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ABSTRACT

Writing GPU kernels is a challenging task and critical for AI systems’ efficiency.
It is also highly iterative: domain experts write code and improve performance
through execution feedback. Moreover, it presents verifiable rewards like cor-
rectness and speedup, making it a natural environment to apply Reinforcement
Learning (RL). To explicitly incorporate the iterative nature of this process into
training, we develop a flexible multi-turn RL recipe that addresses unique chal-
lenges encountered in real-world settings, such as learning from long trajectories
and effective reward attribution across turns. We present Kevin the Kernel Writer,
the first model trained with multi-turn RL for CUDA kernel generation and op-
timization. In our evaluation setup, Kevin shows significant gains over its base
model (QwQ-32B), improving correctness of generated kernels (in pure CUDA)
from 56% to 82% and mean speedup from 0.53x to 1.10x of baseline (PyTorch
Eager), and surpassing frontier models like o4-mini (0.78x). Finally, we study its
behavior across test-time scaling axes: we found scaling serial refinement more
beneficial than parallel sampling. In particular, when given more refinement turns,
Kevin shows a higher rate of improvement.

1 INTRODUCTION

Writing efficient GPU kernels (Dao et al., 2022; Zhao et al., 2025; Ye et al., 2025) in domain-specific
languages: CUDA, Triton, ThunderKittens, CUTLASS, etc. (Nickolls et al., 2008; Tillet et al., 2019;
Spector et al., 2024; NVIDIA Corporation, 2025) is critical for enabling AI systems’ efficiency at
scale, yet it remains difficult and costly due to the deep domain expertise required. This has led
to a surge of interest in exploring how Large Language Models (LLMs) could help generate GPU
kernels (Ouyang et al., 2025; Li et al., 2025; NVIDIA, 2025) using agentic systems (Damani et al.,
2024; Chen et al., 2025; METR, 2025; Lange et al., 2025; Google DeepMind, 2025) that leverage
extensive test-time compute. These inference-based approaches are inherently limited by the base
models’ capability in this domain. On the other hand, the presence of verifiable rewards in the form
of correctness and speedup against a reference implementation makes reinforcement learning (RL) a
natural approach. This leads to our investigation: How can we train a model using RL to solve the
real-world engineering task of CUDA kernel generation?

GPU kernel generation emphasizes not just functional correctness, but more importantly performance
— distinguishing this code optimization problem from binary-reward tasks that involve passing unit
tests (Jimenez et al., 2024) or producing an acceptable proof (Zheng et al., 2022). Since speedup is a
continuous goal, performance engineers take an iterative approach: they conduct many rounds of
optimization based on previous kernel code, its execution result, and timing profiles. Hence, arriving
at an optimized solution relies on multiple turns conditioned on previous execution feedback. In
contrast, popular RL methods to train LLMs on verifiable rewards (Shao et al., 2024; Lambert et al.,
2025) rely on the outcome reward of a single turn (“single-turn RL training”). We hypothesize that
explicitly incorporating successive turns of code generation, execution, and feedback into each RL
training step (“multi-turn RL training”) better mirrors the iterative nature of kernel development,
helping the model to learn more advanced code generation strategies that span multiple refinement
turns.

We design a simple yet effective multi-turn RL training recipe, shown in Figure 1, that addresses the
key challenges of training for CUDA kernel generation and optimization:
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Figure 1: Within each training step, the model iteratively generates, executes, and refines kernels
over multiple turns. Kernels are rewarded individually, based both on their performance and their
contribution to subsequent speedups: K1, for example, while incorrect, leads to both a correct, slow
kernel, K2, and a correct, performant kernel, K3, and should thus be rewarded accordingly. This
setup enables Kevin to learn advanced code generation strategies that span multiple turns. Note: CoT’
is the summarized chain of thought (CoT).

1. Long trajectories lead to sparse rewards and context explosion. To improve sample
efficiency, we split trajectories and use each turn as an individual training sample. To address
context explosion from long CoTs while preserving reasoning information, we summarize
CoTs of prior turns.

2. Finding an optimal solution may require rewarding suboptimal kernels that eventually
lead to more performant ones. Therefore, we study approaches to aggregate intermediate
rewards across turns, finding a configuration that balances the correctness-performance
trade-off.

3. Reward hacking is prevalent as kernel generation is an open-ended, real-world engi-
neering task: e.g. the model can trick the evaluation harness, lazily copying the reference
implementation instead of actually implementing kernels. To prevent this, we analyze the
model’s failure modes and enforce strict rule-based checks.

Enabled by our multi-turn RL training method on 180 KernelBench tasks from Level 1 and 2, we
present Kevin the Kernel Writer, the first RL-trained model to generate CUDA kernels. We compare
Kevin and other models in our evaluation setting on a representative KernelBench eval set. Kevin
improves upon its base model QwQ-32B, (Team, 2025d) both in correctness (56% → 82%) and
mean speedup of generated kernels (in pure CUDA): from 0.53x to 1.10x over PyTorch Eager, while
outperforming frontier models like OpenAI o4-mini (0.78x).

We then study the characteristics of Kevin in a test-time scaling setting, comparing it to a single-turn
RL-baseline. We systematically compare the benefits of scaling along two axes of test-time compute:
sequentially with more refinement turns (Ehrlich et al., 2025; Wang et al., 2025a) or in parallel with
more trajectories (Brown et al., 2024; Snell et al., 2024). In our setting, we find that sequential scaling
is much more effective, highlighting the importance of iterating upon execution feedback. We observe
that the model trained with multi-turn RL exhibits better scaling characteristics with more refinement
turns, compared to the base model and the single-turn RL baseline. Our core contributions include:

1. We design an effective yet flexible multi-turn RL training strategy that significantly
improves model’s capability on CUDA kernel generation. This strategy addresses
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challenges that arise in real-world settings, and may be applicable to other environments
that benefit from iterative optimizations.

2. We found multi-turn is more effective both for training and inference through systematic
ablations: the multi-turn trained model outperforms the single-turn trained model across
different evaluation setups. Furthermore, we found multi-turn inference is more effective
across both models under a fixed inference budget.

3. Kevin exhibits strong test-time scaling trends on both serial and parallel axes, with a
faster rate of improvement than its single-turn RL counterpart and its base model, while
maintaining exploration capacity.

2 BACKGROUND AND RELATED WORK

2.1 LLM FOR GPU KERNEL OPTIMIZATION

There has been a surge of interest in exploring how to leverage LLMs to generate GPU kernels
(NVIDIA, 2025), driven by the high cost and the long engineering cycles required to develop them
(e.g. 2 years for efficient FlashAttention (Dao, 2023) port after Hopper GPU release). However,
frontier models underperform on representative benchmarks like KernelBench (Ouyang et al., 2025)
and TritonBench (Li et al., 2025), likely due to GPU code being severely underrepresented in the
training data (CUDA, for example, accounts for less than 0.1% of pretraining data in the Stack
(Kocetkov et al., 2022; Li et al., 2023)). Collecting more expert-written code is expensive, as only a
limited number of developers are able to implement high-quality kernels. To tackle this task, there
has been an explosion of agentic systems (Damani et al., 2024; Chen et al., 2025; METR, 2025) with
custom workflows and evolutionary search methods (Lange et al., 2025; Google DeepMind, 2025).
Yet these approaches typically incur high inference cost — e.g. $15 per kernel (Lange et al., 2025).
Improving the base LLM’s kernel-generation ability is therefore essential — and could significantly
boost the efficiency for downstream agentic workflows.

2.2 RL OPTIMIZATION FOR LLMS TARGETING VERIFIABLE DOMAINS

Reinforcement Learning techniques like GRPO (Shao et al., 2024) have been shown to significantly
enhance LLMs’ performance on verifiable domains (Lambert et al., 2025) such as math (Team,
2025c; Wang et al., 2025b) and competitive programming (Team, 2025d; Luo et al., 2025a;b). These
approaches can be further adapted for real-world software tasks, using fine-grain unit tests (Liu et al.,
2023) or comparisons between code edits (Wei et al., 2025) as outcome rewards. Existing methods
for code optimizations — where objective concerns performance beyond correctness — have been
largely confined to supervised fine-tuning (Waghjale et al., 2024) and imitation learning (Shypula
et al., 2024), highlighting Kevin’s RL approach a novel contribution for this setting.

