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Abstract

Efforts to interpret reinforcement learning (RL) models tend to target the activation1

space, and fewer recent studies target the weight space. Here we use a dual frame-2

work of both the weight and activation spaces in order to interpret and intervene in3

a RL network. To enhance RL interpretability, we enable linear decomposition via4

linearization of an IMPALA network : we replace nonlinear activation functions5

in both convolution and fully connected layers with bilinear variants (we term6

BIMPALA). Previous work on MLPs have shown that bilinearity enables quantify-7

ing functional importance through weight-based eigendecomposition to identify8

interpretable low rank structure [Pearce et al., 2024b]. By extending existing MLP9

decomposition techniques to convolution layers, we are able to analyze channel10

and spatial dimensions separately through singular value decomposition. We find11

BIMPALA networks to be feasible and competitive, as they perform comparably12

to their ReLU counterparts when we train them on various ProcGen games. Impor-13

tantly, we find the bilinear approach in combination with activation-based probing14

provide advantages for interpretability and agent control. In a maze-solving agent,15

we find a set of orthonomal eigenvectors (we term eigenfilters), the top-2 of which16

act as cheese (solution target) detectors, and another pair of eigenfilters we can17

manipulate to control the policy.18

Introduction19
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Figure 1: BIMPALA: a simplified IMPALA architecture (black) modified by replacing ReLU
operations with bilinear gating (red) for both the convolution (CONV2D; Equation 3) and fully
connected (FC; Equation 1) layers.

While recent advances in reinforcement learning have produced increasingly capable reasoning agents20

[Mnih et al., 2013, Gu et al., 2017, Baker et al., 2019], analyzing their internal mechanisms has21
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proven difficult. This challenge is particularly pronounced in multi-step reasoning tasks, where the22

relationship between model architecture and computational strategy is often opaque. Additionally,23

there is a general notion of the performance-interpretability trade-off [Assis et al., 2025], which24

argues that more transparent models tend to have lower performance.25

In this work, we demonstrate that increased interpretability need not come at the cost of performance.26

We explore an approach embedded within mechanistic interpretability. Mechanistic interpretability27

has emerged as a promising framework for understanding neural networks by identifying and28

analyzing features - specific directions in activation space that encode meaningful computational29

patterns [Cunningham et al., 2023, Trenton Bricken et al., 2023, Adly Templeton et al., 2024, Rimsky30

et al., 2024]. Traditional approaches have focused primarily on activation patterns during inference,31

but recent work suggests that analyzing model weights directly may provide complementary insights.32

Our work explores a subset of models where nonlinearities are replaced with linear counterparts.33

Bilinear MLPs [Dauphin et al., 2017] offer an architectural innovation that enables direct interpretation34

of model weights. While initially proposed for language modeling tasks [Pearce et al., 2024b], we35

show their benefits extend to understanding an agent’s spatial decision-making. As proof of concept36

that the bilinear approach can indeed benefit interpretability of RL models, we simplified a common37

RL agent, IMPALA [Espeholt et al., 2018], and compared it with its bilinear counterpart (Figure 1).38

We argue the importance of studying weights and activations jointly. By analyzing both the weight39

space through eigenfilters and the activation space through targeted probes, we find interpretable40

features that track specific computational steps, from interpretable convolution features to the action41

features. Additionally, we find that while standard basis analyses can appear informative, they often42

mask the true computational structure of the network. Instead, we show that bases informed by action43

spaces and targeted probes provide more reliable insights into model behavior during multi-step tasks.44

Our contributions (1) We introduce a bilinear architectures (BIMPALA) for RL and show that it45

trains well in "easy" ProcGen environments. (2) We show how bilinear convolution layers can be46

decomposed into bases of self interacting eigenfilters. (3) We show that the standard basis is often47

non-interpretable and less informative compared to basis derived from probes or the action/logits48

space. (4) We propose new techniques using weights alongside activations to analyze mechanisms49

in bilinear convolution networks. We validate our approach by finding a cheese detector on a maze50

solving agent and re-targeting the agent towards counterfactual cheese positions.51

Background52

The core benefit of the bilinear approach hinges on removing nonlinearities from the neural network,53

allowing spectral decomposition. Spectral decomposition of MLPs has revealed interpretable low-54

rank structure across multiple tasks Pearce et al. [2024a], and we extend this approach to convolution55

layers for an RL agent.56

In this section, we briefly review multi-layer perceptrons (MLPs), convolutions, and bilinear gating.57

Throughout, we denote scalars like s, vectors like v, matrices like M , tensors like T, dot product58

with · , pointwise product with ⊙, and convolution with ∗.59

Bilinear MLPs A conventional MLP is composed of 3 (or more) fully-connected (FC) layers,60

where inputs are up-projected into a hidden layer and then down-projected into the output layer. The61

hidden activations of a conventional MLP can be characterized as a Rn → Rm encoder which takes62

input x and applies a learned linear transformation, with weights W and bias b, followed by an63

activation function σ.64

Modern models, such as LLMs, feature an encoder variant called a Gated Linear Unit (GLU),65

comprised of the pointwise product of two linear up-projections, with learned weights F and G, and66

only one of the projections is passed through an activation function. Omitting biases for simplicity,67

EncGLU(x, F,H) = σ(xF )⊙ (xH)

Bilinear encoders, and our bilinear FC in Figure 1, use an identity activation, keeping the overall68

transformation linear:69

FCBilinear(x, F,H) = (xF )⊙ (xH) (1)
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This linearization allows spectral decomposition of the weights and activations, which can have70

interpretable value [Pearce et al., 2024b]. Importantly, Pearce et al. [2024b] show bilinear MLPs can71

be expressed as a third order tensor B, comprised of interaction matrices for each output dimension,72

parameterizing the interactions between pairs of inputs. In Decomposing Convolutions, we provide73

an analog B for convolution layers.74

Convolution layers A 2D convolution layer (Conv2D) takes an input X of shape [width, height, cin]75

where cin is the number of input channels, and applies a learned kernel U of width k with stride s76

followed by a pointwise activation function σ:77

Conv2D(X,U) = σ(X ∗U)

