second convolution’s k2 row vector vz and k2 column vector xz, which
define the contribution to the zth input channel as:

bz = vz · xz

13

and ith channel output of the second convolution as :

v(α, β, i) =

cin∑
z=1

bz

For simplicity, we will assign cin to n. The gated operation is then :

y(α, β, i) =

n∑
j

n∑
z

ajbz

We note that each term, aj and bz , is a scalar and is therefore equal to its transpose. Now lets consider
the interaction between input channels j and z:

ajbz = (ujxj)(vzxz) . Substituting aj and rearranging terms:

= (x⊤
j u

⊤
j)(vzxz)

This yields the gated operation:

y(α, β, i) =

n∑
j

n∑
z

x⊤
j u

⊤
j vzxz (8)

We can write the sum
∑n

j

∑n
z x

⊤
j u

⊤
j vzxz as a product of three block matrices (Figure 12):

[
x⊤
1 · · · x⊤

j · · · x⊤
n

]

u⊤
1 v1 · · · u⊤

1 vn

...
. . .

...
u⊤
j vz

...
. . .

...
u⊤
nv1 . . . u⊤

nvn




x1

...
xz

...
xn


The middle matrix is the interaction matrix B, and it has a symmetric form given by :

Bsym =


· · · · · ·

...
. . .

...
u⊤

j vz+(u⊤
z vj)

⊤

2
... · · ·

. . .
...


In Equation 8, each term, x⊤

j u
⊤
j vzxz, is a scalar and is therefore equal to its transpose. With this in

mind, we show that Bsym is symmetric over all possible input pairs (j, z). That is,

x⊤
j B

sym[j, z]xz = x⊤
z B

sym[z, j]xj ,

where

x⊤
j B

sym[j, z]xz = x⊤
j

(
u⊤
j vz + (u⊤

z vj)
⊤

2

)
xz ,

and

x⊤
z B

sym[z, j]xj = x⊤
z

(
u⊤
z vj + (u⊤

j vz)
⊤

2

)
xj . Transposing and rearranging terms

= x⊤
j

(
v⊤
j uz + u⊤

j vz

2

)
xz

= x⊤
j

(
u⊤
j vz + (u⊤

z vj)
⊤

2

)
xz

= x⊤
j B

sym[j, z]xz

14

Last, we show that B agrees with Bsym on every pair of inputs. In other words, we will show

x⊤
z B

sym[z, j]xj + x⊤
j B

sym[j, z]xz = x⊤
z B[z, j]xj + x⊤

j B[j, z]xz

Starting with the RHS

x⊤
z B

sym[z, j]xj + x⊤
j B

sym[j, z]xz

= x⊤
z

(
u⊤
z vj + (u⊤

j vz)
⊤

2

)
xj + x⊤

j

(
u⊤
j vz + (u⊤

z vj)
⊤

2

)
xz

=
1

2
x⊤
z

(
u⊤
z vj

)
xj +

1

2
x⊤
j

(
u⊤
j vz

)
xz +

1

2
x⊤
j

(
u⊤
j vz

)
xz +

1

2
x⊤
z

(
u⊤
z vj

)
xj

= x⊤
z u

⊤
z vjxj + x⊤

j u
⊤
j vzxz

= x⊤
z B[z, j]xj + x⊤

j B[j, z]xz

For each of cout output channels, we get a matrix Bsym of dimension k2n× k2n, giving Bsym a total
shape of [k2n, k2n, cout].

15

B Training Parameters

Parameter Type Default Value Description
Distribution Mode String easy Difficulty or type of environment distribu-

tion. Choices: easy, hard, exploration,
memory, extreme.

Environment Name String maze Name of the environment to train on.
Number of Environ-
ments

Integer 64 Number of environments to use in parallel
during training.

Number of Levels Integer 100,000 Number of unique levels available for train-
ing.

Start Level Integer 0 Starting level of the environment.
Method Label String hazelnut Label or identifier for the method used.
GPU ID Integer 7 GPU ID to use for training. Default is set

to target GPU 7.
Learning Rate Float 0.0001 Learning rate for the optimizer.
Entropy Coefficient Float 0.01 Coefficient controlling entropy regulariza-

tion.
Value Function Coef-
ficient

Float 0.5 Coefficient balancing value function loss
during training.

