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Abstract

White-matter hyperintensity (WMH) is associated with many disorders including small
vessel diseases where it is suggestive of underlying cerebrovascular abnormalities. The
fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) imaging sequence
is commonly used to visualize WMH, since it provides good image contrast not only be-
tween WMH and normal tissue, but also between WMH and cerebrospinal fluid. Manual
segmentation of these presumed lesions in brain volumes, on an image slice-by-slice basis,
is time-consuming, however, this process remains the broadly accepted gold standard. 3D
U-shaped convolutional neural networks (3D U-Net CNNs) are a type of semantic segmen-
tation that processes images volumetrically rather than by slice. We used a 3D U-Net
model to segment the WMH in brain volumes obtained from twenty presumed healthy
participants. VGG16, VGG19, ResNet and EfficientNet architectures were used as feature
extractors. Results were grouped by brain lobe (frontal, insula, occipital, parietal, tem-
poral) to identify regions that were more affected by the WMH. In general, the predicted
volumes had an intersection over union (IoU) measure > 95% compared to manual seg-
mentation. This metric demonstrated that 3D U-Net CNN models are reliable for WMH
identification. Assessments of these architectures have shown that the correspondence be-
tween WMH and the brain lobes was meaningful and might provide future insights about
presumed abnormalities.

Keywords: U-Net, semantic segmentation, white matter hyperintensity (WMH), fluid-
attenuated inversion recovery (FLAIR) imaging.

1. Introduction

White matter hyperintensities (WMHs) are image features (presumed lesions) commonly
found in older participants (Wardlaw et al., 2015), which are characterized by brighter-than-
normal regions within the white matter on T2-weighted (T2-w) or fluid-attenuated inversion
recovery (FLAIR) magnetic resonance (MR) images. The WMH are often of vascular ori-
gin and are associated with potential neuropathological problems including hypertension
and dementia (Alber et al., 2019).Manual identification of voxel hyperintensities is time-
consuming and can be error-prone. Neural network-based approaches (NN) have recently
been adopted to detect WMH in either a supervised or unsupervised manner. Among the
types of NNs, a variation of convolutional neural networks (CNN) called the U-Net has
shown promising outcomes. However, most work has focused on 2D implementations of le-
sion segmentation, which ignores some of the spatial information present in the images. In
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addition, it is often important to determine location of the WMH as this can impact clinical
interpretation. Here we develop a method that segments and then assigns the presumed
lesions to distinct brain lobes.

We propose a 3D U-Net approach for segmentation and brain lobe analysis of WMH
on MR FLAIR images. Predicting and accurately locating the WMH that will enable
physicians to perform a more reliable assessment. Our main contributions are: (1) auto-
matic prediction, labeling of the volume voxels, and assigning voxels to the brain lobes;
(2) identifying the best architecture (VGG16, VGG19, ResNet and EfficientNet) for WMH
segmentation; and (3) determining the accuracy of the prediction by brain lobe (frontal,
insula, occipital, parietal, temporal). The remainder of this work is organized as: Section 2
explains the state-of-the-art and the main advances in WMH segmentation. Section 3 de-
fines the data set and WMH segmentation approach. Section 4 provides an analysis of the
segmentation experiments (per-lobe analysis), and Section 5 discusses the results. Finally,
Section 6 summarizes our work and conclusions, and describes possible future work.

2. Review of the Related Work

CNNs are a major topic in current literature. They are used for both classification and
segmentation tasks. Their generalizability is one of their strongest characteristics, because
it allows the use of previously unseen data in your network, such as from different scanner
manufactures or with varying image dimensions. 2D U-Nets are the most prevalent type of
CNN in the literature, primarily because they have lower computational costs compared to
3D implementations. However, 2D U-Nets do not use the full spatial information inherent
to 3D images. To bridge the gap between 2D and 3D, (Sundaresan et al., 2021) proposed
a tri-planar U-Net ensemble network (TrUE-Net) to identify WMH abnormalities in deep
or periventricular regions by using three orthogonal image planes (axial, sagittal, coronal)
using FLAIR and T1-weighted (T1-w) brain MR imaging. The image plane predictions
were assembled to form a 3D brain volume based on majority voting. Their comparisons
using distinct datasets as input demonstrated promising generalization characteristics of
U-Net shaped architectures.