With s = 1, Conv2D outputs a tensor of shape [width, height, , cout], where cout is the number of78

output channels. Kernel U of shape [k, k, cin, cout] acts locally on k × k patches, and we denote the79

kernel for a given output channel i as U(i). Assuming an identity activation and letting ℓ = ⌊K
2 ⌋,80

kernel weights U (i), as illustrated in Appendix A Figure 12 (top left in blue), act on a local patch81

around spatial coordinates (α, β) via:82

u(α, β, i) =

cin∑
j=1

∑
|k1|≤ℓ

∑
|k2|≤ℓ

U (i)[j, k1, k2] ·X[j, α+ k1, β + k2] (2)

Here, u(α, β, i) is a scalar, denoting output channel i’s entry at spatial location (α, β), while83

U (i)[j, k1, k2] and X[j, α + k1, β + k2] are row and column vectors from k × k matrices repre-84

senting the kernel and current input patch respectively for a single input-output channel combination.85

Analogous to a bilinear FC (Equation 1), a bilinear convolution layer (BConv2D) would then require86

two convolutions. Assuming kernels U and V ,87

BConv2D(x,U,V) = (x ∗U)⊙ (x ∗ V) (3)

Decomposing Convolutions88

The main advantage of adopting the bilinear form for a convolution layer is decomposition into sets89

of orthonormal eigenvectors for each output channel, which we call eigenfilters. Analogous to Pearce90

et al. [2024b], we can express a BConv2D layer as a tensor B, comprised of interaction matrices (B)91

for each (scalar) output. Specifically, B parameterizing the input channel interactions between pairs92

of inputs at a single spatial location for a single output channel (α, β, i) (Figure 12 in Appendix A).93

Importantly, spectral decomposition is easily achievable because B has a symmetric form Bsym. In94

Appendix A, we derive Bsym for convolution layers and show it is equivalent to B. In short, for95

each of cout output channels, we get a matrix Bsym of dimension k2cin × k2cin. Hence, each spatial96

location of the input image contributes to B with shape [cout, k
2cin, k

2cin].97

Bilinear component decomposition protocol Similar to the decomposition approach in [Pearce98

et al., 2024b], we can fix an output vector z ∈ Rcout and multiply it by Bsym along the output channel99

dimension to produce a matrix Qz = zBsym of shape [k2cin, k
2cin], that functions as a quadratic100

form on the input space. Since convolution layers are locally connected rather than fully connected,101

the output vector z is in output channel space, and the decomposition produces an eigenbasis for102

the filters that we call eigenfilters. That is, you get a basis consisting of k2cin eigenfilters of shape103

[k, k, cin]. In spectral theorem terminology, we have Qz = FTΛF , where F is an orthonormal104

matrix (satisfying F−1 = FT ) of eigenvectors, and Λ is a real, diagonal matrix of eigenvalues.105

More generally, we can transform the entirety of the B tensor to change the channel basis to another.106

For example, we may find that another basis of the output channels is more informative than the107

standard basis. In order to capture this, we can rotate the basis with a rotation matrix R. Briefly, just108

as we can compute individual interaction matrices Qz for a vector z ∈ Rcout , we can compute a full109

basis and multiply Bsym by R to get Bsym
R that operates in the basis rotated with R.110

3



Contributions of Eigenfilters Since Qz is used in practice as a quadratic form, its contributions111

towards z for a flattened patch xpatch centered around a given position are given by Qz(xpatch) =112

xpatch
TQxpatch = xpatch

TFT
z ΛzFzxpatch = (Fzxpatch)

TΛz(Fzxpatch) =
∑

i λ
i
z(f

i
zxpatch)

2113

and Qz =
∑

i λ
i
zf

i
zf

iT
z . Each f i is an individual eigenfilter, and has shape [k, k, cin]. As the114

eigenfilter activations are applied to every valid position uniformly, we can equivalently write115

Qz(X) =
∑

i λ
i
z(f

i
z ∗ X)2. Note that when applying an eigenfilter to activations we treat the116

eigenfilter as a regular convolution filter.117

Separating channels from spatial coordinates with SVD Given a weight or activation vector A118

with shape [width, height, cout], having both spatial and channel dimensions, A can be reshaped into119

[cout,width · height] and decomposed via SVD:120

A = SΣV T =
∑
i

σisiv
T
i

where S has shape [cout, cout], and V has shape [width · height,width · height]. The top left singular121

vectors si live in the channel space, and can be used as output vectors for a BConv2D layer.122

Since the top singular vectors in channel space also have a singular value, we can aggregate the123

contributions of the eigenvalues and the eigenvectors together. We can derive an eigendecomposition124

of a BConv2D layer for each singular channel, to get the following:125

Qprobe(A) =

cout∑
j=1

sjQ
zj (A)

=

cout∑
j=1

sj
∑
i

λi
zj
(f i

zj
∗A)2

=

cout∑
j=1

∑
i

(sjλ
i
zj
)(f i

zj
∗A)2

The importance of an eigenfilter for its singular channel is parameterized by the joint term sjλ
i
zj

.126

Note that sjλi
zj

is signed, as the eigenvalues can be negative.127

Experiments128

In order to evaluate the usefulness of the bilinear approach in the context of RL, we ran a series129

of experiments. We detail training procedures, experimental protocols, and key findings from both130

quantitative and qualitative perspectives. We ask (1) do bilinear architectures achieve competitive131

performance compared to standard models like ReLU-based IMPALA and (2) do bilinear layers132

provide interpretable representations through spectral decomposition and probe-based analyses?133

In order establish feasibility, we first evaluate and compare performance between BIMPALA and134

IMPALA on a handful or randomly selected "easy" ProcGen environments.135

We next train probes and propose a protocol to decompose probes in conjunction with convolution136

layers. This allows us to identify a cheese filter using the top-2 eigenfilters of a convolution layer.137

We next explore methods without the need for training probes. First, we turn to the standard channel138

bases and perform ablation experiments. Unfortunately, we do not find the standard bases alone to be139

informative enough for interpretability.140

We then decide to adopt two different approaches using both weights and activations without training141

probes. First, we decompose the full connected layer along each policy action and perform ablation142

experiments. We find action features to be faithful to actions needed to solve the maze. Finally, we143

perform steering experiments where we re-target the agent towards a counterfactual cheese position.144

BIMPALA matches IMPALA performance145

Architecture baseline We adapted the existing IMPALA framework Espeholt et al. [2018] by (1)146

simplifying the network by removing some convolution layers so that the residual block is a simple147
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gated convolution with a skip connection as well as removing the LSTM layer after the FC layer and148

(2) modifying the original structure to incorporate bilinear gating mechanisms in both Conv2D and149

FC layers (Figure 1). We refer to the bilinear variant as BIMPALA (Bilinear IMPALA).150

Figure 2: Performance comparison between ReLU and
Bilinear IMPALA across different ProcGen environ-
ments.