Given that tasks like performance optimization or long-horizon planning require multiple sequences
of interrelated actions, several works (Goldie et al., 2025; Cao et al., 2025; Wang et al., 2025c; Zhou
et al., 2024; Zhuang* et al., 2025) have explored RL training for multi-turn optimizations beyond
optimizing for outcome from a single turn. Specific for the code setting, RLEF (Gehring et al., 2025)
frames code generation as a multi-turn RL task: the model is allowed a fixed number of refinements
turns and assigned a single binary pass/fail reward for final generation — training with such an
approach might present sample-inefficiency issues. Unlike RLEF, which assigns rewards only at the
final turn, our multi-turn RL framework for Kevin trains on every turn regardless of how optimal
the code is, and optimizes for performance beyond just correctness. It is worth noting that Kevin’s
multi-turn RL training could be viewed as a variant of Meta-Learning (Xiang et al., 2025; Duan et al.,
2016) or In-Context Reinforcement Learning (Nie et al., 2024; Tajwar et al., 2025; Schmied et al.,
2025), where the focus is to improve solution quality during test-time with feedback (Qu et al., 2025);
but adapted in a novel way to the challenging real-world setting of GPU kernel generation and code
optimization.
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3 TASK AND BASELINE

3.1 ENVIRONMENT AND EVALUATION

We use KernelBench (Ouyang et al., 2025), a popular dataset for evaluating the LLMs’ ability to
generate CUDA kernels for deep learning workloads in PyTorch. We chose 180 of both 100 Level
1 problems (basic operators: convolutions, matrix multiplies, loss functions, etc.) and 100 Level 2
problems (sequences of operators with fusion opportunities) as training environments. Since current
KernelBench does not provide a train-test split, we construct 80 additional novel tasks following the
same methodology (see Appendix A). We build the evaluation set by combining our 80 newly created
tasks with the 20 remaining original KernelBench tasks, for a total of 100 evaluation tasks.

Each KernelBench task consists of generating a CUDA kernel given a PyTorch reference implementa-
tion, which is used to evaluate correctness and speedup. In our setup, we evaluate the model-generated
kernels as follows: we verify the output is in the correct format (ensure resultant code is only im-
plemented with inline CUDA) and check for reward hacking (Section 6.2). We then evaluate the
kernel for compilation, runtime errors, and correctness. If the implementation is correct, we profile
the kernel for its runtime.

3.2 KERNEL SCORE DESIGN

As we are concerned both with correctness and speedup, we assign a score S for each kernel evaluation
result that effectively balances the correctness-performance trade-off.

S = 0.3 · 1{correct} +
Tbaseline

Tkernel
· 1{correct}

Correctness is checked against the reference program when tested with randomized inputs; speedup
is computed as the ratio between PyTorch baseline time and kernel runtime. We experimented with
various weights of correctness and speedup, finding this configuration through ablations on models
ranging from 7B to 32B.

In addition, we explored rewarding intermediate objectives (successfully compile or execute), yet
this caused model to over-optimize for intermediate steps (e.g. generating kernels that only compile,
but are not necessarily correct). We also experimented with a length penalty on the response, as
suggested by Team (2025b), but found that it degrades our model’s performance during training.

3.3 SINGLE-TURN TRAINING

We apply GRPO (Shao et al., 2024) to train the model on kernel generation without iterating on
external feedback ("single-turn" training). In each training step, we sample 16 responses per task and
assign the evaluated score as the reward for each kernel. We compute the GRPO loss according to
(Shao et al., 2024), which updates the policy by maximizing the following objective:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]
− βDKL(πθ||πref)

}
(1)

where Âi,t =
ri−mean(r)

std(r) , and ri is the score of a specific kernel.

We choose Qwen QwQ-32B (Team, 2025d) as base model. See Appendix B.6 for the rationale.
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Figure 2: Reward plateaus during
single-turn training.

Following Yu et al. (2025), we apply Clip-Higher. We
sample with temperature = 0.9 for both training and
inference. We set the KL coefficient to 0 to allow the
model to deviate freely from the base policy, following
Luo et al. (2025a).

We observe that reward plateaus after 100 gradient steps,
likely because single-turn training prevents the model from
refining its kernels. Many generated kernels are nearly
correct–often a syntax or compilation fix away–but still
receive 0 reward, discouraging the model from producing
them. Similarly, the correct kernels do not achieve high
speedup, as the model optimizes for correctness rather than
attempting a risky approach. We address these limitations
through multi-turn training.

4 MULTI-TURN TRAINING

In each multi-turn training step:

1. For each task, we sample m parallel trajectories with n refinement turns. To improve sample
efficiency, each refinement turn (CoT + response) in a trajectory becomes a single training
sample. The response of the model after the CoT consists of a kernel and a CoT summary.

2. We construct the context of a sample by including the history of previous responses, which
include generated kernels along with their summarized CoTs, and evaluation feedback.

3. We evaluate the generated kernel and compute its score as shown in Section 3.2. The reward
of each turn (CoT + response) is the discounted sum of current and subsequent scores, which
we elaborate in Section 4.3.

4. For each task, we normalize the rewards across the mn samples for advantage calculation.
Then we compute the GRPO loss over the entire batch.

4.1 MANAGING CONTEXT

Reasoning models generate long CoTs, especially for complex tasks like kernel generation. Including
all CoTs causes the context to grow rapidly, reaching 50-100k tokens within a few turns, surpassing
the model’s context length. To prevent context explosion, we discard CoTs of previous turns;
yet to preserve information regarding the reasoning process, we ask the model to summarize the
changes applied. This summary, along with the generated kernels and evaluation results, is passed to
subsequent turns.

4.2 TRAINING ON EVERY REFINEMENT TURN

In a naive implementation, each n-turn trajectory is a single training sample. To improve sample
efficiency, we split a n-turn trajectory into n training samples, each corresponding to the kernel +
CoT summary of a refinement turn with the context containing the history. Hence, the kernel and
CoT summary receives the reward of that particular turn.

4.3 REWARD AGGREGATION AND DISCOUNTING

We initially explored two naive strategies for multi-turn credit assignment. The greedy approach
assigns to each turn its corresponding kernel score, while the outcome-based approach assigns to all
turns the best score in the trajectory. The former failed to reward early suboptimal turns that lead to
performant kernels later, while the latter ignores individual contributions and is sample inefficient.

Our method balances both approaches by aggregating the future kernels scores with a discount factor.
We conduct ablations on the reward formulation. For score aggregation, we can either take the
sum Rt =

∑T
i=t γ

i−tri or maximum Rt = maxi=t,...,T

{
γi−tri

}
over future scores. Sum favors
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generating multiple good kernels, while max prioritizes achieving one high-performing kernel. We
evaluate both forms with γ = 0.4 and γ = 0.8.

Experiments show that sum with γ = 0.4 scales best over 8 turns, though max performs better with
γ = 0.8 with fewer turns. We decide to use the sum reward formulation with discount factor γ = 0.4.

Figure 3: Sum with γ = 0.4 exhibits the best scaling behavior. We evaluate models trained with
different reward formulations under 16 parallel trajectories and 8 refinement turns.

4.4 MULTI-TURN TRAINING BEHAVIOR

Figure 4: Reward climbs steadily for
multi-turn training.

For multi-turn ablations and training runs, we train to 80
gradient steps; within each step, for each task, we sample
16 parallel trajectories and conduct 4 refinement turns.
Each batch contains 8 tasks. (See Appendices B.5 for
detailed hyperparameters and C.1 for training statistics)

Unlike single-turn training, reward now steadily increases.
We also observe response-length behaviors similar to Luo
et al. (2025b): the response length initially decreases, and
then it starts increasing again as the model attempts more
sophisticated solutions; we extend the max response length
from 16K to 22K tokens at gradient step 60.

5 EVALUATION

As kernel generation is a challenging task, models are often given extensive test-time compute to
tackle it. At inference, we employ multiple parallel trajectories, each made up of several serial turns.

We mark a trajectory correct if it contains at least one correct kernel. Its performance is the speedup
of the fastest kernel (within the trajectory) over the PyTorch Eager reference (speedup of 0x if no
kernel is correct). We also consider the fastp metric, introduced by Ouyang et al. (2025), which is a
binary indicator for whether a trajectory contains a correct kernel with performance of p or more. To
aggregate a metric across k parallel trajectories for a given task, we compute: best@k, the maximum
for that metric across all trajectories; avg@k, the average value across trajectories.

