
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KEVIN: MULTI-TURN RL FOR GENERATING CUDA
KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Writing GPU kernels is a challenging task and critical for AI systems’ efficiency.
It is also highly iterative: domain experts write code and improve performance
through execution feedback. Moreover, it presents verifiable rewards like cor-
rectness and speedup, making it a natural environment to apply Reinforcement
Learning (RL). To explicitly incorporate the iterative nature of this process into
training, we develop a flexible multi-turn RL recipe that addresses unique chal-
lenges encountered in real-world settings, such as learning from long trajectories
and effective reward attribution across turns. We present Kevin the Kernel Writer,
the first model trained with multi-turn RL for CUDA kernel generation and op-
timization. In our evaluation setup, Kevin shows significant gains over its base
model (QwQ-32B), improving correctness of generated kernels (in pure CUDA)
from 56% to 82% and mean speedup from 0.53x to 1.10x of baseline (PyTorch
Eager), and surpassing frontier models like o4-mini (0.78x). Finally, we study its
behavior across test-time scaling axes: we found scaling serial refinement more
beneficial than parallel sampling. In particular, when given more refinement turns,
Kevin shows a higher rate of improvement.

1 INTRODUCTION

Writing efficient GPU kernels (Dao et al., 2022; Zhao et al., 2025; Ye et al., 2025) in domain-specific
languages: CUDA, Triton, ThunderKittens, CUTLASS, etc. (Nickolls et al., 2008; Tillet et al., 2019;
Spector et al., 2024; NVIDIA Corporation, 2025) is critical for enabling AI systems’ efficiency at
scale, yet it remains difficult and costly due to the deep domain expertise required. This has led
to a surge of interest in exploring how Large Language Models (LLMs) could help generate GPU
kernels (Ouyang et al., 2025; Li et al., 2025; NVIDIA, 2025) using agentic systems (Damani et al.,
2024; Chen et al., 2025; METR, 2025; Lange et al., 2025; Google DeepMind, 2025) that leverage
extensive test-time compute. These inference-based approaches are inherently limited by the base
models’ capability in this domain. On the other hand, the presence of verifiable rewards in the form
of correctness and speedup against a reference implementation makes reinforcement learning (RL) a
natural approach. This leads to our investigation: How can we train a model using RL to solve the
real-world engineering task of CUDA kernel generation?

GPU kernel generation emphasizes not just functional correctness, but more importantly performance
— distinguishing this code optimization problem from binary-reward tasks that involve passing unit
tests (Jimenez et al., 2024) or producing an acceptable proof (Zheng et al., 2022). Since speedup is a
continuous goal, performance engineers take an iterative approach: they conduct many rounds of
optimization based on previous kernel code, its execution result, and timing profiles. Hence, arriving
at an optimized solution relies on multiple turns conditioned on previous execution feedback. In
contrast, popular RL methods to train LLMs on verifiable rewards (Shao et al., 2024; Lambert et al.,
2025) rely on the outcome reward of a single turn (“single-turn RL training”). We hypothesize that
explicitly incorporating successive turns of code generation, execution, and feedback into each RL
training step (“multi-turn RL training”) better mirrors the iterative nature of kernel development,
helping the model to learn more advanced code generation strategies that span multiple refinement
turns.

We design a simple yet effective multi-turn RL training recipe, shown in Figure 1, that addresses the
key challenges of training for CUDA kernel generation and optimization:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Within each training step, the model iteratively generates, executes, and refines kernels
over multiple turns. Kernels are rewarded individually, based both on their performance and their
contribution to subsequent speedups: K1, for example, while incorrect, leads to both a correct, slow
kernel, K2, and a correct, performant kernel, K3, and should thus be rewarded accordingly. This
setup enables Kevin to learn advanced code generation strategies that span multiple turns. Note: CoT’
is the summarized chain of thought (CoT).

1. Long trajectories lead to sparse rewards and context explosion. To improve sample
efficiency, we split trajectories and use each turn as an individual training sample. To address
context explosion from long CoTs while preserving reasoning information, we summarize
CoTs of prior turns.

2. Finding an optimal solution may require rewarding suboptimal kernels that eventually
lead to more performant ones. Therefore, we study approaches to aggregate intermediate
rewards across turns, finding a configuration that balances the correctness-performance
trade-off.

3. Reward hacking is prevalent as kernel generation is an open-ended, real-world engi-
neering task: e.g. the model can trick the evaluation harness, lazily copying the reference
implementation instead of actually implementing kernels. To prevent this, we analyze the
model’s failure modes and enforce strict rule-based checks.

Enabled by our multi-turn RL training method on 180 KernelBench tasks from Level 1 and 2, we
present Kevin the Kernel Writer, the first RL-trained model to generate CUDA kernels. We compare
Kevin and other models in our evaluation setting on a representative KernelBench eval set. Kevin
improves upon its base model QwQ-32B, (Team, 2025d) both in correctness (56% → 82%) and
mean speedup of generated kernels (in pure CUDA): from 0.53x to 1.10x over PyTorch Eager, while
outperforming frontier models like OpenAI o4-mini (0.78x).

We then study the characteristics of Kevin in a test-time scaling setting, comparing it to a single-turn
RL-baseline. We systematically compare the benefits of scaling along two axes of test-time compute:
sequentially with more refinement turns (Ehrlich et al., 2025; Wang et al., 2025a) or in parallel with
more trajectories (Brown et al., 2024; Snell et al., 2024). In our setting, we find that sequential scaling
is much more effective, highlighting the importance of iterating upon execution feedback. We observe
that the model trained with multi-turn RL exhibits better scaling characteristics with more refinement
turns, compared to the base model and the single-turn RL baseline. Our core contributions include:

1. We design an effective yet flexible multi-turn RL training strategy that significantly
improves model’s capability on CUDA kernel generation. This strategy addresses

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

challenges that arise in real-world settings, and may be applicable to other environments
that benefit from iterative optimizations.

2. We found multi-turn is more effective both for training and inference through systematic
ablations: the multi-turn trained model outperforms the single-turn trained model across
different evaluation setups. Furthermore, we found multi-turn inference is more effective
across both models under a fixed inference budget.

3. Kevin exhibits strong test-time scaling trends on both serial and parallel axes, with a
faster rate of improvement than its single-turn RL counterpart and its base model, while
maintaining exploration capacity.

2 BACKGROUND AND RELATED WORK

2.1 LLM FOR GPU KERNEL OPTIMIZATION

There has been a surge of interest in exploring how to leverage LLMs to generate GPU kernels
(NVIDIA, 2025), driven by the high cost and the long engineering cycles required to develop them
(e.g. 2 years for efficient FlashAttention (Dao, 2023) port after Hopper GPU release). However,
frontier models underperform on representative benchmarks like KernelBench (Ouyang et al., 2025)
and TritonBench (Li et al., 2025), likely due to GPU code being severely underrepresented in the
training data (CUDA, for example, accounts for less than 0.1% of pretraining data in the Stack
(Kocetkov et al., 2022; Li et al., 2023)). Collecting more expert-written code is expensive, as only a
limited number of developers are able to implement high-quality kernels. To tackle this task, there
has been an explosion of agentic systems (Damani et al., 2024; Chen et al., 2025; METR, 2025) with
custom workflows and evolutionary search methods (Lange et al., 2025; Google DeepMind, 2025).
Yet these approaches typically incur high inference cost — e.g. $15 per kernel (Lange et al., 2025).
Improving the base LLM’s kernel-generation ability is therefore essential — and could significantly
boost the efficiency for downstream agentic workflows.

2.2 RL OPTIMIZATION FOR LLMS TARGETING VERIFIABLE DOMAINS

Reinforcement Learning techniques like GRPO (Shao et al., 2024) have been shown to significantly
enhance LLMs’ performance on verifiable domains (Lambert et al., 2025) such as math (Team,
2025c; Wang et al., 2025b) and competitive programming (Team, 2025d; Luo et al., 2025a;b). These
approaches can be further adapted for real-world software tasks, using fine-grain unit tests (Liu et al.,
2023) or comparisons between code edits (Wei et al., 2025) as outcome rewards. Existing methods
for code optimizations — where objective concerns performance beyond correctness — have been
largely confined to supervised fine-tuning (Waghjale et al., 2024) and imitation learning (Shypula
et al., 2024), highlighting Kevin’s RL approach a novel contribution for this setting.

Given that tasks like performance optimization or long-horizon planning require multiple sequences
of interrelated actions, several works (Goldie et al., 2025; Cao et al., 2025; Wang et al., 2025c; Zhou
et al., 2024; Zhuang* et al., 2025) have explored RL training for multi-turn optimizations beyond
optimizing for outcome from a single turn. Specific for the code setting, RLEF (Gehring et al., 2025)
frames code generation as a multi-turn RL task: the model is allowed a fixed number of refinements
turns and assigned a single binary pass/fail reward for final generation — training with such an
approach might present sample-inefficiency issues. Unlike RLEF, which assigns rewards only at the
final turn, our multi-turn RL framework for Kevin trains on every turn regardless of how optimal
the code is, and optimizes for performance beyond just correctness. It is worth noting that Kevin’s
multi-turn RL training could be viewed as a variant of Meta-Learning (Xiang et al., 2025; Duan et al.,
2016) or In-Context Reinforcement Learning (Nie et al., 2024; Tajwar et al., 2025; Schmied et al.,
2025), where the focus is to improve solution quality during test-time with feedback (Qu et al., 2025);
but adapted in a novel way to the challenging real-world setting of GPU kernel generation and code
optimization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 TASK AND BASELINE

3.1 ENVIRONMENT AND EVALUATION

We use KernelBench (Ouyang et al., 2025), a popular dataset for evaluating the LLMs’ ability to
generate CUDA kernels for deep learning workloads in PyTorch. We chose 180 of both 100 Level
1 problems (basic operators: convolutions, matrix multiplies, loss functions, etc.) and 100 Level 2
problems (sequences of operators with fusion opportunities) as training environments. Since current
KernelBench does not provide a train-test split, we construct 80 additional novel tasks following the
same methodology (see Appendix A). We build the evaluation set by combining our 80 newly created
tasks with the 20 remaining original KernelBench tasks, for a total of 100 evaluation tasks.

