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Abstract—We analyse the generalized average sampling and
reconstruction for quasi shift invariant spaces with frame gener-
ators. We show that for any functions in the quasi shift invariant
space can be uniquely reconstructed from its generalized average
samples.

Index Terms—Generalized Average Sampling, Quasi Shift
Invariant Spaces.

I. INTRODUCTION

Sampling play an important role in digital communications
and signal processing, which provides theoretical basis for
signal analysis. A fundamental challenge in signal processing
is representing a continuous signal using its discrete samples.
The sampling theorems provide the reconstruction formulas
and hence such theorems become the very powerful tool in
the field of signal and image processing. The famous Shan-
non sampling theorem states that finite energy bandlimited
signals are completely characterized by their sample values
[2]–[4], [6], [17]. Furthermore, Shannon gave the following
reconstruction formula

f(x) =
∑
k∈Z

f

(
kπ

Ω

)
sin(Ωx− kπ)

Ωx− kπ
.

In Shannon reconstruction formula, sinc function defined
by sinc(x) =

sinx

x
is used as the kernel function and is in

fact a scaling function of a multiresolution analysis used in
wavelet theory. In practical situation, all the signals need
not be bandlimited. For rapid communications the sinc
function itself is not very suitable. Many generalizations of
the classical Shannon sampling theorem have been proposed.
Various researchers in this field [16], [24], [33], [36] have
discussed the extension of classical Shannon sampling
theorem to wavelet subspaces. Studies mentioned in [2]–[4],
[6], [17] have carried out the analysis of sampling procedure
in shift-invariant spaces and spline spaces.

Consideration of sampling and reconstruction problem in
shift invariant spaces is deemed to be a recent trend to handle
sampling. As a result, modern analysis has a special role in
these spaces. In continuation, wavelets, approximation theory
and finding efficient prefilters in wavelet theory provide an
opportunity for the usage of these kinds of sampling in shift
invariant spaces. The uniform and non uniform sampling

and reconstruction problem over shift invariant subspaces
like wavelet subspaces, spline spaces and reproducing kernel
Hilbert spaces have been analysed in [1], [2], [17], [24], [29],
[33].

Average sampling is motivated by realistic needs. In [9],
[17], [30], [32], the authors presented an average sampling
theorem for bandlimited signals, generalizing the Shannon
sampling theorem. Several authors have studied the average
sampling theorem for spline subspaces with both uniform and
non-uniform sampling points, as presented in [6], [30], [31].
Furthermore, uniform and non-uniform average sampling and
reconstruction problems in general shift-invariant spaces are
studied in [3], [7], [26], [32]. In [5], [20], [27], an average
sampling theorem for reproducing kernel Hilbert spaces and
finitely generated shift-invariant spaces is presented.

As a generalization of shift invariant space, we consider the
quasi shift invariant space VX(φ) is defined as,

VX(φ) =

{∑
k∈Z

ckφ(t− xk) : {ck} ∈ ℓ2

}
,

where X = {xk : k ∈ Z} is any strictly increasing sequence
of R and φ(t) ∈ L2(R). Quasi shift-invariant spaces have been
studied by several authors in [37] - [40] and are widely utilized
in approximation theory [40]. The authors in [38] investigated
the sampling problem in quasi shift-invariant spaces generated
by a function φ belonging to a class of totally positive
functions of finite type. Recently, Anuj and Sivananthan [41]
studied sampling and average sampling problem in quasi shift
invarint spaces VX(φ).
As a generalization of average sampling, we consider general-
ized average sampling in quasi shift-invariant spaces. Averages
are not taken from a signal itself but from its channeled version
by some linear time invariant system, which is known as
generalized average sampling. In 1977, Papoulis [28] studied,
how to reconstruct a bandlimited function f from the sample
values Lmf, where Lmf are time invariant operators. These
types of samples are known as generalized samples, also
referred to as channel sampling. In [8], [19], [34], [35], the
concept of generalized sampling has been extended to non-
bandlimited functions.