Evaluation As proof of concept for the151

bilinear approach to RL, we picked a sim-152

plified architecture and trained on tasks153

within a simple established benchmark, the154

ProcGen environment [Cobbe et al., 2020],155

with proximal policy optimization (PPO)156

as PPO tends to be effective and easy to157

tune [Schulman et al., 2017]. We trained158

our simplified IMPALA and BIMPALA159

alongside each other on the "easy" distribu-160

tions, which are computationally inexpen-161

sive and converge in less time steps than162

harder distributions, for a handful of envi-163

ronments, including Maze, Heist, Plunder,164

and DodgeBall. For full training parame-165

ters, see Table 1 in Appendix B.166

We find BIMPALA matches and occasion-167

ally outperforms IMPALA across environ-168

ments we tested (Figure 2), validating the169

feasibility of using bilinear layers for RL170

tasks. Specifically, BIMPALA generally171

demonstrates faster learning, higher final172

performance in terms of expected return,173

and maintaining lower entropy.174

Protocol to enhance interpretability for RL with probes175

Having established that the bilinear approach can perform competitively in RL environments, we next176

want to use this architecture to enhance interpretability. We suggest a protocol to connect bottom-up177

mechanistic approaches to top-down concept based approaches.178

1. Train a linear probe for a concept of interest on a Conv2D activation space with shape179

[width,height, cout], reshaped as [cout,width · height]180

2. Rewrite the probe’s weights using SVD, and use the top left channel-space singular vectors181

as output directions for a last BConv2D layer. Determine the number of singular components182

needed, based on the distribution of singular values.183

3. Perform an eigendecomposition towards the top left singular vectors in channel space,184

to identify directions in the filter weights that write to the probe (similar to Pearce et al.185

[2024b]).186

This protocol will yield a full basis of eigenvectors for each output direction. Note that it’s possible187

for the important eigenvectors between output directions to not be fully orthogonal, especially if188

interpreting multiple probes in parallel. Although we do not investigate overlapping filters here,189

analyzing the cosine similarity between important eigenvectors relating to different singular channels,190

where importance is measured by |sjλi
uj
|, may further inform the function of the eigenvectors.191

Training concept probes With the protocol defined, the next step is to implement it by training192

concept probes for specific features and analyzing their decomposition. For the remainder of the193

paper, we focus on ProcGen’s Maze environment, where the player, a mouse, must navigate a maze194

to find the sole piece of cheese and earn a reward. We trained linear probes to detect the presence195

of the cheese at position (8, 14) in the maze by creating a dataset comprising 2000 mazes with the196

cheese at position (8, 14) and 2000 mazes without a cheese.197

We see that probes trained on the outputs of the residual blocks get about 99% accuracies and F1198

scores (Table 2 in Appendix C).199
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Figure 3: Singular values and explained
variance for cheese probe

Figure 4: Last BConv2D’s eigenfilter
spectrums towards cheese probe’s top
singular channel (left) and in the stan-
dard channel basis (right)

Dominant singular probe channels Next, we apply sin-200

gular value decomposition to the probes. The top singular201

component alone explains 30% of the variance, and 16202

components are needed to explain ≥ 90% of the variance203

(Figure 3).204

Eigenfilter decomposition for singular probe channels205

We then decomposed the last BConv2D layer towards the206

top singular channel. Whereas the channel basis spectra207

have just two eigenvalues, indicating that it may not be an208

informative basis, the singular spectrum is nondegenerate,209

and hence is more likely to be informative about the task.210

(Figure 4).211

In order to verify the importance of the singular spectrum212

for solving the maze, we repeated the decomposition for213

the first and second BConv2D layers and performed ab-214

lation experiments. In these and all following ablation215

experiments, we ensure that we run each set of ablations216

on the same mazes by using 2020 seeded environments,217

capping steps per rollout at 200200 to save runtime. We218

ablated all but the topk eigenfilters for each output chan-219

nel of each of the BConv2D layers. We reconstructed220

our networks and ran each of ablated models in the Maze221

environment (Figure 5).222

Figure 5: Maze metrics when
ablating parts (bottom - k+1)
of different convolution lay-
ers’ eigenfilter spectrum asso-
ciated with the cheese probe.
Here and subsequent plots, er-
ror bars are SEM

We find that maze performance recovers close to 100% with just the top-2 eigenfilters in the last223

BConv2D layer. In this last convolution layer, additional eigenfilters help solve the maze in less steps.224

For the first and second BConv2D layers, we see a different trend, where it takes 16 eigenfilters for225

maze performace to be recovered, and the contributions of each added eigenfilter is less step-like and226

more continuous. This adds credence to the notion that decomposing the layers towards the cheese227

probe’s top singular channel is informative.228

Figure 6: Activations for
the top positive (left)
and negative (right)
eigenfilters in the
second BConv2D layer,
for the cheese probe’s
top singular channel.
Activations for a maze
with cheese (top) vs
without cheese (bottom).
Middle plots show the
difference between the
activations with and
without cheese.

Furthermore, we find information229

about the cheese location from even230

just the top positive eigenfilter. In231

Figure 6, we visualize the top pos-232

itive and negative eigenfilter activa-233

tions for a set of pairs of mazes, one234

with the cheese at the selected posi-235

tion and the other without the cheese.236

While the positive filter activates on237

non-cheese patterns, the negative fil-238

ter down-weighs non-cheese patterns239

without erasing the cheese activation.240

The positive and negative activations241

of the respective filters result in a242

cheese detector filter.243

6



Ablation within the standard bases244

Figure 7: Maze metrics during standard
basis ablation.