Each KernelBench task consists of generating a CUDA kernel given a PyTorch reference implementa-
tion, which is used to evaluate correctness and speedup. In our setup, we evaluate the model-generated
kernels as follows: we verify the output is in the correct format (ensure resultant code is only im-
plemented with inline CUDA) and check for reward hacking (Section 6.2). We then evaluate the
kernel for compilation, runtime errors, and correctness. If the implementation is correct, we profile
the kernel for its runtime.

3.2 KERNEL SCORE DESIGN

As we are concerned both with correctness and speedup, we assign a score S for each kernel evaluation
result that effectively balances the correctness-performance trade-off.

S = 0.3 · 1{correct} +
Tbaseline

Tkernel
· 1{correct}

Correctness is checked against the reference program when tested with randomized inputs; speedup
is computed as the ratio between PyTorch baseline time and kernel runtime. We experimented with
various weights of correctness and speedup, finding this configuration through ablations on models
ranging from 7B to 32B.

In addition, we explored rewarding intermediate objectives (successfully compile or execute), yet
this caused model to over-optimize for intermediate steps (e.g. generating kernels that only compile,
but are not necessarily correct). We also experimented with a length penalty on the response, as
suggested by Team (2025b), but found that it degrades our model’s performance during training.

3.3 SINGLE-TURN TRAINING

We apply GRPO (Shao et al., 2024) to train the model on kernel generation without iterating on
external feedback ("single-turn" training). In each training step, we sample 16 responses per task and
assign the evaluated score as the reward for each kernel. We compute the GRPO loss according to
(Shao et al., 2024), which updates the policy by maximizing the following objective:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip

(
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]
− βDKL(πθ||πref)

}
(1)

where Âi,t =
ri−mean(r)

std(r) , and ri is the score of a specific kernel.

We choose Qwen QwQ-32B (Team, 2025d) as base model. See Appendix B.6 for the rationale.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Reward plateaus during
single-turn training.

Following Yu et al. (2025), we apply Clip-Higher. We
sample with temperature = 0.9 for both training and
inference. We set the KL coefficient to 0 to allow the
model to deviate freely from the base policy, following
Luo et al. (2025a).

We observe that reward plateaus after 100 gradient steps,
likely because single-turn training prevents the model from
refining its kernels. Many generated kernels are nearly
correct–often a syntax or compilation fix away–but still
receive 0 reward, discouraging the model from producing
them. Similarly, the correct kernels do not achieve high
speedup, as the model optimizes for correctness rather than
attempting a risky approach. We address these limitations
through multi-turn training.

4 MULTI-TURN TRAINING

In each multi-turn training step:

1. For each task, we sample m parallel trajectories with n refinement turns. To improve sample
efficiency, each refinement turn (CoT + response) in a trajectory becomes a single training
sample. The response of the model after the CoT consists of a kernel and a CoT summary.

2. We construct the context of a sample by including the history of previous responses, which
include generated kernels along with their summarized CoTs, and evaluation feedback.

3. We evaluate the generated kernel and compute its score as shown in Section 3.2. The reward
of each turn (CoT + response) is the discounted sum of current and subsequent scores, which
we elaborate in Section 4.3.

4. For each task, we normalize the rewards across the mn samples for advantage calculation.
Then we compute the GRPO loss over the entire batch.

4.1 MANAGING CONTEXT

Reasoning models generate long CoTs, especially for complex tasks like kernel generation. Including
all CoTs causes the context to grow rapidly, reaching 50-100k tokens within a few turns, surpassing
the model’s context length. To prevent context explosion, we discard CoTs of previous turns;
yet to preserve information regarding the reasoning process, we ask the model to summarize the
changes applied. This summary, along with the generated kernels and evaluation results, is passed to
subsequent turns.

4.2 TRAINING ON EVERY REFINEMENT TURN

In a naive implementation, each n-turn trajectory is a single training sample. To improve sample
efficiency, we split a n-turn trajectory into n training samples, each corresponding to the kernel +
CoT summary of a refinement turn with the context containing the history. Hence, the kernel and
CoT summary receives the reward of that particular turn.

4.3 REWARD AGGREGATION AND DISCOUNTING

We initially explored two naive strategies for multi-turn credit assignment. The greedy approach
assigns to each turn its corresponding kernel score, while the outcome-based approach assigns to all
turns the best score in the trajectory. The former failed to reward early suboptimal turns that lead to
performant kernels later, while the latter ignores individual contributions and is sample inefficient.

Our method balances both approaches by aggregating the future kernels scores with a discount factor.
We conduct ablations on the reward formulation. For score aggregation, we can either take the
sum Rt =

∑T
i=t γ

i−tri or maximum Rt = maxi=t,...,T

{
γi−tri

}
over future scores. Sum favors

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

generating multiple good kernels, while max prioritizes achieving one high-performing kernel. We
evaluate both forms with γ = 0.4 and γ = 0.8.

Experiments show that sum with γ = 0.4 scales best over 8 turns, though max performs better with
γ = 0.8 with fewer turns. We decide to use the sum reward formulation with discount factor γ = 0.4.

Figure 3: Sum with γ = 0.4 exhibits the best scaling behavior. We evaluate models trained with
different reward formulations under 16 parallel trajectories and 8 refinement turns.

4.4 MULTI-TURN TRAINING BEHAVIOR

Figure 4: Reward climbs steadily for
multi-turn training.

For multi-turn ablations and training runs, we train to 80
gradient steps; within each step, for each task, we sample
16 parallel trajectories and conduct 4 refinement turns.
Each batch contains 8 tasks. (See Appendices B.5 for
detailed hyperparameters and C.1 for training statistics)

Unlike single-turn training, reward now steadily increases.
We also observe response-length behaviors similar to Luo
et al. (2025b): the response length initially decreases, and
then it starts increasing again as the model attempts more
sophisticated solutions; we extend the max response length
from 16K to 22K tokens at gradient step 60.

5 EVALUATION

As kernel generation is a challenging task, models are often given extensive test-time compute to
tackle it. At inference, we employ multiple parallel trajectories, each made up of several serial turns.

We mark a trajectory correct if it contains at least one correct kernel. Its performance is the speedup
of the fastest kernel (within the trajectory) over the PyTorch Eager reference (speedup of 0x if no
kernel is correct). We also consider the fastp metric, introduced by Ouyang et al. (2025), which is a
binary indicator for whether a trajectory contains a correct kernel with performance of p or more. To
aggregate a metric across k parallel trajectories for a given task, we compute: best@k, the maximum
for that metric across all trajectories; avg@k, the average value across trajectories.

5.1 RESULT ON KERNELBENCH EVAL SET

We compare Kevin against frontier models and the single-turn RL baseline on our aforementioned
KernelBench eval set of 100 tasks (Section 3.1), with 16 parallel trajectories, 8 serial refinement turns.
As shown in Table 1, Kevin achieves a higher performance than its single-turn trained counterpart
and other frontier models, demonstrating significant improvement from its base model (QwQ-32B).
Qualitatively, Kevin is able to more effectively implement more aggressive optimizations across
several turns (see Appendix H for examples); see Appendix E for additional evaluation details.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Correctness Performance fast1 fast1.5
best@16 avg@16 best@16 avg@16 best@16 avg@16 best@16 avg@16

Kevin (Multi-Turn) 82% 46% 1.10x 0.40x 43% 15% 20% 6%
Single-Turn RL 82% 45% 0.85x 0.35x 43% 16% 16% 4%
Qwen QwQ-32B 56% 11% 0.53x 0.08x 23% 3% 10% 1%
OpenAI o4-mini 38% 22% 0.78x 0.27x 21% 7% 13% 6%
OpenAI o3-mini 27% 8% 0.30x 0.08x 9% 2% 4% 2%

Table 1: Kevin (multi-turn RL) outperforms other models in correctness and performance. We
evaluate on 100 unseen KernelBench tasks with 16 parallel trajectories and 8 refinement turns.

5.2 SCALING REFINEMENT TURNS

Leveraging execution feedback is crucial at test time (Ehrlich et al., 2025; Wang et al., 2025a). Thus,
we evaluate how Kevin scales with additional refinement turns. As shown in Figure 5, the single-turn
model achieves slightly better performance with 1 turn, as its training objective optimizes for a
single attempt. However, when given more refinement turns, the multi-turn trained model achieves
significantly higher performance, with its curve showing the highest slope. This shows that multi-turn
training enhances the model’s ability to refine and optimize kernels over turns.

5.3 SCALING PARALLEL SAMPLES

We study how best@k performance scales when increasing the number of parallel trajectories k,
while fixing the number of serial refinements turns. Prior work for RLVR on math problems (Yue
et al., 2025) found that RL training limits models’ exploration capacity, leading to worse best@k
metrics than the base model at large k. As shown in Figure 6, the performance curve of the single-turn
RL model presents a lower slope compared to the base model, possibly hinting at this phenomenon.
In contrast, our model trained with multi-turn RL achieves a higher slope compared to both the
single-turn counterpart and the base model, suggesting that multi-turn training could maintain model’s
exploration capacity while improving model’s performance.

Figure 5: Kevin effectively leverages multiple
turns. We evaluate the above checkpoints under
the same environment with 16 parallel trajectories
and 8 refinement turns.

Figure 6: Multi-turn training maintains explo-
ration capacity. Refinement turns are fixed to 8,
and best@k performance is computed with the es-
timator according to Chen et al. (2021).

5.4 PARALLEL VS SEQUENTIAL SCALING

As scaling test-time compute through parallel sampling (Snell et al., 2024) and sequential iterative
refinement (Ehrlich et al., 2025) are both beneficial, we want to systematically compare their effec-
tiveness for kernel generation. To investigate, we evaluate 3 inference-time configurations under the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

same total inference call budget (128 kernels): 128 trajectories with 1 turn, 32 trajectories with 4
turns, and 16 trajectories with 8 turns. As Table 2 shows, allocating more refinement turns during
test-time is consistently better across various models, with 16 trajectories and 8 turns being optimal.

As Section 5.1 shows, multi-turn outperforms single-turn training when evaluated in a multi-turn
inference setting. But since single-turn training optimizes for single-turn performance, a natural
question arises: does the single-turn trained model perform better by generating more single-turn
responses in parallel? In Table 2, we observe that in a single-turn inference setting with 128 parallel
trajectories, the single-turn model achieves slightly better performance than the multi-turn model.
However, when given more refinement turns at inference, the performance and correctness improve for
all models. This strengthens the case for training a model that could use feedback effectively across
multiple turns. Moreover, the multi-turn trained model achieves significantly higher performance,
with faster improvement rates compared to the single-turn trained model at test-time.