The studies in [10]–[13], [22], [23] explores regular and
irregular generalized sampling theorems over a shift-invariant
space generated by a continuous Riesz generator. In particu-
lar, multichannel sampling theorems in shift-invariant spaces
generated by a Riesz generator have been analyzed in [10],
[13], [18], [22], [23]. As an extension of average sampling,
we consider the generalized average sampling expansion (i.e.,
⟨L[f ], un⟩ , where un(t) are averaging functions) for quasi
shift invariant spaces. In this paper, we discuss the generalized
average sampling problem for quasi shift invariant spaces.

II. PRELIMINARIES

In numerous practical scenarios, the sampled values do not
precisely correspond to the actual values of f at the sample
points. Hence, we consider the local averages of f near xk is

⟨f, uk⟩ =
∫
f(x)uk(x)dx,

with respect to the collection of averaging functions uk(x),
k ∈ Z. It is assumed that the averaging functions uk(x) are
nonnegative and uk ∈ L2(R), supp(uk) ⊂ [xk − a, xk + b]

(a, b ≥ 0 and a+ b > 0), and
∫
R
uk(x)dx = 1.

Let L[·] be a linear time invariant system with an impulse
response l(t) such that

(i) l(t) = δ(t+ a), a ∈ R or
(ii) l(t) ∈ L2(R) or

Let ψ(t) := L[φ](t) = (φ ⋆ l)(t).

Definition 2.1: Let X = {xk : k ∈ Z} be a strictly
increasing sequence of R. A quasi shift-invariant space is
defined as a space of functions on R, represented in the form:

VX(φ) =

{
f(t) =

∑
k∈Z

ckφ(t− xk) : {ck} ∈ ℓ2(Z)

}
,

where φ ∈ L2(R) satisfies Riesz basis condition.
If X = Z, then quasi shift invariant space VX(φ) is called a
shift invariant space V.

Definition 2.2: The Wiener amalgam space W (Lp) for p ∈
[1,∞], consists of all measurable functions f such that

||f ||W (Lp) :=

(∑
k∈Z

sup
x∈[0,1]

|f(x+ k)|p
) 1

p

<∞.

Proposition 2.1 ( [21], p. 184): If f(x) is differentiable on
[a, b], f, f

′ ∈ L2[a, b], and f(a)f(b) = 0, then∫ b

a

|f(x)|2dx ≤ 4

π2
(b− a)2

∫ b

a

|f
′
(x)|2dx.

Proposition 2.2 ( [25], p. 303-304): Let f be an integrable
function on [a, b] and let F (x) =

∫ x

a
f(t)dt, |F (x)| ≤

M(x − a) for a < x ≤ b (M > 0); furthermore, let g be
a nonnegative, nonincreasing and integrable function. Then∣∣∣∣∣

∫ b

a

f(x)g(x)dx

∣∣∣∣∣ ≤M

∫ b

a

g(x)dx.

Lemma 2.1 ( [41], Lemma 2.1): Let X be a translation set
and φ ∈ L2(R) such that {φ(.−xk) : k ∈ Z} be a frame for a
closed subspace V of L2(R) with bounds C and D. If φ is a
continuous function such that

∑
k∈Z |φ(x− xk)|2 ≤ A <∞,

then for any frame {fk(x) : k ∈ Z} of V,
∑

k∈Z |fk(x)|2 is
bounded on R.
Now we derive the main results of this paper.

