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Abstract—Intelligent embodied agents not only need to accom-
plish preset tasks, but also learn to align with individual human
needs and preferences. Extracting reward signals from human
language preferences allows an embodied agent to adapt through
reinforcement learning. However, human language preferences
are unconstrained, diverse, and dynamic, making constructing
learnable reward from them a major challenge. We present
ROSETTA, a framework that uses foundation models to ground
and disambiguate unconstrained natural language preference,
construct multi-stage reward functions, and implement them
with code generation. Unlike prior works requiring extensive
offline training to get general reward models or fine-grained
correction on a single task, ROSETTA allows agents to adapt
online to preference that evolves and is diverse in language and
content. We test ROSETTA on both short-horizon and long-horizon
manipulation tasks and conduct extensive human evaluation,
finding that ROSETTA outperforms SOTA baselines and achieves
87% average success rate and 86% human satisfaction across
116 preferences.

I. INTRODUCTION

Human-centered embodied intelligence requires that humans
be able to guide embodied agents to align with their prefer-
ences [3, 21]. For agents operating in closed-loop interactions,
this means aligning with each human preference in its most
natural and unconstrained forms [23], as shown in Fig. 1.
Reinforcement learning (RL)-based embodied agents have
demonstrated the ability to adapt to high-level tasks originating
in human language given dense rewards [45], and the efficiency
of specifying reward rather than collecting extensive training
data makes RL a promising testbed. However, humans have
unique voices and changing goals. Adaptation requires handling
unconstrained language and unseen goals that edit, build on, or
even contradict prior goals at every step. Generating effective
rewards under such conditions is an open problem.

Reward modeling enables creation of nuanced reward signals
without expert shaping. While many existing methods are
general and multi-task, often able to adapt to changing, unseen
goals, they require extensive end-to-end training [5, 2]. Due
to their large-scale training across diverse domains, foundation
models [4] offer a compelling alternative to custom reward
model training. Their code generation capabilities offer a natural
conduit between language and dense scalar reward. However,
prior methods like Eureka [31] and Text2Reward [54] that
work for embodied agent manipulation are limited to clean
and structured language, predetermined goals that remain fixed
over the course of interaction with the human, and several
rounds of feedback that aims only to refine that fixed goal,
rather than assert the human’s own evolving preferences and
receive immediate adaptation.

In this paper, we aim to generate rewards for language
preferences that do not obey these constraints. First, the
underlying tasks requested in these preferences are not
cleanly phrased. Individuals express themselves in whatever
way is natural and efficient. Second, the preferences have
dynamic and unseen content that requires single-step
adaptation. This means that whatever goal comes up, we
aim for a good reward function in a single step. And third,
evaluation of adaptation to naturally expressed preferences
is itself a bottleneck. It is impossible to measure alignment
with training metrics such as success rates alone, as they do
not address adherence to the preference, only to the goal in
the reward function which may not match the preference.

To address these challenges, we ROSETTA (Fig. 2): Reward
Objectives from Spontaneous Expression Translated to Agents.
ROSETTA is a code-based reward generation pipeline that
enables embodied agent adaptation to human natural language
preference in a single step. ROSETTA generates rewards from
chains of single preference statements that have no constraints
on language, limited constraints on content, and adapt to each
preference in ongoing interactions. It contains a Preference
Grounding module to disambiguate unconstrained human
preference and contextualize it in prior preferences and the
prior policy’s task execution, as well as a Staging module
that repurposes LLMs’ known planning abilities [16] to add
structure and create staged rewards. Both of these happen in
language space using gpt-4o [34]. The Coding module then
turns the staged reward specification into coded reward function.
ROSETTA uses o1-mini [35]. ROSETTA therefore generates
rewards even from preferences that change the entire shape of
a task in just a few words.

We also propose an evaluation framework consisting of
three key metric categories. Most important is alignment,
measuring human satisfaction with the policy. Measuring
alignment requires direct human input [8, 10], but can be
noisy and incomplete, motivating additional metrics. First, we
do also want rewards that are suitable for RL. We therefore
measure reward optimizability via policy success rate. Second,
we want to know if the generated reward reflects the stated
human preference. Using only the trained policy introduces
confounds: the reward function may match semantics but not
be optimizable. We therefore directly measure semantic match,
measured by expert evaluation of the reward code itself.

We validate ROSETTA iteratively: multiple steps of taking
a language preference, generating a reward, training an agent,
evaluating, and obtaining a new preference. We evaluate
ROSETTA on 35 sequences of two to four preferences each,
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Fig. 1: ROSETTA’s three-module structure takes unconstrained, unseen natural language preference and generates reward code
that incentivizes desired behavior. ROSETTA can adapt to diverse behavioral preferences, not only in position but orientation
and speed. We validate ROSETTA’s performance in two short-horizon and three long-horizon task-agnostic environments.

total 116 preferences, in five task-agnostic manipulation envi-
ronments (Fig. 1). ROSETTA successfully interprets ambiguous
language, adapts to unseen preferences even after four interac-
tion steps, and produces semantically matched and optimizable
rewards that result in aligned policies. As seen in Sec. V-B,
it outperforms Eureka and Text2Reward, demonstrating the
importance of its structured approach for immediate and general
adaptation. In summary, we present three main contributions:
• ROSETTA, a foundation model-based method generating

code-based rewards that enables robots adapting to uncon-
strained, diverse, dynamic human preferences online.

• An evaluation framework for measuring human-embodied
agent interactions in the wild, consisting of metrics for
alignment, semantic match and optimizability.

• Evaluation in five tasks on 116 human preferences, showing
ROSETTA’s SOTA performances: 86% human satisfaction,
78% semantic match, and 87% success rate. It shows 33%
better human satisfaction than baselines.

II. RELATED WORK

a) Foundation models on human-robot interaction and
control.: foundation models have transformed the landscape
of robotics by enabling natural language interaction. Early
works focused on affordances and executable control code [1,
26, 17, 43], establishing the foundation for language-guided
robotics. Recent work has explored more interactive paradigms,
developing systems that can interpret and incorporate real-
time verbal feedback and corrections during task execu-
tion [9, 29, 56, 41, 42, 27]. These interactive approaches have
been further extended to handle complex spatial reasoning and
hierarchical task planning [18, 22, 49, 44, 6]. The field has also
seen significant advances in open-ended embodied control and
personalized human-robot interaction systems [51, 57, 52, 24].

b) LLMs for reward engineering.: The most relevant
developments to our work lie in the direct application of LLMs
for reward engineering. Recent approaches have demonstrated

increasingly sophisticated methods for translating natural
language into reward functions, ranging from basic reward
shaping to full code generation [53, 31, 55, 25]. Some
approaches have explored automated reward generation through
progress functions [39] or evolutionary techniques guided by
human feedback [15]. These methods require a fixed task
definition. They also require pre- and hand-defined goal-specific
supervision like fitness functions or goal-specific information.

While existing approaches require either pretraining or fixing
the goal and using only directly helpful feedback, ROSETTA
enables reward generation for unconstrained, dynamic goals
without training. This is a significant step toward embodied
agents that adapt to novel instructions. The core innovation lies
in our structured and domain knowledge-informed generation.

III. PROBLEM FORMULATION

Our aim is to turn human language preferences into se-
mantically matched, optimizable reward functions that will
lead to aligned embodied agent policies, even in ongoing
interactions where preferences compound. We aim to do so
for ongoing chains of preferences, adapting to each individual
preference while also adapting to the compounding meaning
over time and avoiding degradation in later interactions. We
formulate it as the reward generation problem for unconstrained
human language preference adaptation, extending the reward
generation problem presented in [31]. The reward generation
problem [31] takes a task description l and generates a
reward function R that maximizes a known fitness function
F̄ (AM (R)), where AM (R) is a learning algorithm run on
world model M and reward R to get policy π. The fitness
function F̄ is known when the task goal is predetermined and
does not change. However when adapting to unconstrained
human preferences, the fitness function denoted as F (t) is
instead unknown and time-dependent. It can be used to aid the
adaptation process across different t, but unlike in Eureka or
Text2Reward, we do not assume this. We aim for each F (t) to
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Fig. 2: ROSETTA diagram. A trajectory from the latest policy and preference history are given to the Preference Grounding
module. The resulting grounded preference is given to the Staging module. The Coding module takes resulting staged reward
plan and generates reward variants with various domain knowledge reasserted. Iterative error correction conducted.

be maximized, so that we minimize user queries for any goal.
a) Reward generation for unconstrained human language

preference adaptation.: An adaptive embodied agent interacts
with humans through multiple iterations of preference. At
preference iteration t = 0, the agent π(0) is trained to optimize
a given task with a text description l(0). Then at any following
preference iteration t ∈ [1, T ], a human preference annotator
watches a rollout of policy π(t−1) and gives language prefer-
ence h(t). Given the latest policy π(t−1) := AM (R(t−1)) and
history of human preference {l(0), h(1), ..., h(t)}, the objective
is to output a reward function R(t) such that F (t)(AM (R(t))) is
maximized. In this problem, F (t)(·) is the human’s satisfaction
level with a task execution controlled by π(t) := AM (R(t)).
We once again note the importance of maximizing F (t) at
every t, rather than using multiple h(t) to maximize one F̄ .

A. Evaluation Framework
It is ultimately human satisfaction that matters, meaning we

need to measure a complex, noisy quantity that itself is given
on the policy rollout video, a variable and open-ended stimulus.
ROSETTA’s reward functions need to be evaluated for semantic
match and optimizability. We therefore propose three sets of
metrics on the set of reward functions detailed as follows.

Alignment requires a thorough human survey. We propose
a) binary and ternary descriptive questions regarding the
preference, such as “did the robot incorporate your preference
that wasn’t met in the previous video,” “did the robot contradict
any part of your preference in the current video,” etc. b) Binary
and Likert questions that quantify satisfaction [20]. Full survey
text is in Sec. J. Semantic match requires establishing that the
goal in the generated code matches the goal in the preference.
Given that reward code is a long-form generation and therefore
difficult to objectively evaluate [38], we propose expert text
evaluation. ROSETTA’s preference-code pairs are evaluated
by roboticists, also with binary and Likert questions such as
“does the reward function miss part or all of the reward plan”
or “are there common sense errors”. Full survey text is in
Sec. J. Optimizability measures whether the generated reward
function is suitable for the learning algorithm AM (·). We use

the success rate on evaluation rollouts to tell us how well the
reward function can be optimized given adequate models and
training algorithms.

IV. APPROACH

We introduce ROSETTA, which is made of three prompt-
based modules: Preference Grounding, Staging, and Coding.
As seen in Fig. 2, these modules are built on each other to get
the final reward function. All prompts are included in Sec. D.

Preference Grouding. Generating rewards from uncon-
strained human language preference first requires that the
preference be contextualized and disambiguated. Foundation
models rely on the letter of the prompt, so the system needs
to match vague references, consider prior preferences, etc. For
example, consider “no, get it to the center.” “it” needs to be
mapped to self.obj. “center” needs to be mapped to “center
of self.target. Even “get” could be mapped to “push”.
This preference was given on a reward function that already
aimed for the agent to push the ball to the center, so the “no”
needs to be recognized as rejection of the performance but
not of the goal. Finally, the previous preference was “can
it start further back?” and this needs to be retained despite
not being mentioned. We therefore introduce a Preference
Grounding module that uses trajectory images, symbolic states,
and a single-sentence task description to get per-step language
descriptions. From these, it generates a summary of task
performance, grounded human preference, and a new single-
sentence goal for use in the next interaction step. The above
example becomes “the agent did not push the ball to the center
of the target as requested. It should do so while still starting
further back.” Here we use gpt-4o [34] given its strong
vision-language capabilities.

Staging. In unconstrained language preference, a single
sentence can completely change the task goal without providing
guidance on steps to take. However, dense reward often requires
breaking the task into stages and rewarding each one. We
automate staging by leveraging its similarity to task-planning.
foundation models are adept at planning [16], and unlike many



settings that require fixed output structure, here we can allow
the foundation model to stage in language space and capture
nuances embedded in the language. Given “nestle the ball into
the bin”, the Staging module generates a plan including “Stage
3: Reward the agent for placing the ball in the corner of the
bin with a tight threshold”. These function as concrete design
notes for the Coding module. The Staging module takes four
inputs: existing environment code, generated task description,
generated agent summary, and grounded preference. As in [31],
the environment code gives context for scene constraints and
mapping language terms to code terms. gpt-4o is used here.

Coding. The coding module implements the plan created
by the Staging module. It takes several key elements: a history
containing the staging plan, environment code, summarized
documentation on environment attributes, Grounding outputs,
desired function headers, and importantly, a checklist of domain
knowledge. In ROSETTA, this includes knowledge on densifying
reward, masking staged rewards, and considering problem
geometry: all crucial to reward success. The full checklist
is in Sec. D. For long-horizon action primitive environments,
the Coding module generates target positions, dense position
reward, and success conditions for each stage. These are
inserted into a task-agnostic template to ensure action space
adherence. In short-horizon continuous control, all code is
generated. The Coding module uses o1-mini.

Policy Training. ROSETTA results in V ∗N reward functions,
where V is the number of variants and N is the number of
end-to-end generations. V is fixed based on the number of
verification questions, whereas N is a hyperparameter. We
train at most three variants per generation given resource
constraints. To select π(t) at iteration step t, we take the
best policy from each reward variant’s training run and let
the preference annotator choose. Consider the set of variants
R(t) = ROSETTA(h(t)). For all R ∈ R(t), we take policies
AM (R)k∗ where k∗ is the training iteration with the highest
success rate; if success rate for all training iterations is 0, we
use maximum average accumulated reward. The chosen policy
is π(t). Since the annotator chose it, its reward function R∗ is
by definition the one that maximizes F (t)(A(R)k∗). Given the
goal of investigating automated reward generation and selection,
we choose hyperparameters a priori for each environment, but
do not tune for any specific reward function. With sufficient
resources, systematic hyperparameter tuning can be integrated.

V. EXPERIMENTS

ROSETTA aims to handle natural human preference in a way
that is satisfactory to that human. We investigate this through
four research questions:
Q1: Does ROSETTA generate adaptive reward functions given

a sequence of human preferences?
Q2: Can ROSETTA handle diverse, unconstrained human

language?
Q3: Can ROSETTA handle dynamic, unseen preferences, even

as they compound over time?
Q4: Does the proposed evaluation framework offer insights

beyond standard training metrics?

A. Experiment Setup

Training and environments. We conduct experiments in
two settings. Short-horizon: 7-DoF operational space control,
training with proximal policy optimization [40], two task-
agnostic environments (SphereAndBins and BallAndTarget)
each with ten preference sequences of length four. Long-
horizon: hierarchical policy trained with soft actor-critic [12]
and primitive skills adapted from MAPLE [33], three task-
agnostic environments (ThreeCubes, ObjectsAndBins, Object-
sAndDrawer) each with five preference sequences of length
two or three. For both, we use ManiSkill 3 [46] and the Franka
Panda [14]. Annotators are sourced from Upwork [47]. Full
details in Sec. M0b.