5.1 RESULT ON KERNELBENCH EVAL SET

We compare Kevin against frontier models and the single-turn RL baseline on our aforementioned
KernelBench eval set of 100 tasks (Section 3.1), with 16 parallel trajectories, 8 serial refinement turns.
As shown in Table 1, Kevin achieves a higher performance than its single-turn trained counterpart
and other frontier models, demonstrating significant improvement from its base model (QwQ-32B).
Qualitatively, Kevin is able to more effectively implement more aggressive optimizations across
several turns (see Appendix H for examples); see Appendix E for additional evaluation details.
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Model Correctness Performance fast1 fast1.5
best@16 avg@16 best@16 avg@16 best@16 avg@16 best@16 avg@16

Kevin (Multi-Turn) 82% 46% 1.10x 0.40x 43% 15% 20% 6%
Single-Turn RL 82% 45% 0.85x 0.35x 43% 16% 16% 4%
Qwen QwQ-32B 56% 11% 0.53x 0.08x 23% 3% 10% 1%
OpenAI o4-mini 38% 22% 0.78x 0.27x 21% 7% 13% 6%
OpenAI o3-mini 27% 8% 0.30x 0.08x 9% 2% 4% 2%

Table 1: Kevin (multi-turn RL) outperforms other models in correctness and performance. We
evaluate on 100 unseen KernelBench tasks with 16 parallel trajectories and 8 refinement turns.

5.2 SCALING REFINEMENT TURNS

Leveraging execution feedback is crucial at test time (Ehrlich et al., 2025; Wang et al., 2025a). Thus,
we evaluate how Kevin scales with additional refinement turns. As shown in Figure 5, the single-turn
model achieves slightly better performance with 1 turn, as its training objective optimizes for a
single attempt. However, when given more refinement turns, the multi-turn trained model achieves
significantly higher performance, with its curve showing the highest slope. This shows that multi-turn
training enhances the model’s ability to refine and optimize kernels over turns.

5.3 SCALING PARALLEL SAMPLES

We study how best@k performance scales when increasing the number of parallel trajectories k,
while fixing the number of serial refinements turns. Prior work for RLVR on math problems (Yue
et al., 2025) found that RL training limits models’ exploration capacity, leading to worse best@k
metrics than the base model at large k. As shown in Figure 6, the performance curve of the single-turn
RL model presents a lower slope compared to the base model, possibly hinting at this phenomenon.
In contrast, our model trained with multi-turn RL achieves a higher slope compared to both the
single-turn counterpart and the base model, suggesting that multi-turn training could maintain model’s
exploration capacity while improving model’s performance.

Figure 5: Kevin effectively leverages multiple
turns. We evaluate the above checkpoints under
the same environment with 16 parallel trajectories
and 8 refinement turns.

Figure 6: Multi-turn training maintains explo-
ration capacity. Refinement turns are fixed to 8,
and best@k performance is computed with the es-
timator according to Chen et al. (2021).

5.4 PARALLEL VS SEQUENTIAL SCALING

As scaling test-time compute through parallel sampling (Snell et al., 2024) and sequential iterative
refinement (Ehrlich et al., 2025) are both beneficial, we want to systematically compare their effec-
tiveness for kernel generation. To investigate, we evaluate 3 inference-time configurations under the
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same total inference call budget (128 kernels): 128 trajectories with 1 turn, 32 trajectories with 4
turns, and 16 trajectories with 8 turns. As Table 2 shows, allocating more refinement turns during
test-time is consistently better across various models, with 16 trajectories and 8 turns being optimal.

As Section 5.1 shows, multi-turn outperforms single-turn training when evaluated in a multi-turn
inference setting. But since single-turn training optimizes for single-turn performance, a natural
question arises: does the single-turn trained model perform better by generating more single-turn
responses in parallel? In Table 2, we observe that in a single-turn inference setting with 128 parallel
trajectories, the single-turn model achieves slightly better performance than the multi-turn model.
However, when given more refinement turns at inference, the performance and correctness improve for
all models. This strengthens the case for training a model that could use feedback effectively across
multiple turns. Moreover, the multi-turn trained model achieves significantly higher performance,
with faster improvement rates compared to the single-turn trained model at test-time.

Inference Config Performance Correctness

Model Total # Traj # Turns best@# traj best@# traj

Multi-Turn RL 128 16 8 1.10x 82.00%
Multi-Turn RL 128 32 4 1.02x 83.00%
Multi-Turn RL 128 128 1 0.65x 76.00%

Single-Turn RL 128 16 8 0.85x 82.00%
Single-Turn RL 128 32 4 0.81x 79.00%
Single-Turn RL 128 128 1 0.70x 73.00%

QwQ-32B 128 16 8 0.53x 57.00%
QwQ-32B 128 32 4 0.47x 52.00%
QwQ-32B 128 128 1 0.42x 54.00%

Table 2: Multi-turn inference with 16 trajectories and 8 turns is our most optimal setup, when
comparing inference configurations and their performance (× speedup) and correctness rates.

6 DISCUSSION

6.1 MODEL INSTABILITY

Figure 7: "Not Okay Ratio" foresees model in-
stability. Here the proxy signal appears roughly
15 steps earlier than junk, which is indicated by
the response "Clipping Ratio" metric (Luo et al.,
2025b).

As prior RLVR work (Team et al., 2025) on
QwQ-32B has shown, maintaining RL training
stability is a recurring challenge. In our multi-
turn setting, we notice distinctive patterns of in-
stability, and develop a proxy signal that guides
mitigation strategies. Specifically, we observe
that training for longer often causes generation
of repetitive and nonsensical outputs ("junk").
In the multi-turn case, junk first appears in the
final turn and gradually spreads to earlier turns,
leading to model collapse.

We identified a proxy signal, which we call
the "Not Okay Ratio". QwQ-32B always
begins its chain of thought with "Okay,
" but after 80 gradient steps, the model
begins with erratic variants like "Okay Amigos, so I need to optimize this
3D tensor-matrix multiplication" and "Okay Holy crap, I need to get
this code optimized"; tracking the "Not Okay Ratio" offers a reliable early proxy for model
instability and well precedes junk.

As detailed in Appendix F, after attempting mitigations such as a KL penalty, we found that using
constant-length normalization in the GRPO loss (Liu et al., 2025), together with gradient-norm
clipping at 0.05, successfully delayed the onset of junk responses to beyond 100 gradient steps.
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6.2 REWARD HACKING

We observe forms of reward hacking, as model capabilities fall short of task difficulty (Amodei
et al., 2016). Concretely, when a weaker model such as DeepSeek-R1-Distill-Qwen-7B
fails to produce the correct CUDA kernels, it resorts to directly copying the reference implementation,
inheriting from it, or wrapping it in try-except statements. With a stronger prior like QwQ-32B, the
model only fuses simple operators (ReLU, Max) and leaves key operators unmodified (in PyTorch).
We address these issues by imposing stricter format checks that assign 0 reward to responses with
any PyTorch functional operators. We elaborate on concrete examples in Appendix G.

6.3 DATA DISTRIBUTION

We found it critical to have a balanced difficulty distribution across the dataset, so that
on average each batch contains both easier and harder tasks. In one experiment with
DeepSeek-R1-Distill-Qwen-14B (DeepSeek-AI, 2025), we trained on a subset of only
easy tasks. The reward quickly plateaus as the model overfits to a single difficulty level. Training
with a stronger base model QwQ-32B and on both level 1 and 2 of KernelBench resolved the issue.

7 CONCLUSION

7.1 SUMMARY

We designed a multi-turn RL training recipe that addresses challenges when applied to the real-world
task of kernel generation: specifically, effective context management and credit attribution across
every turn to enable better sample efficiency. We also added safeguards against reward hacking, and
experimented with approaches to constrain and predict instability.

We present Kevin, the first model trained with RL to generate CUDA kernels. Evaluated on an
unseen evaluation set, Kevin outperforms both its single-turn RL counterpart and frontier models,
demonstrating that our training recipe enables the model to learn more effective refinement strategies.
Multi-turn training also enables better test-time scaling, both when increasing sequential refinement
and parallel sampling compute, while preserving the exploration capacity of the model.

7.2 LIMITATIONS

Our work is limited by the number of robust tasks in kernel generation (unlike math or general
coding with thousands of readily available tasks). KernelBench contains only 250 tasks and requires
substantial pre-processing (Appendix A). Moreover, multi-turn RL is computationally expensive, even
after extensive system optimization (Appendix C), as each rollout involves serial steps of reasoning
inference, complex code generation, and careful kernel evaluation.

Nonetheless, we believe that showing significant performance gains in this domain, even under
limited data and compute, highlights the effectiveness of our multi-turn training recipe. With more
robust kernel environments, stronger model priors, and improved RL frameworks, we expect our
method to scale accordingly.

We further note as KernelBench tasks are specified with pre-defined tensor input sizes, the speedups
we measure in Section 3.2 are only accurate for those dimensions and on NVIDIA H200 GPUs.