Inference Config Performance Correctness

Model Total # Traj # Turns best@# traj best@# traj

Multi-Turn RL 128 16 8 1.10x 82.00%
Multi-Turn RL 128 32 4 1.02x 83.00%
Multi-Turn RL 128 128 1 0.65x 76.00%

Single-Turn RL 128 16 8 0.85x 82.00%
Single-Turn RL 128 32 4 0.81x 79.00%
Single-Turn RL 128 128 1 0.70x 73.00%

QwQ-32B 128 16 8 0.53x 57.00%
QwQ-32B 128 32 4 0.47x 52.00%
QwQ-32B 128 128 1 0.42x 54.00%

Table 2: Multi-turn inference with 16 trajectories and 8 turns is our most optimal setup, when
comparing inference configurations and their performance (× speedup) and correctness rates.

6 DISCUSSION

6.1 MODEL INSTABILITY

Figure 7: "Not Okay Ratio" foresees model in-
stability. Here the proxy signal appears roughly
15 steps earlier than junk, which is indicated by
the response "Clipping Ratio" metric (Luo et al.,
2025b).

As prior RLVR work (Team et al., 2025) on
QwQ-32B has shown, maintaining RL training
stability is a recurring challenge. In our multi-
turn setting, we notice distinctive patterns of in-
stability, and develop a proxy signal that guides
mitigation strategies. Specifically, we observe
that training for longer often causes generation
of repetitive and nonsensical outputs ("junk").
In the multi-turn case, junk first appears in the
final turn and gradually spreads to earlier turns,
leading to model collapse.

We identified a proxy signal, which we call
the "Not Okay Ratio". QwQ-32B always
begins its chain of thought with "Okay,
" but after 80 gradient steps, the model
begins with erratic variants like "Okay Amigos, so I need to optimize this
3D tensor-matrix multiplication" and "Okay Holy crap, I need to get
this code optimized"; tracking the "Not Okay Ratio" offers a reliable early proxy for model
instability and well precedes junk.

As detailed in Appendix F, after attempting mitigations such as a KL penalty, we found that using
constant-length normalization in the GRPO loss (Liu et al., 2025), together with gradient-norm
clipping at 0.05, successfully delayed the onset of junk responses to beyond 100 gradient steps.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6.2 REWARD HACKING

We observe forms of reward hacking, as model capabilities fall short of task difficulty (Amodei
et al., 2016). Concretely, when a weaker model such as DeepSeek-R1-Distill-Qwen-7B
fails to produce the correct CUDA kernels, it resorts to directly copying the reference implementation,
inheriting from it, or wrapping it in try-except statements. With a stronger prior like QwQ-32B, the
model only fuses simple operators (ReLU, Max) and leaves key operators unmodified (in PyTorch).
We address these issues by imposing stricter format checks that assign 0 reward to responses with
any PyTorch functional operators. We elaborate on concrete examples in Appendix G.

6.3 DATA DISTRIBUTION

We found it critical to have a balanced difficulty distribution across the dataset, so that
on average each batch contains both easier and harder tasks. In one experiment with
DeepSeek-R1-Distill-Qwen-14B (DeepSeek-AI, 2025), we trained on a subset of only
easy tasks. The reward quickly plateaus as the model overfits to a single difficulty level. Training
with a stronger base model QwQ-32B and on both level 1 and 2 of KernelBench resolved the issue.

7 CONCLUSION

7.1 SUMMARY

We designed a multi-turn RL training recipe that addresses challenges when applied to the real-world
task of kernel generation: specifically, effective context management and credit attribution across
every turn to enable better sample efficiency. We also added safeguards against reward hacking, and
experimented with approaches to constrain and predict instability.

We present Kevin, the first model trained with RL to generate CUDA kernels. Evaluated on an
unseen evaluation set, Kevin outperforms both its single-turn RL counterpart and frontier models,
demonstrating that our training recipe enables the model to learn more effective refinement strategies.
Multi-turn training also enables better test-time scaling, both when increasing sequential refinement
and parallel sampling compute, while preserving the exploration capacity of the model.

7.2 LIMITATIONS

Our work is limited by the number of robust tasks in kernel generation (unlike math or general
coding with thousands of readily available tasks). KernelBench contains only 250 tasks and requires
substantial pre-processing (Appendix A). Moreover, multi-turn RL is computationally expensive, even
after extensive system optimization (Appendix C), as each rollout involves serial steps of reasoning
inference, complex code generation, and careful kernel evaluation.

Nonetheless, we believe that showing significant performance gains in this domain, even under
limited data and compute, highlights the effectiveness of our multi-turn training recipe. With more
robust kernel environments, stronger model priors, and improved RL frameworks, we expect our
method to scale accordingly.

We further note as KernelBench tasks are specified with pre-defined tensor input sizes, the speedups
we measure in Section 3.2 are only accurate for those dimensions and on NVIDIA H200 GPUs.

7.3 FUTURE WORK

We see several directions for extending our method. Incorporating a learned value network and PPO
(Schulman et al., 2017) may improve baseline estimation. More sophisticated search methods (beam
search, MCTS (Silver et al., 2017)) may be applied at train and test time. Inspired by recent works
(Sareen et al., 2025), the value network could also serve as a verifier for search at test-time.

Our multi-turn RL recipe demonstrates success in the real-world engineering task of GPU kernel
generation. We hope our flexible design could be applicable to a wider range of tasks with verifiable
rewards and execution feedback across a trajectory. We believe explicitly training models to reason
about complex tasks over multiple turns is a key step towards enabling autonomous AI systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This work introduces Kevin, a multi-turn RL training method to enhance LLM’s ability specifically
for the task of automatic kernel generation. Our research builds on the publicly available model of
QwQ-32B (Team, 2025d) and KernelBench dataset (Ouyang et al., 2025). We document in-depth
how we use the dataset and post-train the model.

Our work does not introduce new risks that are not already inherent in the underlying base model. We
do not involve any human subject nor do we make comparison with human kernel engineers in our
study, as our baseline comparisons are against the PyTorch framework (Ansel et al., 2024), following
the evaluation methodology proposed in KernelBench.

9 REPRODUCIBILITY STATEMENT

Training Recipe: We cover various challenges encountered during training in detail and propose
effective mitigation: covering training stability F, avoiding reward hacking G, and careful considera-
tions for RL design 4 with ablation studies. We elaborate on how we conduct dataset processing A)
and provide a comprehensive set of hyper-parameters for our final model (AppendixB.5).

Computational Requirements: Each of our multi-turn training runs (for ablations and the final
run) requires 650 H200 hours. As discussed in Appendix C, we take steps to improve the training
efficiency of this complex multi-turn RL pipeline with in-the-loop kernel profiling. We elaborate on
the computation cost and step time in Appendix C.1 and specifically in Table 3.

Hardware Specifications: We conduct all of our RL training, evaluation, and inference on the
NVIDIA H200 platform. All of our kernel runtime measurement and baseline are specific to PyTorch
2.6 and H200 hardware.

Model Weights: Model weights will be released as open source and will be accessible to ensure
reproducibility.

Evaluation: For our result, we compare our methods with other models that are either released open-
source (QwQ-32B) or using a fixed version of the cloud API endpoints (o4-mini-2025-04-16,
o3-mini-2025-01-31).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety, 2016. URL https://arxiv.org/abs/1606.06565.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin
Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian
Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano,
Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian Puhrsch,
Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting Zhang, Michael Suo,
Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews,
William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch 2: Faster machine
learning through dynamic python bytecode transformation and graph compilation. In Proceedings
of the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS ’24, pp. 929–947, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400703850. doi: 10.1145/3620665.3640366.
URL https://doi.org/10.1145/3620665.3640366.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao Wang,
Akshay Malik, Graham Neubig, Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz, Matei
Zaharia, Joseph E. Gonzalez, and Ion Stoica. Skyrl-v0: Train real-world long-horizon agents via
reinforcement learning, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Terry Chen, Bing Xu, and Kirthi Devleker. Automating gpu kernel generation with deepseek-r1 and
inference-time scaling. https://developer.nvidia.com/blog/automating-gpu-
kernel-generation-with-deepseek-r1-and-inference-time-scaling/,
February 2025. Accessed: 2025-05-15.

Sana Damani, Siva Kumar Sastry Hari, Mark Stephenson, and Christos Kozyrakis. Warpdrive: An
agentic workflow for ninja gpu transformations. In Proceedings of the Machine Learning for
Systems Workshop at NeurIPS 2024, 2024. URL https://mlforsystems.org/assets/
papers/neurips2024/paper32.pdf. Accessed: 2025-05-15.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Tulsee Doshi. Gemini 2.5: Our most intelligent models are getting even bet-
ter. https://blog.google/technology/google-deepmind/google-gemini-
updates-io-2025/, May 2025. Accessed: 2025-05-21.

11

https://arxiv.org/abs/1606.06565
https://doi.org/10.1145/3620665.3640366
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2107.03374
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://mlforsystems.org/assets/papers/neurips2024/paper32.pdf
https://mlforsystems.org/assets/papers/neurips2024/paper32.pdf
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2501.12948
https://blog.google/technology/google-deepmind/google-gemini-updates-io-2025/
https://blog.google/technology/google-deepmind/google-gemini-updates-io-2025/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning, 2016. URL https://arxiv.org/
abs/1611.02779.

Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald Clark, Christopher Ré, and Azalia Mirhoseini.
Codemonkeys: Scaling test-time compute for software engineering, 2025. URL https://
arxiv.org/abs/2501.14723.

Paul Gauthier. o1 tops aider’s new polyglot leaderboard. https://aider.chat/2024/12/
21/polyglot.html, December 2024. Accessed: 2025-04-16.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning,
2025. URL https://arxiv.org/abs/2410.02089.

Anna Goldie, Azalia Mirhoseini, Hao Zhou, Irene Cai, and Christopher D. Manning. Synthetic data
generation & multi-step rl for reasoning & tool use, 2025. URL https://arxiv.org/abs/
2504.04736.