Baselines. We compare ROSETTA to Eureka [31] and
Text2Reward [54], Both use multiple rounds of language
feedback to optimize a fixed goal, with the language feedback
being purposely written to help shape this reward. We test each
method by inputting a human language preference, then having
that human select among policy videos from the generated
functions. As noted in Sec. III, we consider human evaluation
to be the fitness function for all methods. We begin with the
original ManiSkill reward, then evaluate every method after a
single round of application to test immediate adaptation. We
apply the training pipeline described in Sec. IV.

Ablations. We compare to three ablations: 1) ROSETTA-no-
grounding, in which we give the original human preference
directly to Staging. 2) ROSETTA-no-staging, in which we
ground the preference and give it directly to a version of
Coding with all mentions of “stage” removed. 3) ROSETTA-no-
followup, in which we do not apply any follow-up questions.

Metrics. For alignment, we consider percent preferences
where the annotator was more satisfied and average Likert-scale
satisfaction score. For semantic match, we consider seven-point
Likert scores for each of Grounding, Staging, and Coding. We
multiply these to get a Cascading score. For optimizability,
we consider the average training success rate and percent
of preferences that have a policy with a success rate >50%.
Detailed definitions of each metric are in Sec. K.

B. Results

1) ROSETTA generates adaptive rewards to sequences of
human preferences (Q1): ROSETTA generates semantically
matched, optimizable, and aligned reward functions for se-
quences of human preferences. In Tab. I, we show overall and
step-by-step metrics on all environments. ROSETTA improves
human satisfaction on 86.0% of all preferences and achieves
79.0% satisfaction score across all preferences. It has even
higher success rate and percent success >50%, and similarly
successful performance on semantic match; all measured
across both short- and long-horizon. Per-interaction step, we
see in Tab. I and Tab. II that performance is maintained
even as context and changes layer on each other, with at
least 80% of preferences resulting in satisfaction and at
least 75% satisfaction score in each step. Though changing
goals and highly context-dependent preferences provide natural
challenges, ROSETTA adapts to these effectively. There is
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Fig. 5: Visualization of diverse human preferences. Each column is one human preference, and each group of columns is a
preference sequence. Colored cells indicate applicable categories: orange for language, blue for content. A full list of preference
categories can be found in Sec. K.

some degradation in training metrics and degree of satisfaction,
often caused either by the preference annotator doubling down
on difficult preferences or hallucinations from prior steps
contaminating the current prompt. The latter is a key failure
of prompting with environment code that includes the prior
reward function to get natural grounding (examples in Sec. C1).

a) Comparing to baselines: We see in Fig. 3 that
ROSETTA outperforms Eureka and Text2Reward, particularly
when the preference changes task requirements. We compare
on preferences that are corrective (give corrections on the same
task requirements), preferential (add/change task requirements),
goal-related (address success definition), and behavioral (ad-
dress other parts of reward landscape). While the baselines
are similar on corrective preferences, ROSETTA outperforms
significantly on preferential, as well as outperforms on goal-
related and behavioral which are also preferential.

2) ROSETTA extracts signal from diverse, unconstrained
language (Q2): Human can communicate preferences with

diverse language categories as shown in Fig. 5. ROSETTA
has consistent performance across language features that are
difficult for foundation models, such as specific positions and
context-dependent, as shown in Figs. 7 and 8. The specific
positions category has complex and often evolving position
descriptions. These are challenging for foundation models
given the lack of spatial reasoning [28]. The context-dependent
category includes preferences that require prior context, e.g. a
sequence like “red on top” then “other one actually.” Without
context, the second preference would be impossible to interpret
even for a human. ROSETTA generates productive reward
functions even in these challenging cases, achieving 60%
success rate and 92% satisfaction score on specific position
preference, and 73% success rate and 76% satisfaction score
on context-dependent preference. Fig. 5 shows the language
diversity of collected preferences. ROSETTA’s ability to handle
unconstrained language comes from the Preference Grounding
and Staging modules that interpret the language. In Fig. 4,



Original task: Stack the cubes in purple, green, grey order

Can you please 
do grey-purple-

green?

Place them in a 
line from purple 
to green to grey.

Great job 
again! Now 

have green in 
the middle.

Now purple on 
bottom, grey in 

middle, and 
green on top. 

Fig. 6: Example real robot results. The first element in each color column represents a preference given to the policy trained on
the original task. The second element represents another iteration of preference given on its parent. We see that simulation-trained
policies transfer to real effectively.

Iter. Succ. Rate % Succ. >50 More Sat. Sat. Score

1 94.6 95.2 90.0 90.0
2 89.4 90.0 80.0 75.6
3 94.4 100.0 80.0 76.9
4 78.1 75.0 89.5 78.9

TABLE I: Breakdown of optimizability and alignment across
iterations. Metrics are as described in Sec. V-A.

ROSETTA-no-grounding suffers on alignment for context-
dependent preferences where environment code is insufficient,
going from 80% satisfaction score and 84.6% more satisfied
to 68% and 70%. ROSETTA-no-staging suffers in general,
performing 22.2% worse on satisfaction score overall.

3) ROSETTA can handle dynamic, unseen preferences that
compound over time.: Besides diverse language features,
human preferences also contain diverse contents as in Fig. 5.
ROSETTA maintains performance across content features based
on Fig. 7. Policies reach specific positions (“right edge of
left bin”) and orientations (“give it a quarter-turn”), and adapt
to behavior preferences (“smoother movement”, “go slower,
that’s stressful to watch”); more examples in Sec. B. As in
comparison to baselines, we see ROSETTA’s superior ability to
handle changing task requirements. Tab. 4 shows that ROSETTA
outperforms ablations on goal-related, behavioral, and pref-
erential content. ROSETTA-no-followup matches performance
only in corrective cases where the domain-knowledge follow-
ups are distracting rather than helpful. Tab. I demonstrates
that ROSETTA’s performance shows only limited degradation,
staying above 75% on all metrics. The strength comes from both
o1-mini’s coding and reasoning capabilities and ROSETTA’s
domain knowledge. Fig. 7 demonstrates ROSETTA’s content
failure modes. Details are in Sec. 0b.

4) Effectiveness of the Evaluation Framework (Q4) : The
proposed evaluation framework investigates performance more
deeply than standard metrics alone. ROSETTA is performant
on all metrics as shown in Tab. II, but overlap is not a given:
73% of human-selected policies have ≥50% success rate, and
only 66% have the highest success rate across all options.
Optimizability metrics retain practical value in assessing
whether ROSETTA is technically reliable: high success rates
indicate behavior that is expected from the reward function.

Low-alignment high-optimizability rewards appear when
the reward code effectively induces its own success condition,
but the success condition itself does not match the preference: a

semantic hallucination. A common example: ROSETTA is given
a preference with nonstandard phrasing and mostly ignores
it, outputting a barely-edited version of the previous reward
function. The result is a good success rate but a behavior
that does not reflect the input. This is part of the reason the
ROSETTA-no-grounding ablation, in which Staging and Coding
receive more nonstandard phrasing, has high optimizability but
significantly lower alignment than ROSETTA. It does match
ROSETTA’s alignment on corrective preferences, where not
changing the success condition is ideal. High-alignment low-
optimizability rewards demonstrate deeper challenges. We find
that without alignment, we wouldn’t know the annotator’s true
opinion; but without optimizability we don’t know the reasons
for failure. For example, given preference to “push the ball on
the table next to the bin” rather than picking and placing, the
human-selected rollout shows a gentle, ineffectual push toward
the bin with a success rate of 0; the high-success rate policies
do pick and place. Key misalignments: for the annotator, the
push is more important than the position, but this is unclear
from the language. Second, ROSETTA set a specific target point
because this is typically more optimizable than a target region,
but here that point was difficult to push to. Third, the reward
function did encourage a closed gripper, but the success boost
outweighed the opening penalty.

5) Real robot experiments: We take a sim-to-real approach
for real robot experiments. We test on four two-iteration
preference chains in the ThreeCubes long-horizon task-agnostic
environment for which policies have been trained in simulation.
We track positions of the cubes from a single RGB image using
FoundationPose [50], then populate the state dictionary required
for our long-horizon action primitive setting. The average first
iteration success rate is 72.5%; the average second iteration
success rate is 80.0%. Examples are shown in Fig. 6. We
observe no sim-to-real gap from the policy.

VI. CONCLUSION AND LIMITATION

We aimed to investigate how reward signals can be extracted
from unconstrained, diverse, and dynamic human language
to train embodied AI agents. We present ROSETTA which
takes in such language, extracts desired task content, and
generates useful reward functions even when that content
changes and contradicts prior content. One key limitation is the
expert evaluation for Semantic Match metrics. Analytic/learned
metrics may be cheaper and more objective.
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APPENDIX

ADDITIONAL RELATED WORKS

a) Foundation models in reinforcement learning.: The
emergence of foundation models has sparked new directions
in reinforcement learning, particularly in the context of
robotic tasks. Vision-language models (VLMs) have proven
effective as both success detectors and zero-shot reward
generators [11, 37, 48]. Parallel developments in value learning
have explored personalization of multi-objective rewards and
in-context value function adaptation [19, 30], highlighting the
potential of foundation models to capture nuanced human
preferences.

ADDITIONAL METHOD DETAILS

b) Verification questions for domain knowledge.: While
reasoning foundation models are strong, long context can
result in information loss [7]. Giving the same information in
smaller chunks can promote adherence. At the same time, the
foundation model is unlikely to completely change strategies
once the initial code has been written. We therefore give
domain knowledge in the initial coding prompt, then reiterate
in a sequence of verification instructions. This results in a
new reward variant each time the code is updated. Because
different pieces of knowledge are important for different
preferences, multiple variants are trained and evaluated. As in
prior works [54, 36], we use iterative error correction on
the first and final variants. Generated reward code is run in
the simulator; in case of an error, it is given to o1-mini to
correct.

ADDITIONAL RESULTS

We see in Fig. 7 and Fig. 8 that ROSETTA performs
consistently on various types of language and content, as
referenced in the main text. This is maintained in challenging
cases like context-dependent language and behavioral feedbacks
where reward strategies are nonobvious. It also demonstrates
that alignment and optimizability are not the same, but do
relate.

EXAMPLES

In this section, we present examples illustrating how our
pipeline processes human feedback, along with its limitations.
Additionally, we provide examples demonstrating the necessity
of a multi-faceted evaluation framework.

A. Successful Cases in Short-Horizon

Here, we present a sequence of interactions between our
pipeline and the annotator, where ROSETTA successfully adapts
the policy to the human’s feedback and makes continuous
progress.

• Initial Demonstration: Robot pushes the ball to the goal.

• Step 1 Human Feedback: I like the way the robot uses
its claw to push force on the sphere to move it. I want to
the robot to push the sphere rightward on the table, but
as far as the robot is able to.

• Step 1 Generated Grounded Feedback: Push the ball
as far to the right on the table as possible.

• Step 1 Generated Goal: Push the ball as far to the right
on the table as possible.

• Step 1 Demonstration: The robot pushes the ball all the
way to the right

• Satisfaction Score: 87.5
• Step 2 Human Feedback: I can see the “effort” of the

robot trying to push the ball right. I want to see the robot
push the ball in the best spinning motion it can do.

• Step 2 Generated Grounded Feedback: Push the ball
using a spinning motion.

• Step 2 Generated Goal: Push a ball to goal position
using a spinning motion.

• Step 2 Demonstration: The robot spins the ball sideways,
pushes the ball to the right.

• Satisfaction Score: 75.0
• Step 3 Human Feedback: I like the effort given to

perform the task. Although it was not complete, I enjoyed
it. It was a hard task. It kind of rolled the ball in a big
circle - maybe it could try using its gripper to just rotate
the ball?

• Step 3 Generated Grounded Feedback: Use the gripper
to rotate the ball directly towards the goal instead of
moving it in a circular path.

• Step 3 Generated Goal: Push a ball to goal position by
rotating it directly towards the goal using the gripper.

• Step 3 Demonstration: The robot pushes the ball towards
the right of the target while rotating it sideways.

• Satisfaction Score: 50
• Step 4 Human Feedback: I do not want the robot to try

to push the ball to the goal position anymore. The robot
performed good prior. I want it to try to make the ball
rotate in place, maybe by twisting its gripper on top. I
want to see the ball spin.

• Step 4 Generated Grounded Feedback: Stop trying to
push the ball to the goal position. Instead, make the ball
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Fig. 7: ROSETTA performance on various categories on short-horizon environments. For legibility reasons, we exclude some
language categories that foundation models are able to handle without additional domain knowledge, such as 3rd-person
POV, 2nd-person POV, no POV, curious tone, directive tone, and suggestive tone. We also exclude conditional and physically
impossible feedbacks, which are rare.

Semantic Match Optimizability Alignment

# Preferences Grounding Staging Coding Cascading* Success Rate Pct Success > 50 (%) Satisfied (%) Satisfaction Score

Short Horizon 80 95.7 87.3 84.6 78.1 89.2 90.1 84.8 76.4
Long Horizon 36 80.0 90.0 82.9 78.6 82.2 88.8 88.8 92.4

TABLE II: Experimental results evaluating semantic alignment, optimization potential, and user satisfaction. Semantic match
metrics: expert Likert evaluation on grounding quality, staging quality, coding quality, cascading (product of all three).
Optimizability metrics: Success rate: average success rate of best policy for a single preference, Pct Success >50%: percent
runs with success rate above 50%. Alignment: Satisfaction: % preferences where annotator was satisfied, Satisfaction Score:
preference annotator Likert evaluation on how much more/less satisfied (50 is neutral). Note: Cascading Match excludes cases
where expert evaluators found the feedback difficult to interpret.

rotate in place by twisting the gripper on top of it to see
the ball spin.

• Step 4 Generated Goal: Make the ball rotate in place
by twisting the gripper on top of it to see the ball spin.

• Step 4 Demonstration: The robot slowly rotates the ball
by twisting the gripper.

• Satisfaction Score: 100

B. Successful Cases in Long-Horizon

Here, we showcase instances where our pipeline successfully
handles feedbacks to long-horizon environments.

1) Example 1: Success Rate: 0.9, Satisfaction Score: 100:

• Human Feedback: Place the light colored items in one
bin and the dark objects in the other.

• Feedback Categories: no pov, context-dependent, pref-
erential, goal-related , specific position, directive, asking
for change.

• Generated Grounded Feedback: Place the apple and
orange in one bin, and the baseball and tennis ball in the
other bin.
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Fig. 8: ROSETTA performance on various categories on long-horizon environments. For legibility reasons, we exclude some
language categories that foundation models are able to handle without additional domain knowledge, such as 3rd-person
POV, 2nd-person POV, no POV, curious tone, directive tone, and suggestive tone. We also exclude conditional, inadvertently
long-horizon, physically difficult, distraction, multi-part, and physically impossible feedbacks, which didn’t occur in long-horizon
experiments.

• Previous Goal: Place the apple, orange, baseball, and
tennis ball all into the same bin.

• Generated New Goal: Place the apple and orange in one
bin, and the baseball and tennis ball in the other bin.

• Previous Demonstration: The robot picks up the objects
and puts them into the white bin one by one.

• New Demonstration: The robot placed the baseball and
tennis ball in the white bin, and apple and orange in the
blue bin.

2) Example 2: Success Rate: 1.0, Satisfaction Score: 100:
• Human Feedback: Can the robot pick up the other items

on the floor? It doesn’t appear complete with its task
leaving the other items there.