7.3 FUTURE WORK

We see several directions for extending our method. Incorporating a learned value network and PPO
(Schulman et al., 2017) may improve baseline estimation. More sophisticated search methods (beam
search, MCTS (Silver et al., 2017)) may be applied at train and test time. Inspired by recent works
(Sareen et al., 2025), the value network could also serve as a verifier for search at test-time.

Our multi-turn RL recipe demonstrates success in the real-world engineering task of GPU kernel
generation. We hope our flexible design could be applicable to a wider range of tasks with verifiable
rewards and execution feedback across a trajectory. We believe explicitly training models to reason
about complex tasks over multiple turns is a key step towards enabling autonomous AI systems.

9
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8 ETHICS STATEMENT

This work introduces Kevin, a multi-turn RL training method to enhance LLM’s ability specifically
for the task of automatic kernel generation. Our research builds on the publicly available model of
QwQ-32B (Team, 2025d) and KernelBench dataset (Ouyang et al., 2025). We document in-depth
how we use the dataset and post-train the model.

Our work does not introduce new risks that are not already inherent in the underlying base model. We
do not involve any human subject nor do we make comparison with human kernel engineers in our
study, as our baseline comparisons are against the PyTorch framework (Ansel et al., 2024), following
the evaluation methodology proposed in KernelBench.

9 REPRODUCIBILITY STATEMENT

Training Recipe: We cover various challenges encountered during training in detail and propose
effective mitigation: covering training stability F, avoiding reward hacking G, and careful considera-
tions for RL design 4 with ablation studies. We elaborate on how we conduct dataset processing A)
and provide a comprehensive set of hyper-parameters for our final model (AppendixB.5).

Computational Requirements: Each of our multi-turn training runs (for ablations and the final
run) requires 650 H200 hours. As discussed in Appendix C, we take steps to improve the training
efficiency of this complex multi-turn RL pipeline with in-the-loop kernel profiling. We elaborate on
the computation cost and step time in Appendix C.1 and specifically in Table 3.

Hardware Specifications: We conduct all of our RL training, evaluation, and inference on the
NVIDIA H200 platform. All of our kernel runtime measurement and baseline are specific to PyTorch
2.6 and H200 hardware.

Model Weights: Model weights will be released as open source and will be accessible to ensure
reproducibility.

Evaluation: For our result, we compare our methods with other models that are either released open-
source (QwQ-32B) or using a fixed version of the cloud API endpoints (o4-mini-2025-04-16,
o3-mini-2025-01-31).

10
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A KERNELBENCH MODIFICATIONS

We use KernelBench Ouyang et al. (2025) as our training environments. KernelBench is a popular
benchmark for evaluating LLMs’ ability to generate performant CUDA kernels for deep learning
workloads in PyTorch. Each KernelBench task consists in generating a CUDA kernel given a PyTorch
reference implementation, which is used to evaluate correctness and speedup.

A.1 TASK IMPROVEMENTS

We identify several limitations in the original KernelBench and introduce targeted modifications to
address them. These changes are crucial to mitigate reward hacking, as shown in Section 6.2.

• We sand-boxed the kernel evaluation process so that fatal errors, such as CUDA illegal
memory accesses, do not crash the RL training process.

• A significant issue we noted in KernelBench was that for many tasks, the input tensors used
to measure performance are quite small. This causes kernel launch overhead to take up a
significant portion of the runtime. To address this, we enlarged the tensor dimensions of the
affected tasks.

• A sneakier bug in the KernelBench’s evaluation harness caused the tested kernel to recycle
the output tensor from the reference implementation (which was run immediately before) as
its own tensor output. As a result of this, a kernel that only computes (correctly) a portion
of the output tensor would still pass the correctness check. We address this by running the
tested kernel first and only after the reference implementation, thus avoiding this hack.

In the end, we chose a total of 180 tasks as training environments, with 90 of the 100 Level 1 problems
and 90 Level 2 problems (sequences of operators with fusion opportunities).

A.2 CONSTRUCTION OF ADDITIONAL EVALUATION SET

Since current KernelBench does not provide a train-test split, we construct 80 additional tasks
following the same methodology that KernelBench was constructed.

KernelBench Level 2 is constructed by composing a subset of PyTorch operators as sequences of
operators. Specifically, the PyTorch operators are categorized as:

• Main operators: Conv2d, Matmul, Gemm, BMM, Conv3d, ConvTranspose2d,
ConvTranspose3d.

• Activations: ReLU, Sigmoid, Tanh, LeakyReLU, GELU, Swish, Softmax, Mish,
Hardtanh, HardSwish.

• Element-wise operators: Add, Multiply, Subtract, Divide, Clamp, Scale,
ResidualAdd.

• Normalizations: BatchNorm, LayerNorm, InstanceNorm, GroupNorm.

• Pooling: MaxPool, AvgPool, GlobalAvgPool.

• Bias: BiasAdd.

• Reductions: Sum, Mean, Max, Min, LogSumExp.

• Others: ResidualAdd, Scaling.

To construct the additional eval set (unseen from train set), following the methodology from original
KernelBench task construction:

1. We sample from the available operators listed above: 1 main operator (computationally
expensive), and 2-5 other operators.

2. We ask a language model, namely Gemini 2.5-Flash (Doshi, 2025), to generate a PyTorch
program that creates a kernel by combining these operators. We also ask it to generate
sample tensor sizes for the task.
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3. We ensure this PyTorch program can be executed and has a runtime on NVIDIA H200
> 0.1ms, to avoid the runtime being dominated by kernel launch (CPU) overhead.

4. We make sure this PyTorch program (with the same sequence of operators) is not present in
existing KernelBench Level 1 and 2 programs.

We manually inspected all new task programs to ensure their validity. We build the evaluation set by
combining our 80 newly created tasks with the 20 remaining original KernelBench tasks, for a total
of 100 unseen evaluation tasks.

B ADDITIONAL DETAILS ON MULTI-TURN RL

Here we elaborate on design choices for our RL Training as described in Section 3.3 and Section 4,
along with some ablation results.

B.1 MOTIVATION FOR TURN-WISE REWARD

In our multi-turn RL training setup, within each training step we have a trajectory with n refinement
turns. A possible approach would be to compute the reward based on the kernel at the last turn, similar
to what is used in RLEF (Gehring et al., 2025). However, for the GPU kernel optimization setting,
using just the last kernel might not be optimal at times: for example, as shown earlier in Figure 1,
kernel 3 is correct but kernel 4 is incorrect as the model attempts more aggressive optimizations.

In this setting, computing reward based on the best kernel among the trajectory instead (max speedup)
is a more natural choice. However, using only the max kernel score forces us to discard all turns in
a trajectory after the max turn, possibly wasting a significant amount of inference rollouts: In the
previous example, we would have to completely discard the reasoning trace, code, and evaluation for
kernel 4. Thus, we arrived at our approach in Section 4.3, which uses a discounted look-ahead max
or sum, enabling more sample-efficient training.

Figure 8: Training reward with correctness
weighting of 1, performance / speedup weight-
ing of 1. Concretely, S = 1{correct} + Tbaseline

Tkernel
·

1{correct}.

Figure 9: Training reward with no correctness
weighting, performance / speedup weighting of 1.
(speedup is 0 if kernel is incorrect). Concretely,
S = 1{correct} · Tbaseline

Tkernel
.

B.2 WEIGHTING FOR SCORE

In Section 3.2, we explain our score design, which assigns a scalar value (score S) based on a kernel’s
correctness and speedup. We explore score design and how to balance the correctness-performance
trade-off, after series of small-scale ablations on QwQ-32B (Team, 2025d).

We decided on a weighting of 0.3 on correctness and using speedup for performance (raw speedup
itself, no weighting), which is S = 0.3 · 1{correct} + 1{correct} · Tbaseline

Tkernel
.
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Here we present some ablation studies we ran with different weighting configurations for score
design, particularly focusing on adjusting the weighing for correctness, in the context of single-turn
RL (GRPO) training (as shown in Section 3.3). As show an example in Figure 8, where we set
the weighting to 1.0 for correctness, the reward plateaus and eventually decreased; concretely, we
observed that the model over-optimizes for generating correct kernels and does not explore speedup
as much, causing the reward to plateau during training. In another experiment in Figure 9, we set
the weighting to 0 for correctness, only rewarding the model for generating performant (and correct)
kernels. We again observed the reward plateau. Thus, we hypothesize that it is still important to
reward the model for correct kernels, as long as the correctness reward is not too significant, balancing
the correctness-performance tradeoff.