Google DeepMind. Alphaevolve: A gemini-powered coding agent for designing advanced algorithms,
May 2025. URL https://deepmind.google/discover/blog/alphaevolve-a-
gemini-powered-coding-agent-for-designing-advanced-algorithms/.
Accessed: 2025-05-15.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
easy-to-use, scalable and high-performance rlhf framework, 2024. URL https://arxiv.org/
abs/2405.11143.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. The stack: 3 tb of permissively licensed source code, 2022. URL
https://arxiv.org/abs/2211.15533.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing frontiers in open language model post-training, 2025. URL https://arxiv.org/
abs/2411.15124.

Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. The
ai cuda engineer: Agentic cuda kernel discovery, optimization and composition, 2025. URL
https://pub.sakana.ai/static/paper.pdf. Accessed: 2025-05-15.

Jianling Li, Shangzhan Li, Zhenye Gao, Qi Shi, Yuxuan Li, Zefan Wang, Jiacheng Huang, Haojie
Wang, Jianrong Wang, Xu Han, Zhiyuan Liu, and Maosong Sun. Tritonbench: Benchmarking large
language model capabilities for generating triton operators, 2025. URL https://arxiv.org/
abs/2502.14752.

12

https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/2501.14723
https://arxiv.org/abs/2501.14723
https://aider.chat/2024/12/21/polyglot.html
https://aider.chat/2024/12/21/polyglot.html
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2504.04736
https://arxiv.org/abs/2504.04736
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://pub.sakana.ai/static/paper.pdf
https://arxiv.org/abs/2502.14752
https://arxiv.org/abs/2502.14752

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,
Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with you!, 2023.
URL https://arxiv.org/abs/2305.06161.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. Rltf: Reinforce-
ment learning from unit test feedback, 2023. URL https://arxiv.org/abs/2307.04349.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https:
//arxiv.org/abs/2503.20783.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang
Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa,
and Ion Stoica. Deepcoder: A fully open-source 14b coder at o3-mini level. https:
//pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-
Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51, 2025a.
Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-
RL-19681902c1468005bed8ca303013a4e2, 2025b. Notion Blog.

Mathematical Association of America. American invitational mathematics examination
– AIME. https://maa.org/math-competitions/american-invitational-
mathematics-examination-aime, February 2024. Accessed: 2025-09-24.

METR. Measuring automated kernel engineering, February 2025. URL https://metr.org/
blog/2025-02-14-measuring-automated-kernel-engineering/. Accessed:
2025-05-15.

Daniel Nichols, Aniruddha Marathe, Harshitha Menon, Todd Gamblin, and Abhinav Bhatele.
Hpc-coder: Modeling parallel programs using large language models. In ISC High Perfor-
mance 2024 Research Paper Proceedings (39th International Conference), pp. 1–12. IEEE,
May 2024. doi: 10.23919/isc.2024.10528929. URL http://dx.doi.org/10.23919/
ISC.2024.10528929.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming
with cuda. In ACM SIGGRAPH 2008 Classes, SIGGRAPH ’08, New York, NY, USA, 2008.
Association for Computing Machinery. ISBN 9781450378451. doi: 10.1145/1401132.1401152.
URL https://doi.org/10.1145/1401132.1401152.

Allen Nie, Yi Su, Bo Chang, Jonathan N. Lee, Ed H. Chi, Quoc V. Le, and Minmin Chen. Evolve:
Evaluating and optimizing llms for exploration, 2024. URL https://arxiv.org/abs/
2410.06238.

NVIDIA. Gpu mode at nvidia gtc 2025, 2025. URL https://www.youtube.com/watch?v=
mdDVkBeFy9A. Accessed: 2025-05-15.

NVIDIA Corporation. Cutlass: Cuda templates for linear algebra subroutines, May 2025. URL
https://github.com/NVIDIA/cutlass. Accessed: 2025-05-15.

13

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2307.04349
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://metr.org/blog/2025-02-14-measuring-automated-kernel-engineering/
https://metr.org/blog/2025-02-14-measuring-automated-kernel-engineering/
http://dx.doi.org/10.23919/ISC.2024.10528929
http://dx.doi.org/10.23919/ISC.2024.10528929
https://doi.org/10.1145/1401132.1401152
https://arxiv.org/abs/2410.06238
https://arxiv.org/abs/2410.06238
https://www.youtube.com/watch?v=mdDVkBeFy9A
https://www.youtube.com/watch?v=mdDVkBeFy9A
https://github.com/NVIDIA/cutlass

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Anne Ouyang, Simon Guo, Simran Arora, Alex L. Zhang, William Hu, Christopher Ré, and
Azalia Mirhoseini. Kernelbench: Can llms write efficient gpu kernels?, 2025. URL https:
//arxiv.org/abs/2502.10517.

Yuxiao Qu, Matthew Y. R. Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning, 2025. URL https://arxiv.org/abs/2503.07572.

Kusha Sareen, Morgane M Moss, Alessandro Sordoni, Rishabh Agarwal, and Arian Hosseini. Putting
the value back in rl: Better test-time scaling by unifying llm reasoners with verifiers, 2025. URL
https://arxiv.org/abs/2505.04842.

Thomas Schmied, Jörg Bornschein, Jordi Grau-Moya, Markus Wulfmeier, and Razvan Pascanu.
Llms are greedy agents: Effects of rl fine-tuning on decision-making abilities, 2025. URL
https://arxiv.org/abs/2504.16078.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi,
Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
performance-improving code edits, 2024. URL https://arxiv.org/abs/2302.07867.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/
2408.03314.

Benjamin F. Spector, Simran Arora, Aaryan Singhal, Daniel Y. Fu, and Christopher Ré. Thun-
derkittens: Simple, fast, and adorable ai kernels, 2024. URL https://arxiv.org/abs/
2410.20399.

Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff Schnei-
der, and Ruslan Salakhutdinov. Training a generally curious agent, 2025. URL https:
//arxiv.org/abs/2502.17543.

Gemma Team. Gemma 3 technical report, 2025a. URL https://arxiv.org/abs/
2503.19786.

Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025b. URL https://
arxiv.org/abs/2501.12599.

NovaSky Team. Sky-t1: Train your own o1 preview model within $450. https://novasky-
ai.github.io/posts/sky-t1, 2025c. Accessed: 2025-01-09.

Prime Intellect Team, Sami Jaghouar, Justus Mattern, Jack Min Ong, Jannik Straube, Manveer
Basra, Aaron Pazdera, Kushal Thaman, Matthew Di Ferrante, Felix Gabriel, Fares Obeid, Kemal
Erdem, Michael Keiblinger, and Johannes Hagemann. Intellect-2: A reasoning model trained
through globally decentralized reinforcement learning, 2025. URL https://arxiv.org/
abs/2505.07291.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025d. URL
https://qwenlm.github.io/blog/qwq-32b/.

14

https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2505.04842
https://arxiv.org/abs/2504.16078
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2410.20399
https://arxiv.org/abs/2410.20399
https://arxiv.org/abs/2502.17543
https://arxiv.org/abs/2502.17543
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2505.07291
https://arxiv.org/abs/2505.07291
https://qwenlm.github.io/blog/qwq-32b/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, MAPL 2019, pp. 10–19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367196. doi:
10.1145/3315508.3329973. URL https://doi.org/10.1145/3315508.3329973.

Siddhant Waghjale, Vishruth Veerendranath, Zora Zhiruo Wang, and Daniel Fried. Ecco: Can we
improve model-generated code efficiency without sacrificing functional correctness?, 2024. URL
https://arxiv.org/abs/2407.14044.

Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes, Samyam Rajbhandari, Olatunji
Ruwase, Feng Yan, Lei Yang, and Yuxiong He. Zero++: Extremely efficient collective communi-
cation for giant model training, 2023. URL https://arxiv.org/abs/2306.10209.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2025a. URL https://arxiv.org/abs/2407.16741.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
Shen. Reinforcement learning for reasoning in large language models with one training example,
2025b. URL https://arxiv.org/abs/2504.20571.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Monica Lam, Yiping Lu, Kyunghyun Cho, Jiajun
Wu, Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-evolution
in llm agents via multi-turn reinforcement learning, 2025c. URL https://arxiv.org/abs/
2504.20073.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution, 2025. URL https://arxiv.org/abs/
2502.18449.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, Louis Castricato, Jan-Philipp Franken, Nick
Haber, and Chelsea Finn. Towards system 2 reasoning in llms: Learning how to think with meta
chain-of-thought, 2025. URL https://arxiv.org/abs/2501.04682.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze. Flashinfer: Efficient and
customizable attention engine for llm inference serving. arXiv preprint arXiv:2501.01005, 2025.
URL https://arxiv.org/abs/2501.01005.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-
source llm reinforcement learning system at scale, 2025. URL https://arxiv.org/abs/
2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.
Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?,
2025. URL https://arxiv.org/abs/2504.13837.

Chenggang Zhao, Liang Zhao, Jiashi Li, and Zhean Xu. Deepgemm: clean and efficient fp8 gemm ker-
nels with fine-grained scaling. https://github.com/deepseek-ai/DeepGEMM, 2025.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics, 2022. URL https://arxiv.org/abs/2109.00110.

15

https://doi.org/10.1145/3315508.3329973
https://arxiv.org/abs/2407.14044
https://arxiv.org/abs/2306.10209
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.13837
https://github.com/deepseek-ai/DeepGEMM
https://arxiv.org/abs/2109.00110

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training lan-
guage model agents via hierarchical multi-turn rl, 2024. URL https://arxiv.org/abs/
2402.19446.

Richard Zhuang*, Trung Vu*, Alex Dimakis, and Maheswaran Sathiamoorthy. Improving multi-turn
tool use with reinforcement learning. https://www.bespokelabs.ai/blog/improving-multi-turn-tool-
use-with-reinforcement-learning, 2025. Accessed: 2025-04-17.

16

https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A KERNELBENCH MODIFICATIONS

We use KernelBench Ouyang et al. (2025) as our training environments. KernelBench is a popular
benchmark for evaluating LLMs’ ability to generate performant CUDA kernels for deep learning
workloads in PyTorch. Each KernelBench task consists in generating a CUDA kernel given a PyTorch
reference implementation, which is used to evaluate correctness and speedup.