• Feedback Categories: 3rd-person, verbose, suggestive,
preferential, context-dependent, corrective, asking for
change.

• Generated Grounded Feedback: Pick up the red soup
can and place it in the drawer.

• Previous Goal: Put apple in drawer.
• Generated New Goal: Put Apple and Red Soup Can In

Drawer
• Previous Demonstration The robot picks up the apple

and places it in the drawer.

• New Demonstration The robot placed the apple in the
drawer, then the soup in the drawer.

3) Example 3: Success Rate: 0.6, Satisfaction: 100:
• Human Feedback: I am glad the robot was able to

completely stack the three cubes in the correct order.
I would like the robot to now push the green cube next
to the pink cube. After, I want the robot to pick up the
red cube and drop it on top of the two cubes.

• Feedback Categories: 3rd-person, preferential, behav-
ioral, specific order, specific position, goal-related, asking
for change.

• Generated Grounded Feedback: Move the green cube
next to the purple cube. Then, pick up the red cube and



place it on top of the green and purple cubes.
• Previous Goal: Stack the green cube on top of the red

cube, then stack the purple cube on top of the green cube.
• Generated New Goal: Move the green cube next to the

purple cube. Then, pick up the red cube and place it on
top of the green and purple cubes.

• Previous Demonstration: The robot stacks three cubes
together.

• New Demonstration: The robot pushes the green cube
next to the purple cube and places the red cube on top of
them.

C. Examples of Limitations

1) Limitation 1: Mistake Accumulation: A specific failure
case we observed occurs when the language model propagates
errors from the current reward function to the new one. In
this case, the LLM mistakenly added a +0.1 offset to the z-
coordinate of the target position. In the previous step, due
to a correctly defined success condition and some luck, the
robot was able to successfully learn the task. However, this
error was inherited in the generated reward function, leading
to unsuccessful learning in the subsequent step.

• Previous Reward Function Snippet:

def s t a g e _ 0 _ r e w a r d ( ) :
# T a r g e t p o s i t i o n c o m p u t a t i o n
# A c t i o n : p i c k up t h e red a p p l e
# T a r g e t p o s i t i o n i s s l i g h t l y above t h e a p p l e t o approach from above
a p p l e _ p o s = p r e v _ i n f o [ ’ a p p l e _ p o s ’ ]
t a r g e t _ p o s _ 1 = a p p l e _ p o s . copy ( )
t a r g e t _ p o s _ 1 [ 2 ] += 0 . 1

• Generated Next Step Reward Function Snippet:

def s t a g e _ 0 _ r e w a r d ( ) :
# T a r g e t p o s i t i o n c o m p u t a t i o n
# A c t i o n : p i c k up t h e red a p p l e
# T a r g e t p o s i t i o n i s s l i g h t l y above t h e a p p l e t o approach from above
a p p l e _ p o s = p r e v _ i n f o [ ’ a p p l e _ p o s ’ ]
t a r g e t _ p o s _ 1 = np . a r r a y ( [

a p p l e _ p o s [ 0 ] ,
a p p l e _ p o s [ 1 ] ,
a p p l e _ p o s [ 2 ] + 0 . 1

] )

• Previous Demonstration: The robot puts the two objects
in the drawer and closes it.

• New Demonstration: The robot repeatedly tries to pick
up the apple but doesn’t lower the gripper enough.

The flawed reward function ended with a 0 success rate and
a 0 satisfaction score.

2) Limitation 2: Content Constraint: Inadvertent long-
horizon scenario.

• Step 1 Feedback: I want the robot to release the sphere
after placing it.

• Step 1 Demonstration: The robot lifts the cube above
the bin but fails to release it.

• Step 2 Feedback: I want the robot to put the ball in the
corner of the bin

• Step 2 Demonstration: Still, the robot lifts the cube
above the bin but fails to release it.

• Step 3 Feedback: I want it to not try to first bring the
ball above the corner then release. It seems that’s not
going to work. It should put it straight down into the bin
corner.

• Step 3 Demonstration: The robot picks up the ball
and moves it to the corner of the bin. Though this is
listed as an example of a fundamental limitation, this final
adaptation despite contaminated history shows the power
of the modular framework to recover and adapt to helpful
human input.

D. Constraints

While ROSETTA accepts unconstrained language, we estab-
lished certain content constraints for annotators, though we
accepted some violations to show the system’s limitations.
Constraints:

• No temporal dependency. Since the state history is not
given to the reward function except one step back in



the action primitive case, we disallowed preferences
referencing history. An example: “pause your gripper
2cm above the sphere, then continue down.” This cannot
be implemented with history-agnostic masking. The most
successful agents paused 2cm above the sphere and never
progressed.

• No long-horizon tasks in the continuous control setting -
described above. This was violated many times as it can
be nonobivous to an annotator.

• To some degree, please accept jitter. Stabilization is
possible, but it’s not the default behavior. If you want
stabilization, please say so explicitly.

• Avoid asking for multiple goals at once (multi-objective
reward). This was rare regardless, as annotators quickly
recognized that asking for two things at once was
unrealistic.

• Avoid asking for ungrasp in continuous control: this turns
out to be difficult to learn since grasping is usually the
right move. The algorithm did learn it in many cases,
but this was more due to its own sampling leading to a
success boost than the dense ungrasping reward.

• Action primitive setting only: can only give feedback on
positions, cannot ask for pulling action.

PROMPTS

E. Short Horizon Reward Generation Prompts
To generate the reward function for a short-horizon environ-

ment, we follow the steps outlined below. The entire pipeline
takes the following inputs:

• Current Environment Code: The full ManiSkill envi-
ronment code, including the current reward function.

• Grounded Feedback: Grounded human feedback.
• Demo Summary: A generated language description of

the demonstration.
• New Task Goal: The updated task goal based on the

feedback.
The generation process is carried out through a multi-round

conversation with GPT-4o, following these steps:
1) Staging: In this step, the LLM is tasked with planning

the reward function based on the feedback. (Prompt 1)
2) Coding: The LLM is tasked with generating reward

function code snippets according to its plan. (Prompt 2)
3) Error Correction 1: We execute the generated code and

ask LLM to regenerate the reward function with the error
trace if the code fails.

4) Geometry Review: The LLM reviews the generated code
and corrects any geometry-related mistakes. (Prompt 3)

5) Target Position Reward Review: The LLM reviews and
corrects target position setting mistakes in the generated
code. (Prompt 4)

6) Reward Design Review: The LLM reviews and corrects
reward function design mistakes in the generated code.
(Prompt 5 and (Prompt 6)

7) Error Correction 2: We execute the generated code and
ask LLM to regenerate the reward function with the error
trace if the code fails.

Prompt used:

Short Horizon Staging Prompt

# Instructions

You are a reward engineer that is an
expert at designing reward functions to
solve reinforcement learning tasks. You
will output outlines for two functions,
`evaluate` and `compute_dense_reward`, in
natural language. They should be
concrete and ready for implementation.

You will be given:
1. Code for a task environment class
that a reinforcement learning-based
robot has already been trained in. This
includes the reward function the robot
was trained on, namely the existing
version of `compute_dense_reward`.
2. Feedback given to the robot by a
human who watched it after it had been
trained on the existing version of `
compute_dense_reward`.

You should:
1. Generate a high level plan for `
compute_dense_reward`, and `evaluate` as
needed. `compute_dense_reward` is the
reward function, and `evaluate` is a
helper that analyzes the current
environment state and compiles
information that is given to `
compute_dense_reward`.
2. Design a staged reward:
- Split the task into stages and give

the agent reward gradually, encouraging
it to complete each stage. The reward
should therefore accumulate, NOT be all-
or-nothing at the end.
- Consider interdependencies and

tradeoffs between different task stages
and different aspects of the feedback
and overall goal. Ensure your reward
design isn't counterproductive.
3. If there are aspects of the feedback
that it's impossible to incorporate
without modifying other methods, say "I
cannot do <aspect>" and ONLY incorporate
the other parts of the feedback, if
there are any.
4. If there are aspects of the feedback
that are physically impossible, say "I
cannot do <aspect>" and ONLY incorporate
the other parts of the feedback, if
there are any.
5. Explain your reasoning at each step.

Each stage must be a **single outcome**.
It must be a change in an environment

state, not a particular action. It must
obey one of the following templates:
- Reward the robot for traveling to <
desired position>. Example: "reward the



robot for traveling to the point just
left of `cubeA`."
- Reward the robot for getting <desired
object> to <desired position>. Example:
"reward the robot for getting the bottle
to be inside of the drawer."

- Reward the robot for <other single
outcome>. Example: "reward the robot for
moving more smoothly."

- Reward the robot for <other single
descriptor> <other object>. Example: "
reward the robot for getting the top
cube's edges aligned with the bottom
cube's edges."
Tips:
- Notice how the stage templates are
highly atomic - one single outcome.
- IMPORTANT: even if the human feedback
has multiple parts, your stages must
STILL be atomic. Just because the person
lists multiple parts, this doesn't mean
each part is a single stage. One part

may still require multiple atomic stages,
and one atomic stage may contribute to

multiple feedback parts. BE SMART, DON'T
JUST LIST OUT THE FEEDBACK AS YOUR

STAGES.
- Note how the stage templates deal with
changes to the environment (including

the robot) rather than the robot's
actions.

### Details for `evaluate`
```python
def evaluate(self: BaseEnv) -> Dict[str,
torch.Tensor]

"""
Return dict is the dict mapping

strings of reward-relevant questions to
their boolean-valued answers for the
batch. So, the values of this dict are
torch. Tensors with bool dtype, where
the first dimension is a batch of
episodes and the second is the boolean
answer to the string question for that
individual episode.

Should create a useful set of
information. `evaluate` will be called on
both the previous state (before the

agent took an action) and the current
state (after the agent took an action)
to calculate reward.

"""
```

### Details for `compute_dense_reward`
```python
def compute_dense_reward(self: BaseEnv,
obs: Any, action: torch.Tensor, info:
Dict[str, torch.Tensor]) -> torch.Tensor

"""
Encodes reward for each possible

action based on `evaluate` output
dictionary and other current environment

info (environment instance attributes).

Incorporates human feedback as given.

Obeys the following structure:
1. Stage reward

- Task is split into stages and
reward is given to the agent gradually,
encouraging it to complete each stage.
The reward accumulates.

- Interdependencies and tradeoffs
between different task stages and
different aspects of feedback and
overall goal are considered. Reward
design is not overall counterproductive
to meet short-term goals.

2. Extra success bump for successful
episodes

3. Return reward value
"""

```

Original code:
```python
{ENVIRONMENT CODE}
```

Current task description: {NEW TASK GOAL}

Robot execution description: {DEMO
SUMMARY}
Human's feedback: {GOUNDED FEEDBACK}

## Instructions
Think step-by-step to make a high-level
plan for rewriting `evaluate` and `
compute_dense_reward`. The plan should
be a series of stages.
- Don't code yet, just plan the stages.
- Consider dependencies and conflicts
between task stages, and create a plan
that doesn't do anything
counterproductive.
- Carefully consider the physical
aspects of the task.
- Plan realistic paths
- Consider the physical state the

robot is in after each stage. Write the
next stage to build directly on it.

## RULES YOU MUST FOLLOW:
1. Incorporate human feedback as given.
2. Do not add anything that contradicts
the feedback.
3. Do not invent your own changes or
speculate about what the feedback is
going for.
4. Do not add anything counterproductive
to the overall goal.

5. Make every stage atomic.
6. Make the plan complete - think about
all the atomic stages the robot needs to
achieve every part of the feedback, not



just the final ones.
7. NEVER ask the robot to release an
object from the gripper.
8. NEVER ask the robot to first move
above the desired location, below
desired location, then release or lower
down or move up. Just have it go
straight to the desired location.

Short Horizon Coding Prompt

# Instructions:
1. Code the reward function based on the
stages.
a. Use the Code Block below wherever

possible.
b. Follow the Checklist below.

2. Only output methods you are editing.
3. If you are editing a method, output
the whole edit method, not just your
edits.
4. Don't introduce new methods, not even
helper methods. Just edit `

compute_dense_reward` and `evaluate`.
5. Comment your code as needed.
6. If there are aspects of the feedback
that it's impossible to incorporate
without modifying `_load_scene` or `
_initialize_episode`, say "I cannot do <
aspect>" and ONLY incorporate the other
parts of the feedback, if there are any.
7. Explain your implementation.
8. Explain checklist adherence. Be
concise.

1. Code the reward function on the
stages. Write a short chain of reasoning
before your code, to explain your

reasoning.
a. Use the Code Block below wherever

possible.
b. Follow the checklist below.
c. Comment your code as needed.

2. Only output methods you are editing.
3. If you are editing a method, output
the whole edit method, not just your
edits.
4. Don't introduce new methods, not even
helper methods. Just edit `

compute_dense_reward` and `evaluate`.
5. If there are aspects of the feedback
that it's impossible to incorporate
without modifying `_load_scene` or `
_initialize_episode`, say "I cannot do <
aspect>" and ONLY incorporate the other
parts of the feedback, if there are any.

# Code Blocks for `compute_dense_reward`

### Make Robot Reach Target Positions
In `compute_dense_reward`:
- **Minimize the distance** between the

object's current position and the target
position in the reward function.

- **Normalize and smooth distances**
using functions like `torch.tanh`:

```python
transport_reward = 1.0 - torch.tanh(

torch.linalg.norm(target_pos - obj.pos())
) # max 1.0, decreases with distance

```
- **Don't just give a boost when the
target position has already been reached
.** The robot will get no guidance
during movement and be unable to begin.

# Function signatures

## Details for `evaluate`:
```python
def evaluate(self: BaseEnv) -> Dict[str,
torch.Tensor]

"""
Return dict is the dict mapping

strings of reward-relevant questions to
their boolean-valued answers for the
batch. So, the values of this dict are
torch.Tensors with bool dtype, where the
first dimension is a batch of episodes

and the second is the boolean answer to
the string question for that individual
episode.

Should create a useful set of
information. `evaluate` will be called on
both the previous state (before the

agent took an action) and the current
state (after the agent took an action)
to calculate reward.

Always contains a key called "
success" that maps to the success
condition

"""
```

## Details for `compute_dense_reward`:
```python
def compute_dense_reward(self: BaseEnv,
obs: Any, action: torch.Tensor, info:
Dict[str, torch.Tensor]) -> torch.Tensor

"""
Encodes reward for each possible

action based on `evaluate` output
dictionary and other current environment
info (environment instance attributes).

Incorporates human feedback as given.

Obeys the following structure:
1. Stage reward

- Task is split into stages and
reward is given to the agent gradually,
encouraging it to complete each stage.
The reward accumulates. Each stage's
reward is dense wherever possible.



- Interdependencies and tradeoffs
between different task stages and
different aspects of feedback and
overall goal are considered. Reward
design is not overall counterproductive
to meet short-term goals.

2. Extra success bump for successful
episodes

3. Return reward value
"""

```

# Reward Function Checklist

### Coding Best Practices

- **Use `.clone()`** when calculating and
mutating `torch.Tensor`s to avoid

unintended reward changes

### Selecting Target Positions

- When defining target positions, **
specify all coordinates (x, y, z)**. Do
not leave any unrestricted.
- `<element>.pos()` returns the **center
position** of the element. Adjust with
offsets if targeting the top, bottom, or
sides.