III. GENERALIZED AVERAGE SAMPLING FOR QUASI SHIFT
INVARIANT SPACE

Theorem 3.1: Let φ ∈ W (C,L1) such that φ̂(x) ≥ 0 for
every x ∈ R and X is a translation set such that {φ(.− xk) :
k ∈ Z} be a frame for VX(φ) with bounds C1 and C2. Let us
assume φ is locally absolutely continuous and φ

′ ∈ L2(R),
such that

max

sup
k

∑
j∈Z

|ψ
′
(xk + t− xj)|, sup

j

∑
k∈Z

|ψ
′
(xk + t− xj)|

 ≤ K

a.e. for some K and there exist a positive constant R and a
constant E > 2√

3
such that ψ̂(ξ) ≥ R for all ξ ∈

[
− E

2r ,
E
2r

]
,

where r = infk∈Z(xk+1 − xk) > 0. Let {uk(x) : k ∈ Z}
be a sequence of averaging functions such that supp(uk) ⊂
[xk − a, xk + b] , and δ := max{a, b}. If the real sequence
{xk} satisfy 0 < α ≤ xk+1 − xk ≤ β < 1 for some constants
α and β and

√
δ(a+ b) < B1

K , then there is a frame {Sk(x) :
k ∈ Z} for V0 such that for any f ∈ VX(φ),

f(x) =
∑
k∈Z

⟨L[f ], uk⟩Sk(x), (III.1)

where the convergence is both in L2(R) and uniform on R.
Proof 3.1: For any f ∈ VX(φ) can be written as

f(t) =
∑
k∈Z

ckφ(t− xk)

Hence

L[f ](t) =
∑
k∈Z

ckL[φ](t− xk)

=
∑
k∈Z

ckψ(t− xk),

where ψ(t) := L[φ](t) = (φ ⋆ l)(t).

As supp(uk(t)) ⊂ [xk − a, xk + b] and
∫ xk+b

xk−a
uk(t)dt = 1,

∑
k∈Z

|⟨L[f ], uk⟩ − L[f ](xk)|2

=
∑
k∈Z

∣∣∣∣∣
∫ xk+b

xk−a

(L[f ](t)− L[f ](xk))uk(t)dt

∣∣∣∣∣
2

(III.2)

≤
∑
k∈Z

∫ xk+b

xk−a

|L[f ](t)− L[f ](xk)|2 uk(t)dt (III.3)

=
∑
k∈Z

∫ b

−a

|L[f ](xk + t)− L[f ](xk)|2 dt. (III.4)



Now

|L[f ](xk + t)− L[f ](xk)|

=

∣∣∣∣∫ t

0

L[f
′
](xk + s)ds

∣∣∣∣
≤

√
t

(∫ t

0

∣∣∣L[f ′
](xk + s)

∣∣∣2 ds) 1
2

.

Hence we get for any −a ≤ t ≤ b,

|L[f ](xk + t)− L[f ](xk)|2

≤ δ

∫ b

−a

∣∣∣L[f ′
](xk + s)

∣∣∣2 ds. (III.5)

From equations III.4 and III.5, we obtain

∑
k∈Z

|⟨L[f ], uk⟩ − L[f ](xk)|2

≤
∑
k∈Z

δ

∫ b

−a

∣∣∣L[f ′
](xk + s)

∣∣∣2 ds
= δ

∫ b

−a

∑
k∈Z

∣∣∣∣∣∣
∑
j∈Z

cnψ
′
(xk + s− xj)

∣∣∣∣∣∣
2

ds

≤ δ

∫ b

−a

∑
k∈Z

∑
j∈Z

|cn|2
∣∣∣ψ′

(xk + s− xj)
∣∣∣

∑
j∈Z

∣∣∣ψ′
(xk + s− xj)

∣∣∣
 ds

= K2||c||2δ[a+ b].

Let us consider the bi-infinite matrix with entries Ψ := ψjk =
ψ(xj − xk) for j, k ∈ Z. Since

∑
k∈Z

|ψjk| =
∑
k∈Z

|ψ(xj−xk)| ≤
(
1 + ⌊1

r
⌋
)
||ψ||W (C,L1) <∞

for any j ∈ Z. Therefore

||Ψc||l2(Z) ≤ B2||c||l2(Z) forallc = (ck) ∈ l2(Z),

where B2 =
(
1 + ⌊ 1

r ⌋
)
||ψ||W (C,L1) > 0. Let us consider

|⟨Ψc, c⟩|
=

∑
j,k∈Z

c̄jckψ(xj − xk)