While the probe approach is rather promising and we are245

successful in finding a cheese detector in the second con-246

volution layer, it may not be feasible nor scalable to train247

probes for each feature we may want to interpret. This is248

especially true once we move beyond toy-like tasks such249

as the Maze environment. Hence, despite the degenerate250

spectrum (Figure 4), we turn back to the standard basis.251

We ask how many eigenfilters are necessary for perfor-252

mance? We ablated all but the topk eigenfilters for the FC253

layer, all the BConv2D layers, or just the last BConV2D254

layer.255

As we may have predicted from Figure 4, the spectrum256

of the last BConv2D layer is not informative and is257

marginally necessary for full performance. The agent,258

when compared to the BIMPALA, has a similar success259

rate, in a relatively low number of extra steps, and receives260

similar rewards when we ablate the last BConv2D entirely261

(topk=0), (Figure 7).262

When we ablate all the BConv2D layers together, we see263

that the top-2 eigenfilters (per output channel) are sufficient to recover full performance (Figure 7).264

Full performance in the FC layer is achieved with the top eigenfilter. This eigenfilter is more important265

for performance than all the BConv2D layers combined, resulting in lower success in more steps with266

less reward when ablated.267

While the contribution of the FC layer relative to the BConv2D layer may be an important insight, it268

is also expected. We could expect the FC , as the last layer of the network that outputs the policy and269

value, to contain most the information about the next step and therefore be the largest contributor270

to performance. Beyond that, the standard channel basis by itself may not be very fruitful for271

decomposing the network for interpretability. For example, while we can deduce that in the last272

BConv2D layer, the top positive and negative eigenfilters work together (Figure 4, 7), we do not know273

anything more granular.274

Still, decomposition may be useful for interpretability beyond the standard bases and without training275

probes.276

Interpretability based on action features277

Figure 8: UP spectrum

The FC layer outputs the directions of movement for the policy (UP,278

DOWN, RIGHT, LEFT). Instead of training probes, we could alter-279

natively decompose the directions relevant for actions directly by280

decomposing in the direction of each action output. For example, Fig-281

ure 8 shows the eigenvalues in the action spectrum for the UP action.282

We can see many UP action eigenvectors in the FC layer, with one283

very large positive eigenvalue. We next used these action spectra of284

the FC layer in ablation experiments.285

Ablation In ablation experiments, we found that, despite the dense286

spectrum (Figure 8), preserving the top eigenvector for each action in287

the FC layer was sufficient for a 100% success rate (Figure 13 in Appendix E).288

In Figure 9, we see how a single UP eigenvector proves sufficient to encode the optimal path through289

the maze. Specifically, we see that the upward logit values are selectively increased along the solution290

path and suppressed near dead ends.291

Similarly, in Figure 10 we see the effect of the LEFT action spectrum. Note that the mouse, who292

is typically located at the bottom left corner at the start of an episode, can solve the maze without293

any LEFT eigenvectors (Figure 10, Top 0 LEFT). Yet, we see that increasing the number of LEFT294

eigenvectors allows the agent to reach the cheese from other locations, such as at the top. As we295
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add more left eigenvectors, we see that the misleading right arrows diminish and the agent gradually296

reconstructs its left arrows (Figure 10, Diff: Top 4 from ALL LEFT), making the maze solvable for297

more configurations.298

Figure 9: Vector field visu-
alizing maze navigation with-
out any (left) and with a sin-
gle (middle) UP eigenvector,
and the difference highlighted
in green (right). The top
UP eigenvector is sufficient
to solve the maze and with-
out UP eigenvectors, the agent
does not move upwards

Figure 10: LEFT action spectrum visualization in a maze environment. While the maze is solvable
without any LEFT eigenvector, adding LEFT eigenvectors allows solving the maze from other starting
positions (e.g. top or right of the cheese)

Steering Experiments299

Figure 11: Re-targeting the agent by intervening to redirect to-
wards a counterfactual cheese position (red dot)

Having seen the effect of action300

spectra on maze solving and the301

importance of the FC layer to302

solving the maze in general, we303

wondered if it was possible to304

redirect the agent while leaving305

the FC intact. In particular, we306

wondered if we could redirect the307

agent by intervening in the con-308

volution layers.309

We reproduced steering exam-310

ples following [Mini et al., 2023].311

Rather than averaging activation312

spaces together, we directly alter the weight contributions from hidden layers (Res in Equation 4).313

We obtain the activations for the maze’s cheese position (xcheese in Equation 4) by subtracting314

the activations for the maze without the cheese from the activations for the maze with the cheese.315

Similarly, we get the activations for the counterfactual cheese position (ycheese in Equation 4) by316

subtracting the activations for the maze without the cheese from the activations for the maze with the317

cheese in the counterfactual position. We intervene using the top-2 eigenfilters (eig in Equation 4)318

and overwrite the contributions, using the equation:319

Res′ = Res− eig ∗ (xcheese) + eig ∗ (ycheese) (4)

In essence, we are trying to re-target the agent towards a counterfactual cheese position (Figure 11)320

on the opposite side of the maze. While the mouse can still solve the maze, we can see that the321

vector fields indicating movement are altered. Specifically, we can see arrows pointing towards322

the counterfactual cheese position during intervention (Figure 11, middle). And if we look at the323

difference between the original and intervened mazes, we can see that the green arrows draw paths324

away from the real cheese towards the counterfactual cheese position.325

8



Discussion326

Summary We introduce an approach to interpreting convolution neural networks, by replacing327

nonlinearities with bilinear variants that achieve comparable and occasionally superior performance,328

although this was not our aim. Our approach allows us to find a closed form for self-interacting329

convolution features that can be combined with a top down concept based approach to derive causally330

relevant mechanisms used by RL agents in their decision making process. Therefore, we see great331

value in bilinear variants that offer more interpretability prospects while achieving competitive332

performance to its non-analytic variants.333

Limitations We found significant challenges in interpreting the units of computation in an entirely334

data independent fashion. Instead, we found that top activating dataset examples for eigenfilters tend335

not to be informative. Still, the decomposition allows us to break concept probes into more granular336

units of computation.337

We considered only one architecture, IMPALA, for our policy, although we expect the general338

approach of replacing nonlinearities with bilinear variants to be widely applicable.339