- **Understand geometry and dimensions**
by reading the environment code.
- **Example:** If placing an object

inside a box, account for wall thickness.

- **Example:** If aligning an object
with the edge of a target, consider the
target's shape.

### Staged Reward Masking

- **Use torch masking** to activate
rewards for a stage **only after** its
prerequisites are met.
- **Example**: Two stagesâĂŤ(1) grasp `
bottleA`, (2) move `bottleA` to `boxA`

```python
# Assume 'is_bottleA_on_boxA' and '

is_bottleA_grasped' are in info and the
target position for `bottleA` is defined

# Stage 2 reward - moving `bottleA` to
`boxA`
move_reward = torch.tanh(torch.linalg.

norm(target_pos - bottleA.pos()))

# Reward moving `bottleA` to its target
position `target_pos` only after it's

grasped
reward[info['is_bottleA_grasped']] +=

move_reward[info['is_bottleA_grasped']]
```

- **Mask based on completed stages**,
not the current one. Example of bad
masking:

```python
# Incorrect: Masking on the current

stage's completion
reward[info['is_bottleA_on_boxA']] +=

move_reward[info['is_bottleA_on_boxA']]
# This fails because it doesn't reward

reducing the distance between `bottleA`
to `boxA` until the distance is zero. The
robot therefore doesn't get dense
process reward.

```
- **Don't reward conflicting stages
simultaneously**.
- **Maintain non-decreasing rewards** to
encourage progression.
- **Example:** If the robot must grasp

`objectA`, place it, ungrasp, then grasp
`objectB`:

- Continue rewarding the grasp of `
objectA` even when it's being placed.

- Mask the reward for grasping `
objectB` based on `objectA` being at the
target location, not whether `objectA` is
grasped.

### Reward Component Weighting

- **Equalize the maximum values and
shapes of each stage's reward components
.**
- **Prevent reward imbalance for
different stages** or the robot may fail
to progress on the task because the

additional reward is relatively small.

### Success Boost

- **Add a reward boost** when the task
is successfully completed to emphasize
successful episodes.

- Ensure `info['success']` is a boolean
indicating success.
- Example code:

```python
success_boost_val = 5.0 # Adjust to

be 1/4 of total possible reward so far
reward[info['success']] +=

success_boost_val
```

{MANISKILL ENVIRONMENT DOCUMENTATION}

Short Horizon Geometry Review Prompt

- Verify that for each object, this code
handles the fact that `.pos()` returns
the center location. Common pitfalls:
- Not applying the right offsets when

placing two objects relative to each
other. E.g. half-width, radius, etc.
- Verify that this code considers the
physical attributes of each object and
how they might offset target positions.
Common pitfalls:
- Thickness of box walls



- Verify that this code uses x as the
front-back axis and y as the left-right
axis. z is still the up-down axis.
- Verify that when applying penalties,
this code does not OVER-penalize. For
example, if slowness is required, set a
low upper bound for speed, but do not
penalize it entirely or the robot will
be stalled.

1. Write out your verification step-by-
step.
2. Edit the code as needed according to
your explanation. Comment your changes.
3. Only output methods you are editing.
4. If you are editing a method, output
the whole method, not just your edits.
5. Don't introduce new methods, not even
helper methods. Just edit `

compute_dense_reward` and `evaluate`.

Short Horizon Target Position Review Prompt

- Verify that each of the three
coordinates is considered for every
position and offset in the code. Common
pitfalls:

- Forgetting the z-component
- Ignoring one or two coordinates when

setting a target position. If the robot
is not given constraints in some axis,

it could do anything, leading to a crash
into something else.

- Verify that specific target positions
are always set. Common pitfalls:

- Simply incentivizing the robot to go
in a certain direction (e.g. "down" or

"below an object"). It should always be
pushed toward a SPECIFIC POINT IN SPACE,
or it won't stop and will fly wildly.

1. Write out your verification step-by-
step.
2. Edit the code as needed according to
your explanation. Comment your changes.
3. Only output methods you are editing.
4. If you are editing a method, output
the whole method, not just your edits.
5. Don't introduce new methods, not even
helper methods. Just edit `

compute_dense_reward` and `evaluate`.

Short Horizon Reward Design Review Prompt

- Verify that the reward is *dense* when,
and ONLY when, you want the robot to

gradually approach a certain state. "
Dense" means a continuous function that
gives more and more reward as the robot
approaches the right position, rather
than a step function only reward it once

it's reached.
- Distance, angular difference,

velocity - all continuous values that
can have dense, continuous rewards
- Traveling to a location gradually

and opening/closing a gripper to a
certain point gradually - ALWAYS DENSE.
- Verify that all *penalties* are NOT
dense. Examples:
- To slow the robot down, there should

be a penalty on speed that is NOT dense.
You want it to just stay below a
specific speed, not get more reward the
slower it is.
- TO HAVE THE ROBOT GO SLOW, THE CODE

SHOULD SIMPLY SET A CONSTANT UPPER BOUND
ON SPEED. DENSE REWARD DOES NOT HELP
HERE.
- To have the robot to keep its

gripper closed, the penalty on gripper
opening should not be dense - you want
it to stay below a certain opening, not
get more reward the more closed it is.
- Verify that the code actually requires
the robot to reach its target position.
Common pitfalls:
- Defining a "near" threshold that is

larger than the "at" threshold for a
target position, then not requiring the
agent to move once it's "near" even if
it's not "at".

1. Write out your verification step-by-
step.
2. Edit the code as needed according to
your explanation. Comment your changes.
3. Only output methods you are editing.
4. If you are editing a method, output
the whole method, not just your edits.
5. Don't introduce new methods, not even
helper methods. Just edit `
compute_dense_reward` and `evaluate`.

Short Horizon Masking Review Prompt

- Verify that the reward **never
decreases** during the progression of
the task, so that the robot isn't
disincentivized from making progress.
- The code should only mask on genuine

prerequisites
- The reward should be enabled even

when the stage is complete
- For example, if the robot needs to

grasp an object to carry it to a
location and then let it go, give the
grasp reward not only when the gripper
is ready to grasp, but also after the
object has been carried to the location
and ungrasped.
- Verify that no stage reward components
are masked prematurely.
- Example: reward component guides the



robot to put `objA` next to `objB`.
Masking this with `info["
is_objA_next_to_objB"]` means it'll only
get reward after it succeeds, so it

will never get started.
- Example: reward component guides the

robot to travel to point `target_pos`.
Masking this with `info["
is_near_target_pos"]` means it'll only
get reward after it succeeds, so it will
never get started.

1. Write out your verification step-by-
step.
2. Edit the code as needed according to
your explanation. Comment your changes.
3. Only output methods you are editing.
4. If you are editing a method, output
the whole method, not just your edits.
5. Don't introduce new methods, not even
helper methods. Just edit `

compute_dense_reward` and `evaluate`.

F. Long Horizon Reward Generation Prompts

To generate the reward function for a long-horizon environ-
ment, we follow the steps outlined below. The entire pipeline
takes the following inputs:

• Current Environment Code: The full ManiSkill envi-
ronment code, including the current reward function.

• Grounded Preference: Grounded human preference.
• Demo Summary: A generated language description of

the demonstration.
• Current Task Goal: The task goal that the policy is

currently attempting to achieve.
• New Task Goal: The updated task goal based on the

preference.
• Environment Information Key: Dictionary Keys of the

observation space, with corresponding descriptions.
• Environment Setup Description: A description of the

environment setup.
• Error Correction: We execute the generated code and

ask LLM to regenerate the reward function with the error
trace if the code fails.

The generation process is carried out through a multi-round
conversation with GPT-4o, following these steps:

1) Staging: In this step, the LLM is tasked with planning
the reward function based on the preference. (Prompt 7)

2) Coding: The LLM is tasked with generating reward
function code snippets according to its plan. (Prompt 8)

3) Geometry Review: The LLM reviews the generated code
and corrects any geometry-related mistakes. (Prompt 9)

4) Reward Normalization Review: The LLM reviews and
corrects normalization-related mistakes in the generated
code. (Prompt 10)

5) Code Cleanup: The LLM reviews and resolves any coding
or formatting errors in the generated code. (Prompt 11)

6) Construct Reward Function: The final reward function
is constructed by inserting the generated code snippets
into Template 12.

Prompt used:

Long Horizon Staging Prompt

# Instructions

You are a reward engineer that is an
expert at designing reward functions to
solve reinforcement learning tasks. We
have trained a reinforcement learning-
based robot in a task environment. We
then demonstate the policy to a human
who gave feedback on the robot's
performance. Now, we want to design a
reward function that incorporates the
human's feedback
You will output an outline for the
reward function `compute_dense_reward`,
in natural language. It should be
concrete and ready for implementation.

You will be given:
1. `Original Code`: Code for a task
environment class, including the reward
function robot has already been trained
in, namely `compute_dense_reward`.
2. `Original Task Goal`: The original
task goal of the robot before the
feedback was given.
3. `Simulation Environment Setup`:
Description of the simulation
environment.
4. `Demonstration Summary`: Summary of
the robot's performance during the
demonstration.
5. `Human Feedback`: Feedback given to
the robot by a human who watched it
after it had been trained on the
existing version of `
compute_dense_reward`.
6. `New Task Goal`: The new task goal for
the robot after the feedback has been
incorporated.

You should:
1. Generate a high level plan for `
compute_dense_reward`.
2. Design a staged reward:
- Split the task into stages and give

the agent reward gradually, encouraging
it to complete each stage. The reward
should therefore accumulate, NOT be all-
or-nothing at the end.
- Consider interdependencies and

tradeoffs between different task stages
and different aspects of the feedback
and overall goal. Ensure your reward
design isn't counterproductive.
3. If there are aspects of the feedback
that it's impossible to incorporate
without modifying other methods, say "I
cannot do <aspect>" and ONLY incorporate



the other parts of the feedback, if
there are any.
4. If there are aspects of the feedback
that are physically impossible, say "I
cannot do <aspect>" and ONLY incorporate
the other parts of the feedback, if

there are any.
5. Explain your reasoning at each step.

# Design details
## `compute_dense_reward`

There are three stage templates you can
use. You CANNOT use anything else. The
robot is ONLY capable of these three
stages.

#### "pick up"
Template:
- Action: reward the robot for picking
up <desired object>.
- Outcome: <desired object> is in the
robot's gripper.
Example:
- Action: reward the robot for picking
up `red_cube`.
- Outcome: `red_cube` is in the robot's
gripper.

#### "place"
Template:
- Action: reward the robot for placing <
desired object> <desired position>.
- Outcome: <desired object> is <desired
position>.
Example:
- Action: reward the robot for placing `
red_cube` next to `sphereB`.
- Outcome: `red_cube` is next to `sphereB
`.

#### "push"
Template:
- Action: reward the robot for pushing <
desired object> to <desired position>.
- Outcome: <desired object> is <desired
position>.
Example:
- Action: reward the robot for pushing `
red_cube` just left of the center of the
target.

- Outcome: `red_cube` is just left of the
center of the target.

# Output format
Your output should be:
An ordered list of stage plans. Format:
```markdown
### Stage <stage number>: <language
description of stage number>
- Stage template: "<pick up or place>"

- **Action:** <language description of
action>
- **Outcome:** <language description

of outcome>

- **Dependencies:** <reasoning about any
dependencies with previous stages>

- **Other reasoning:** <whatever you
think is important to note!>
```

Examples:
```markdown
### Stage 1: Pick up `obj1`
- Stage template: "pick up"
- **Action:** Reward the robot for

picking up `obj1`.
- **Outcome:** `obj1` is in the robot's
gripper.

- **Dependencies:** The robot can do
this easily, so there aren't prior
dependencies.
- **Other reasoning:**: [open-ended, you
will not be provided with an example]

```

```markdown
### Stage 4: Put `obj2` next to `obj1`.
- Stage template: "place"
- **Action:** Reward the robot for

placing `obj2` next to `obj1`.
- **Outcome:** `obj2` is next to `obj1`.

- **Dependencies:** Requires that the
robot is grasping `obj2`.
- **Other reasoning:**: [open-ended, you
will not be provided with an example]

```

Notice that stage index starts from 0.

## Original Code:
```python
{ENVIRONMENT CODE}
```

## Original Task Goal: {CURRENT TASK
GOAL}

## Simulation Environment Setup: {
ENVIRONMENT SETUP DESCRIPTION}

## Demonstration Summary: {DEMO SUMMARY}

## Human Feedback: {GROUNDED FEEDBACK}

## New Task Goal: {NEW TASK GOAL}

Think step-by-step to make a high-level
plan for writing `compute_dense_reward`.
The plan should be a series of stages.
- Don't code yet, just plan the stages.
- Consider dependencies and conflicts
between task stages, and create a plan
that doesn't do anything
counterproductive.

RULES YOU MUST FOLLOW:
1. Use ONLY the stage templates you've
been given.



2. Incorporate human feedback as given.
3. Do not add anything that contradicts
the feedback.
4. Do not invent your own changes or
speculate about what the feedback is
going for.
5. Try accomplish the task goal with
minimal stages. Long plans are harder to
train on.

6. Make the plan complete - think about
all the atomic stages the robot needs to
achieve every part of the feedback, not
just the final ones.

Long Horizon Coding Prompt

Excellent. Now write the relevant code
for each stage.

# Instructions:
1. Don't add your own helper methods.
Only edit what I've told you to edit.
2. Go through the coding tips below.
3. Explain your implementation.
4. If there are aspects of the feedback
that are physically impossible, say "I
cannot do <aspect>" and ONLY incorporate
the other parts of the feedback, if

there are any.
5. Number of stages should match the
number of stages in the plan. It can be
different from the number of stages in
the original code.
# How to calculate target positions and
position rewards

### Coding best practices
- Pay attention to the `Original Code`
and the `Simulation Environment Setup`
given to you earlier.
- All positions are numpy arrays of
shape (3,). Make sure you don't modify
the content in info dictionaries.
= Don't worry about missing arguments

### How to set a target position for the
robot to pick at/place at.

- Object coordinates are x, y, and z
coordinates. **Explicitly reason about
every coordinate when setting the target
position**.

- Note that those are x, y, z
coordinates of the *center* of objects.
- So when setting target positions or

getting object positions, if you want
the top, bottom, or sides of an object,
add the right offsets.

- Otherwise, make sure you're
reasoning about the center.
- Consider common sense physical issues.
**Read the environment code to

understand geometry and dimension values
.** Examples:

- A box has walls, so if you want to
put something inside the box, consider
its wall width.
- A target might be a circle or a

square - if you want to put something at
the edge of the target, consider its
shape.
- Remember that direction matters, not
just distance. Let's say your intended
target position is two block side-
lengths away from a block center. You
can't take the block center, then tell
the robot to go two block side-lengths
away from that. It could go two block
side-lengths in any direction! You have
to calculate your intended position,
unambiguously.

### How to write a reward component that
gets the robot to choose the right
location
- Add a reward component that minimizes
the difference between the position the
robot is currently planning to go to,
and the target position you set
- Normalize and smooth these differences
with a function like `np.tanh`.
- For example, if the robot has

selected position `current_selected_pos`
and you set target position `target_pos`,
you can take the hyperbolic tangent of

the norm of the difference between these
two.
- You can also increase the

coefficient on the norm within the `np.
tanh` to encourage `target_pos` more
aggressively, you can subtract from 1.0
so that the overall reward ranges from 0
to 1 and increases as distance

decreases, and/or you can use a
different normalizing function based on
the reward landscape you want.
- **Design based on what we need from

this reward component.**
- DON'T give a step function-like boost
that only activates when the object has
reached its target position. If you do
this, the agent won't be able to get
started.