=
∑
j,k∈Z

c̄jck

∫
R
ψ̂(ξ)e−2πi(xj−xk)ξdξ

=

∫
R
ψ̂(ξ)

∑
j,k∈Z

c̄jcke
−2πi(xj−xk)ξdξ

=

∫
R
ψ̂(ξ)

∣∣∣∣∣∣
∑
j∈Z

cje
−2πixjξ

∣∣∣∣∣∣
2

dξ

≥
∫
|ξ|≤ E

2r

ψ̂(ξ)

∣∣∣∣∣∣
∑
j∈Z

cje
−2πixjξ

∣∣∣∣∣∣
2

dξ

≥ R

∫
|ξ|≤ E

2r

(
1− 2r|ξ|

E

) ∣∣∣∣∣∣
∑
j∈Z

cje
−2πixjξ

∣∣∣∣∣∣
2

dξ

≥ R

2π

∫
|ξ|≤ E

2r

(
1− 2r|ξ|

E

) ∑
j,k∈Z

c̄jcke
−i(xj−xk)ξdξ

=
R

2π

∑
j,k∈Z

c̄jck(2)

∫ E
2r

0

(
1− 2r|ξ|

E

)
cos(xj − xk)ξdξ

=
RE

πr

∑
j,k∈Z

c̄jck

(
sinc

(
(xj − xk)E

2r

))2

=
RE

πr

∑
j∈Z

|cj |2 +
∑
j∈Z

∑
k ̸=j

c̄jck

(
sinc

(
(xj − xk)E

2r

))2


≥ RE

πr

|||c||2l2(Z) −∑
j∈Z

∑
k ̸=j

c̄jck

(
sinc

(
(xj − xk)E

2r

))2


≥ RE

πr

|||c||2l2(Z) −
∑

j∈Z
|cj |2

∑
k ̸=j

(
sinc

(
(xj − xk)E

2r

))2
 1

2

·

∑
k∈Z

∑
j ̸=k

|ck|2
(
sinc

(
(xj − xk)E

2r

))2
 1

2


≥ RE

πr

|||c||2l2(Z) −
∑

j∈Z
|cj |2

 1
2

· 4

3E2

(∑
k∈Z

|ck|2
) 1

2


=

RE

πr

[
|||c||2l2(Z) −

4

3E2
||c||2l2(Z)

]
=

RE

πr

[
1− 4

3E2

]
|||c||2l2(Z)

For the sinc series, we applied the following estimates,
since |xj − xk| ≥ r|j − k|. We take



∑
k ̸=j

(
sinc

(
(xj − xk)E

2r

))2

≤ 4

E2π2

∑
k ̸=j

1

(j − k)2

=
8

E2π2

∑
n=1

1

n2
=

4

3E2
.

Therefore

B1||c||l2(Z) ≤ ||Ψc||l2(Z) forallc = (ck) ∈ l2(Z),

where B1 = RE
πr

[
1− 4

3E2

]
. Hence, we can write

B1||c||l2(Z) ≤ ||Ψc||l2(Z) =
∑
k∈Z

|L[f ](xk)|2 ≤ B2||c||l2(Z).

As a consequence of proposition 3.1 in [42], we get c ∈
N(T )⊥. For c ∈ N(T )⊥, there are two positive constants
C1 and C2 such that

1

C2
||f ||22 ≤ ||c||22 ≤ 1

C1
||f ||22.

Hence,

∑
k∈Z

|⟨L[f ], uk⟩|2 ≥

[∑
k∈Z

|L[f ](xk)|2
] 1

2

−

[∑
k∈Z

|⟨L[f ], uk⟩ − L[f ](xk)|2
] 1

2

2

=
(
B1 −K

√
δ[a+ b]

)2
||c||22

≥ 1

C2

(
B1 −K

√
δ[a+ b]

)2
||f ||22.