B.3 NUMBER OF TRAJECTORIES DURING TRAINING

We vary the number of parallel trajectories during Multi-Turn RL training (Section 4), using 64
parallel trajectories instead of 16 for each task during each training step. We note that best@16
correctness slightly increases, but the overall performance does not show significant improvements.
Due to the high-compute requirements of doing more generations during training, we chose to train
with 16 parallel trajectories.

B.4 LENGTH PENALTY

We explore incorporating response length as a part of the reward design to incentivize the model to
use its reasoning tokens more efficiently. We attempted a run using the length penalty from Kimi
Team (2025b) on DeepSeek-R1-Distill-Qwen-14B. As shown in Figures 10 and 11, we
found that the response length of the responses collapses, with the model no longer outputting CoT
after 10 training steps, suggesting that the addition of a length penalty is counterproductive for our
setting.

Figure 10: Training Reward collapses when in-
cluding length penalty as part of reward

Figure 11: Response length of generations col-
lapses when including length penalty as part of
reward.

B.5 DETAILED TRAINING HYPERPARAMETERS

Here is the set of hyperparameter for our final Kevin training run.

1 Constant learning rate of 2e-6 with warmup ratio of 0.03
2 Max grad norm = 0.05
3 KL coeff = 0
4 Temperature = 0.9
5 Top p = 0.95
6 Eps clip = 0.2 with clip high = 0.28
7 Max prompt len = 8192
8 Max generate len = 22432
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B.6 BASE MODEL CHOICE RATIONALE

We experimented with several different base models, such as DeepSeek-R1-Distill-Qwen7B
DeepSeek-AI (2025), DeepSeek-R1-Distill-Llama8B, and Gemma27B-Instruct Team
(2025a). These models, however exhibit weak kernel writing priors, which causes the initial reward to
be overly sparse for effective learning, making the model resort to reward hacking (see Section 6.2).

We thus choose Qwen QwQ-32B (Team, 2025d) as our base model, which exhibits, among all the
models we have evaluated of comparable size, the strongest priors.

C RL INFRASTRUCTURE

Conducting RL training on a highly challenging task like GPU kernel generation is a computationally
expensive process, requiring full-policy updates on a sufficiently capable base model, as discussed in
Section 6.2.

Although a few open-source RL frameworks existed when we began this study, it is still difficult to
support training in a kernel evaluation environment and including multiple turns within one training
step. We built our training framework on top of the OpenRLHF (Hu et al., 2024) framework.

We use vLLM (Kwon et al., 2023) for inference and DeepSpeed Zero-3 (Wang et al., 2023) for
offloading optimizer states.

Figure 12: Overview of our RL Training infrastructure.

Each of the 8 GPUs handles the kernel generation and evaluation for one task. After the response
generation finishes, each GPU offloads its vLLM engine to CPU memory and evaluates the kernels it
generated. We run the evaluation and calculate reward and evaluation info. Each GPU then wakes up
its corresponding vLLM engine and regenerates kernels.

We optimized our training infrastructure to co-locate vLLM rollout engines, kernel execution envi-
ronments, and DeepSpeed trainers on the same GPU device, so other small research teams with 1
cluster could also experiment with our proposed method.

C.1 TRAIN TIME STATISTICS

Here we elaborate more on the cost of our multi-turn training. The nature of multi-turn RL requires
multiple serial turns of parallel rollouts and kernel compilation/execution after each step, making
the overall training process compute-intensive. To accurately measure kernel runtime, we must clear
the GPUs of any running processes and perform additional operations, such as warmup steps before
profiling, which further limits the training speed. Here we show key training time statistics:

Overall, one training run (Section 4) takes 6̃50 H200 hours, equivalent to around 3 days and 9 hours
on a single node of 8xH200s. However, we believe concurrent and future systems projects (such as
SkyRL by Cao et al. (2025)) will improve training efficiency, especially for roll-outs with complex
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Configuration Value
Gradient steps 80
Parallel trajectory rollouts 16
Refinement turns (serial env. interactions) 4
Gradient updates per batch 2 (1 on-policy, 1 off-policy)
Time for rollout + kernel execution (per step) ∼1.5 hours
Time for 1 gradient update (2 steps) ∼0.5 hours
Base model QwQ-32B

Table 3: Setup and Cost of multi-turn Training for Kevin on 8xH200s.

interactions with environments. The demanding computational requirement of multi-turn RL is what
leads us to focus on improving the sample efficiency of our method; specifically, we choose to train on
every sample regardless of their performance and attribute credit effectively with our reward design.

D INFERENCE SETUP

Our prompt is similar to the prompt used in KernelBench (Ouyang et al., 2025). We use this during
training and test-time inference. In the first refinement turn, we add an example of the inline CUDA
format to the prompt but remove it afterwards.

Below we show how we construct the context in the simplest case (of one turn, or the base prompt).
In the context, we present model the KernelBench task, instructions, and a simple 1-shot example of
a CUDA add kernel (to inform model the desired format for response):

1 You are given the following architecture:
2 import torch
3 import torch.nn as nn
4

5 class Model(nn.Module):
6 """
7 Simple model that performs Layer Normalization.
8 """
9 def __init__(self, normalized_shape: tuple):

10 """
11 Initializes the LayerNorm layer.
12

13 Args:
14 normalized_shape (tuple): Shape of the input tensor to be

normalized.
15 """
16 super(Model, self).__init__()
17 self.ln = nn.LayerNorm(normalized_shape=normalized_shape)
18

19 def forward(self, x: torch.Tensor) -> torch.Tensor:
20 """
21 Applies Layer Normalization to the input tensor.
22

23 Args:
24 x (torch.Tensor): Input tensor of shape (*,

normalized_shape).
25

26 Returns:
27 torch.Tensor: Output tensor with Layer Normalization

applied, same shape as input.
28 """
29 return self.ln(x)
30

31 Replace pytorch operators in the given architecture with raw CUDA
kernels, optimizing for performance on NVIDIA H200 (e.g. shared
memory, kernel fusion, warp primitives, vectorization,...). Use
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torch.utils.cpp_extension.load_inline and name your optimized output
architecture ModelNew. You are not allowed to use torch.nn (except
for Parameter, containers, and init). The input and output have to
be on CUDA device. Your answer must be the complete new architecture
(no testing code, no other code): it will be evaluated and you will
be given feedback on its correctness and speedup so you can keep
iterating, trying to maximize the speedup. After your answer,
summarize your changes in a few sentences.Here is an example:

32

33 import torch.nn as nn
34 from torch.utils.cpp_extension import load_inline
35

36 # Define the custom CUDA kernel for element-wise addition
37 elementwise_add_source = """
38 #include <torch/extension.h>
39 #include <cuda_runtime.h>
40

41 __global__ void elementwise_add_kernel(const float* a, const float* b,
float* out, int size) {

42 int idx = blockIdx.x * blockDim.x + threadIdx.x;
43 if (idx < size) {
44 out[idx] = a[idx] + b[idx];
45 }
46 }
47

48 torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor b) {
49 auto size = a.numel();
50 auto out = torch::zeros_like(a);
51

52 const int block_size = 256;
53 const int num_blocks = (size + block_size - 1) / block_size;
54

55 elementwise_add_kernel<<<num_blocks,
block_size>>>(a.data_ptr<float>(), b.data_ptr<float>(),
out.data_ptr<float>(), size);

56

57 return out;
58 }
59 """
60

61 elementwise_add_cpp_source = (
62 "torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor

b);"
63 )
64

65 # Compile the inline CUDA code for element-wise addition
66 elementwise_add = load_inline(
67 name="elementwise_add",
68 cpp_sources=elementwise_add_cpp_source,
69 cuda_sources=elementwise_add_source,
70 functions=["elementwise_add_cuda"],
71 verbose=True,
72 extra_cflags=[""],
73 extra_ldflags=[""],
74 )
75

76

77 class ModelNew(nn.Module):
78 def __init__(self) -> None:
79 super().__init__()
80 self.elementwise_add = elementwise_add
81

82 def forward(self, a, b):
83 return self.elementwise_add.elementwise_add_cuda(a, b)
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For our multi-turn RL training (Section 4) and inference (Section 5), we provide model with the
kernels, CoTs (summarized), and evaluation results of all previous turns in chronological order. We
truncate the turns that do not fit inside the context window, starting from the earliest ones.