Li et al. (2021) addressed the importance of locating and measuring WMH. They pro-
posed an ensemble of predictive models such as 2D U-Net, SE-Net, and multifeatures to aid
the segmentation of FLAIR and T1-w MR images. They compared not only the importance
of identifying the lesions, but also the importance of the scan resolution. Their pipeline
was standardized, consisting of skull stripping, data augmentation, and normalization via
co-registration with T1-w MR imaging. Later, the ensemble was trained with different
datasets and achieved promising results.

Guerrero et al. (2018) recently distinguished stroke and WMH-related pathologies by
means of 2D U-Net segmentation using axial FLAIR images. The residual information
was addressed by adopting the uResNet architecture, although they found no significant
difference in performance between using summation and concatenation in skip connections,
thus skipping some layers of the architecture in order to avoid overfitting the models.

The trade-off between computational cost and quality of the segmentation needs to be
addressed when choosing 2D or 3D U-Net models. Duong et al. (2019) adopted a 3D
U-Net to identify WMH in nineteen distinct brain pathologies using 3D FLAIR images.
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Their preprocessing step removed the skull information using T1-w MR imaging, and their
registration step allowed removal of the skull for the FLAIR images. Later, a data augmen-
tation step was applied to increase the amount of training data, resampled to 1 mm? and
divided into volumetric patches, thus reducing peak computational effort. The 3D U-Net is
adopted with the patches to segment the presumed lesions, which are later assembled back
to the entire volume. The generalization is also addressed in this study, which confirms the
benefits of using U-Nets. Rudie et al. (2019) addressed the importance of using real-world
scenarios in their multi-disease U-Net segmentation to compare brain gliomas and WMH.
The use of T1-w, T2-w, and FLAIR MR imaging also improved their method and allowed
the comparison of distinct scenarios. The segmentation using a 3D U-Net identified a re-
liable segmentation of the tissues, although they highlighted the importance of a proper
quantification to efficiently assess a clinical decision-making. Our work differs from the
literature in the following aspects: (1) the comparison of distinct well-known U-Net shaped
architectures, and (2) assignment of the predicted WMH regions to brain lobes.

3. Materials and Methods

3.1. Participants Data and MR Protocol

The Calgary Normative Study (CNS) is a private longitudinal study that aims to evaluate
MR pulse sequences and analysis techniques as potential biomarkers toward neurodegenera-
tive classification. (McCreary et al., 2020) This dataset includes quantitative MR mapping
of brain (e.g., diffusion and perfusion measurements), as well as T1-w, T2-w, and FLAIR
images. We selected twenty participants for our preliminary study, including both T1-w
and FLAIR imaging. Male participants corresponds to 11 (55%) of the participants, with
an average age 44.0 & 17.0 years (mean + std). Female participants had an average age of
43.2+16.6 years. We intend to increase the number of participants in future studies. T1-w
scans were acquired with a 3-T MR scanner (Discovery 750, General Electric Healthcare,
Waukesha, WI) using a 3D-FSPGR pulse-sequence in one of two configurations: Fourteen
(14, 70%) participants had TE=2.6 ms, TI=650 ms, TR=6.4 ms, flip=8°, and isotropic voxel
spacing of 1.0 mm; and six (6, 30%) participants had TE=3.1ms, TI=400 ms, TR=7.4 ms,
flip=10°, and isotropic voxel spacing of 1.0mm. A volumetric stack of 2D FLAIR im-
ages was also acquired on the same scanner using the following parameters: TE=140ms,
TI=2250ms, TR=9000 ms, in-plane pixel spacing=0.94 mm, and slice thickness=3 mm.

3.2. 3D UNET-based WMH Segmentation approach

The FLAIR data were semi-automatically segmented to generate WMH masks (ground-
truth) using custom software (Cerebra-LesionExtractor (Gobbi et al., 2012)). This software
utilizes seed-based region growing and manual editing.

Our approach comprises four major steps, as illustrated in Figure 1: (1) Data Prepara-
tion: Obtaining FLAIR images and the preprocessing steps, (2) 8D CNN U-Net: Perform-
ing volumetric segmentation, (3) Anatomical Labeling: Automatic parcellation of the brain
T1-w images into white matter regions, and (4) Volume Registration: Registration of the
parcellated T1-w images to the FLAIR space.
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Figure 1: Flowchart of the proposed method.