Due to computational requirements, we trained on the "easy" mode of a handful of ProcGen environ-340

ments and we only analyzed the BIMPALA network for interpretability in the context of the Maze341

environment. It is not clear if the methods we presented here will transfer well to more complex342

environments with multiple objectives.343

Studying activations of probes, eigenvectors and eigenfilters across the temporal dimension may344

help in identifying interesting phenomenon such as reasoning and planning in RL environment.345

However, this might not be tractable with our current method as interactions between eigenfilters346

grow exponentially with each time step. Additionally, we do not concretely show how to derive347

insights specifically for multi-step reasoning, and aim to address this in future work.348

We do not address a range of components often found in convolution neural networks, such as batch349

norm, dropout, or pooling. While we do not examine these components here, their implications,350

such as the performance tradeoffs between different pooling strategies, should be considered when351

evaluating architecture variants in the future.352
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A Tensor Decomposition of Bilinear Convolution Tensors404

Figure 12: Transformation from spatial convolution operations (left) to a bilinear interaction matrix
B (right) associated with scalar entry y(α, β, i) in output channel i. (Left, top, blue) Computation
of spatial convolutions U (i) with input Xj , producing terms aj . (Left, bottom, red) Computes
convolutions V (i) with input Xk, producing terms bk. (Right) The previous operations can be
reformulated as a product of three block matrices, where the outer product of channel responses
(U⊤V ) forms a symmetric bilinear matrix. The diagram emphasizes how local spatial convolutions
(shown in the cubes) are transformed into a bilinear form B.

Consider the output of a convolution layer at location (α, β) for the i-th output channel:405

u(α, β, i) =

n∑
j

K∑
k1

K∑
k2

U (i)[j, k1, k2] ·X[j, α+ k1, β + k2]

We can define the contribution of the filter applied to the jth input channel as:

aj =

K∑
k1

K∑
k2

U (i)[j, k1, k2] ·X[j, α+ k1, β + k2]

This allows us to rewrite the output as:406

u(α, β, i) =

n∑
j

aj

We can flatten the input tensor X[j, α : α+k, β : β+k] into a K2-dimensional vector for each spatial407

location (α, β). Let us denote this flattened version as X[j, :, :]f . Similarly, we can write a flattened408

version of the filter U (i)[j, :, :], which we’ll call U (i)[j, :, :]f . Note that the filter is independent of the409

position (α, β).410

Using these flattened representations, we can express aj as:411

aj = U (i)[j, :, :]f ·X[j, :, :]f

For readability, we can simplify the notation of the flattened vectors. We will also remove the notation412

for the output channel (i) , as all the operations we discuss here are for a single output channel.413

Simplifying the notation, we get:414

aj = Uj ·Xj

Note that Uj is a K2 row vector, and Xj is a K2 column vector. The gated operation is given by:415

u(α, β, i)⊙ v(α, β, i)

where v is the output of another Conv2D block. We perform a pointwise multiplication of the outputs416

u and v:417

u(α, β, i) =

n∑
aj , where aj = UjXj
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and using the same simplified notation for V (i)[k, :, :]f :418

v[α, β, i] =

n∑
bk, where bk = VkXk

Therefore, for any α and β:419

u[α, β, i]⊙ v[α, β, i] =

 n∑
j

aj

( n∑
k

bk

)

=

n∑
j

n∑
k

(ajbk)

Interaction of channel k with channel j is given by:420

ajbk = (UjXj)(VkXk)

= (Xj
TUT

j )(VkXk) (since aj is a scalar)
Note that we can write the following sum:421

n∑
j

n∑
k

XT
j U

T
j VkXk

as a product of three block matrices Figure 12:
[
XT

1 XT
2 · · · XT

n

] U
T
1 V1 · · · UT

1 Vn

...
...

UT
n V1 UT

n Vn



X1

X2

...
Xn

422

The bilinear matrix B has a symmetric form given by423

Bsym =


UT

1 V1+(UT
1 V1)

T

2 · · · UT
1 Vn+(UT

n V1)
T

2
...

...
UT

n V1+(UT
1 Vn)

T

2 · · · UT
n Vn+(UT

n Vn)
T

2


We show that Bsym is indeed symmetric over all possible input pairs:424

XT
j B

symXk = XT
j

(
UT
j Vk + (UT

k Vj)
T

2

)
Xk

XT
k B

symXj = XT
k

(
UT
k Vj + (UT

j Vk)
T

2

)
Xj

= XT
j

(
V T
j Uk + UT

j Vk

2

)
Xk

= XT
j

(
UT
j Vk + (UT

k Vj)
T

2

)
Xk

Additionally, we can see that:425

XT
j

(
UT
j Vk + (UT

k Vj)
T

2

)
Xk

+XT
k

(
UT
k Vj + (UT

j Vk)
T

2

)
Xj

= XT
j U

T
j VkXk +XT

k U
T
k VjXj

for all j and k. The respective red and blue terms are compatible, because each term in the expansion426

is a scalar and is thus equal to its transpose. Therefore, Bsym agrees with B on every input.427

For each of m output channels, we get a matrix Bsym of dimension nK2 × nK2, making its total428

shape [nK2, nK2,m].429
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B Training Parameters430

Parameter Type Default Value Description
Distribution Mode String easy Difficulty or type of environment distribu-

tion. Choices: easy, hard, exploration,
memory, extreme.

Environment Name String maze Name of the environment to train on.
Number of Environ-
ments

Integer 64 Number of environments to use in parallel
during training.

Number of Levels Integer 100,000 Number of unique levels available for train-
ing.

Start Level Integer 0 Starting level of the environment.
Method Label String hazelnut Label or identifier for the method used.
GPU ID Integer 7 GPU ID to use for training. Default is set

to target GPU 7.
Learning Rate Float 0.0001 Learning rate for the optimizer.
Entropy Coefficient Float 0.01 Coefficient controlling entropy regulariza-

tion.
Value Function Coef-
ficient

Float 0.5 Coefficient balancing value function loss
during training.