1 <Base prompt containing pytorch architecture and instruction>
2

3 Here are your previous attempts:
4

5 < for each (i) previously generated kernel >
6 <Previously generated kernel G[i]>
7

8 <Summary of CoT[i]>
9

10 <if parsing error>
11

12 Your previous answer failed to be parsed due to not adhering to
the desired formatting. Here is the error message: <error_message>

13

14 <elif compilation error>
15

16 Your previous answer failed to compile. Here is the error
message: <error_message>

17

18 <elif run error>
19

20 Your previous answer compiled successfully but had runtime
errors. Here is the error message: <error_message>

21

22 <elif correctness error>
23

24 Your previous answer was incorrect. Here is the error message:
<error_message>

25

26 <elif correct>
27

28 Your previous answer was correct but can be made faster. Here is
the speedup you achieved relative to the baseline: <speedup>

29

30 Restart your reasoning process and generate new, complete code.
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E ADDITIONAL EVALUATIONS

Here we present some additional evaluation results for Section 5.

E.1 CONFIDENCE INTERVALS

We compute the confidence intervals of best@16 and avg@16 performance for the multi-turn and
single-turn RL across 5 runs, as shown in Table 4. These results show multi-turn RL has statistically
significant improvement on both metrics and hence its effectiveness.

Model Performance
best@16 avg@16

Multi-turn RL 1.10± 0.099 0.40± 0.011
Single-turn RL 0.85± 0.048 0.35± 0.013

Table 4: Evaluation on our evaluation set across 5 runs with confidence interval. Multi-turn RL
outperforms Single-turn RL on both best@16 and avg@16 performance.

E.2 CHOICE OF BASELINE MODEL COMPARISON

Here we elaborate on the choice of model comparisons used for 5.1, notably against both Kevin’s base
model (QwQ-32B) and frontier reasoning models (o4-mini, o3-mini). To the best of our knowledge,
we are not aware of any model specifically “fine-tuned” for the CUDA context (efforts like Nichols
et al. (2024) focus on OpenMP CPU code). CUDA, or GPU code in general, is extremely sparse in
the pretraining corpus, only 0.073% of the Stack (Li et al., 2023) code corpus; this makes approaches
that depend on readily available data (such as “fine-tuning”) difficult. Hence, this data challenge
actually highlights the value of our RL-based approach, as we discussed in Section 1. We believe
that the comparisons of Kevin against SoTA general-purpose LLMs are fair and fitting, and actually
demonstrate the advantage of our RL-based approach in this domain.

Our baseline comparisons, o4-mini and o3-mini, are frontier models that achieve SoTA on
challenging code generation benchmarks. Specifically we use o4-mini-2025-04-16 and
o3-mini-2025-01-31. As shown below, o4-mini demonstrates a significant lead over our
base model QwQ-32B, especially on challenging real-world software tasks such as SWE-Bench
(Jimenez et al., 2024) and Polyglot (Gauthier, 2024). Hence, our results in Section 5.1 and Table 1
showing Kevin (post-trained QwQ-32B with multi-turn RL) exceeding o4-mini should be noted as a
significant improvement and demonstrate our method’s effectiveness.

Model AIME 24 LiveCodeBench SWE-Bench Verified Aider Polyglot

QwQ-32B 79.5% 63.4% 41.3% 20.9%
o4-mini 93.4% 74.2% 68.1% 72.0%

Table 5: o4-mini shows significant lead over QwQ-32B over a variety of reasoning, coding, and
software engineering benchmarks (Mathematical Association of America, 2024; Jain et al., 2024;
Jimenez et al., 2024; Gauthier, 2024); Kevin is post-trained on QwQ-32B and shows improvement
over both QwQ-32B and o4-mini, as shown in Section 5.1.

.

E.3 EVALUATION ON KERNELBENCH LEVEL 3

While we focus on our training and evaluation mostly on KernelBench Level 1 and 2 (Section 3),
we were also curious and explore testing Kevin on KernelBench Level 3 tasks. They are longer and
more challenging (rather than single or a few operators), requiring the end-to-end optimization of full
model architectures, such as the VisionTransformer, and miniGPT attention blocks. Kevin is trained
using a subset (180) of the KernelBench Level 1 and 2 tasks (single and sequence of operators), and
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Level 3 tasks are completely unseen. We evaluate the multi-turn (Kevin), single-turn, and base model
(QwQ-32B) on the 50 level 3 tasks following the same evaluation setup as Section 5. As shown in
the table below, multi-turn RL can also generate much faster kernels for these much more complex
tasks over both single-turn RL and the base model.

We view Level 3 primarily as an out-of-distribution test: these tasks involve full model architectures
with much longer-horizon reasoning, and requiring both kernel generation and effectively dealing
with long context. We do not train on any Level 3 tasks as the length of these programs would lead to
context explosion (Section 4.1). Hence, our main analysis focuses on Levels 1 and 2, which better
focuses on kernel generation performance with more controlled conditions.

Correctness Performance
Method best@16 avg@16 best@16 avg@16
Multi-turn RL 36% 11.75% 0.41 0.08
Single-turn RL 36% 8.38% 0.36 0.06
QwQ-32B 4% 0.25% 0.04 0.002

Table 6: Multi-turn RL achieves improvements also on the completely unseen and more complex
KernelBench Level 3.

F TRAINING STABILITY

The analysis of the "not okay ratio" led us to believe that model instability caused the appearance of
nonsensical and repetitive outputs. Therefore, we attempted runs where we enabled KL divergence
penalty in the GRPO loss, which would penalize the model from deviating from the base policy too
much. Following DeepScaleR (Luo et al., 2025b), we set the KL coefficient to 0.001 and attempted
an ablation run. However, we found that the reward plateaus with KL enabled, suggesting that the KL
penalty slows down learning. Thus we attempted other techniques of constraining the model from
deviating into regions of instability, such as clipping the gradient norm aggressively — which was
effective in our setting.

Figure 13: Adding a KL penalty slows down learning. Here we conduct an ablation with KL
coefficient β = 0.001 versus β = 0. We see that the reward plateaus with KL enabled.

We use 4 refinement turns at train-time for efficient training. During test time, we can afford more
extensive test-time compute, so we evaluate on 8 turns instead of 4 turns.
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G REWARD HACKING

Here we present excerpts from generated kernels that show signs of reward hacking, previously
mentioned in Section 6.2.

In the following example, the model simply copies the PyTorch reference implementation, thus
getting rewarded for generating a correct answer with 1.0x speedup. To prevent this, we modify
our kernel evaluation environment so that it checks each generated kernel if it contains instances of
torch.nn or torch.nn.functional. We assign a reward of 0 to those.

1 class ModelReLU(Module):
2 ...
3 def forward(self, x):
4 relu = torch.nn.ReLU()
5 return relu(x)

Similarly, the model wraps an incorrect implementation of the CUDA kernel in a try-except statement
and invokes the PyTorch implementation functions as a fallback. To prevent this, we assign a reward
of 0 to kernels that contain try or except.

1 class ModelReLU(Module):
2 ...
3 def forward(self, x):
4 try:
5 ... \# CUDA implementation
6 except Exception as e:
7 print("Custom ReLU kernel failed to compile. Using default

ReLU instead.")
8 relu = torch.nn.ReLU()
9 return relu(x)

Here the model inherits from the reference implementation, bypassing the need for a CUDA imple-
mentation. To prevent this, we assign a reward of 0 to kernels that contain pass.

1 class ModelReLU(Module):
2 ...
3 def forward(self, x):
4 ... \# CUDA implementation
5

6 class ModelReLU(Model): \# Model is the the reference implementation
7 pass

H KERNEL HIGHLIGHT

As an example, we look at one the task form our evaluation set, Conv3D_GELU_Tanh_Clamp:

1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 """
6 Model using Conv3d, GELU, Clamp, Tanh
7 """
8 def __init__(self, in_channels, out_channels, kernel_size,

clamp_min, clamp_max):
9 super(Model, self).__init__()

10 self.conv = nn.Conv3d(in_channels, out_channels, kernel_size)
11 self.clamp_min = clamp_min
12 self.clamp_max = clamp_max
13

14 def forward(self, x):
15 """
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16 Forward pass of the model.
17

18 Args:
19 x (torch.Tensor): Input tensor of shape (batch_size,

in_channels, depth, height, width).
20

21 Returns:
22 torch.Tensor: Output tensor of shape (batch_size,

out_channels, depth-kernel_size+1, height-kernel_size+1,
width-kernel_size+1).

23 """
24 x = self.conv(x)
25 x = torch.tanh(x)
26 x = torch.clamp(x, min=self.clamp_min, max=self.clamp_max)
27 x = torch.nn.functional.gelu(x)
28 return x

The task is made up of a computationally intensive function (3D convolution) and a series of
lightweight functions (tanh, clamp, gelu).