A.1 TASK IMPROVEMENTS

We identify several limitations in the original KernelBench and introduce targeted modifications to
address them. These changes are crucial to mitigate reward hacking, as shown in Section 6.2.

• We sand-boxed the kernel evaluation process so that fatal errors, such as CUDA illegal
memory accesses, do not crash the RL training process.

• A significant issue we noted in KernelBench was that for many tasks, the input tensors used
to measure performance are quite small. This causes kernel launch overhead to take up a
significant portion of the runtime. To address this, we enlarged the tensor dimensions of the
affected tasks.

• A sneakier bug in the KernelBench’s evaluation harness caused the tested kernel to recycle
the output tensor from the reference implementation (which was run immediately before) as
its own tensor output. As a result of this, a kernel that only computes (correctly) a portion
of the output tensor would still pass the correctness check. We address this by running the
tested kernel first and only after the reference implementation, thus avoiding this hack.

In the end, we chose a total of 180 tasks as training environments, with 90 of the 100 Level 1 problems
and 90 Level 2 problems (sequences of operators with fusion opportunities).

A.2 CONSTRUCTION OF ADDITIONAL EVALUATION SET

Since current KernelBench does not provide a train-test split, we construct 80 additional tasks
following the same methodology that KernelBench was constructed.

KernelBench Level 2 is constructed by composing a subset of PyTorch operators as sequences of
operators. Specifically, the PyTorch operators are categorized as:

• Main operators: Conv2d, Matmul, Gemm, BMM, Conv3d, ConvTranspose2d,
ConvTranspose3d.

• Activations: ReLU, Sigmoid, Tanh, LeakyReLU, GELU, Swish, Softmax, Mish,
Hardtanh, HardSwish.

• Element-wise operators: Add, Multiply, Subtract, Divide, Clamp, Scale,
ResidualAdd.

• Normalizations: BatchNorm, LayerNorm, InstanceNorm, GroupNorm.

• Pooling: MaxPool, AvgPool, GlobalAvgPool.

• Bias: BiasAdd.

• Reductions: Sum, Mean, Max, Min, LogSumExp.

• Others: ResidualAdd, Scaling.

To construct the additional eval set (unseen from train set), following the methodology from original
KernelBench task construction:

1. We sample from the available operators listed above: 1 main operator (computationally
expensive), and 2-5 other operators.

2. We ask a language model, namely Gemini 2.5-Flash (Doshi, 2025), to generate a PyTorch
program that creates a kernel by combining these operators. We also ask it to generate
sample tensor sizes for the task.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

3. We ensure this PyTorch program can be executed and has a runtime on NVIDIA H200
> 0.1ms, to avoid the runtime being dominated by kernel launch (CPU) overhead.

4. We make sure this PyTorch program (with the same sequence of operators) is not present in
existing KernelBench Level 1 and 2 programs.

We manually inspected all new task programs to ensure their validity. We build the evaluation set by
combining our 80 newly created tasks with the 20 remaining original KernelBench tasks, for a total
of 100 unseen evaluation tasks.

B ADDITIONAL DETAILS ON MULTI-TURN RL

Here we elaborate on design choices for our RL Training as described in Section 3.3 and Section 4,
along with some ablation results.

B.1 MOTIVATION FOR TURN-WISE REWARD

In our multi-turn RL training setup, within each training step we have a trajectory with n refinement
turns. A possible approach would be to compute the reward based on the kernel at the last turn, similar
to what is used in RLEF (Gehring et al., 2025). However, for the GPU kernel optimization setting,
using just the last kernel might not be optimal at times: for example, as shown earlier in Figure 1,
kernel 3 is correct but kernel 4 is incorrect as the model attempts more aggressive optimizations.

In this setting, computing reward based on the best kernel among the trajectory instead (max speedup)
is a more natural choice. However, using only the max kernel score forces us to discard all turns in
a trajectory after the max turn, possibly wasting a significant amount of inference rollouts: In the
previous example, we would have to completely discard the reasoning trace, code, and evaluation for
kernel 4. Thus, we arrived at our approach in Section 4.3, which uses a discounted look-ahead max
or sum, enabling more sample-efficient training.

Figure 8: Training reward with correctness
weighting of 1, performance / speedup weight-
ing of 1. Concretely, S = 1{correct} + Tbaseline

Tkernel
·

1{correct}.

Figure 9: Training reward with no correctness
weighting, performance / speedup weighting of 1.
(speedup is 0 if kernel is incorrect). Concretely,
S = 1{correct} · Tbaseline

Tkernel
.

B.2 WEIGHTING FOR SCORE

In Section 3.2, we explain our score design, which assigns a scalar value (score S) based on a kernel’s
correctness and speedup. We explore score design and how to balance the correctness-performance
trade-off, after series of small-scale ablations on QwQ-32B (Team, 2025d).

We decided on a weighting of 0.3 on correctness and using speedup for performance (raw speedup
itself, no weighting), which is S = 0.3 · 1{correct} + 1{correct} · Tbaseline

Tkernel
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Here we present some ablation studies we ran with different weighting configurations for score
design, particularly focusing on adjusting the weighing for correctness, in the context of single-turn
RL (GRPO) training (as shown in Section 3.3). As show an example in Figure 8, where we set
the weighting to 1.0 for correctness, the reward plateaus and eventually decreased; concretely, we
observed that the model over-optimizes for generating correct kernels and does not explore speedup
as much, causing the reward to plateau during training. In another experiment in Figure 9, we set
the weighting to 0 for correctness, only rewarding the model for generating performant (and correct)
kernels. We again observed the reward plateau. Thus, we hypothesize that it is still important to
reward the model for correct kernels, as long as the correctness reward is not too significant, balancing
the correctness-performance tradeoff.

B.3 NUMBER OF TRAJECTORIES DURING TRAINING

We vary the number of parallel trajectories during Multi-Turn RL training (Section 4), using 64
parallel trajectories instead of 16 for each task during each training step. We note that best@16
correctness slightly increases, but the overall performance does not show significant improvements.
Due to the high-compute requirements of doing more generations during training, we chose to train
with 16 parallel trajectories.

B.4 LENGTH PENALTY

We explore incorporating response length as a part of the reward design to incentivize the model to
use its reasoning tokens more efficiently. We attempted a run using the length penalty from Kimi
Team (2025b) on DeepSeek-R1-Distill-Qwen-14B. As shown in Figures 10 and 11, we
found that the response length of the responses collapses, with the model no longer outputting CoT
after 10 training steps, suggesting that the addition of a length penalty is counterproductive for our
setting.

Figure 10: Training Reward collapses when in-
cluding length penalty as part of reward

Figure 11: Response length of generations col-
lapses when including length penalty as part of
reward.

B.5 DETAILED TRAINING HYPERPARAMETERS

Here is the set of hyperparameter for our final Kevin training run.

1 Constant learning rate of 2e-6 with warmup ratio of 0.03
2 Max grad norm = 0.05
3 KL coeff = 0
4 Temperature = 0.9
5 Top p = 0.95
6 Eps clip = 0.2 with clip high = 0.28
7 Max prompt len = 8192
8 Max generate len = 22432

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.6 BASE MODEL CHOICE RATIONALE

We experimented with several different base models, such as DeepSeek-R1-Distill-Qwen7B
DeepSeek-AI (2025), DeepSeek-R1-Distill-Llama8B, and Gemma27B-Instruct Team
(2025a). These models, however exhibit weak kernel writing priors, which causes the initial reward to
be overly sparse for effective learning, making the model resort to reward hacking (see Section 6.2).

We thus choose Qwen QwQ-32B (Team, 2025d) as our base model, which exhibits, among all the
models we have evaluated of comparable size, the strongest priors.

C RL INFRASTRUCTURE

Conducting RL training on a highly challenging task like GPU kernel generation is a computationally
expensive process, requiring full-policy updates on a sufficiently capable base model, as discussed in
Section 6.2.

Although a few open-source RL frameworks existed when we began this study, it is still difficult to
support training in a kernel evaluation environment and including multiple turns within one training
step. We built our training framework on top of the OpenRLHF (Hu et al., 2024) framework.

We use vLLM (Kwon et al., 2023) for inference and DeepSpeed Zero-3 (Wang et al., 2023) for
offloading optimizer states.

Figure 12: Overview of our RL Training infrastructure.

Each of the 8 GPUs handles the kernel generation and evaluation for one task. After the response
generation finishes, each GPU offloads its vLLM engine to CPU memory and evaluates the kernels it
generated. We run the evaluation and calculate reward and evaluation info. Each GPU then wakes up
its corresponding vLLM engine and regenerates kernels.

We optimized our training infrastructure to co-locate vLLM rollout engines, kernel execution envi-
ronments, and DeepSpeed trainers on the same GPU device, so other small research teams with 1
cluster could also experiment with our proposed method.

C.1 TRAIN TIME STATISTICS

Here we elaborate more on the cost of our multi-turn training. The nature of multi-turn RL requires
multiple serial turns of parallel rollouts and kernel compilation/execution after each step, making
the overall training process compute-intensive. To accurately measure kernel runtime, we must clear
the GPUs of any running processes and perform additional operations, such as warmup steps before
profiling, which further limits the training speed. Here we show key training time statistics:

Overall, one training run (Section 4) takes 6̃50 H200 hours, equivalent to around 3 days and 9 hours
on a single node of 8xH200s. However, we believe concurrent and future systems projects (such as
SkyRL by Cao et al. (2025)) will improve training efficiency, especially for roll-outs with complex

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Configuration Value
Gradient steps 80
Parallel trajectory rollouts 16
Refinement turns (serial env. interactions) 4
Gradient updates per batch 2 (1 on-policy, 1 off-policy)
Time for rollout + kernel execution (per step) ∼1.5 hours
Time for 1 gradient update (2 steps) ∼0.5 hours
Base model QwQ-32B

Table 3: Setup and Cost of multi-turn Training for Kevin on 8xH200s.

interactions with environments. The demanding computational requirement of multi-turn RL is what
leads us to focus on improving the sample efficiency of our method; specifically, we choose to train on
every sample regardless of their performance and attribute credit effectively with our reward design.

D INFERENCE SETUP

Our prompt is similar to the prompt used in KernelBench (Ouyang et al., 2025). We use this during
training and test-time inference. In the first refinement turn, we add an example of the inline CUDA
format to the prompt but remove it afterwards.