Discount Factor (γ) Float 0.999 Discount factor for future rewards.
Lambda (λ) Float 0.95 Generalized advantage estimation (GAE)

discount factor.
Clip Range Float 0.2 PPO clip range for policy loss updates.
Maximum Gradient
Norm

Float 0.5 Maximum allowable gradient norm for clip-
ping.

Steps per Update Integer 256 Number of environment steps per policy
update.

Batch Size Integer 8 Batch size used for training.
Number of Epochs
per Update

Integer 3 Number of training epochs per policy up-
date.

Maximum Training
Steps

Integer 12,800,000,000 Maximum number of total environment
steps for training.

Pooling Method String avg Pooling method used in the architecture.
Options: avg, max, etc.

Table 1: Training parameters for ProcGen training

C Probe Results431

Layer Sequence 0 (%) Sequence 1 (%) Sequence 2 (%) Fully Connected (%)
Initial Conv 99.88 -
Conv 100.00 100.00 100.00 -
MaxPool 99.88 100.00 100.00 -
ResBlock0 99.88 100.00 100.00 -
ResBlock0 Gated Conv 59.28 42.75 69.07 -
ResBlock1 100.00 100.00 100.00 -
ResBlock1 Gated Conv 69.07 0.00 40.12 -
Gated FC - - - 68.36
Logits FC - - - 81.20
Value FC - - - 2.73

Table 2: F1 scores for position probes trained on the output of different layers of the network. The
scores indicate how well each layer preserves cheese position information.
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D Training resources432

Each ProcGen environment and model combination trained in 15-20 GPU hours on a 48GB VRAM433

4xA40 gpu node434

E Ablation supplemental figure435

Figure 13: Keeping just first eigenvector for each output action in the final FC layer is enough to
preserve near 100% success rate in solving mazes.
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NeurIPS Paper Checklist436

1. Claims437

Question: Do the main claims made in the abstract and introduction accurately reflect the438

paper’s contributions and scope?439

Answer: [Yes]440

Justification:441

We make 4 claims in the contributions section of our Introduction.442

For (1), see Figure 1, Figure 2, and BIMPALA matches IMPALA performance443

For (2), see Decomposing Convolutions and Appendix A444

For (3), see Ablation within the standard bases and Figure 7445

For (4), see Protocol to enhance interpretability for RL with probes, Interpretability based446

on action features, Steering Experiments and corresponding figures in each subsection447

Guidelines:448

• The answer NA means that the abstract and introduction do not include the claims449

made in the paper.450

• The abstract and/or introduction should clearly state the claims made, including the451

contributions made in the paper and important assumptions and limitations. A No or452

NA answer to this question will not be perceived well by the reviewers.453

• The claims made should match theoretical and experimental results, and reflect how454

much the results can be expected to generalize to other settings.455

• It is fine to include aspirational goals as motivation as long as it is clear that these goals456

are not attained by the paper.457

2. Limitations458

Question: Does the paper discuss the limitations of the work performed by the authors?459

Answer: [YES]460

Justification: We discuss the paper’s Limitations in the Discussion461

Guidelines:462

• The answer NA means that the paper has no limitation while the answer No means that463

the paper has limitations, but those are not discussed in the paper.464

• The authors are encouraged to create a separate "Limitations" section in their paper.465

• The paper should point out any strong assumptions and how robust the results are to466

violations of these assumptions (e.g., independence assumptions, noiseless settings,467

model well-specification, asymptotic approximations only holding locally). The authors468

should reflect on how these assumptions might be violated in practice and what the469

implications would be.470

• The authors should reflect on the scope of the claims made, e.g., if the approach was471

only tested on a few datasets or with a few runs. In general, empirical results often472

depend on implicit assumptions, which should be articulated.473

• The authors should reflect on the factors that influence the performance of the approach.474

For example, a facial recognition algorithm may perform poorly when image resolution475

is low or images are taken in low lighting. Or a speech-to-text system might not be476

used reliably to provide closed captions for online lectures because it fails to handle477

technical jargon.478

• The authors should discuss the computational efficiency of the proposed algorithms479

and how they scale with dataset size.480

• If applicable, the authors should discuss possible limitations of their approach to481

address problems of privacy and fairness.482

• While the authors might fear that complete honesty about limitations might be used by483

reviewers as grounds for rejection, a worse outcome might be that reviewers discover484

limitations that aren’t acknowledged in the paper. The authors should use their best485

judgment and recognize that individual actions in favor of transparency play an impor-486

tant role in developing norms that preserve the integrity of the community. Reviewers487

will be specifically instructed to not penalize honesty concerning limitations.488
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3. Theory assumptions and proofs489

Question: For each theoretical result, does the paper provide the full set of assumptions and490

a complete (and correct) proof?491

Answer: [YES]492

Justification: Our decomposition method does not make any assumptions other than a493

bilinear convolution, which is clearly stated in the text.494

Guidelines:495

• The answer NA means that the paper does not include theoretical results.496

• All the theorems, formulas, and proofs in the paper should be numbered and cross-497

referenced.498

• All assumptions should be clearly stated or referenced in the statement of any theorems.499

• The proofs can either appear in the main paper or the supplemental material, but if500

they appear in the supplemental material, the authors are encouraged to provide a short501

proof sketch to provide intuition.502

• Inversely, any informal proof provided in the core of the paper should be complemented503

by formal proofs provided in appendix or supplemental material.504

• Theorems and Lemmas that the proof relies upon should be properly referenced.505

4. Experimental result reproducibility506

Question: Does the paper fully disclose all the information needed to reproduce the main ex-507

perimental results of the paper to the extent that it affects the main claims and/or conclusions508

of the paper (regardless of whether the code and data are provided or not)?509

Answer: [YES]510

Justification: Our paper provides all the information necessary in order to reproduce our511

results, including traning parameters.512

Guidelines:513

• The answer NA means that the paper does not include experiments.514

• If the paper includes experiments, a No answer to this question will not be perceived515

well by the reviewers: Making the paper reproducible is important, regardless of516

whether the code and data are provided or not.517

• If the contribution is a dataset and/or model, the authors should describe the steps taken518

to make their results reproducible or verifiable.519

• Depending on the contribution, reproducibility can be accomplished in various ways.520