# Documentation of function inputs
Functions take in two arguments from the
environment: `prev_info` and `cur_info`.
These are dictionaries with the

following keys:

{ENVIRONMENT INFORMATION KEYS}

`prev_info` represent the environment
state BEFORE `action` was taken and `
cur_info` represent the state AFTER `
action` was taken.

## Simulation Environment Setup: {
ENVIRONMENT SETUP DESCRIPTION}



## Demonstration Summary: {DEMO SUMMARY}

## Human Feedback: {GROUNDED HUMAN
FEEDBACK}

## New Task Goal: {NEW TASK GOAL}

# Your task:

Fill out the TODOs in this markdown to
get reward. Fill out a new copy of the
markdown for every stage. Write a short
chain of reasoning before each code
block to explain your reasoning.

```markdown
stage N target action: # TODO: select [`
pick`, `place`, `push`]. Select EXACTLY
the one given to you in the plan - DO
NOT make your own judgement call.

```python
def compute_target_position_stageN(self,
prev_info, cur_info):

"""
Defines the target position for the

robot's action - the location it needs
to pick at/place at/push to.

Has no return. The function ends in
the definition of `target_pos_1` and `
target_pos_2`.

Arguments:
- `self (BaseEnv)`: gives access

to environment attributes and method
calls.

- `prev_info (dict[str, Any])`:
state representation of the environment
state BEFORE `action` was taken.

- `cur_info (dict[str, Any])`:
same as `prev_info`, except from the
state AFTER `action` was taken.

"""
# TODO: implement target position

for stageN's target action based on
environment.

# If the action is `pick` or `place`,
target_pos_1 must be a 3D position

indicating the target position for the
action, and target_pos_2 must be None.

# If the action is `push`,
target_pos_1 must be a 3D position
indicating the target starting position
for the push action, and target_pos_2
must be a 3D position indicating the
target ending position for the push
action.

target_pos_1 = ...
target_pos_2 = ...

```

```python
def compute_target_pos_reward_stageN(
self, prev_info, cur_info,

current_selected_pos_1,
current_selected_pos_2, target_pos_1,
target_pos_2):

"""
Sets a reward to encourage the robot

to take the action at `target_pos_1` and
`target_pos_2`. This reward should be

dense, setting a continuous-valued
penalty for any difference between `
current_selected_pos_1` and `
current_selected_pos_2` (the location
the robot IS CURRENTLY PLANNING to pick
at/place at/push to) and `target_pos_1`
and `target_pos_2` (the location the
robot SHOULD pick at/place at/push to).

Has no return. The function ends in
the definition of `reward`.

Arguments:
- `self (BaseEnv)`: gives access

to environment attributes and method
calls.

- `prev_info (dict[str, Any])`:
state representation of the environment
state BEFORE `action` was taken.

- `cur_info (dict[str, Any])`:
same as `prev_info`, except from the
state AFTER `action` was taken.

- `current_selected_pos_1` and `
current_selected_pos_2` (numpy.ndarray):
the pos the robot IS CURRENTLY PLANNING
TO take the action at

- `target_pos_1 (numpy.ndarray)`
and `target_pos_2 (numpy.ndarray)`: `
target_pos` defined in `
compute_target_position_stageN` - the
pos the robot SHOULD take the action at

Notice that current_selected_pos_2
and target_pos_2 are None if the action
is `pick` or `place`. Do not use them in
this case.

This function will only be called if
selected action equals target action.

In other words, current_selected_pos_2
and target_pos_2 will be both None or
both numpy arrays.

"""
reward = # TODO implement a *dense

and normalized* reward for guiding the
robot to do `target_action` at `
target_pos`s, i.e. align `
current_selected_pos_1` and `
current_selected_pos_2` with `
target_pos_1` and `target_pos_2`. Use the
`target_pos_1` and `target_pos_2` param,
don't calculate your own.

# - Feel free to use normalization
functions like `np.tanh`. Your reward
MUST be normalized to between -1 and 0.

# - Ensure your reward is *dense*.
Do not give a sudden boost for reaching
the target position. Instead, make sure
your reward implementation gradually and
continuously guides the robot to target



positions. Otherwise, the robot won't
be able to get started.
```

```python
def stageN_success(info):

"""
Return true if the robot has

successfully completed stageN, else
return false.

Arguments:
- `info (dict[str, Any])`: state

representation of the current
environment state.

Returns:
- `bool`: True if the robot has

successfully completed stageN, else
False.

"""
# TODO

```
```

Don't write `compute_dense_reward` as a
whole. Only write the functions I asked
for.

Long Horizon Reward Function Geometry Review Prompt

Review the setup description again:

{ENVIRONMENT SETUP DESCRIPTION}

- For every target position, did you
specify all three coordinates?
- Did you set target positions **exactly
where you desire the robot to go**?

Common pitfalls:
- Adding a small error threshold to the
target position. Always allow a bit of
error when calculating a *boolean check*
in `stageN_success`, but the target

positions themselves should have no
error.Âă
- Did you reason about the dimensions of
each object and how they might impact

target positions?
- Picking an object up requires
positioning the gripper around the
center of the object. Did you consider
this? In other words, did you set the
target position to the center of the
object?

Verify. If you need to make any edits,
do so.
1. Only output functions you are editing.

2. If you are editing a function, output
the whole thing. Only do so once, with

all corrections made.

Long Horizon Reward Normalization Review Prompt

- Did you consider the range of your
normalization functions correctly?
Common pitfalls: make sure the range of
the reward is -1 to 0.
- Did you consider sensitivity
thoughtfully? Common pitfalls: not
having tolerance for small errors in the
reward and success calculation.

Verify. If you need to make any edits,
do so.
1. Only output functions you are editing.

2. If you are editing a function, output
the whole thing. Only do so once, with
all corrections made.

Long Horizon Reward Function Cleanup Prompt

- Did you make sure not to include
return statements in all `
compute_target_position_stageN` and `
compute_target_pos_reward_stageN`, and
instead just define `target_pos` and `
reward`, respectively?
- Did you set any new instance variables,
i.e. did you create any new `self.<
varname>`? You should not - you should
just set `target_pos` and `reward` as
regular variables. I will handle the
rest.
- Did you use the right datatypes? All
positions should be numpy arrays of
shape (3,), rewards should be floats,
and `stageN_success` returns boolean.

Verify. If you need to make any edits,
do so.
1. Only output functions you are editing.

2. If you are editing a function, output
the whole thing. Only do so once, with
all corrections made.

Long Horizon Reward Function Template

def evaluate(self):
info = self._get_obs_info()

def stage0_success(info):
<GENERATED STAGE 0 SUCCESS

CONDITION>
...

def stageN_success(info):
<GENERATED STAGE N SUCCESS

CONDITION>

info["stage0_success"] =
stage0_success(info)



...
info["stageN_success"] =

stageN_success(info)

info["success"] = torch.tensor(False)

if self.cur_stage==N:
info["success"] = torch.tensor(

info["stageN_success"])

return info

def compute_dense_reward(self, prev_info,
cur_info, action, **kwargs):

reward_components = dict((k, 0.0)
for k in self.reward_components)

current_selected_action = np.argmax(
action[:len(self.task_skill_indices.keys
())])

if current_selected_action in [0, 1]:

current_selected_pos_1 = action[
len(self.task_skill_indices.keys()):len(
self.task_skill_indices.keys())+3]

current_selected_pos_2 = None
else:

current_selected_pos_1 = action[
len(self.task_skill_indices.keys()):len(
self.task_skill_indices.keys())+3]

current_selected_pos_2 = action[
len(self.task_skill_indices.keys())+3:
len(self.task_skill_indices.keys())+6]

def stage_0_reward():
<GENERATED TARGET POSITION AND

ACTION DEFINITION>

if current_selected_action ==
target_action:

<GENERATED DISTANCE
DEFINITION>

reward_components["afford"]
= (1 + reward) * 5.0

if cur_info["stage0_success"]:
reward_components["success"]

= 10.0
return reward_components

...

if self.cur_stage==0:
reward = stage_0_reward()

...
if self.cur_stage==N:

reward = stage_N_reward()

if (self.cur_stage == 0) and
cur_info["stage0_success"]:

self.cur_stage = 1
...
if (self.cur_stage == N-1) and

cur_info["stage{N-1}_success"]:
self.cur_stage = N

return reward

G. Preference Grounding Prompt

Feedback grounding consists of two stages: (1) translating a
demonstration video and its trajectory into a language-based
description, and (2) leveraging the language description and
human feedback to generate grounded feedback and update
task goals.

1) Demonstration to Language Description: To address the
Vision-Language Action (VLA) model’s limitations in spatial
and motion understanding, we process each demonstration by
decomposing it into frames and augmenting them with state
information, including object 3D positions and gripper states.

a) Short-Horizon Descriptions: We process short-horizon
descriptions in the following steps:

1) Sample frames at every 5-frame interval.
2) For each sampled frame, extract object positions, states,

and the corresponding video frame, then prompt GPT-4o
with Prompt 13 to generate a state description.

3) For the transitions between sampled frames, input the
consecutive state descriptions into GPT-4o with Prompt 15
and request a description of the motion occurring between
them.

4) Compile all state and motion descriptions into an inter-
leaved sequence of states and actions.
b) Long-Horizon Descriptions: For long-horizon descrip-

tions, we segment the demonstration into a sequence of
primitive actions and process them as follows:

1) Generate a separate language description for each action’s
start and end state by providing GPT with the correspond-
ing video frame and state information using Prompt 14.

2) Provide the start state description, end state description,
primitive action type, and action parameters as input to
GPT-4o with Prompt 16, requesting a language-based
description of the action.

3) Compile all state and motion descriptions into an inter-
leaved sequence of states and actions.

Prompts used:

Short Horizon State Description Prompt

Given the image from a robotic
simulation, a description of the setup,
and state information, write a caption
describing the scene.
## Your response should be similar to
the following examples:
EXAMPLE 1: A robot gripper is slightly
above the sphere. The sphere is on the
table, next to the bin.
EXAMPLE 2: The robot is holding a blue
cube above the orange cube. The orange
cube is on stacked on top of the pink
cube.



## Input
Setup Description: {ENVIRONMENT SETUP
DESCRIPTION}
Here is the state information: {STATE}
Objects do not float. If an object is
elevated, it is either held by the robot,
stacked on top of another object, or

inside a drawer or a bin.

<ENCODED FRAME>

Long Horizon State Description Prompt

Given the image from a robotic
simulation, a description of the setup,
and state information, write a caption
describing the scene.
## Your response should be similar to
the following examples:
EXAMPLE 1: A robot gripper hovers above
a wooden table, holding a green cube,
while a red cube and a purple ball rest
on the table surface.
EXAMPLE 2: The robot is holding a green
ball above the table. There are two
cubes stacked together on the table. The
red cube is on top of

the purple cube.
## Input
Setup Description: {ENVIRONMENT SETUP
DESCRIPTION}
Here is the state information: {STATE}
Objects do not float. If an object is
elevated, it is either held by the robot,
stacked on top of another object, or

inside a drawer or a bin.

<ENCODED FRAME>

Short Horizon Action Description Prompt

Your job is to generate a language
description of a robot's action based on
(1) START STATE: a dictionary containing
the state and position of objects

before the action,
(2) START STATE DESCRIPTION: the
language description of the start state,
(3) END STATE: a dictionary containing
the state and position of objects after
the action,
(4) END STATE DESCRIPTION: the language
description of the end state, and "
Environment description: {ENVIRONMENT
SETUP DESCRIPTION}
EXAMPLE 1: The robot released the blue
cube on top of the green cube,
EXAMPLE 2: The robot picks up the blue
cube.

Here are the inputs

START STATE: {START STATE}
START STATE DESCRIPTION: {START STATE
LANGUAGE DESCRIPTION}
END STATE: {END STATE}
END STATE DESCRIPTION: {END STATE
LANGUAGE DESCRIPTION}
Now generate a description of the robot'
s action. Focus on the coordinates.
State description might be wrong.

Long Horizon Action Description Prompt

Your job is to generate a language
description of a robot's action based on

(1) START STATE: a dictionary containing
the state and position of objects
before the action,
(2) START STATE DESCRIPTION: the
language description of the start state,
(3) END STATE: a dictionary containing
the state and position of objects after
the action,
(4) END STATE DESCRIPTION: the language
description of the end state, and
(5) ACTION DESCRIPTION: the parameter of
the action command to the robot.
Environment description: {ENVIRONMENT
SETUP DESCRIPTION}

Your response should be one or two
sentences long and should be similar to
the following examples:

EXAMPLE 1: The robot successfully picks
up the green cube.
EXAMPLE 2: The robot trys to place down
the red cube on the green cube. However,
the red cube ended on the table.

Here are the inputs
START STATE: {START STATE}
START STATE DESCRIPTION: {START STATE
LANGUAGE DESCRIPTION}
END STATE: {END STATE}
END STATE DESCRIPTION: {END STATE
LANGUAGE DESCRIPTION}
ACTION DESCRIPTION: {ACTION}

Now generate a description of the robot'
s action.

2) Grounded Preference and Task Goal Generation: With
the generated language description of the demonstration, we
employ Prompt 17 to generate grounded preference and
language summary of the demonstration and Prompt 18 to
update the task goals.

Prompts used:



Grounded Preference Prompt

You are a helpful assistant. You are
skilled at taking things people say off
the cuff and without context, and
specifying exactly what they mean in
unambiguous, clear language.

I showed a person a video of a robot
doing a task and asked them to give
feedback to/about the robot. You will be
given:

1. Description of the task
2. Frame-by-frame description of the
video
3. The person's feedback - could be
ambiguous, confusing, overly long,
overly short, full of errors, etc.

You need to provide:
1. A summary of the video - descriptive,
complete, concise.

2. A rewrite of the feedback that is
unambiguous, contextualizes the person's
feedback in the video/task description,
uses standard language, and directs the
robot to do exactly what the person *

meant* to ask for.

# Feedback grounding examples
UNGROUNDED FEEDBACK 1: Not that one!
GROUNDED FEEDBACK 1: The robot moved
Blue Cube to the right. It should not -
it should move Red Cube to the right.
EXPLANATION 1: The person says "not that
one" and there are two cubes in the

scene, meaning they appear to have liked
the action, but not the specific cube

it was being done on. So, I added in
direct references to the Blue Cube and
the Red Cube. Since it was the Blue Cube
that was moved to the right and the

person clearly wanted the other option,
I said not to do that and to instead
move the Red Cube to the right.

UNGROUNDED FEEDBACK 2: Hmmm, I like that
the it move arm like that and put

banana smoothly? but can it put banana
in another one?
GROUNDED FEEDBACK 2: Arm movement is
good, but put Banana in Shelf 2, Shelf 3,
or Shelf 4.