Below we show how we construct the context in the simplest case (of one turn, or the base prompt).
In the context, we present model the KernelBench task, instructions, and a simple 1-shot example of
a CUDA add kernel (to inform model the desired format for response):

1 You are given the following architecture:
2 import torch
3 import torch.nn as nn
4

5 class Model(nn.Module):
6 """
7 Simple model that performs Layer Normalization.
8 """
9 def __init__(self, normalized_shape: tuple):

10 """
11 Initializes the LayerNorm layer.
12

13 Args:
14 normalized_shape (tuple): Shape of the input tensor to be

normalized.
15 """
16 super(Model, self).__init__()
17 self.ln = nn.LayerNorm(normalized_shape=normalized_shape)
18

19 def forward(self, x: torch.Tensor) -> torch.Tensor:
20 """
21 Applies Layer Normalization to the input tensor.
22

23 Args:
24 x (torch.Tensor): Input tensor of shape (*,

normalized_shape).
25

26 Returns:
27 torch.Tensor: Output tensor with Layer Normalization

applied, same shape as input.
28 """
29 return self.ln(x)
30

31 Replace pytorch operators in the given architecture with raw CUDA
kernels, optimizing for performance on NVIDIA H200 (e.g. shared
memory, kernel fusion, warp primitives, vectorization,...). Use

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

torch.utils.cpp_extension.load_inline and name your optimized output
architecture ModelNew. You are not allowed to use torch.nn (except
for Parameter, containers, and init). The input and output have to
be on CUDA device. Your answer must be the complete new architecture
(no testing code, no other code): it will be evaluated and you will
be given feedback on its correctness and speedup so you can keep
iterating, trying to maximize the speedup. After your answer,
summarize your changes in a few sentences.Here is an example:

32

33 import torch.nn as nn
34 from torch.utils.cpp_extension import load_inline
35

36 # Define the custom CUDA kernel for element-wise addition
37 elementwise_add_source = """
38 #include <torch/extension.h>
39 #include <cuda_runtime.h>
40

41 __global__ void elementwise_add_kernel(const float* a, const float* b,
float* out, int size) {

42 int idx = blockIdx.x * blockDim.x + threadIdx.x;
43 if (idx < size) {
44 out[idx] = a[idx] + b[idx];
45 }
46 }
47

48 torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor b) {
49 auto size = a.numel();
50 auto out = torch::zeros_like(a);
51

52 const int block_size = 256;
53 const int num_blocks = (size + block_size - 1) / block_size;
54

55 elementwise_add_kernel<<<num_blocks,
block_size>>>(a.data_ptr<float>(), b.data_ptr<float>(),
out.data_ptr<float>(), size);

56

57 return out;
58 }
59 """
60

61 elementwise_add_cpp_source = (
62 "torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor

b);"
63)
64

65 # Compile the inline CUDA code for element-wise addition
66 elementwise_add = load_inline(
67 name="elementwise_add",
68 cpp_sources=elementwise_add_cpp_source,
69 cuda_sources=elementwise_add_source,
70 functions=["elementwise_add_cuda"],
71 verbose=True,
72 extra_cflags=[""],
73 extra_ldflags=[""],
74)
75

76

77 class ModelNew(nn.Module):
78 def __init__(self) -> None:
79 super().__init__()
80 self.elementwise_add = elementwise_add
81

82 def forward(self, a, b):
83 return self.elementwise_add.elementwise_add_cuda(a, b)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

For our multi-turn RL training (Section 4) and inference (Section 5), we provide model with the
kernels, CoTs (summarized), and evaluation results of all previous turns in chronological order. We
truncate the turns that do not fit inside the context window, starting from the earliest ones.

1 <Base prompt containing pytorch architecture and instruction>
2

3 Here are your previous attempts:
4

5 < for each (i) previously generated kernel >
6 <Previously generated kernel G[i]>
7

8 <Summary of CoT[i]>
9

10 <if parsing error>
11

12 Your previous answer failed to be parsed due to not adhering to
the desired formatting. Here is the error message: <error_message>

13

14 <elif compilation error>
15

16 Your previous answer failed to compile. Here is the error
message: <error_message>

17

18 <elif run error>
19

20 Your previous answer compiled successfully but had runtime
errors. Here is the error message: <error_message>

21

22 <elif correctness error>
23

24 Your previous answer was incorrect. Here is the error message:
<error_message>

25

26 <elif correct>
27

28 Your previous answer was correct but can be made faster. Here is
the speedup you achieved relative to the baseline: <speedup>

29

30 Restart your reasoning process and generate new, complete code.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E ADDITIONAL EVALUATIONS

Here we present some additional evaluation results for Section 5.

E.1 CONFIDENCE INTERVALS

We compute the confidence intervals of best@16 and avg@16 performance for the multi-turn and
single-turn RL across 5 runs, as shown in Table 4. These results show multi-turn RL has statistically
significant improvement on both metrics and hence its effectiveness.

Model Performance
best@16 avg@16

Multi-turn RL 1.10± 0.099 0.40± 0.011
Single-turn RL 0.85± 0.048 0.35± 0.013

Table 4: Evaluation on our evaluation set across 5 runs with confidence interval. Multi-turn RL
outperforms Single-turn RL on both best@16 and avg@16 performance.

E.2 CHOICE OF BASELINE MODEL COMPARISON

Here we elaborate on the choice of model comparisons used for 5.1, notably against both Kevin’s base
model (QwQ-32B) and frontier reasoning models (o4-mini, o3-mini). To the best of our knowledge,
we are not aware of any model specifically “fine-tuned” for the CUDA context (efforts like Nichols
et al. (2024) focus on OpenMP CPU code). CUDA, or GPU code in general, is extremely sparse in
the pretraining corpus, only 0.073% of the Stack (Li et al., 2023) code corpus; this makes approaches
that depend on readily available data (such as “fine-tuning”) difficult. Hence, this data challenge
actually highlights the value of our RL-based approach, as we discussed in Section 1. We believe
that the comparisons of Kevin against SoTA general-purpose LLMs are fair and fitting, and actually
demonstrate the advantage of our RL-based approach in this domain.

Our baseline comparisons, o4-mini and o3-mini, are frontier models that achieve SoTA on
challenging code generation benchmarks. Specifically we use o4-mini-2025-04-16 and
o3-mini-2025-01-31. As shown below, o4-mini demonstrates a significant lead over our
base model QwQ-32B, especially on challenging real-world software tasks such as SWE-Bench
(Jimenez et al., 2024) and Polyglot (Gauthier, 2024). Hence, our results in Section 5.1 and Table 1
showing Kevin (post-trained QwQ-32B with multi-turn RL) exceeding o4-mini should be noted as a
significant improvement and demonstrate our method’s effectiveness.

Model AIME 24 LiveCodeBench SWE-Bench Verified Aider Polyglot

QwQ-32B 79.5% 63.4% 41.3% 20.9%
o4-mini 93.4% 74.2% 68.1% 72.0%

Table 5: o4-mini shows significant lead over QwQ-32B over a variety of reasoning, coding, and
software engineering benchmarks (Mathematical Association of America, 2024; Jain et al., 2024;
Jimenez et al., 2024; Gauthier, 2024); Kevin is post-trained on QwQ-32B and shows improvement
over both QwQ-32B and o4-mini, as shown in Section 5.1.

.

E.3 EVALUATION ON KERNELBENCH LEVEL 3

While we focus on our training and evaluation mostly on KernelBench Level 1 and 2 (Section 3),
we were also curious and explore testing Kevin on KernelBench Level 3 tasks. They are longer and
more challenging (rather than single or a few operators), requiring the end-to-end optimization of full
model architectures, such as the VisionTransformer, and miniGPT attention blocks. Kevin is trained
using a subset (180) of the KernelBench Level 1 and 2 tasks (single and sequence of operators), and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Level 3 tasks are completely unseen. We evaluate the multi-turn (Kevin), single-turn, and base model
(QwQ-32B) on the 50 level 3 tasks following the same evaluation setup as Section 5. As shown in
the table below, multi-turn RL can also generate much faster kernels for these much more complex
tasks over both single-turn RL and the base model.

We view Level 3 primarily as an out-of-distribution test: these tasks involve full model architectures
with much longer-horizon reasoning, and requiring both kernel generation and effectively dealing
with long context. We do not train on any Level 3 tasks as the length of these programs would lead to
context explosion (Section 4.1). Hence, our main analysis focuses on Levels 1 and 2, which better
focuses on kernel generation performance with more controlled conditions.

Correctness Performance
Method best@16 avg@16 best@16 avg@16
Multi-turn RL 36% 11.75% 0.41 0.08
Single-turn RL 36% 8.38% 0.36 0.06
QwQ-32B 4% 0.25% 0.04 0.002

Table 6: Multi-turn RL achieves improvements also on the completely unseen and more complex
KernelBench Level 3.

F TRAINING STABILITY

The analysis of the "not okay ratio" led us to believe that model instability caused the appearance of
nonsensical and repetitive outputs. Therefore, we attempted runs where we enabled KL divergence
penalty in the GRPO loss, which would penalize the model from deviating from the base policy too
much. Following DeepScaleR (Luo et al., 2025b), we set the KL coefficient to 0.001 and attempted
an ablation run. However, we found that the reward plateaus with KL enabled, suggesting that the KL
penalty slows down learning. Thus we attempted other techniques of constraining the model from
deviating into regions of instability, such as clipping the gradient norm aggressively — which was
effective in our setting.

Figure 13: Adding a KL penalty slows down learning. Here we conduct an ablation with KL
coefficient β = 0.001 versus β = 0. We see that the reward plateaus with KL enabled.

We use 4 refinement turns at train-time for efficient training. During test time, we can afford more
extensive test-time compute, so we evaluate on 8 turns instead of 4 turns.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G REWARD HACKING

Here we present excerpts from generated kernels that show signs of reward hacking, previously
mentioned in Section 6.2.

In the following example, the model simply copies the PyTorch reference implementation, thus
getting rewarded for generating a correct answer with 1.0x speedup. To prevent this, we modify
our kernel evaluation environment so that it checks each generated kernel if it contains instances of
torch.nn or torch.nn.functional. We assign a reward of 0 to those.