For example, if the contribution is a novel architecture, describing the architecture fully521

might suffice, or if the contribution is a specific model and empirical evaluation, it may522

be necessary to either make it possible for others to replicate the model with the same523

dataset, or provide access to the model. In general. releasing code and data is often524

one good way to accomplish this, but reproducibility can also be provided via detailed525

instructions for how to replicate the results, access to a hosted model (e.g., in the case526

of a large language model), releasing of a model checkpoint, or other means that are527

appropriate to the research performed.528

• While NeurIPS does not require releasing code, the conference does require all submis-529

sions to provide some reasonable avenue for reproducibility, which may depend on the530

nature of the contribution. For example531

(a) If the contribution is primarily a new algorithm, the paper should make it clear how532

to reproduce that algorithm.533

(b) If the contribution is primarily a new model architecture, the paper should describe534

the architecture clearly and fully.535

(c) If the contribution is a new model (e.g., a large language model), then there should536

either be a way to access this model for reproducing the results or a way to reproduce537

the model (e.g., with an open-source dataset or instructions for how to construct538

the dataset).539

(d) We recognize that reproducibility may be tricky in some cases, in which case540

authors are welcome to describe the particular way they provide for reproducibility.541
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In the case of closed-source models, it may be that access to the model is limited in542

some way (e.g., to registered users), but it should be possible for other researchers543

to have some path to reproducing or verifying the results.544

5. Open access to data and code545

Question: Does the paper provide open access to the data and code, with sufficient instruc-546

tions to faithfully reproduce the main experimental results, as described in supplemental547

material?548

Answer: [No]549

Justification: We acknowledge the value of open-source contributions for reproducibility.550

However, the current codebase requires significant refactoring to remove internal depen-551

dencies and improve documentation before public release. We plan to provide a clean,552

well-documented implementation post-review. The manuscript includes comprehensive553

methodological details and hyperparameter specifications to facilitate understanding and554

reimplementation.555

Guidelines:556

• The answer NA means that paper does not include experiments requiring code.557

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/558

public/guides/CodeSubmissionPolicy) for more details.559

• While we encourage the release of code and data, we understand that this might not be560

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not561

including code, unless this is central to the contribution (e.g., for a new open-source562

benchmark).563

• The instructions should contain the exact command and environment needed to run to564

reproduce the results. See the NeurIPS code and data submission guidelines (https:565

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.566

• The authors should provide instructions on data access and preparation, including how567

to access the raw data, preprocessed data, intermediate data, and generated data, etc.568

• The authors should provide scripts to reproduce all experimental results for the new569

proposed method and baselines. If only a subset of experiments are reproducible, they570

should state which ones are omitted from the script and why.571

• At submission time, to preserve anonymity, the authors should release anonymized572

versions (if applicable).573

• Providing as much information as possible in supplemental material (appended to the574

paper) is recommended, but including URLs to data and code is permitted.575

6. Experimental setting/details576

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-577

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the578

results?579

Answer: [Yes]580

Justification: We include a table of training parameters in Appendix B and discuss seeding581

and maze generation in Eigenfilter decomposition for singular probe channels582

Guidelines:583

• The answer NA means that the paper does not include experiments.584

• The experimental setting should be presented in the core of the paper to a level of detail585

that is necessary to appreciate the results and make sense of them.586

• The full details can be provided either with the code, in appendix, or as supplemental587

material.588

7. Experiment statistical significance589

Question: Does the paper report error bars suitably and correctly defined or other appropriate590

information about the statistical significance of the experiments?591

Answer: [Yes]592
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Justification: Error bars as SEM, as stated in Figure 5’s caption for throughout the paper, are593

plotted whenever appropriate. For training runs, we only ran each training once, and hence594

no variance is reported.595

Guidelines:596

• The answer NA means that the paper does not include experiments.597

• The authors should answer "Yes" if the results are accompanied by error bars, confi-598

dence intervals, or statistical significance tests, at least for the experiments that support599

the main claims of the paper.600

• The factors of variability that the error bars are capturing should be clearly stated (for601

example, train/test split, initialization, random drawing of some parameter, or overall602

run with given experimental conditions).603

• The method for calculating the error bars should be explained (closed form formula,604

call to a library function, bootstrap, etc.)605

• The assumptions made should be given (e.g., Normally distributed errors).606

• It should be clear whether the error bar is the standard deviation or the standard error607

of the mean.608

• It is OK to report 1-sigma error bars, but one should state it. The authors should609

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis610

of Normality of errors is not verified.611

• For asymmetric distributions, the authors should be careful not to show in tables or612

figures symmetric error bars that would yield results that are out of range (e.g. negative613

error rates).614

• If error bars are reported in tables or plots, The authors should explain in the text how615

they were calculated and reference the corresponding figures or tables in the text.616

8. Experiments compute resources617

Question: For each experiment, does the paper provide sufficient information on the com-618

puter resources (type of compute workers, memory, time of execution) needed to reproduce619

the experiments?620

Answer: [Yes]621

Justification: We describe the training resources in Appendix D622

Guidelines:623

• The answer NA means that the paper does not include experiments.624

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,625

or cloud provider, including relevant memory and storage.626

• The paper should provide the amount of compute required for each of the individual627

experimental runs as well as estimate the total compute.628

• The paper should disclose whether the full research project required more compute629

than the experiments reported in the paper (e.g., preliminary or failed experiments that630

didn’t make it into the paper).631

9. Code of ethics632

Question: Does the research conducted in the paper conform, in every respect, with the633

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?634

Answer: [Yes]635

Justification: We have read the code of ethics and we do not violate any of the points listed.636