EXPLANATION 2: The person likes the arm
movement. They want the banana to be put
in another "one" - since it was

previously put on a shelf, this means
they want it put in a different shelf.
Previously it was shelf 1, so now I ask
for Shelves 2, 3, or 4. They also liked
the way the robot put the Banana in
Shelf 1, but now they're asking for it
to be put in a different one, so even
though they liked it previously, I don't

ask for that now.

UNGROUNDED FEEDBACK 3: the block can go
further
GROUNDED FEEDBACK 3: Move Cube 1 further
to the right.
EXPLANATION 3: The person referenced a "
block". There's nothing in the
description called a "block", but there
is a "cube", which is a synonym. They
want it moved further but don't specify
where, which suggests they want it moved
further in the original direction. That
was to the right, so I preserve that
here.

# Task description
{CURRENT TASK GOAL}

# Video description
{LANGUAGE DESCRIPTION OF THE DEMO}

# Feedback
"{RAW HUMAN FEEDBACK}"

# Your task
1. Think step by step to briefly
summarize the demonstration, then go
through the checklist, then give me your
final version of the feedback, grounded
to the description.
2. Make sure your grounded feedback has
a directive tone.
3. Use standard, unambiguous language
over using the person's own language.
4. Do not have ANY ambiguous objects.
ALWAYS use the official term for an
object if it has one.

CHECKLIST:
- The feedback may not be ordered, even
if it contains multiple parts. Did you
assume order inappropriately?
- The person might compliment something
about the past. Don't conflate that with
what they're asking for *now*. Did you
make sure to isolate only the current
instructions, and remove things they
like but don't want to keep?
- The person will NEVER reference
something not in the video. If they use
a word you don't think is in the video,
YOU ARE WRONG. Did you figure out what
they were talking about? Did you replace
any unexpected terms with official
terms from the description?

# Output
JSON format:
{

"summary": "<SUMMARY>",
"explanation": "<EXPLANATION>",
"feedback": "<GROUNDED FEEDBACK>",

}



Task Goal Update Prompt

You are a helpful assistant that is
excellent at interpreting what humans
are asking for. You will be shown three
phrases:
1. A task description that was attempted
by a robot

2. A description of the robot's
attempted demonstration
3. Original feedback the person gave
after watching the robot make the
attempt.
4. Grounded feedback that has been
rewritten to be clear and unambiguous.

Your job:
- If the person's feedback changes the
task itself such that the original task
description no longer applies, rewrite
the task description.
- If the person's feedback adds to the
task, then add the new information to
the task description.
- However, if the person's feedback
doesn't change the task and only
comments on the robot's execution, then
output an empty string.
- Give these in a json output.

Current task description: {
task_description}
Demo description: {demo_description}
Original Feedback: {original_feedback}
Grounded Feedback: {grounded_feedback}

# Your output should be a JSON object
with the following format:
{

"task_description": <TASK
DESCRIPTION>,
}

H. Environment Specific Prompt

1) PushBall:
PushBall Setup Description

There should be a robot gripper and a
ball on the table. In the 3D coordinate
of the projects [x,y,z], x represents
left and right positive is left,
negative is right, y represents forward
and backward, positive is forward,
negative is backward, and z represents
height. z = 0 represents the table
surface. The radius of the sphere is
0.06. Position is measured at each
object's center. Expect errors in the
measurement.

2) PlaceSphere2BinWide:

PlaceSphere2BinWide Setup Description

There should be a robot gripper, a
sphere, and two bins on the table. In
the 3D coordinate of the projects [x,y,z
], x represents forward and backward,
positive is forward, y represents left
and right positive is left, negative is
right, negative is backward, and z
represents height. z = 0 represents the
table surface. The radius of the sphere
is 0.02 and each bin is 0.16 wide and
0.01 deep. Position is measured at each
object's center. Expect errors in the
measurement.

3) Stack3Cube:
Stack3Cube Setup Description

There are a robot gripper, a red cube, a
green cube, and a purple cube on a
table. The 3D coordinates of the
projects [x,y,z] are defined from the
viewer's perspective: the x-axis
represents forward and backward, with
positive values being closer and
negative values farther away from the
viewer; the y-axis denotes horizontal
direction, with negative values to the
left and positive to the right of the
viewer. The z-axis measures height,
where z=0 corresponds to the table
surface. Each cube is 0.04 by 0.04 by
0.04. Position is measured at each
object's center. Expect errors in the
measurement.

Stack3Cube Information Keys

- `red_cube_pos`: 3D coordinate of
red_cube
- `green_cube_pos`: 3D coordinate of
green_cube
- `purple_cube_pos`: 3D coordinate of
purple_cube
- `is_red_cube_grasped`: whether red_cube
is grasped by the robot

- `is_green_cube_grasped`: whether
green_cube is grasped by the robot
- `is_purple_cube_grasped`: whether
purple_cube is grasped by the robot
- `gripper_pos`: 3D coordinate of the
robot's gripper

4) PutObjectInDrawer:
PutObjectInDrawer Setup Description

There should be a robot gripper, a red
apple, a red soup can, and a drawer on



the floor. Objects are roughly 0.05 in
height and width. Object positions are
measured at the center of the object.
The 3D coordinates of the projects [x,y,
z] are defined from the viewer's
perspective: the x-axis represents
forward and backward, with positive
values being closer and negative values
farther away from the viewer; the y-axis
denotes horizontal direction, with

negative values to the left and positive
to the right of the viewer. The z-axis

measures height, where z=0 corresponds
to the floor. The bottom drawer is
facing the right (+y direction). It's
open when the scene starts. The drawer
is 0.36 wide, 0.22 deep, and 0.16 high.
In other words, x = drawer_pos[0] + 0.18
is the left edge of the drawer, x =

drawer_pos[0] - 0.18 is the right edge
of the drawer, y = drawer_pos[1] + 0.11
is the drawer front, z = drawer_pos[2] +
0.16 is the top of the drawer, and z =

drawer_pos[2] is the bottom of the
drawer. The robot is placed on the floor
and cannot reach the inside of the

drawer. To put an object in the drawer
it must be dropped from above.

PutObjectInDrawer Information Keys

- `apple_pos`: 3D coordinate of apple
- `soup_can_pos`: 3D coordinate of
soup_can
- `is_apple_grasped`: whether apple is
grasped by the robot
- `is_soup_can_grasped`: whether soup_can
is grasped by the robot

- `gripper_pos`: 3D coordinate of the
robot's gripper
- `drawer_handle_pos`: 3D coordinate of
the bottom drawer handle
- `drawer_pos`: 3D coordinate of the
center bottom of the drawer
- `drawer_open_offset`: how much the
drawer is open, measured as the distance
between the drawer's position now and

when it is fully closed

5) ObjectToBin:
ObjectToBin Setup Description

There should be a robot gripper, an
apple, an orange, a baseball, a tennis
ball, and two bins on the table. One bin
is light blue and one is white. The 3D

coordinates of the projects [x,y,z] are
defined from the viewer's perspective:
the x-axis represents forward and
backward, with positive values being
closer and negative values farther away

from the viewer; the y-axis denotes
horizontal direction, with negative
values to the left and positive to the
right of the viewer. The z-axis measures
height, where z=0 corresponds to the
table surface. Each object is about 0.05
in diameter. Each bins are 0.20 by 0.20
by 0.02 in size. Position is measured
at each object's center. Expect errors
in the measurement.

ObjectToBin Information Keys

- `apple_pos`: 3D coordinate of apple
- `orange_pos`: 3D coordinate of orange
- `baseball_pos`: 3D coordinate of
baseball
- `tennis_ball_pos`: 3D coordinate of
tennis_ball
- `blue_bin_pos`: 3D coordinate of
blue_bin
- `white_bin_pos`: 3D coordinate of
white_bin
- `is_apple_grasped`: whether apple is
grasped by the robot
- `is_orange_grasped`: whether orange is
grasped by the robot
- `is_baseball_grasped`: whether baseball
is grasped by the robot

- `is_tennis_ball_grasped`: whether
tennis_ball is grasped by the robot
- `gripper_pos`: 3D coordinate of the
robot's gripper

I. Baselines Prompts

Eureka Prompt Template

We are going to use a Franka Panda robot
to complete given tasks. The action
space of the robot is a normalized `Box
(-1, 1, (num_env,7), float32)`, where
num_env means the number of environments
in parallel, many attributes in the
environment are batched, the first
dimension is num_env.

# Environment Code:
{environment_code}

# Maniskill Doc:
{reward_guidelines}

# Previous Implementations:

Previous reward function:
```python
{previous_reward}
```

Your reward function code has been
analyzed, the feedback is as follows:



# Human Feedback:
{human_feedback}

# Objective Feedback:
{objective_feedback}

Please carefully analyze the policy
feedback and provide a new, improved
reward function that can better solve
the task. Some helpful tips for
analyzing the policy feedback:

(1) If the success rates are always
near zero, then you must rewrite the
entire reward function

Please generate a reward function that
follows all guidelines and addresses the
human feedback. The code output should

be formatted as a python code string:
"```python ... ```".
- "compute_dense_reward": containing the
complete reward function code

The functions MUST have these EXACT
signatures:

def compute_dense_reward(self: BaseEnv,
obs: Any, action: torch.Tensor, info:
Dict[str, torch.Tensor]) -> torch.Tensor

#Encodes reward for each possible
action based on `evaluate` output
dictionary and other current environment
info (environment instance attributes).

#Incorporates human feedback as
given.

#Obeys the following structure:
#1. Stage reward

- Task is split into stages and
reward is given to the agent gradually,
encouraging it to complete each stage.
The reward accumulates.

- Interdependencies and tradeoffs
between different task stages and
different aspects of feedback and
overall goal are considered. Reward
design is not overall counterproductive
to meet short-term goals.

#2. Return reward value
# Your implementation here
pass

```

The function should:
1. Match the exact function signatures
shown above
2. Handle batched operations correctly (
num_env dimension)
3. Include comprehensive comments
4. Follow the reward function best
practices
5. Be consistent with the interface of
the previous implementations while
incorporating the requested changes

The code output should be formatted as a
python code string: "```python ... ```".

Text2Reward Prompt Template

We are going to use a Franka Panda robot
to complete given tasks. The action
space of the robot is a normalized `Box
(-1, 1, (num_env,7), float32)`, where
num_env means the number of environments
in parallel, many attributes in the
environment are batched, the first
dimension is num_env.

# Task-Specific Environment:
{environment_description}

# Available Objects and Their Properties:

{env_class_desc}

# Maniskill Doc:
{reward_guidelines}

# Previous Implementations:

Previous reward function:
```python
{previous_reward}
```

# Human Feedback:
{human_feedback}

Please generate a reward function that
follows all guidelines and addresses the
human feedback. The code output should
be formatted as a python code string:
"```python ... ```".
- "compute_dense_reward": containing the
complete reward function code

The functions MUST have these EXACT
signatures:

def compute_dense_reward(self: BaseEnv,
obs: Any, action: torch.Tensor, info:
Dict[str, torch.Tensor]) -> torch.Tensor

#Encodes reward for each possible
action based on `evaluate` output
dictionary and other current environment
info (environment instance attributes).

#Incorporates human feedback as
given.

#Obeys the following structure:
#1. Stage reward

- Task is split into stages and
reward is given to the agent gradually,
encouraging it to complete each stage.



The reward accumulates.
- Interdependencies and tradeoffs

between different task stages and
different aspects of feedback and
overall goal are considered. Reward
design is not overall counterproductive
to meet short-term goals.

#2. Return reward value
# Your implementation here
pass

```

The function should:
1. Match the exact function signatures
shown above
2. Handle batched operations correctly (
num_env dimension)
3. Include comprehensive comments
4. Follow the reward function best
practices
5. Be consistent with the interface of
the previous implementations while
incorporating the requested changes

The code output should be formatted as a
python code string: "```python ... ```".

Text2Reward Environment Class Discription

#class PandaRobot:
self.tcp.pose.p: torch.Tensor([

num_env, 3]) # Batched by the number of
environment, indicate the 3D position of
the robot's gripper

self.tcp.pose.q: torch.Tensor([
num_env, 4]) # Batched by the number of
environment, indicate the quaternion of
the robot's gripper

self.robot.qpos: torch.Tensor([
num_env, 9]) # Batched by the number of
environment, indicate the joint
positions (last 2 for gripper) of the
robot at this key frame

self.robot.qvel: torch.Tensor([
num_env, 9]) # Batched by the number of
environment, indicate the joint
velocities (last 2 for gripper) of the
robot at this key frame

def is_grasping(self, object: Actor,
min_force=0.5, max_angle=85): -> torch.

Tensor([num_env, ], bool) # Batched by
the number of environment, check if the
robot is grasping an object

class RigidObject:
self.pose.p: torch.Tensor([num_env,

3]) # Batched by the number of
environment, indicate the 3D position of
the simple rigid object in each

environment
self.pose.q: torch.Tensor([num_env,

4]) # Batched by the number of
environment, indicate the quaternion of

the simple rigid object in each
environment

def get_angular_velocity(self,) ->
torch.Tensor([num_env, 3]) # Batched by
the number of environment, indicate the
angular velocity of the simple rigid
object

def get_linear_velocity(self,) ->
torch.Tensor([num_env, 3]) # Batched by
the number of environment, indicate the
linear velocity of the simple rigid
object

self.get_first_collision_mesh().
bounding_box.bounds: np.ndarray[(2, 3)]
# non-batched, indicate the bounding box
of the simple rigid object

class TargetObject:
self.pose.p: torch.Tensor([num_env,

3]) # Batched by the number of
environment, indicate the 3D position of
the TargetObject in each environment

self.pose.q: torch.Tensor([num_env,
4]) # Batched by the number of
environment, indicate the quaternion of
the TargetObject in each environment

class LinkObject:
self.pose.p: torch.Tensor([num_env,

3]) # Batched by the number of
environment, indicate the 3D position of
the link object in each environment

self.pose.q: torch.Tensor([num_env,
4]) # Batched by the number of
environment, indicate the quaternion of
the link object in each environment

def get_angular_velocity(self,) ->
torch.Tensor([num_env, 3]) # Batched by
the number of environment, indicate the
angular velocity of the link object

def get_linear_velocity(self,) ->
torch.Tensor([num_env, 3]) # Batched by
the number of environment, indicate the
linear velocity of the link object

self.qpos : torch.Tensor([num_env,],
float) # Batched by the number of
environment, indicate the position of
the link object joint

self.qvel : torch.Tensor([num_env,],
float) # Batched by the number of
environment, indicate the velocity of
the link object joint

class ArticulateObject:
self.pose.p: torch.Tensor([num_env,

3]) # Batched by the number of
environment, indicate the 3D position of
the articulate object in each

environment
self.pose.q: torch.Tensor([num_env,

4]) # Batched by the number of
environment, indicate the quaternion of
the articulate object in each
environment

self.qpos : torch.Tensor([num_env,



9]) # Batched by the number of
environment, indicate the joint
positions of the articulate object at
this key frame

self.qvel : torch.Tensor([num_env,
9]) # Batched by the number of
environment, indicate the joint
velocities of the articulate object at
this key frame

self.get_first_collision_mesh().
bounding_box.bounds: np.ndarray[(2, 3)]
# non-batched, indicate the bounding box
of the articulate object

Documentation For Eureka and Text2Reward

# Documentation of classes, methods,
and properties you can use when

implementing `compute_dense_reward`

This is a parallel training environment
with many episodes. Each pose, boolean
description of the scene, etc. is
therefore a `torch.Tensor` where the
first dimension is the *batch dimension*.
Each episode is independent, so you

must calculate reward separately for
each one. Specifically:

- `reward` is a `torch.Tensor` of
scalar reward values for the batch of
episodes. The first dimension is a batch
of episodes, and the second dimension

is the scalar reward value for that
individual episode.