The model implements a correct solution in the first turn by fusing the kernels, but it only achieves a
speedup of 1.06x over the reference implementation.

1 import torch
2 from torch.utils.cpp_extension import load_inline
3 import math
4

5 class ModelNew(torch.nn.Module):
6 def __init__(self, in_channels, out_channels, kernel_size,

clamp_min, clamp_max):
7 super(ModelNew, self).__init__()
8 self.clamp_min = clamp_min
9 self.clamp_max = clamp_max

10

11 # Initialize convolution weights and bias
12 self.weight = torch.nn.Parameter(torch.empty(out_channels,

in_channels, kernel_size, kernel_size, kernel_size))
13 self.bias = torch.nn.Parameter(torch.empty(out_channels))
14 # Weight initialization following PyTorch’s Conv3d default
15 torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
16 fan_in, _ =

torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
17 bound = 1 / math.sqrt(fan_in)
18 torch.nn.init.uniform_(self.bias, -bound, bound)
19

20 # Define the fused convolution and activation CUDA kernel
21 conv_activation_source = """
22 #include <torch/extension.h>
23 #include <cuda_runtime.h>
24 #include <math.h>
25

26 __global__ void conv_activation_kernel(const float* input, const
float* weights, const float* bias, float* output,

27 int N, int C_in, int D,
int H, int W, int C_out, int kD, int kH, int kW,

28 float clamp_min, float
clamp_max) {

29 int idx = blockIdx.x * blockDim.x + threadIdx.x;
30 const int W_out = W - kW + 1;
31 const int H_out = H - kH + 1;
32 const int D_out = D - kD + 1;
33 const int total_elements = N * C_out * D_out * H_out * W_out;
34 if (idx >= total_elements) return;
35

36 // Decompose index into output coordinates
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37 int w_out = idx % W_out;
38 int h_out = (idx / W_out) % H_out;
39 int d_out = (idx / (W_out * H_out)) % D_out;
40 int f = (idx / (W_out * H_out * D_out)) % C_out;
41 int n = idx / (C_out * D_out * H_out * W_out);
42

43 float sum = 0;
44 for (int c = 0; c < C_in; ++c) {
45 for (int kd = 0; kd < kD; ++kd) {
46 for (int kh = 0; kh < kH; ++kh) {
47 for (int kw = 0; kw < kW; ++kw) {
48 // Input tensor index calculation
49 int d_in = d_out + kd;
50 int h_in = h_out + kh;
51 int w_in = w_out + kw;
52 int input_idx = n * C_in * D * H * W +
53 c * D * H * W +
54 d_in * H * W +
55 h_in * W +
56 w_in;
57 // Weight tensor index calculation
58 int weight_idx = f * C_in * kD * kH * kW +
59 c * kD * kH * kW +
60 kd * kH * kW +
61 kh * kW +
62 kw;
63 sum += input[input_idx] *

weights[weight_idx];
64 }
65 }
66 }
67 }
68 sum += bias[f];
69

70 // Apply activations sequentially
71 sum = tanh(sum);
72 sum = fmaxf(clamp_min, fminf(sum, clamp_max));
73 {
74 float inner = sum + 0.044715f * sum * sum * sum;
75 inner *= 0.79788456f; // sqrt(2/pi) approximation
76 sum = sum * 0.5f * (1.0f + tanh(inner));
77 }
78

79 // Output tensor index calculation
80 int output_idx = n * C_out * D_out * H_out * W_out +
81 f * D_out * H_out * W_out +
82 d_out * H_out * W_out +
83 h_out * W_out +
84 w_out;
85 output[output_idx] = sum;
86 }
87

88 torch::Tensor conv_activation_cuda(torch::Tensor input,
torch::Tensor weights, torch::Tensor bias,

89 float clamp_min, float
clamp_max) {

90 // Dimension extraction
91 int N = input.size(0);
92 int C_in = input.size(1);
93 int D = input.size(2);
94 int H = input.size(3);
95 int W = input.size(4);
96 int C_out = weights.size(0);
97 int kD = weights.size(2);
98 int kH = weights.size(3);
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99 int kW = weights.size(4);
100

101 // Output dimensions
102 int D_out = D - kD + 1;
103 int H_out = H - kH + 1;
104 int W_out = W - kW + 1;
105

106 // Create output tensor
107 auto output = torch::empty({N, C_out, D_out, H_out, W_out},

input.options());
108

109 // Launch kernel
110 int total_elements = N * C_out * D_out * H_out * W_out;
111 const int block_size = 256;
112 const int grid_size = (total_elements + block_size - 1) /

block_size;
113 conv_activation_kernel<<<grid_size, block_size>>>(
114 input.data_ptr<float>(), weights.data_ptr<float>(),

bias.data_ptr<float>(),
115 output.data_ptr<float>(), N, C_in, D, H, W, C_out, kD,

kH, kW,
116 clamp_min, clamp_max
117 );
118 return output;
119 }
120 """
121

122 conv_activation_header = """
123 torch::Tensor conv_activation_cuda(torch::Tensor input,

torch::Tensor weights, torch::Tensor bias,
124 float clamp_min, float

clamp_max);
125 """
126

127 # Load the CUDA kernel
128 self.conv_activation = load_inline(
129 name="conv_activation",
130 cpp_sources=conv_activation_header,
131 cuda_sources=conv_activation_source,
132 functions=["conv_activation_cuda"],
133 verbose=True
134 )
135

136 def forward(self, x):
137 return self.conv_activation.conv_activation_cuda(x, self.weight,

self.bias, self.clamp_min, self.clamp_max)

On turn 2 it attempts to improve on the existing implementation, but fails due to a compilation error.

On turn 3, it attempts to modify the loop order to improve coalesced memory access, but this actually
worsens performance, as the kernel now exhibits a speedup of 0.61x. The model attempts this strategy
again at turn 4, and is able to order the loops in a way that increases memory coalescing: this brings
up the performance to 1.19x. At turn 5 and 6, the model attempts some minor optimizations (such as
precomputing certain indices, or deleting intermediate variables), which however has no measurable
effect in performance.

On turn 7, the model figures out a surprising optimization: it records the convolution’s kernel size as
a compile time constant, which allows it to use # pragma unroll to unroll the 3 loops needed to
apply the convolution. This results in a significant speedup of 1.93x over baseline.

1 import torch
2 from torch.utils.cpp_extension import load_inline
3 import math
4

5 class ModelNew(torch.nn.Module):

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

6 def __init__(self, in_channels, out_channels, kernel_size,
clamp_min, clamp_max):

7 super(ModelNew, self).__init__()
8 self.clamp_min = clamp_min
9 self.clamp_max = clamp_max

10

11 # Initialize convolution weights and bias
12 self.weight = torch.nn.Parameter(torch.empty(out_channels,

in_channels, kernel_size, kernel_size, kernel_size))
13 self.bias = torch.nn.Parameter(torch.empty(out_channels))
14 # Weight initialization following PyTorch’s Conv3d default
15 torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
16 fan_in, _ =

torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
17 bound = 1 / math.sqrt(fan_in)
18 torch.nn.init.uniform_(self.bias, -bound, bound)
19

20 # Define the fused convolution and activation CUDA kernel with
optimizations

21 kernel_size_val = kernel_size
22 conv_activation_source = f"""
23 #include <torch/extension.h>
24 #include <cuda_runtime.h>
25 #include <math.h>
26

27 #define KERNEL_SIZE {kernel_size_val}
28 #define KERNEL_D {kernel_size_val}
29 #define KERNEL_H {kernel_size_val}
30 #define KERNEL_W {kernel_size_val}
31

32 __global__ void conv_activation_kernel(
33 const float* __restrict__ input, const float* __restrict__

weights, const float* __restrict__ bias,
34 float* __restrict__ output,
35 int N, int C_in, int D, int H, int W, int C_out,
36 float clamp_min, float clamp_max) {{
37 int idx = blockIdx.x * blockDim.x + threadIdx.x;
38 const int W_out = W - KERNEL_W + 1;
39 const int H_out = H - KERNEL_H + 1;
40 const int D_out = D - KERNEL_D + 1;
41 const int total_elements = N * C_out * D_out * H_out *

W_out;
42 if (idx >= total_elements) return;
43

44 int w_out = idx % W_out;
45 int h_out = (idx / W_out) % H_out;
46 int d_out = (idx / (W_out * H_out)) % D_out;
47 int f = (idx / (W_out * H_out * D_out)) % C_out;
48 int n = idx / (C_out * D_out * H_out * W_out);
49