Guidelines:637

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.638

• If the authors answer No, they should explain the special circumstances that require a639

deviation from the Code of Ethics.640

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-641

eration due to laws or regulations in their jurisdiction).642

10. Broader impacts643
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Question: Does the paper discuss both potential positive societal impacts and negative644

societal impacts of the work performed?645

Answer: [NA]646

Justification: While generally useful for future AI safety, the immediate impacts of our647

work on society are essentially nonexistent. Given the scope of the paper, we can not justify648

making claims towards a better, safer, society. Equally, nothing in our paper justifies safety649

risk concerns.650

Guidelines:651

• The answer NA means that there is no societal impact of the work performed.652

• If the authors answer NA or No, they should explain why their work has no societal653

impact or why the paper does not address societal impact.654

• Examples of negative societal impacts include potential malicious or unintended uses655

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations656

(e.g., deployment of technologies that could make decisions that unfairly impact specific657

groups), privacy considerations, and security considerations.658

• The conference expects that many papers will be foundational research and not tied659

to particular applications, let alone deployments. However, if there is a direct path to660

any negative applications, the authors should point it out. For example, it is legitimate661

to point out that an improvement in the quality of generative models could be used to662

generate deepfakes for disinformation. On the other hand, it is not needed to point out663

that a generic algorithm for optimizing neural networks could enable people to train664

models that generate Deepfakes faster.665

• The authors should consider possible harms that could arise when the technology is666

being used as intended and functioning correctly, harms that could arise when the667

technology is being used as intended but gives incorrect results, and harms following668

from (intentional or unintentional) misuse of the technology.669

• If there are negative societal impacts, the authors could also discuss possible mitigation670

strategies (e.g., gated release of models, providing defenses in addition to attacks,671

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from672

feedback over time, improving the efficiency and accessibility of ML).673

11. Safeguards674

Question: Does the paper describe safeguards that have been put in place for responsible675

release of data or models that have a high risk for misuse (e.g., pretrained language models,676

image generators, or scraped datasets)?677

Answer: [NA]678

Justification: We don’t upload a new model or any tools. Our model is simply a simplified679

form of an already existing model and we do not use it in any dangerous context.680

Guidelines:681

• The answer NA means that the paper poses no such risks.682

• Released models that have a high risk for misuse or dual-use should be released with683

necessary safeguards to allow for controlled use of the model, for example by requiring684

that users adhere to usage guidelines or restrictions to access the model or implementing685

safety filters.686

• Datasets that have been scraped from the Internet could pose safety risks. The authors687

should describe how they avoided releasing unsafe images.688

• We recognize that providing effective safeguards is challenging, and many papers do689

not require this, but we encourage authors to take this into account and make a best690

faith effort.691

12. Licenses for existing assets692

Question: Are the creators or original owners of assets (e.g., code, data, models), used in693

the paper, properly credited and are the license and terms of use explicitly mentioned and694

properly respected?695

Answer: [Yes]696
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Justification: ProcGen and procgen-tools assets were used in compliance with the MIT697

License and cited in the paper. IMPALA was simplified and coded from scratch in pytorch698

in compliance with GNU license and cited in the paper.699

Guidelines:700

• The answer NA means that the paper does not use existing assets.701

• The authors should cite the original paper that produced the code package or dataset.702

• The authors should state which version of the asset is used and, if possible, include a703

URL.704

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.705

• For scraped data from a particular source (e.g., website), the copyright and terms of706

service of that source should be provided.707

• If assets are released, the license, copyright information, and terms of use in the708

package should be provided. For popular datasets, paperswithcode.com/datasets709

has curated licenses for some datasets. Their licensing guide can help determine the710

license of a dataset.711

• For existing datasets that are re-packaged, both the original license and the license of712

the derived asset (if it has changed) should be provided.713

• If this information is not available online, the authors are encouraged to reach out to714

the asset’s creators.715

13. New assets716

Question: Are new assets introduced in the paper well documented and is the documentation717

provided alongside the assets?718

Answer: [NA]719

Justification: We dont introduce new assets720

Guidelines:721

• The answer NA means that the paper does not release new assets.722

• Researchers should communicate the details of the dataset/code/model as part of their723

submissions via structured templates. This includes details about training, license,724

limitations, etc.725

• The paper should discuss whether and how consent was obtained from people whose726

asset is used.727

• At submission time, remember to anonymize your assets (if applicable). You can either728

create an anonymized URL or include an anonymized zip file.729

14. Crowdsourcing and research with human subjects730

Question: For crowdsourcing experiments and research with human subjects, does the paper731

include the full text of instructions given to participants and screenshots, if applicable, as732

well as details about compensation (if any)?733

Answer: [NA]734

Justification: We do not crowdsource or use human subjects.735

Guidelines:736

• The answer NA means that the paper does not involve crowdsourcing nor research with737

human subjects.738

• Including this information in the supplemental material is fine, but if the main contribu-739

tion of the paper involves human subjects, then as much detail as possible should be740

included in the main paper.741

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,742

or other labor should be paid at least the minimum wage in the country of the data743

collector.744

15. Institutional review board (IRB) approvals or equivalent for research with human745

subjects746
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Question: Does the paper describe potential risks incurred by study participants, whether747

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)748

approvals (or an equivalent approval/review based on the requirements of your country or749

institution) were obtained?750

Answer: [NA]751

Justification: No human or living subjects were used in the study.752

Guidelines:753

• The answer NA means that the paper does not involve crowdsourcing nor research with754

human subjects.755

• Depending on the country in which research is conducted, IRB approval (or equivalent)756

may be required for any human subjects research. If you obtained IRB approval, you757

should clearly state this in the paper.758

• We recognize that the procedures for this may vary significantly between institutions759

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the760

guidelines for their institution.761

• For initial submissions, do not include any information that would break anonymity (if762

applicable), such as the institution conducting the review.763

16. Declaration of LLM usage764

Question: Does the paper describe the usage of LLMs if it is an important, original, or765

non-standard component of the core methods in this research? Note that if the LLM is used766

only for writing, editing, or formatting purposes and does not impact the core methodology,767

scientific rigorousness, or originality of the research, declaration is not required.768

Answer: [NA]769

Justification: We did not use LLMs beyond getting feedback on certain, limited lines of770

code. The manuscript was written without LLM assistance.771

Guidelines:772

• The answer NA means that the core method development in this research does not773

involve LLMs as any important, original, or non-standard components.774

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)775

for what should or should not be described.776
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