Applying similar arguments we get∑
k∈Z

|⟨L[f ], uk⟩|2 ≤ 1

C1

(
B1 +K

√
δ[a+ b]

)2
||f ||22.

Further

⟨L[f ], uk⟩ =
〈
f,
¯̃
l ⋆ uk

〉
=
〈
f,P(

¯̃
l ⋆ uk)

〉
, f ∈ VX(φ),

where l̃(t) := l(−t) and P is the orthogonal projection of
L2(R) onto VX(φ). Therefore {gk(t) := P(

¯̃
l ⋆ uk) : n ∈ Z}

is a frame for VX(φ). Let {Sk : k ∈ Z} be the dual frame of
{gk : k ∈ Z}. Then for any f ∈ VX(φ),

f(x) =
∑
k∈Z

⟨L[f ], uk⟩Sk(x), (III.6)

By Lemma 2.1,
∑

k∈Z |Sk(x)|2 is bounded on R. Therefore
the above series III.6 is uniformly convergent on R. □

The previous theorem can be significantly enhanced, as the
generalized average sampling theorem applies to a broader
range of quasi shift invariant spaces.

Theorem 3.2: Let VX(φ) be a closed subspace of L2(R)
and {φ(.− xk) : k ∈ Z} be a frame for VX(φ). Suppose that

{uk : k ∈ Z} is a sequence of compactly supported averaging
functions and there exist positive constants A and B such that

A||f ||2 ≤
∑
k∈Z

| ⟨L[f ], uk⟩ |2 ≤ B||f ||2, ∀f ∈ VX(φ).

(III.7)
Then there is a frame {Sk : k ∈ Z} for VX(φ) such that

f(x) =
∑
k∈Z

⟨L[f ], uk⟩Sk(x), ∀f ∈ V0, (III.8)

where the convergence is both in L2(R) and uniform on R.
Proof 3.2: For any f ∈ VX(φ), we can write

f(x) =
∑
k∈Z

⟨f, φ(.− xk)⟩ φ̃(.− xk).

where {φ̃(. − xk) : k ∈ Z} be a dual frame of {φ(. − xk) :
k ∈ Z}.
Hence

L[f ](x) =
∑
n∈Z

⟨L[f ], φ(.− xk)⟩ φ̃(.− xk).

Let us consider, for any n ∈ Z,

pn =
∑
n∈Z

⟨un, φ(.− xk)⟩ φ̃(.− xk).

Using un and φ we get pn ∈ VX(φ).

⟨L[f ], pn⟩ =

〈
L[f ],

∑
k∈Z

⟨un, φ(.− xk)⟩ φ̃(.− xk)

〉
,

=
∑
n∈Z

⟨φ(.− xk), un⟩ ⟨L[f ], φ̃(.− xk)⟩ ,

=

〈∑
k∈Z

⟨L[f ], φ̃(.− xk)⟩φ(.− xk), un

〉
,

= ⟨L[f ], un⟩ .

By inequality III.7, we obtain

A||f ||2 ≤
∑
n∈Z

| ⟨L[f ], pn⟩ |2 ≤ B||f ||2, ∀f ∈ VX(φ).

(III.9)
Since ⟨L[f ], pn⟩ =

〈
f,
¯̃
l ⋆ pn

〉
=
〈
f,P(

¯̃
l ⋆ pn)

〉
, f ∈

VX(φ), where l̃(t) := l(−t) and P is the orthogonal projection
of L2(R) onto VX(φ). Therefore {gn(t) := P(

¯̃
l ⋆ pn) : n ∈

Z} is a frame for VX(φ).
Therefore {uk : k ∈ Z} is a frame for VX(φ). Let {Sk :

k ∈ Z} be the dual frame of {pk : k ∈ Z}. Then for any
f ∈ VX(φ) we can write

f(x) =
∑
k∈Z

⟨L[f ], pk⟩Sk(x) =
∑
k∈Z

⟨L[f ], uk⟩Sk(x).

By Lemma 2.1, the above sum converges uniformly on R.
□
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