Discount Factor (γ) Float 0.999 Discount factor for future rewards.
Lambda (λ) Float 0.95 Generalized advantage estimation (GAE)

discount factor.
Clip Range Float 0.2 PPO clip range for policy loss updates.
Maximum Gradient
Norm

Float 0.5 Maximum allowable gradient norm for clip-
ping.

Steps per Update Integer 256 Number of environment steps per policy
update.

Batch Size Integer 8 Batch size used for training.
Number of Epochs
per Update

Integer 3 Number of training epochs per policy up-
date.

Maximum Training
Steps

Integer 12,800,000,000 Maximum number of total environment
steps for training.

Pooling Method String avg Pooling method used in the architecture.
Options: avg, max, etc.

Table 1: Training parameters for ProcGen training

C Probe Results

Layer Sequence 0 (%) Sequence 1 (%) Sequence 2 (%) Fully Connected (%)
Initial Conv 99.88 -
Conv 100.00 100.00 100.00 -
MaxPool 99.88 100.00 100.00 -
ResBlock0 99.88 100.00 100.00 -
ResBlock0 Gated Conv 59.28 42.75 69.07 -
ResBlock1 100.00 100.00 100.00 -
ResBlock1 Gated Conv 69.07 0.00 40.12 -
Gated FC - - - 68.36
Logits FC - - - 81.20
Value FC - - - 2.73

Table 2: F1 scores for position probes trained on the output of different layers of the network. The
scores indicate how well each layer preserves cheese position information.

16

D Training resources

Each ProcGen environment and model combination trained in 15-20 GPU hours on a 48GB VRAM
4xA40 gpu node

E Ablation supplemental figure

Figure 13: Keeping just first eigenvector for each output action in the final FC layer is enough to
preserve near 100% success rate in solving mazes.

17

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
We make 4 claims in the contributions section of our Introduction.
For (1), see Figure 1, Figure 2, and BIMPALA matches IMPALA performance
For (2), see Decomposing Convolutions and Appendix A
For (3), see Ablation within the standard bases and Figure 7
For (4), see Protocol to enhance interpretability for RL with probes, Interpretability based
on action features, Steering Experiments and corresponding figures in each subsection
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [YES]
Justification: We discuss the paper’s Limitations in the Discussion
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

18

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [YES]

Justification: Our decomposition method does not make any assumptions other than a
bilinear convolution, which is clearly stated in the text.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [YES]

Justification: Our paper provides all the information necessary in order to reproduce our
results, including traning parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

19

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We acknowledge the value of open-source contributions for reproducibility.
However, the current codebase requires significant refactoring to remove internal depen-
dencies and improve documentation before public release. We plan to provide a clean,
well-documented implementation post-review. The manuscript includes comprehensive
methodological details and hyperparameter specifications to facilitate understanding and
reimplementation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include a table of training parameters in Appendix B and discuss seeding
and maze generation in Eigenfilter decomposition for singular probe channels

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: Error bars as SEM, as stated in Figure 5’s caption for throughout the paper, are
plotted whenever appropriate. For training runs, we only ran each training once, and hence
no variance is reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the training resources in Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics and we do not violate any of the points listed.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

21

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While generally useful for future AI safety, the immediate impacts of our
work on society are essentially nonexistent. Given the scope of the paper, we can not justify
making claims towards a better, safer, society. Equally, nothing in our paper justifies safety
risk concerns.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t upload a new model or any tools. Our model is simply a simplified
form of an already existing model and we do not use it in any dangerous context.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

22

Justification: ProcGen and procgen-tools assets were used in compliance with the MIT
License and cited in the paper. IMPALA was simplified and coded from scratch in pytorch
in compliance with GNU license and cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We dont introduce new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not crowdsource or use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

23

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human or living subjects were used in the study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs beyond getting feedback on certain, limited lines of
code. The manuscript was written without LLM assistance.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Model and Environment
	Bilinear Gating

	Methods
	Decomposing Convolutions
	Separating channels from spatial coordinates with SVD
	Procgen training
	Probe protocol
	Ablations
	Steering

	Experiments
	BIMPALA matches IMPALA performance
	Protocol to enhance interpretability for RL with probes
	Case study: cheese probe
	Ablation within the standard bases
	Interpretability based on action features
	Steering

	Discussion
	Tensor Decomposition of Bilinear Convolution Tensors
	Training Parameters
	Probe Results
	Training resources
	Ablation supplemental figure