1 class ModelReLU(Module):
2 ...
3 def forward(self, x):
4 relu = torch.nn.ReLU()
5 return relu(x)

Similarly, the model wraps an incorrect implementation of the CUDA kernel in a try-except statement
and invokes the PyTorch implementation functions as a fallback. To prevent this, we assign a reward
of 0 to kernels that contain try or except.

1 class ModelReLU(Module):
2 ...
3 def forward(self, x):
4 try:
5 ... \# CUDA implementation
6 except Exception as e:
7 print("Custom ReLU kernel failed to compile. Using default

ReLU instead.")
8 relu = torch.nn.ReLU()
9 return relu(x)

Here the model inherits from the reference implementation, bypassing the need for a CUDA imple-
mentation. To prevent this, we assign a reward of 0 to kernels that contain pass.

1 class ModelReLU(Module):
2 ...
3 def forward(self, x):
4 ... \# CUDA implementation
5

6 class ModelReLU(Model): \# Model is the the reference implementation
7 pass

H KERNEL HIGHLIGHT

As an example, we look at one the task form our evaluation set, Conv3D_GELU_Tanh_Clamp:

1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 """
6 Model using Conv3d, GELU, Clamp, Tanh
7 """
8 def __init__(self, in_channels, out_channels, kernel_size,

clamp_min, clamp_max):
9 super(Model, self).__init__()

10 self.conv = nn.Conv3d(in_channels, out_channels, kernel_size)
11 self.clamp_min = clamp_min
12 self.clamp_max = clamp_max
13

14 def forward(self, x):
15 """

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

16 Forward pass of the model.
17

18 Args:
19 x (torch.Tensor): Input tensor of shape (batch_size,

in_channels, depth, height, width).
20

21 Returns:
22 torch.Tensor: Output tensor of shape (batch_size,

out_channels, depth-kernel_size+1, height-kernel_size+1,
width-kernel_size+1).

23 """
24 x = self.conv(x)
25 x = torch.tanh(x)
26 x = torch.clamp(x, min=self.clamp_min, max=self.clamp_max)
27 x = torch.nn.functional.gelu(x)
28 return x

The task is made up of a computationally intensive function (3D convolution) and a series of
lightweight functions (tanh, clamp, gelu).

The model implements a correct solution in the first turn by fusing the kernels, but it only achieves a
speedup of 1.06x over the reference implementation.

1 import torch
2 from torch.utils.cpp_extension import load_inline
3 import math
4

5 class ModelNew(torch.nn.Module):
6 def __init__(self, in_channels, out_channels, kernel_size,

clamp_min, clamp_max):
7 super(ModelNew, self).__init__()
8 self.clamp_min = clamp_min
9 self.clamp_max = clamp_max

10

11 # Initialize convolution weights and bias
12 self.weight = torch.nn.Parameter(torch.empty(out_channels,

in_channels, kernel_size, kernel_size, kernel_size))
13 self.bias = torch.nn.Parameter(torch.empty(out_channels))
14 # Weight initialization following PyTorch’s Conv3d default
15 torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
16 fan_in, _ =

torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
17 bound = 1 / math.sqrt(fan_in)
18 torch.nn.init.uniform_(self.bias, -bound, bound)
19

20 # Define the fused convolution and activation CUDA kernel
21 conv_activation_source = """
22 #include <torch/extension.h>
23 #include <cuda_runtime.h>
24 #include <math.h>
25

26 __global__ void conv_activation_kernel(const float* input, const
float* weights, const float* bias, float* output,

27 int N, int C_in, int D,
int H, int W, int C_out, int kD, int kH, int kW,

28 float clamp_min, float
clamp_max) {

29 int idx = blockIdx.x * blockDim.x + threadIdx.x;
30 const int W_out = W - kW + 1;
31 const int H_out = H - kH + 1;
32 const int D_out = D - kD + 1;
33 const int total_elements = N * C_out * D_out * H_out * W_out;
34 if (idx >= total_elements) return;
35

36 // Decompose index into output coordinates

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

37 int w_out = idx % W_out;
38 int h_out = (idx / W_out) % H_out;
39 int d_out = (idx / (W_out * H_out)) % D_out;
40 int f = (idx / (W_out * H_out * D_out)) % C_out;
41 int n = idx / (C_out * D_out * H_out * W_out);
42

43 float sum = 0;
44 for (int c = 0; c < C_in; ++c) {
45 for (int kd = 0; kd < kD; ++kd) {
46 for (int kh = 0; kh < kH; ++kh) {
47 for (int kw = 0; kw < kW; ++kw) {
48 // Input tensor index calculation
49 int d_in = d_out + kd;
50 int h_in = h_out + kh;
51 int w_in = w_out + kw;
52 int input_idx = n * C_in * D * H * W +
53 c * D * H * W +
54 d_in * H * W +
55 h_in * W +
56 w_in;
57 // Weight tensor index calculation
58 int weight_idx = f * C_in * kD * kH * kW +
59 c * kD * kH * kW +
60 kd * kH * kW +
61 kh * kW +
62 kw;
63 sum += input[input_idx] *

weights[weight_idx];
64 }
65 }
66 }
67 }
68 sum += bias[f];
69

70 // Apply activations sequentially
71 sum = tanh(sum);
72 sum = fmaxf(clamp_min, fminf(sum, clamp_max));
73 {
74 float inner = sum + 0.044715f * sum * sum * sum;
75 inner *= 0.79788456f; // sqrt(2/pi) approximation
76 sum = sum * 0.5f * (1.0f + tanh(inner));
77 }
78

79 // Output tensor index calculation
80 int output_idx = n * C_out * D_out * H_out * W_out +
81 f * D_out * H_out * W_out +
82 d_out * H_out * W_out +
83 h_out * W_out +
84 w_out;
85 output[output_idx] = sum;
86 }
87

88 torch::Tensor conv_activation_cuda(torch::Tensor input,
torch::Tensor weights, torch::Tensor bias,

89 float clamp_min, float
clamp_max) {

90 // Dimension extraction
91 int N = input.size(0);
92 int C_in = input.size(1);
93 int D = input.size(2);
94 int H = input.size(3);
95 int W = input.size(4);
96 int C_out = weights.size(0);
97 int kD = weights.size(2);
98 int kH = weights.size(3);

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

99 int kW = weights.size(4);
100

101 // Output dimensions
102 int D_out = D - kD + 1;
103 int H_out = H - kH + 1;
104 int W_out = W - kW + 1;
105

106 // Create output tensor
107 auto output = torch::empty({N, C_out, D_out, H_out, W_out},

input.options());
108

109 // Launch kernel
110 int total_elements = N * C_out * D_out * H_out * W_out;
111 const int block_size = 256;
112 const int grid_size = (total_elements + block_size - 1) /

block_size;
113 conv_activation_kernel<<<grid_size, block_size>>>(
114 input.data_ptr<float>(), weights.data_ptr<float>(),

bias.data_ptr<float>(),
115 output.data_ptr<float>(), N, C_in, D, H, W, C_out, kD,

kH, kW,
116 clamp_min, clamp_max
117);
118 return output;
119 }
120 """
121

122 conv_activation_header = """
123 torch::Tensor conv_activation_cuda(torch::Tensor input,

torch::Tensor weights, torch::Tensor bias,
124 float clamp_min, float

clamp_max);
125 """
126

127 # Load the CUDA kernel
128 self.conv_activation = load_inline(
129 name="conv_activation",
130 cpp_sources=conv_activation_header,
131 cuda_sources=conv_activation_source,
132 functions=["conv_activation_cuda"],
133 verbose=True
134)
135

136 def forward(self, x):
137 return self.conv_activation.conv_activation_cuda(x, self.weight,

self.bias, self.clamp_min, self.clamp_max)

On turn 2 it attempts to improve on the existing implementation, but fails due to a compilation error.

On turn 3, it attempts to modify the loop order to improve coalesced memory access, but this actually
worsens performance, as the kernel now exhibits a speedup of 0.61x. The model attempts this strategy
again at turn 4, and is able to order the loops in a way that increases memory coalescing: this brings
up the performance to 1.19x. At turn 5 and 6, the model attempts some minor optimizations (such as
precomputing certain indices, or deleting intermediate variables), which however has no measurable
effect in performance.

On turn 7, the model figures out a surprising optimization: it records the convolution’s kernel size as
a compile time constant, which allows it to use # pragma unroll to unroll the 3 loops needed to
apply the convolution. This results in a significant speedup of 1.93x over baseline.

1 import torch
2 from torch.utils.cpp_extension import load_inline
3 import math
4

5 class ModelNew(torch.nn.Module):

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

6 def __init__(self, in_channels, out_channels, kernel_size,
clamp_min, clamp_max):

7 super(ModelNew, self).__init__()
8 self.clamp_min = clamp_min
9 self.clamp_max = clamp_max

10

11 # Initialize convolution weights and bias
12 self.weight = torch.nn.Parameter(torch.empty(out_channels,

in_channels, kernel_size, kernel_size, kernel_size))
13 self.bias = torch.nn.Parameter(torch.empty(out_channels))
14 # Weight initialization following PyTorch’s Conv3d default
15 torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
16 fan_in, _ =

torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
17 bound = 1 / math.sqrt(fan_in)
18 torch.nn.init.uniform_(self.bias, -bound, bound)
19

20 # Define the fused convolution and activation CUDA kernel with
optimizations

21 kernel_size_val = kernel_size
22 conv_activation_source = f"""
23 #include <torch/extension.h>
24 #include <cuda_runtime.h>
25 #include <math.h>
26

27 #define KERNEL_SIZE {kernel_size_val}
28 #define KERNEL_D {kernel_size_val}
29 #define KERNEL_H {kernel_size_val}
30 #define KERNEL_W {kernel_size_val}
31

32 __global__ void conv_activation_kernel(
33 const float* __restrict__ input, const float* __restrict__

weights, const float* __restrict__ bias,
34 float* __restrict__ output,
35 int N, int C_in, int D, int H, int W, int C_out,
36 float clamp_min, float clamp_max) {{
37 int idx = blockIdx.x * blockDim.x + threadIdx.x;
38 const int W_out = W - KERNEL_W + 1;
39 const int H_out = H - KERNEL_H + 1;
40 const int D_out = D - KERNEL_D + 1;
41 const int total_elements = N * C_out * D_out * H_out *

