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Abstract

Efficient optimization remains a fundamental challenge across numerous scientific and en-
gineering domains, particularly when objective function evaluations are computationally
expensive and gradient information is inaccessible. While zeroth-order optimization meth-
ods address the lack of gradients, their performance often suffers due to the high cost of
repeated function queries. This work introduces a bi-fidelity line search scheme tailored for
zeroth-order optimization. Our method constructs a temporary surrogate model by strate-
gically combining inexpensive low-fidelity (LF) evaluations with accurate high-fidelity (HF)
evaluations of the objective function. This surrogate enables an efficient backtracking line
search for step size selection, significantly reducing the required number of costly HF queries
:::::::
required. We provide theoretical convergence guarantees for this scheme under standard as-
sumptions. Furthermore, we integrate this bi-fidelity strategy into the stochastic subspace
descent framework, proposing the bi-fidelity stochastic subspace descent (BF-SSD) algo-
rithm. A comprehensive empirical evaluation of BF-SSD is conducted across four distinct
problems: a synthetic optimization benchmark, dual-form kernel ridge regression, black-box
adversarial attacks on machine learning models, and transformer-based black-box language
model fine-tuning. The numerical results consistently demonstrate that BF-SSD achieves
superior optimization performance, particularly in terms of solution quality obtained per
HF function evaluation, when compared against relevant baseline methods. This study
highlights the efficacy of integrating bi-fidelity strategies within zeroth-order optimization
frameworks, positioning BF-SSD as a promising and computationally efficient approach for
tackling large-scale, high-dimensional optimization problems encountered in various real-
world applications.

1 Introduction

In this work, we are interested in the unconstrained optimization problem

x∗ ∈ arg min
x∈RD

f(x), (1.1)

where the objective function f : RD → R is assumed to be L-smooth (i.e., its gradient ∇f is L-Lipschitz con-
tinuous). Crucially, we operate in a black-box setting where direct access to the gradient ∇f is unavailable or
computationally infeasible to obtain with low complexity (e.g., via closed-form expressions or automatic dif-
ferentiation), thereby precluding the direct application of standard first-order or higher-order optimization
techniques. Furthermore, we focus on high-dimensional scenarios where D is large (e.g., D ≳ 100), pos-
ing significant challenges related to computational cost and scalability for many traditional derivative-free
optimization methods.

The primary focus of this work is on selecting an appropriate step size (a.k.a learning rate) αk > 0 for
iterative descent schemes of the form:

xk+1 = xk − αkvk,

where vk ∈ RD represents an estimate of the true gradient ∇f(xk) or another suitable descent direction
at iteration k. Selecting an appropriate step size αk dynamically can significantly improve the convergence
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performance of the optimization process. This is illustrated in Figure 1, where an example function is
optimized using different methods with and without a step size tuning scheme. However, common practices
in machine learning often involve either using a fixed step size throughout the optimization or employing
a predefined adaptive step size scheduling, e.g., Duchi et al. (2011). While convenient to implement, these
approaches often neglect the intrinsic local geometry and characteristics of the objective function.

In contrast, classical line search methods, including exact line search and backtracking algorithms, typically
yield better step sizes by incorporating information from additional objective function evaluations within
each iteration. However, the cost of these additional evaluations can render such methods impractical,
particularly when the computational budget is limited – a common situation in black-box optimization or
when evaluating f (or its gradients) is expensive.

To address this limitation, we propose a novel approach to tune the step size by leveraging multi-fidelity
evaluations of the objective function. Here, multi-fidelity modeling involves utilizing two or more levels of
objective function representations: the high-fidelity (HF) objective f , which provides accurate but expensive
evaluations, and one or more low-fidelity (LF) objectives that serve as cheaper, albeit less accurate, approx-
imations of f . We emphasize that this multi-fidelity setup (often bi-fidelity, involving one HF and one LF
model) does not necessarily need to originate from the problem’s inherent structure. Even for a problem
initially defined with a single fidelity, a practitioner can potentially construct a multi-fidelity extension (e.g.,
by creating simplified surrogate models) to accelerate the optimization procedure, particularly through more
informed step size selection.
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Figure 1: Gradient descent (GD), coordinate descent (CD), and
stochastic subspace descent (SSD), along with their respective back-
tracking line search (LS) variants for step size tuning, as well as the
proposed Bi-fidelity SSD (BF-SSD), are evaluated on the “worst func-
tion in the world” example, detailed in Section 4.1.