3.2.1. DATA PREPARATION

We examined the FLAIR volumes and the corresponding hand-generated WMH mask vol-
umes. Each voxel in the mask volume was labeled either True or False according to whether
it was marked as WMH. The FLAIR data were acquired as 256 x256 axial images, with the
number of slices varying from participant to participant. Because 3D semantic segmenta-
tion requires a power-of-two in each image dimension, we padded each FLAIR data volume

with additional “blank” slices to achieve a final volume of 256 x256x64.
3.2.2. 3D CNN U-NET SEGMENTATION

The ability of a CNN to learn the patterns required to achieve a specific objective depends
strongly on the network architecture. We tested ResNet with 152 layers (ResNet152),
EfficientNet version B0 (EfficientNetB0), and two VGG-based architectures (VGG16 and
VGG19) because they are widely used for feature extraction in medical image processing.
The FLAIR volumes were split into 64 x 64 x 64 patches, providing 16 patches per volume.
To reduce class-imbalance, we only chose patches that contained at least one labeled WHM
voxel, as proposed by Guerrero et al. (2018). We adopted a U-Net segmentation using a
learning rate Iy = 5x10™%. The loss function employed was a combination of Dice coefficient
and binary focal loss. Dice loss (DL) reduces data imbalance issues between foreground and
background, and it has been widely used in medical field. DL is described in Equation 1.

(1+8%)-TP .
(1+p2)-FP+p%-FN + FP (1)
where 5 corresponds to coefficient of balance, TP and F P represents the True and False
Positive, and F'N corresponds to the False Negative.

Focal loss (FL) is also addressed to remove class imbalance, such as tumor segmentation,
by applying a modulating to the cross-entropy criterion. FL is defined as Equation 2.

FL(PT)=—-GTa(l — PT)"1log(PT) — (1 = GT)aPT" log(1 — PT) (2)

DL(TP,FP,FN) =




3D U-NET APPLICATION FOR WMH ANALYSIS

where GT and PT are the ground-truth and predition, respectively; « and  represent
hyperparameters for calibration. We split our data, with 90% for training and 10% for
validation. Ten-fold cross-validation was used. Intersection over union (IoU) and F-measure
were employed to calculate the effectiveness of our approaches, where the best model per IToU
metric was saved. IoU is a standard metric for image segmentation problems. It compares
the predicted outcome and the gold standard. F-measure (F) is also commonly applied to
image segmentation, and it is calculated as the harmonic mean between precision (P) and
recall (R), defined in the following equation:

TP TP TP P xR
=2x

Tol — - p__ "
V=FpiTPiFN T TP+ FN TP+ FP’ PIR

3)

where T'P are the number of true-positive, TN are the number of the true-negative, F'P
are the number of the false-positive, and F'IN are the number of the false-negative findings.
In total, 4,000 epoch iterations were used for training. In addition, we adopted a sigmoid
activation function and we dichotomized the output at 0.5.

3.2.3. ANATOMICAL LABELING AND VOLUME REGISTRATION

In addition to the FLAIR volumetric information, we processed the T1-w MR scan for
each participant in order to identify the anatomical brain regions. Freesurfer (Fischl et al.,
2002) was employed to parcellate the brain into anatomical regions using the T1-w scan.
We used Freesurfer’s WMparc white-matter atlas to label the images, and grouped the
WMparc labels by lobe (frontal, insula, occipital, parietal, temporal and unknown). We
then registered the T1-w images to the FLAIR images using the mutual information cost
function, and transferred the white-matter lobe labels to the FLAIR space.

3.3. Technical Details

We used a GPU (Nvidia Titan V with 12GB on Ubuntu 20.04 Linux) to train our U-Net.
The training time varied depending on the selected architecture: VGG19 required 11h40m,
VGG16 10h45m, ResNet152 the least amount of time at 7h40m, and EfficientNetBO the
most time at 50h52m). The implementation was performed using Python 3.6 and used
Jupyter notebook to apply the learning step. The code is freely-available in our Github!.