- For example, if you want to give a
reward boost of 5.0 to exactly the
episodes where the object is grasped,
and you have already computed the `
is_obj_grasped` tensor, you can say `
reward["is_obj_grasped"] += 5.0`.

## `Actor` class
Non-robot objects in scene are
subclasses of `Actor`.
### Properties
- `px_body_type`: `Literal["kinematic", "
static", "dynamic"]` indicating physics
behavior - static (immovable), dynamic (
physics-affected), kinematic (not
physics-affected).

- The robot cannot move "static" and "
kinematic" objects. If a feedback asks
you to change their locations, reject
that part.
- `name`: `str` acting as the unique
identifier for the actor
- `merged`: `bool` indicating if the
actor is a composite of multiple other
actors
- `pose`: `Pose` object representing the
current state

- `Pose` object: dataclass
- `pose.p` is a position

- `pose.q` is a quaternion
indicating orientation

- `pose.raw_pose` is
concatenation of `p` then `q`

- `Pose.create_from_pq(p=p, q=q)`
returns a new `Pose` object at that `p`

and `q`.
### Instance methods (called with `<
actor_instance>.<method_name>(<params>)`)

- `get_state`:
- `self.<actor_instance>.get_state()[:,

7:10]`: contains linear velocity
- `self.<actor_instance>.get_state()[:,

10:13]`: contains angular velocity
- `is_static(lin_thresh=1e-2, ang_thresh
=1e-1)`: boolean check if actor is
static based on velocity thresholds

- `lin_thresh`: linear velocity
threshold

- `ang_thresh`: angular velocity
threshold

## Agent class
`BaseAgent` class for the robot. The
robot is a 7-DoF arm-and-two finger
gripper. Degrees of freedom: arm
position, arm orientation, and gripper
open/close.
- Note that you will see `tcp` throughout
the code, with its specific position

being queried. `tcp` stands for Tool
Center Point, the center between the two
fingers. `tcp.pose` attributes tells you
where the gripper is positioned.

### Properties
- `self.agent.controller`: currently
activated controller
- `self.agent.action_space`: position/
orientation/state that controller has
been sent to in the latest action,
concatenated for the two controllers (
arm and end-effector)
### Methods
- `self.agent.get_state()`: returns a
dictionary with the following keys:

- "robot_root_pose": root pose
- "robot_root_vel": root velocity
- "robot_root_qvel": root angular

velocity
- "robot_qpos": joint position
- "robot_qvel": joint velocity
- "controller": output of `controller.

get_state()`, which contains target
positions and orientations of the
currently activated controller
- `self.agent.is_grasping(object: Union[
Actor, None] = None)`: boolean check if
agent is grasping object
- `is_static(threshold: float)`: boolean
check if robot is static (within given
threshold) in terms of q velocity
- `self.agent.robot.get_qlimits()[0, -1,
1] * 2`: gripper width, i.e. max

possible opening



## Other
- `tcp` stands for "tool center point" -
it is the point between the robot's
grippers and is TODO whole robot
- Like `reward` and the values of `info`,
quantities are tensors over the batch.

For example, `pose` is a tensor where the
first dimension is the batch of

multiple episodes, and the rest describe
the pose of that episode.

- IMPORTANT: here, x is the front-and-
back axis, y is the left-and-right axis,
and z is the up-and-down axis.

Typically, x and y are flipped - check
your work!

LMPC Prompt Template

## High-Level Description:
You are an expert robot reward function
programmer.
Your goal is to write improved reward
functions for a Franka Panda robot arm
with a gripper to fulfill tasks based on
feedback and previous implementations.

You will analyze feedback and create
reward functions that better guide the
robot to accomplish its tasks.

## Robot Environment Details:
We are using a Franka Panda robot to
complete given tasks. The action space
of the robot is a normalized `Box(-1, 1,
(num_env,7), float32)`, where `num_env`

means the number of environments in
parallel. Many attributes in the
environment are batched, with the first
dimension being `num_env`.

The robot is a 7-DoF arm with a two-
finger gripper. Degrees of freedom
include arm position, arm orientation,
and gripper open/close. The Tool Center
Point (tcp) is the center between the
two fingers.

## Coordinate System:
The coordinate system is right-handed
and three-dimensional:
- x-axis: front-and-back
- y-axis: left-and-right
- z-axis: up-and-down (aligned with
gravity)

Note that x and y are typically flipped
in standard notation - check your work
carefully!

## Previous Implementation and Feedback:
For each task, you will be provided with:

1. A previous reward function

implementation (`compute_dense_reward`)
2. Human feedback on the previous
implementation (`human_feedback`)

## Your Task:
You must carefully analyze the feedback
and provide a new, improved reward
function that better solves the task.
Your function should:

1. Match the exact function signature:
```
def compute_dense_reward(self: BaseEnv,
obs: Any, action: torch.Tensor, info:
Dict[str, torch.Tensor]) -> torch.Tensor
```

## Available APIs:

### Actor Class (Non-robot objects in
scene)
#### Properties:
- `px_body_type`: Physics behavior type
("kinematic", "static", "dynamic")
- `name`: Unique identifier
- `merged`: Boolean indicating if the
actor is composite
- `pose`: Position and orientation
- `pose.p`: Position
- `pose.q`: Quaternion orientation
- `pose.raw_pose`: Concatenation of p

and q

#### Methods:
- `get_state()[:, 7:10]`: Linear velocity
- `get_state()[:, 10:13]`: Angular
velocity
- `is_static(lin_thresh=1e-2, ang_thresh
=1e-1)`: Boolean check if actor is
static

### Agent Class (Robot)
#### Properties:
- `self.agent.controller`: Currently
activated controller
- `self.agent.action_space`: Position/
orientation/state of controllers

#### Methods:
- `self.agent.get_state()`: Returns robot
state dictionary

- `self.agent.is_grasping(object)`:
Boolean check if agent is grasping
object
- `is_static(threshold)`: Boolean check
if robot is static
- `self.agent.robot.get_qlimits()[0, -1,
1] * 2`: Gripper width

### Important Notes:
- `tcp` is the Tool Center Point (center
between robot's grippers)
- All quantities are tensors over the
batch dimension
- The robot cannot move "static" and "



kinematic" objects

## Output Format:
Your output should be formatted as a
Python code string: "```python ... ```"
- The code should contain the complete `
compute_dense_reward` function

## Robot Code Writing Hints:
- Do not use any functions or object
names besides the ones mentioned above.

# Chat Turn Example:

## Environment code:

```python
class CubeAndTargetEnv(BaseEnv):

"""
**Task Description:**
A simple task where the objective is

to pull a cube onto a target.

**Randomizations:**
- the cube's xy position is

randomized on top of a table in the
region [0.1, 0.1] x [-0.1, -0.1].

- the target goal region is marked
by a red and white target. The position
of the target is fixed to be the cube's
xy position - [0.1 + goal_radius, 0]

**Success Conditions:**
- the cube's xy position is within

goal_radius (default 0.1) of the target'
s xy position by euclidean distance.

"""

_sample_video_link = "https://github.
com/haosulab/ManiSkill/raw/main/figures/
environment_demos/PullCube-v1_rt.mp4"

SUPPORTED_ROBOTS = ["panda", "fetch
"]

agent: Union[Panda, Fetch]
goal_radius = 0.1
cube_half_size = 0.02

def __init__(self, *args, robot_uids
="panda", robot_init_qpos_noise=0.02, **
kwargs):

self.robot_init_qpos_noise =
robot_init_qpos_noise

super().__init__(*args,
robot_uids=robot_uids, **kwargs)

@property
def _default_sensor_configs(self):

pose = look_at(eye=[0.3, 0, 0.6],
target=[-0.1, 0, 0.1])

return [CameraConfig("
base_camera", pose, 128, 128, np.pi / 2,
0.01, 100)]

@property
def

_default_human_render_camera_configs(
self):

pose = look_at([0.6, 0.7, 0.6],
[0.0, 0.0, 0.35])

return CameraConfig("
render_camera", pose, 512, 512, 1, 0.01,
100)

def _load_agent(self, options: dict):

super()._load_agent(options,
sapien.Pose(p=[-0.615, 0, 0]))

def _load_scene(self, options: dict):

self.table_scene =
TableSceneBuilder(

env=self,
robot_init_qpos_noise=self.
robot_init_qpos_noise

)
self.table_scene.build()

# create cube
self.obj = actors.build_cube(

self.scene,
half_size=self.

cube_half_size,
color=np.array([12, 42, 160,

255]) / 255,
name="cube",
body_type="dynamic",
initial_pose=sapien.Pose(p

=[0, 0, self.cube_half_size]),
)

# create target
self.goal_region = actors.

build_red_white_target(
self.scene,
radius=self.goal_radius,
thickness=1e-5,
name="goal_region",
add_collision=False,
body_type="kinematic",

)

def _initialize_episode(self,
env_idx: torch.Tensor, options: dict):

with torch.device(self.device):
b = len(env_idx)
self.table_scene.initialize(

env_idx)
xyz = torch.zeros((b, 3))
xyz[..., :2] = torch.rand((b,

2)) * 0.2 - 0.1
xyz[..., 2] = self.

cube_half_size
q = [1, 0, 0, 0]

obj_pose = Pose.
create_from_pq(p=xyz, q=q)

self.obj.set_pose(obj_pose)

target_region_xyz = xyz -



torch.tensor([0.1 + self.goal_radius, 0,
0])

target_region_xyz[..., 2] =
1e-3

self.goal_region.set_pose(
Pose.create_from_pq(

p=target_region_xyz,
q=euler2quat(0, np.

pi / 2, 0),
)

)
self.object_list = {"cube":

self.obj,
"goal":

self.goal_region}
def evaluate(self):

is_obj_placed = (
torch.linalg.norm(

self.obj.pose.p[..., :2]
- self.goal_region.pose.p[..., :2],

axis=1
)
< self.goal_radius

)

return {
"success": is_obj_placed,

}

def _get_obs_extra(self, info: Dict):

obs = dict(
tcp_pose=self.agent.tcp.pose.

raw_pose,
goal_pos=self.goal_region.

pose.p,
)
if self._obs_mode in ["state", "

state_dict"]:
obs.update(

obj_pose=self.obj.pose.
raw_pose,

)
return obs

def compute_dense_reward(self, obs:
Any, action: Array, info: Dict):

# grippers should close and pull
from behind the cube, not grip it

# distance to backside of cube (+
2*0.005) sufficiently encourages this

tcp_pull_pos = self.obj.pose.p +
torch.tensor(

[self.cube_half_size + 2 *
0.005, 0, 0], device=self.device

)
tcp_to_pull_pose = tcp_pull_pos -

self.agent.tcp.pose.p
tcp_to_pull_pose_dist = torch.

linalg.norm(tcp_to_pull_pose, axis=1)
reaching_reward = 1 - torch.tanh

(5 * tcp_to_pull_pose_dist)
reward = reaching_reward

reached = tcp_to_pull_pose_dist
< 0.01

obj_to_goal_dist = torch.linalg.
norm(

self.obj.pose.p[..., :2] -
self.goal_region.pose.p[..., :2], axis=1

)
place_reward = 1 - torch.tanh(5 *

obj_to_goal_dist)
reward += place_reward * reached

reward[info["success"]] = 3
return reward

def compute_normalized_dense_reward(
self, obs: Any, action: Array, info:
Dict):

max_reward = 3.0
return self.compute_dense_reward

(obs=obs, action=action, info=info) /
max_reward

def get_fitness_score(self):
# get the fitness score of the

current episode
# returns a tensore of shape (

batch_size, )
# currently, the fitness score

is the distance between the cube and the
goal

# fitness score always the
higher the better so we return the
negative distance

return -torch.linalg.norm(
self.obj.pose.p[..., :2] -

self.goal_region.pose.p[..., :2], axis=1
)

```

## Previous Implementations:
Previous reward function:
```python
def compute_dense_reward(self, obs,
action, info):

reward = torch.zeros_like(info["
task_completed"], dtype=torch.float32)

# Simple reward for moving toward
object

target_pos = self.object.pose.p
gripper_pos = self.agent.tcp.pose.p
distance = torch.norm(gripper_pos -

target_pos, dim=-1)
reward -= distance * 0.1
return reward

```
Your reward function code has been
analyzed, the feedback is as follows:

## Human Feedback:
The robot moves toward the object but
doesn't attempt to grasp it.

## Output:
```python



def compute_dense_reward(self: BaseEnv,
obs: Any, action: torch.Tensor, info:
Dict[str, torch.Tensor]) -> torch.Tensor:

# Initialize reward tensor for batch
processing

reward = torch.zeros_like(info["
task_completed"], dtype=torch.float32)

target_pos = self.object.pose.p
gripper_pos = self.agent.tcp.pose.p
distance = torch.norm(gripper_pos -

target_pos, dim=-1)
reward -= distance * 0.2 #

Increased weight for faster approach

is_grasping = self.agent.is_grasping
(self.object)

reward[is_grasping] += 1.0 # Reward
for successful grasp

if "grasped_duration" in info:
reward += info["grasped_duration

"] * 0.05 # Small reward for
maintaining grasp

return reward
```

# New Chat Session

## Environment code:
```python
{environment_code}
```

## Previous Implementations:
Previous reward function:
```python
{compute_dense_reward}
```

Your reward function code has been
analyzed, the feedback is as follows:
## Human Feedback:
{human_feedback}

Your output should be formatted as a
Python code string: "```python ... ```"
- The code should contain the complete `
compute_dense_reward` function

## Output:

J. Error Correction Prompts

Short Horizon Error Correction Prompt

You are being given code that is a
training environment for a reinforcement
learning-based robot. Code details:

1. `_load_scene`, `_initialize_episode`,
and all the methods called by them, set

up the scene.
2. `evaluate` calculates information
about the current environment state in a
dictionary. Its output dictionary is

given to `compute_dense_reward` in the
parameter `info`.
3. `compute_dense_reward` outputs a final
reward.

The code is as follows:
```python
{generated_env_code}
```

This code has an error in it that you
need to fix. The stack trace is as
follows:
```python
{error_trace}
```

The line that threw the error is `{
error_line}`.