For simplicity, we focus on the bi-fidelity case, where only two fidelity levels are considered. The HF objective,
fHF, is treated as the ground-truth objective function, so we treat fHF and the f from Equation (1.1) synony-
mously. We construct simple bi-fidelity surrogates after obtaining the gradient estimation vk. Specifically,
given the LF objective fLF : RD → R, the current position xk, vk, an initial step size αmax, and a budget nk

for HF evaluations at this step, the local 1D surrogate of the HF objective φk(α) := fHF(xk −αvk) : R→ R
is constructed as

φ̃k(α;nk) = ρfLF(xk − αvk) + ψ̃k(α;nk), α ∈ [0, αmax]. (1.2)
Here, ρ is a scalar, and ψ̃k(·;nk) : R → R is a piecewise linear function constructed using nk HF evalu-
ations. Once the surrogate φ̃k is constructed, the step size is selected using backtracking line search by
(approximately) solving

αk = arg min
α∈[0,αmax]

φ̃k(α;nk).
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Assuming the scalar ρ is properly chosen so that the difference

d(x) := fHF(x)− ρfLF(x)

is Lipschitz continuous, we show that the convergence of this descent method is guaranteed, and Kϵ =
O(L/ϵ) iterations are needed to ensure that mink∥∇fHF(xk)∥2 is ϵ-small. Moreover, when the HF and LF
functions are well-aligned, i.e., the Lipschitz constant W of d(x) is small, the required number of HF function
evaluations Nϵ = O(WL2/ϵ+DL/ϵ) is not large.

For implementation, we focus on high-dimensional zeroth-order optimization problems, using the stochastic
subspace descent (SSD) method (Kozak et al., 2021) combined with the proposed step size tuning strategy,
and call the resulting method bi-fidelity stochastic subspace descent (BF-SSD). BF-SSD demonstrates strong
empirical performance across various tasks and holds great potential for future applications.

1.1 Related Work

Line Search for Optimization Line search is a widely used method for determining step sizes in opti-
mization algorithms. Line searches can be either exact, meaning that α is chosen to exactly or almost exactly
minimize fHF(xk − αvk), or inexact. Exact line searches are computationally expensive, so other than in
special cases, they are rarely used in practice. Common inexact line search methods include backtracking
line search (Nocedal & Wright, 1999), the Polyak step size (Polyak, 1987), spectral methods such as (Barzilai
& Borwein, 1988), and learning rate scheduling (Duchi et al., 2011). Among these, backtracking line search
is particularly popular due to its simplicity and explainable design, often employing stopping criteria like
the Armijo and Wolfe conditions (Nocedal & Wright, 1999). However, backtracking line search increases
the overall computational costs considerably due to the numerous function evaluations required at each
iteration. One way to mitigate this issue is by constructing surrogate models to guide step size selection.
For example, Yue & Meerbergen (2013) and Grundvig (2023) used reduced-order models to approximate
the objective function during line search, while Mahsereci & Hennig (2017) and Cartis & Scheinberg (2018)
employed a probabilistic Gaussian model for step size selection. Paquette & Scheinberg (2020) provided a
theoretical analysis of line search in stochastic optimization. A recent work by Nguyen et al. (2025) extends
the backtracking line search framework to the stochastic ISTA/FISTA method. These approaches do not
account for the multi-fidelity structure of objective functions, which is the focus of this work.

Derivative-Free and Zeroth-Order Optimization Derivative-free optimization refers to a family of
optimization techniques that rely solely on function evaluations, without requiring gradient information,
to find the optimum of an objective function. This category includes methods such as Bayesian optimiza-
tion (Shahriari et al., 2015), direct search (Kolda et al., 2003), trust region methods (Conn et al., 2000),
genetic algorithms (Srinivas & Patnaik, 1994), and zeroth-order optimization (Liu et al., 2020). Among these,
zeroth-order methods stand out for their scalability to high-dimensional problems and reliable convergence
properties. Following Liu et al. (2020), we refer to zeroth-order algorithms as the type of algorithms that
approximate gradients using finite difference techniques and subsequently apply strategies similar to first-
order methods. These methods have shown great promise in various machine learning applications where
objective functions are smooth but lack accessible or easy-to-compute derivatives. Recent advances include
their use in solving black-box adversarial attacks (Chen et al., 2017; 2023) and fine-tuning large models,
such as MeZO, S-MeZO, SubZO, etc. (Sun et al., 2022a;b; Malladi et al., 2023; Liu et al., 2024; Yu et al.,
2024; Zhang et al., 2024), with minimal memory overhead. A recent work (Brilli et al., 2024) discloses the
worst-case bound for derivative-free optimization with a line search-style method.

Randomized Zeroth-Order Optimization for High-Dimensional Problems In high-dimensional
zeroth-order optimization problems, estimating gradients via finite differences can be computationally pro-
hibitive. To address this, randomized algorithms have been proposed to reduce the cost of gradient estima-
tion. The simultaneous perturbation stochastic approximation (SPSA) (Spall, 1992; 1998) uses Rademacher
random vectors for gradient estimation, while Gaussian smoothing methods (Nesterov & Spokoiny, 2017)
employ Gaussian random vectors. These algorithms typically provide gradient estimates projected onto one-
dimensional subspaces. However, for certain problems, it is worth the increased number of function calls to
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improve gradient estimates. SSD (Kozak et al., 2021) explores this idea by projecting the gradient onto a
random subspace of dimension ℓ for any 1 ≤ ℓ ≤ D, providing a more generalized framework for randomized
zeroth-order optimization.