4. Results

This section consists of analyzing the efficiency of the training step of our approach, in ad-
dition to identifying the brain lobes where the predicted WMH were found. Two evaluation
metrics were used both to optimize training efficiency and to analyze our results: IoU and
F-measure. Figure 2 illustrates the training step over the epochs using the proposed metrics.
The segmentation analysis is performed in 3D to evaluate whether the voxels are correctly
labeled. Figure 3 presents some sample image segmentation. Figure 4 shows the F-measure
for each participant and their corresponding Hausdorff distance (HD) calculation(Belogay
et al., 1997). In addition, the labeling reliability by brain lobe is shown in Figure 5.

1. https://github.com/KaueTND/WMH_CNS
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Figure 2: Learning step for each 3D U-Net architecture, compared via loU and F-measure.
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Figure 3: Segmentation outcome for training samples (zoomed-in for illustration) in each
architecture.

5. Discussions

WMH segmentation is a challenging task because there is a high variability in size, location,
and shape of the presumed lesions. Also, some WMH are highly localized and intense while
others are diffuse. We proposed an approach to fulfill this task and to distinguish the
affected areas using 3D U-Net CNNs. In total, four well-known architectures were adapted
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Figure 4: (a) F-measure by participant; and (b) F-measure evaluated by HD.
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Figure 5: F-measure evaluation over all participants by brain lobes.

to perform the WMH segmentation. Surprisingly, the ResNet architecture was the least
time-consuming, but also achieved highest performance in the early epochs of training.
Both ResNet and EfficientNetB0 reached their performance plateau at earlier epochs than
the other architectures, suggesting that the training step time could be potentially reduced
if convergence was achieved, i.e., in epoch #500 in this case. The EfficientNetB0 required
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6x greater computational effort than ResNet per epoch, and therefore did not demonstrate
greater efficiency than the other network architectures for this specific problem.

Because our classes (WMH versus non-WMH) were imbalanced and TN findings were
disproportionately high, accuracy is not a suitable metric. Instead, we used IoU and F-
measure. The HD provided a distinct insight about our results, which may lead to a better
understanding of the predictions. Overall, the HD showed small values, which corresponds
that ground-truth and predicted present small variation. The class imbalance is also the rea-
son for using focal loss and Dice loss as the loss functions. The focal loss adds a dynamically
scalar function to the binary cross-entropy, which reduces the importance of negative over
positive classes. The scalar factor value is inversely proportional to the confidence of cor-
rect predictions, thus meaning that it reduces the true non-WMH segmentation importance
over true WMH labels. Addressing the same issue, Dice loss also reduces the importance
of background over foreground, even in complex scenarios.The brain lobe analysis provided
some insights that requires further analysis: although the frontal lobe presented a lower
F-measure than the other lobes and higher variance between networks, e.g., 8% between
VGG19 and EfficientNetB0, which might imply that WMH segmentation in the frontal
lobe needs to be further studied. On the other hand, all other lobes presented only a small
variation in F-measure. The temporal lobe achieved 100% on the F-measure, but we as-
sumed that this was due to the small number of WMH voxels in the region. In addition, we
highlighted the small quantity of WMH voxels per participant and how this finding might
present more variety to the different architectures (Figure 5). Note that the participants in
the study were presumed to be neurologically healthy.

We assumed that Resnetl152 performed better segmentation than VGGs since it uses
identity mapping, thus not increasing the complexity and the training error of the system.
Unfortunately, we found no single architecture that provided the best overall WMH seg-
mentation. We anticipate that increasing the number of training images might potentially
improve the performance of the networks.

6. Conclusions

3D U-Net CNNs are powerful tools for segmentation of WMH in MR FLAIR images, thus
enabling the identification of probable brain lesions. The challenge when using CNNs is
the need to generalize the result, i.e., correctly classifying data that was unseen during
the training phase. The evaluation of the analyzed architectures demonstrates that the
proposed approaches reliably segment WMH and identifies their location by brain lobe.
However, only segmenting the WMH does not provide information about possible clinical
indications. The location and increase with time of WMH burden is crucial to understand
the impact of these changes on the patient. As suggested by our results, the location of
the possible lesions were highlighted accurately and the segmentation was able to predict
even subtle changes in size and shape. Our intention in identifying the white matter tissue
hyperintensity is to have it serve as a predictor for vascular and related dementias. Future
studies will increase the number of input images, in addition to classifying the input images
according to the presence of dementia, stroke, or any other pathological disorder. Further
work is needed to fully understand the difference in behavior of the networks in the frontal
lobe. In addition, we aim to separate the para-ventricular WMH region from deep WMH .
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