Please fix it.
1. You cannot take debugging steps, you
have to fix it without more info.
2. You should only edit `evaluate` and `
compute_dense_reward` and any of their
helper methods. Enclose them in markdown
```python <your code> ``` delimiters.

3. Don't use "```python ... ```"
delimiters anywhere else in your
response. You can use ` <code> ` if
needed.
3. If you would absolutely have to edit
other methods to make the code work, you
should instead say "this requires edits
to restricted parts of the code. I can'

t continue."
4. Follow the documentation below. Do
not violate it.
5. OUTPUT THE WHOLE REVISED FUNCTION,
NOT JUST A SNIPPET.

{documentation}

Long Horizon Error Correction Prompt

You are being given code that is a
training environment for a reinforcement
learning-based robot. Code details:
1. `_load_scene`, `_initialize_episode`,
and all the methods called by them, set
up the scene.
2. `evaluate` calculates information
about the current environment state in a
dictionary. Its output dictionary is
given to `skill_reward` in the parameters
`prev_info` and `cur_info` - each
represents `evaluate` called on a
different environment state.
3. `prev_info` and `cur_info` go through



a conversion that turns their `torch.
Tensor` values with batch dimensions
into `numpy.ndarray` values WITHOUT a
batch dimension.
3. `skill_reward` outputs a final reward.

The code is as follows:
```python
{generated_env_code}
```

This code has an error in it that you
need to fix. The stack trace is as
follows:
```python
{error_trace}
```

The line that threw the error is {
error_line}.

Please fix it.
1. You cannot take debugging steps, you
have to fix it without more info.
2. You should only edit `evaluate` and `
skill_reward` and any of their helper
methods.
3. If you would absolutely have to edit
other methods to make the code work, you
should instead say "this requires edits
to restricted parts of the code. I can'

t continue."
4. OUTPUT THE WHOLE REVISED FUNCTION,
NOT JUST A SNIPPET.

SURVEYS

We conduct three types of surveys:
1) Robot Video Preference, as shown in Survey 1: This survey

collects human preference on robot trajectory videos.
2) Video Quality Evaluation, as shown in Survey 2: This

survey evaluates how well newly trained robot behaviors
align with preference from previous videos.

3) Preference Evaluation, as shown in Survey 3: This survey
collects human preferences among videos generated by
different methods.

Robot Video Preference

Watch a robot do a task at the video we
sent you, then give feedback.
* Indicates required question

Required Questions:
1. What's your name? Make sure to enter
your name the same way every single time.
*

2. Which video are you giving feedback
for? Copy-paste the .mp4 file. So if the
file is named "video_name.mp4", put "

video_name" here. *

3. Describe the video *

4. Give feedback. Again, be natural!
Speak the way you'd want to speak to
your personal robot assistant. Even if
the task isn't inherently interesting,
feel free to be creative - ask to change
the order, the location, and more. *

Task Overview:
You're going to watch a robot do a task.
Your job is to give the robot feedback.

Purpose:
- The robot's execution might have
problems
- Even if technically fine, it might not
meet your preferences

- We want feedback on what you do and
don't like
- Goal is to make the robot adapt to you,
not vice versa

CRUCIAL GUIDELINES:
1. Procedure:

- Watch the entire video
- Describe the video in the first

answer box
- Enter feedback in the second answer

box

2. Focus on Outcomes:
- Don't guess how the robot works
- Don't suggest technical mechanisms
- Focus on preferences and

corrections
- Describe what you want/don't want

3. Feedback Limits:
- Maximum one feedback on overall

behaviors
- Maximum one feedback on object

orientation
- No feedback on speed (technical

limitation)

4. Communication Style:
- Speak naturally
- Use everyday language
- Be specific
- Context-dependent statements are

acceptable

EXAMPLE SCENARIO:
Robot sweeping crumbs task

High Quality Feedback Examples:
- "The robot didn't finish sweeping.
There are crumbs all over the place. The
crumbs near the couch and TV should

have gotten swept up."
- "I like that the robot brought the
crumbs close to the trash can. That's a
good idea."
- "Ew, I hate that the robot just left



the crumbs near the trash. That whole
corner of the kitchen is so gross."
- "I like that the crumbs are in the
kitchen, but now it should put the broom
away."

Low Quality Feedback Examples:
- "The robot should work on getting its
arm to reach further so it can sweep up
more crumbs."
- "This is dumb. It should be
calculating more precise trajectories."

Challenging but Acceptable:
- "Not that one, the other one." (If
context makes meaning clear)

Note: Your feedback can be longer than
examples and include multiple ideas. Be
thorough and specific.

This content is neither created nor
endorsed by Google.

Forms

Video Quality Evaluation

Earlier, you watched a video of a robot
doing a task and gave feedback. We tried
to incorporate your feedback, and sent

you one or more options in your options-
to-choose-from folder.

Instructions:
1. Choose the video you think is best
from that folder.
2. For that video only, fill out this
form that asks about your satisfaction
with the update.

* Indicates required question

Basic Information:
1. Copy-paste the name of the video you
liked best here. Remove ".mp4", as you
do in the other form. *

Feedback Implementation Assessment:
2. In the most recent video, did the
robot incorporate your feedback that **
wasn't met in the previous video**? *
*Mark only one oval.*
o No - the robot didn't incorporate any
part of my feedback
o Some - the robot incorporated some
parts of my feedback, but not all of
them.
o Yes - the robot incorporated all parts
of my feedback.

3. In the most recent video, to what
degree did the robot incorporate your
feedback that **wasn't met in the

previous video**? *
*Mark only one oval.*
o None - the robot didn't incorporate my
feedback

o Medium - the robot incorporated my
feedback to a moderate degree but not
fully.
o High - the robot incorporated my
feedback fully.

4. In the most recent video, did the
robot get worse with respect to any of
your feedback **compared to the previous
video**? *

*Mark only one oval.*
o No - it did not get worse with respect
to any part of my feedback.

o Some - it got worse with respect to
some parts of my feedback, not others.
o Yes - it got worse with respect to all
parts of my feedback.

5. In the most recent video, did the
robot change its performance in ways you
didn't ask for **compared to the

previous video**? *
Specifically, change even if not
directly/purely negating your feedback?
For example, if you asked the robot to
be neater and smoother but didn't say
anything about speed, and the robot
became noticeably faster in this video
compared to the last one, you would say
yes. Else, no.
*Mark only one oval.*
o Yes *Skip to question 7*
o No *Skip to question 11*

Progress Assessment:
6. How much **progress** do you feel the
robot made on the goal you wanted? *

If it got halfway toward the goal your
feedback was asking for, that would be a
5.

*Mark only one oval.*
1 2 3 4 5 6 7 8 9 10
Did the goal fully o o o o o o o o o o
The robot did something you didn't ask
for

Unasked Changes:
7. Which of these statements best
describes your feelings about the change
(s) you didn't ask for? *
*Mark only one oval.*
o I strongly dislike them.
o I somewhat dislike them.
o I feel neutrally about them.
o I somewhat like them.
o I strongly like them.

8. Was the robot doing these same things
you didn't ask for in the previous

video? *
*Mark only one oval.*



o Yes
o No

9. In the most recent video, does the
robot's performance directly contradict
your feedback? *
*Mark only one oval.*
o Yes
o No

10. Describe the changes you saw that
you felt you didn't ask for, but weren't
directly/purely against your feedback. *

Satisfaction Assessment:
11. Are you more satisfied with the
robot in the most recent video than you
were in the previous video? *
*Mark only one oval.*
o Yes *Skip to question 12*
o No *Skip to question 13*

Satisfaction Level:
12. How much more satisfied are you? *
*Mark only one oval.*
1 2 3 4 5
Not at all o o o o o Completely
satisfied

13. How much more dissatisfied are you? *

*Mark only one oval.*
1 2 3 4 5
Not at all o o o o o Completely
dissatisfied

Overall Satisfaction:
14. How satisfied are you with the task
overall, regardless of your feedback? *
*Mark only one oval.*
1 2 3 4 5
o o o o o Very satisfied

This content is neither created nor
endorsed by Google.

Forms

Preference Evaluation

1. Folder Name *
Please copy and paste the name of the
folder.
(e.g., labtest-
PlaceSphere2BinWideb44eadad34-
ee940ce50d773948).

2. Please rank the videos from 1 to N
based on your preference, with 1 being
the best.
For example, if there are six videos, a
rank of 3,4,2,1,5,6 indicates you love 4.
mp4 the best.

1 2 3 4 5
6 7 8 9
Video1 o o o o o
o o o o

Video2 o o o o o
o o o o

Video3 o o o o o
o o o o

Video4 o o o o o
o o o o

Video5 o o o o o
o o o o

Video6 o o o o o
o o o o

Video7 o o o o o
o o o o

Video8 o o o o o
o o o o

Video9 o o o o o
o o o o

*Mark only one oval per row.*

K. Taxonomy

Taxonomy definitions
• 3rd-person vs. 2nd-person vs. no-pov: how the prefer-

ence addresses the embodied agent
• verbose: concepts explained in lots of words, more than

may be necessary
• colloquial: concepts explained colloquially, casually, or

with imprecise (but not ambiguous) terms
• context-dependent: requires info from the demonstration

or previous preferences to be understood; environment
code is not sufficient

• ambiguous: even context is not enough, and the preference
is up to interpretation (rare)

• multi-part: multiple concepts within one preference
• directive vs. suggestive vs. curious: preference tone.

Directive is command-like, suggestive is phrased as a
question but clearly instructional, and curious is a genuine
question about the agent’s abilities or potential

• distraction: contains distracting language that may be
incorrectly incorporated into the reward function

• contradiction: preference that directly contradicts prior
preference

• preferential: adds to or changes task requirements
• corrective: doesn’t add to or change the task requirements,

instead asks for improvement on current requirements
• preferential: adds to or changes the task requirements
• goal-related: affects the definition of success
• behavioral: affects other parts of the reward landscape
• inadvertently long-horizon: creates an impossible mask-

ing problem in the short-horizon continuous control setting
• affirming: positive about some aspect of the task that

should be propagated
• asking for change: asking for some aspect to be changed
• physically difficult: difficult for the test agents, e.g.

throwing a ball



• physically impossible: impossible for the test agents, e.g.
picking up a ball that is much wider than the gripper.

• multi-objective: preference containing multiple complex
goals that need to be achieved simultaneously. Restricted
(and rare)

• specific position: complex or specific natural language
description of a position

• specific orientation: complex or specific natural language
description of an orientation

• illegal: requires edits to code outside of
compute_dense_reward and evaluate.

DETAILED METRICS

• Alignment
– Percent more satisfied (MS): given a binary question

asking whether or not they were more satisfied with
the current video than with the previous video given
their preference, for what percentage of preferences did
the annotator say were more satisfied?

– Satisfaction score (SS): annotators were given a
five-point Likert scale to indicate their degree of
(dis)satisfaction, based on their answer to the binary
satisfied-yes-no question. In both cases, 1 was the
smallest amount of (dis)satisfaction, and 5 was the
highest amount. Satisfaction score is calculated by
shifting both from 1-5 to 0-4 as 1 means neutrality,
negating the Likert score value in dissatisfaction cases,
and rescaling from 0 to 10.

– Percent chosen (PC): when directly comparing policy
rollouts on a single preference, frequency of the given
method’s rollout being selected over ROSETTA’s

• Optimizability
– Success rate (SR): success rate of best policy across

all variants for a given preference
– Percent success >50: percent preferences where best

policy has success rate higher than 50%
• Semantic match

– Grounding: normalized 7-point Likert scale score
on semantic match between original and grounded
preference

– Staging: normalized 7-point Likert scale score on
semantic match between grounded preference and
staging plan

– Coding: normalized 7-point Likert scale score on
semantic match between staging plan and reward code

– Cascading: product of Grounding, Staging, and Coding.
Generally evaluated only for preferences expert evalua-
tors consider reasonable, given quickly compounding
errors.

REINFORCEMENT LEARNING DETAILS

L. Short-Horizon Setup

We implement our approach using PPO for training agents
on four short-horizon environments. The implementation is
based on the ManiSkill environment, which provides a realistic

physics-based simulation platform for robotic manipulation.
The policy is trained using parallel environments (num_envs =
1024) to improve sampling efficiency and training stability. We
use state-based observation and 7-dimensional pd_joint_delta
action.

The training hyperparameters are given in Table III. The
training steps of different environments are given in Table V.

M. Long-Horizon Training Setup

a) RL Problem Setup: We model the robot manipulation
task as a Markov decision process denoted by the set (S, A,
P , R, γ), representing the state space, the action space, the
transition function, the reward function, and the discount factor.
A policy π is a mapping from the observation state space S
to a probability distribution over the robot action space A.

The observable state space S consists of the position of
the object in the scene, the gripper’s position, the interaction
between the robot and the object (e.g., whether the robot is
picking up an object), and the current stage of task progression.
The observation space for each long-horizon environment is
provided in Table VI.

For the action space A, we use a subset of parameterized
primitive skills from MAPLE [32], specifically: Pick, Place,
and Push. The descriptions of these skills are provided in
Table VII. The action space A is 9-dimensional, where the
first three values represent the probability distribution over
the available skills, and the remaining six values serve as
parameters for the selected skill. Each primitive skill execution
typically completes within 100 low-level actions. If execution
exceeds 250 low-level actions, the robot stops and retracts to
its home position.

The task horizon is inferred from the generated reward
function and varies depending on human feedback. The
remaining RL setup is consistent with the short-horizon case.

b) Training Setup: We train a hierarchical policy [32] with
two 512-dimensional layers using Soft Actor-Critic (SAC) [13].
Hyper-params are given in Table IV.

Training terminates early when evaluation accuracy reaches
0.9 or higher. If this threshold is not met, training continues
until 200 million lower-level steps have been completed. The
same training configuration is applied across all three long-
horizon environments for every generated reward function, with
hyperparameters optimized to minimize training time.

To further improve sample efficiency and reduce training
time, we apply a balanced rollout buffer that ensures rollouts
are evenly sampled across all task stages, leading to faster
learning, especially for the robot to learn later stages.



Hyperparameter Value

Learning rate 3e-4
Discount factor (γ) 0.8
GAE parameter (λ) 0.9
Number of minibatches 32
PPO epochs 8
Value function coefficient 0.5
Entropy coefficient 0.0
Gradient norm clipping 0.5
Target KL divergence 0.1
Actor Size 256*2
Critic Size 256*2

TABLE III: PPO Hyperparameters

Hyperparameter Value

Learning rate 3e-3
Discount factor (γ) 0.2
Update Coefficient (τ ) 0.5
# of Gradient Step 8
Batch Size 1024
Policy Model Size 512*2

TABLE IV: SAC Hyperparameters

Environment Name Total Timesteps Episode Length Description

Pick1Cube 10M 50 Cube picking
Pull1Cube 10M 50 Cube pulling
PushBall 20M 50 Ball pushing
PlaceSphere2BinWide 100M 200 Sphere placement in 2 bins

TABLE V: Short-horizon Environment Setups



Environment Observation Space

ThreeCubes 3D positions of the red, green, and purple cubes; grasp status of each cube; robot’s
gripper position; and the current stage of the task.

ObjectsAndDrawer Positions of the drawer, drawer handle, apple, and soup can; grasp status of the apple
and soup can; robot’s gripper position; and the current stage of the task.

ObjectsAndBins 3D positions and grasp status of the tennis ball, baseball, orange, and apple; positions
of two bins; robot’s gripper position; and the current stage of the task.

SphereAndBins 3D positions and grasp status of the sphere; positions of two bins; robot’s gripper
position.

BallAndTarget 3D positions and grasp status of the ball; positions of the target; robot’s gripper position.

TABLE VI: Observation Space for Long Horizon Environments

Skill Description

Pick Moves the end-effector to a specified (x, y, z) location and closes the gripper to grasp
an object.

Place Moves the end-effector to a specified (x, y, z) location and opens the gripper to release
an object.

Push Moves the end-effector to a specified (x, y, z) location, then applies a displacement (δx,
δy, δz) to push an object.

TABLE VII: Parameterized Primitive Skills
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