W_out;
42 if (idx >= total_elements) return;
43

44 int w_out = idx % W_out;
45 int h_out = (idx / W_out) % H_out;
46 int d_out = (idx / (W_out * H_out)) % D_out;
47 int f = (idx / (W_out * H_out * D_out)) % C_out;
48 int n = idx / (C_out * D_out * H_out * W_out);
49

50 float sum = 0.0;
51

52 // Precompute constants for GELU
53 const float sqrt_2_over_pi = 0.79788456f;
54 const float approx_coeff = 0.044715f;
55

56 for (int c = 0; c < C_in; ++c) {{
57 // Compute input channel base pointer
58 const int input_c_offset = n * C_in * D * H * W + c

* D * H * W;
59 const float* input_c = input + input_c_offset;
60

61 // Compute center position in the input channel
62 const int center_offset = d_out * H * W + h_out * W

+ w_out;

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

63 const float* center = input_c + center_offset;
64

65 // Weight base for current output channel f and
input channel c

66 const int weight_base = f * C_in * KERNEL_D *
KERNEL_H * KERNEL_W + c * KERNEL_D * KERNEL_H * KERNEL_W;

67

68 #pragma unroll
69 for (int kd = 0; kd < KERNEL_D; ++kd) {{
70 #pragma unroll
71 for (int kh = 0; kh < KERNEL_H; ++kh) {{
72 #pragma unroll
73 for (int kw = 0; kw < KERNEL_W; ++kw) {{
74 const int offset = kd * H * W + kh * W +

kw;
75 const float input_val = center[offset];
76 const int w_off = weight_base + kd *

KERNEL_H * KERNEL_W + kh * KERNEL_W + kw;
77 const float weight_val = weights[w_off];
78

79 sum += input_val * weight_val;
80 }}
81 }}
82 }}
83 }}
84

85 sum += bias[f];
86

87 // Apply activations with optimized order
88 {{
89 float tanh_val = tanhf(sum);
90 float clamped = fmaxf(clamp_min, fminf(tanh_val,

clamp_max));
91 float inner = clamped + approx_coeff * clamped *

clamped * clamped;
92 inner *= sqrt_2_over_pi;
93 sum = clamped * 0.5f * (1.0f + tanhf(inner));
94 }}
95

96 // Output index calculation
97 const int output_base = n * C_out * D_out * H_out *

W_out +
98 f * D_out * H_out * W_out +
99 d_out * H_out * W_out +

100 h_out * W_out;
101 output[output_base + w_out] = sum;
102 }}
103

104 torch::Tensor conv_activation_cuda(torch::Tensor input,
torch::Tensor weights, torch::Tensor bias,

105 float clamp_min, float
clamp_max) {{

106 int N = input.size(0);
107 int C_in = input.size(1);
108 int D = input.size(2);
109 int H = input.size(3);
110 int W = input.size(4);
111 int C_out = weights.size(0);
112

113 int D_out = D - KERNEL_D + 1;
114 int H_out = H - KERNEL_H + 1;
115 int W_out = W - KERNEL_W + 1;
116

117 auto output = torch::empty({{N, C_out, D_out, H_out,
W_out}}, input.options());

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

118

119 int total_elements = N * C_out * D_out * H_out * W_out;
120 const int block_size = 256;
121 const int grid_size = (total_elements + block_size - 1) /

block_size;
122

123 conv_activation_kernel<<<grid_size, block_size>>>(
124 input.data_ptr<float>(), weights.data_ptr<float>(),

bias.data_ptr<float>(),
125 output.data_ptr<float>(), N, C_in, D, H, W, C_out,
126 clamp_min, clamp_max
127);
128 return output;
129 }}
130 """
131

132 conv_activation_header = """
133 torch::Tensor conv_activation_cuda(torch::Tensor input,

torch::Tensor weights, torch::Tensor bias,
134 float clamp_min, float

clamp_max);
135 """
136

137 # Load the CUDA kernel with fast math optimization
138 self.conv_activation = load_inline(
139 name="conv_activation",
140 cpp_sources=conv_activation_header,
141 cuda_sources=conv_activation_source,
142 functions=["conv_activation_cuda"],
143 extra_cuda_cflags=[’-use_fast_math’],
144 verbose=True
145)
146

147 def forward(self, x):
148 return self.conv_activation.conv_activation_cuda(x, self.weight,

self.bias, self.clamp_min, self.clamp_max)

In its final turn, the model attempts a more advanced implementation that further parallelizes the
computation across kernels before performing a warp-level reduction. However, it fails to implement
the strategy correctly, due to applying the reduction across the wrong axis. We do note the model has
shown success in implementing complex warp reductions in several other tasks.

I ERROR CORRECTION BEHAVIOR

An important quality for kernel generation is to correct errors over turns. With multi-turn training,
Kevin learns to effectively manage kernel writing across multiple turns, making more aggressive
optimizations while correcting errors more effectively. This is shown by our results in Figure 5, where
Kevin exhibits better scaling behavior across serial turns (compared to its single-turn counterpart).
Here we focus on an example that illustrates error correction behavior.

We consider the KernelBench task of CosineSimilarityLoss (Level 1 Task 97):

1 # prediction [128, 4096]
2 # target[128, 4096]
3

4 def forward(self, predictions, targets):
5 cosine_sim = torch.nn.functional.cosine_similarity(predictions,

targets, dim=1)
6 return torch.mean(1 - cosine_sim)

Test-time Trajectory from Single-Turn RL:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Turn 1: The model implements a correct kernel on the first try. The kernel is straightforward yet
performant, obtaining a 3.15x speedup over the reference implementation. This is expected as the
single-turn model is trained to maximize single-turn correctness.

Turn 2: The model attempts to calculate the block size dynamically; however, it results in suboptimal
GPU utilization, causing a decrease in runtime to 2.19x.

Turns 3-5: The model reverts the change from Turn 2, and adds minor improvements (such as
performing the mean calculation at the warp level rather than using a single thread, or tweaking the
loading of shared memory); however, it has no significant impact on performance (the speedups range
from 3.11x to 3.19x).

Turns 6-8: The model attempts to tune the grid size and block size, though this fails to improve
performance (the speedups ranging from 2.99x to 3.14x).

Test-time Trajectory from Multi-Turn RL:

Turn 1: The model attempts a kernel similar to the single-turn implementation. A suboptimal block
size and a non-contiguous access, however, cause a speedup of 1.74x, inferior to the single turn
version.

Turn 2: The multi-turn model makes various optimizations (such as tweaking block and grid size,
and avoiding recomputing certain values), but it forgets to include a required C++ header, causing a
compilation error.

Turn 3: The multi-turn model adds the correct C++ header and improves the memory coalescing.
This, combined with the previous optimizations, causes a speedup of 3.31x.

Turn 4: The model now attempts more aggressive optimization techniques to compute the sums
within the kernel, namely using warp intrinsics to perform warp-level reductions. The implementation
is incorrect, however, as only a subset of the threads for a given warp execute the reduction, resulting
in a deadlock.

1 for (int s = 8; s >= 1; s >>= 1) {
2 if (thread_id < s) {
3 float temp_dot = __shfl_down_sync(0xFFFFFFFF, dot, s);
4 dot += temp_dot;
5 float temp_p = __shfl_down_sync(0xFFFFFFFF, p_norm_sq, s);
6 p_norm_sq += temp_p;
7 float temp_t = __shfl_down_sync(0xFFFFFFFF, t_norm_sq, s);
8 t_norm_sq += temp_t;
9 }

10 __syncthreads();
11 }

Turn 5: The model then tries a different strategy, implementing a simpler reduction that avoids using
warp intrinsics. However, this proves less efficient than the previous methods, and achieves a speedup
of only 2.26x.

Turn 6: The model now attempts to fix the errors present in the advanced warp level technique from
turn 3, spending most of the chain-of-thought in trying to address the previous error. This time, the
model is successful with a speedup of 7.81x.

1 for (int s = 16; s >= 1; s >>= 1) {
2 float temp = __shfl_down_sync(0xFFFFFFFF, dot, s);
3 dot += temp;
4 temp = __shfl_down_sync(0xFFFFFFFF, p_norm_sq, s);
5 p_norm_sq += temp;
6 temp = __shfl_down_sync(0xFFFFFFFF, t_norm_sq, s);
7 t_norm_sq += temp;
8 }
9 ...

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Turns 7, 8: The model tries a few other optimizations, yet has no significant impact on the kernel
performance, resulting in slightly worse kernels. The best kernel is thus achieved at turn 6 with a
speedup of 7.81x, compared to the best kernel found by single-turn (3.19x).

Comparing the trajectories of the multi-turn vs single-turn model, we notice that the single-turn
model is generally careful in its optimizations and rarely deviates from the previous attempts. The
multi-turn model attempts riskier strategies. While it may result in wrong kernels sometimes, it is
more capable of recovering from these errors and eventually finding more performant ones.

34

	Introduction
	Background and Related Work
	LLM for GPU Kernel Optimization
	RL Optimization for LLMs Targeting Verifiable Domains

	Task and Baseline
	Environment and Evaluation
	Kernel Score Design
	Single-Turn Training

	Multi-Turn Training
	Managing Context
	Training On Every Refinement Turn
	Reward Aggregation and Discounting
	Multi-Turn Training Behavior

	Evaluation
	Result on KernelBench Eval Set
	Scaling Refinement Turns
	Scaling Parallel Samples
	Parallel vs Sequential Scaling

	Discussion
	Model Instability
	Reward Hacking
	Data Distribution

	Conclusion
	Summary
	Limitations
	Future Work

	Ethics statement
	Reproducibility statement
	KernelBench Modifications
	Task Improvements
	Construction of Additional Evaluation Set

	Additional Details on Multi-Turn RL
	Motivation for Turn-wise Reward
	Weighting for Score
	Number of Trajectories during Training
	Length Penalty
	Detailed Training Hyperparameters
	Base Model Choice Rationale

	RL Infrastructure
	Train Time Statistics

	Inference Setup
	Additional Evaluations
	Confidence intervals
	Choice of Baseline Model Comparison
	Evaluation on KernelBench Level 3

	Training Stability
	Reward Hacking
	Kernel Highlight
	Error Correction Behavior