50 float sum = 0.0;
51

52 // Precompute constants for GELU
53 const float sqrt_2_over_pi = 0.79788456f;
54 const float approx_coeff = 0.044715f;
55

56 for (int c = 0; c < C_in; ++c) {{
57 // Compute input channel base pointer
58 const int input_c_offset = n * C_in * D * H * W + c

* D * H * W;
59 const float* input_c = input + input_c_offset;
60

61 // Compute center position in the input channel
62 const int center_offset = d_out * H * W + h_out * W

+ w_out;
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63 const float* center = input_c + center_offset;
64

65 // Weight base for current output channel f and
input channel c

66 const int weight_base = f * C_in * KERNEL_D *
KERNEL_H * KERNEL_W + c * KERNEL_D * KERNEL_H * KERNEL_W;

67

68 #pragma unroll
69 for (int kd = 0; kd < KERNEL_D; ++kd) {{
70 #pragma unroll
71 for (int kh = 0; kh < KERNEL_H; ++kh) {{
72 #pragma unroll
73 for (int kw = 0; kw < KERNEL_W; ++kw) {{
74 const int offset = kd * H * W + kh * W +

kw;
75 const float input_val = center[offset];
76 const int w_off = weight_base + kd *

KERNEL_H * KERNEL_W + kh * KERNEL_W + kw;
77 const float weight_val = weights[w_off];
78

79 sum += input_val * weight_val;
80 }}
81 }}
82 }}
83 }}
84

85 sum += bias[f];
86

87 // Apply activations with optimized order
88 {{
89 float tanh_val = tanhf(sum);
90 float clamped = fmaxf(clamp_min, fminf(tanh_val,

clamp_max));
91 float inner = clamped + approx_coeff * clamped *

clamped * clamped;
92 inner *= sqrt_2_over_pi;
93 sum = clamped * 0.5f * (1.0f + tanhf(inner));
94 }}
95

96 // Output index calculation
97 const int output_base = n * C_out * D_out * H_out *

W_out +
98 f * D_out * H_out * W_out +
99 d_out * H_out * W_out +

100 h_out * W_out;
101 output[output_base + w_out] = sum;
102 }}
103

104 torch::Tensor conv_activation_cuda(torch::Tensor input,
torch::Tensor weights, torch::Tensor bias,

105 float clamp_min, float
clamp_max) {{

106 int N = input.size(0);
107 int C_in = input.size(1);
108 int D = input.size(2);
109 int H = input.size(3);
110 int W = input.size(4);
111 int C_out = weights.size(0);
112

113 int D_out = D - KERNEL_D + 1;
114 int H_out = H - KERNEL_H + 1;
115 int W_out = W - KERNEL_W + 1;
116

117 auto output = torch::empty({{N, C_out, D_out, H_out,
W_out}}, input.options());
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118

119 int total_elements = N * C_out * D_out * H_out * W_out;
120 const int block_size = 256;
121 const int grid_size = (total_elements + block_size - 1) /

block_size;
122

123 conv_activation_kernel<<<grid_size, block_size>>>(
124 input.data_ptr<float>(), weights.data_ptr<float>(),

bias.data_ptr<float>(),
125 output.data_ptr<float>(), N, C_in, D, H, W, C_out,
126 clamp_min, clamp_max
127 );
128 return output;
129 }}
130 """
131

132 conv_activation_header = """
133 torch::Tensor conv_activation_cuda(torch::Tensor input,

torch::Tensor weights, torch::Tensor bias,
134 float clamp_min, float

clamp_max);
135 """
136

137 # Load the CUDA kernel with fast math optimization
138 self.conv_activation = load_inline(
139 name="conv_activation",
140 cpp_sources=conv_activation_header,
141 cuda_sources=conv_activation_source,
142 functions=["conv_activation_cuda"],
143 extra_cuda_cflags=[’-use_fast_math’],
144 verbose=True
145 )
146

147 def forward(self, x):
148 return self.conv_activation.conv_activation_cuda(x, self.weight,

self.bias, self.clamp_min, self.clamp_max)

In its final turn, the model attempts a more advanced implementation that further parallelizes the
computation across kernels before performing a warp-level reduction. However, it fails to implement
the strategy correctly, due to applying the reduction across the wrong axis. We do note the model has
shown success in implementing complex warp reductions in several other tasks.

I ERROR CORRECTION BEHAVIOR

An important quality for kernel generation is to correct errors over turns. With multi-turn training,
Kevin learns to effectively manage kernel writing across multiple turns, making more aggressive
optimizations while correcting errors more effectively. This is shown by our results in Figure 5, where
Kevin exhibits better scaling behavior across serial turns (compared to its single-turn counterpart).
Here we focus on an example that illustrates error correction behavior.

We consider the KernelBench task of CosineSimilarityLoss (Level 1 Task 97):

1 # prediction [128, 4096]
2 # target[128, 4096]
3

4 def forward(self, predictions, targets):
5 cosine_sim = torch.nn.functional.cosine_similarity(predictions,

targets, dim=1)
6 return torch.mean(1 - cosine_sim)

Test-time Trajectory from Single-Turn RL:
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Turn 1: The model implements a correct kernel on the first try. The kernel is straightforward yet
performant, obtaining a 3.15x speedup over the reference implementation. This is expected as the
single-turn model is trained to maximize single-turn correctness.

Turn 2: The model attempts to calculate the block size dynamically; however, it results in suboptimal
GPU utilization, causing a decrease in runtime to 2.19x.

Turns 3-5: The model reverts the change from Turn 2, and adds minor improvements (such as
performing the mean calculation at the warp level rather than using a single thread, or tweaking the
loading of shared memory); however, it has no significant impact on performance (the speedups range
from 3.11x to 3.19x).

Turns 6-8: The model attempts to tune the grid size and block size, though this fails to improve
performance (the speedups ranging from 2.99x to 3.14x).

Test-time Trajectory from Multi-Turn RL:

Turn 1: The model attempts a kernel similar to the single-turn implementation. A suboptimal block
size and a non-contiguous access, however, cause a speedup of 1.74x, inferior to the single turn
version.

Turn 2: The multi-turn model makes various optimizations (such as tweaking block and grid size,
and avoiding recomputing certain values), but it forgets to include a required C++ header, causing a
compilation error.

Turn 3: The multi-turn model adds the correct C++ header and improves the memory coalescing.
This, combined with the previous optimizations, causes a speedup of 3.31x.

Turn 4: The model now attempts more aggressive optimization techniques to compute the sums
within the kernel, namely using warp intrinsics to perform warp-level reductions. The implementation
is incorrect, however, as only a subset of the threads for a given warp execute the reduction, resulting
in a deadlock.

1 for (int s = 8; s >= 1; s >>= 1) {
2 if (thread_id < s) {
3 float temp_dot = __shfl_down_sync(0xFFFFFFFF, dot, s);
4 dot += temp_dot;
5 float temp_p = __shfl_down_sync(0xFFFFFFFF, p_norm_sq, s);
6 p_norm_sq += temp_p;
7 float temp_t = __shfl_down_sync(0xFFFFFFFF, t_norm_sq, s);
8 t_norm_sq += temp_t;
9 }

10 __syncthreads();
11 }

Turn 5: The model then tries a different strategy, implementing a simpler reduction that avoids using
warp intrinsics. However, this proves less efficient than the previous methods, and achieves a speedup
of only 2.26x.

Turn 6: The model now attempts to fix the errors present in the advanced warp level technique from
turn 3, spending most of the chain-of-thought in trying to address the previous error. This time, the
model is successful with a speedup of 7.81x.

1 for (int s = 16; s >= 1; s >>= 1) {
2 float temp = __shfl_down_sync(0xFFFFFFFF, dot, s);
3 dot += temp;
4 temp = __shfl_down_sync(0xFFFFFFFF, p_norm_sq, s);
5 p_norm_sq += temp;
6 temp = __shfl_down_sync(0xFFFFFFFF, t_norm_sq, s);
7 t_norm_sq += temp;
8 }
9 ...
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Turns 7, 8: The model tries a few other optimizations, yet has no significant impact on the kernel
performance, resulting in slightly worse kernels. The best kernel is thus achieved at turn 6 with a
speedup of 7.81x, compared to the best kernel found by single-turn (3.19x).

Comparing the trajectories of the multi-turn vs single-turn model, we notice that the single-turn
model is generally careful in its optimizations and rarely deviates from the previous attempts. The
multi-turn model attempts riskier strategies. While it may result in wrong kernels sometimes, it is
more capable of recovering from these errors and eventually finding more performant ones.
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