Multi-Fidelity Modeling and Optimization Multi-fidelity is a well-established concept in engineering
and scientific computing for reducing computational costs. It has been widely applied across various domains,
including aerodynamic design (Zhang et al., 2021), structural optimization (Ng & Willcox, 2014; De et al.,
2020), data sampling (Cheng et al., 2024b), and uncertainty quantification (Peherstorfer et al., 2018; Cheng
et al., 2024a; De & Doostan, 2022; De et al., 2023; Cheng & Doostan, 2025). As one sub-branch, multi-
fidelity optimization has been employed in hyperparameter tuning (Wu et al., 2020), accelerating Bayesian
optimization (Kandasamy et al., 2016; Takeno et al., 2020), and reinforcement learning (Cutler et al., 2014)
within machine learning. However, despite its relevance in settings where function evaluations are costly,
its application in zeroth-order optimization remains largely unexplored (de Montbrun & Gerchinovitz, 2024)
and has not been applied to any randomized zeroth-order method.

1.2 Contributions

In this work, we propose a multi-fidelity line-search scheme. Unlike previous approaches that utilize static
surrogate (e.g., reduced-order) models, which remain fixed throughout the optimization process (Yue &
Meerbergen, 2013; Grundvig, 2023), our method constructs a temporary surrogate model in each iteration,
specifically after the gradient (or search direction) has been estimated. This allows us to focus on building a
one-dimensional surrogate along the search direction, a significantly simpler task compared to constructing
expensive D-dimensional surrogates for the objective function f . By leveraging a computationally cheaper
LF model, we construct a simple, local, linear surrogate using only a small number, nk, of HF evaluations
per iteration. Assuming certain conditions between the LF and HF models hold, this 1D surrogate is then
used to efficiently identify a suitable step size.

Specifically, this work makes the following contributions:

1. We develop the BF-SSD algorithm, a stochastic zeroth-order optimization method with a bi-fidelity
line search that allows for choosing the approximation quality of the gradient by tuning ℓ (reducing
to deterministic gradient descent when ℓ = D).

2. When the error of the gradient estimate is negligible (e.g., ℓ is sufficiently large), we give specific
conditions on the relation between the HF and LF functions that will guarantee convergence to a
stationary point (or a global minimizer when f is convex).

3. We highlight that many machine learning problems naturally have a corresponding LF model that
can be used to construct a surrogate model, improving optimization efficiency. Despite its high
potential, this strategy has not received sufficient attention in prior work.

4. We compare BF-SSD with other zeroth-order optimization methods on one synthetic function and
the following three real-world applications:

• Kernel ridge regression with a Nyström-based LF approximation;
• Black-box image-based adversarial attacks with a

::
an

:
LF model trained via knowledge distilla-

tion;
• Soft prompting of language models using a smaller training set to construct the bi-fidelity line

search.

The rest of the paper is organized as follows. Section 2 introduces the proposed bi-fidelity line search method
and provides convergence results. Section 3 details the implementation of the proposed method with SSD.
Section 4 presents the experimental results, and Section 5 concludes the paper.
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2 Line Search on Bi-fidelity Surrogate

In this section, we discuss the proposed algorithm and present the main theoretical results derived in this
work. Unless specified otherwise, ∥·∥ denotes the Euclidean norm for vectors and the spectral norm (i.e.,
the induced 2-norm) for matrices. For simplicity and to maintain focus on our primary contributions during
the theoretical analysis, we assume in the proofs that vk provides an accurate estimate of the high-fidelity
gradient, specifically vk ≈ ∇fHF(xk). This assumption is employed solely for the theoretical development
presented herein and does not hold for the practical implementation discussed in Section 3 or the numerical
results presented in Section 4.

2.1 Algorithm

First, we define the algorithm, which consists of three steps for each iteration k:

1. Given the current position xk ∈ RD, gradient vk ∈ RD, and initial step size αmax ∈ R, sample nk

equi-spaced HF evaluations in [0, αmax] and build the surrogate φ̃k : R→ R following Equation (1.2)
(see Algo. 1 for details);

2. Given Armijo condition parameters c ∈ (0, 1), β ≤ 1/2, and initial step size αmax ≥ c/(L + cL),
conduct bi-fidelity adjusted Armijo backtracking so that

αk = max
m∈N

cmαmax

s.t. φ̃k(cmαmax;nk) ≤ fHF(xk)− βcmαmax∥vk∥2.
(2.1)

See Algo. 2 for details.

3. Evaluate fHF at the new point and continue the iterations.

2.2 Convergence Results

For convergence, we make the following assumptions:
Assumption 2.1. The objective function fHF : RD → R attains its minimum f∗ and ∇fHF is L-Lipschitz
continuous; i.e., there exists L ∈ R such that

∥∇fHF(x)−∇fHF(y)∥ ≤ L∥x− y∥, ∀x,y ∈ RD.

Note that Assumption 2.1 is standard for analysis of zeroth- and first-order methods. The constant L must
be known to the algorithm since it is used to set αmax.
Assumption 2.2. The difference between fHF and fLF is assumed to be smooth with a bounded Lipschitz
constant. Specifically, we assume there exists W,ρ ∈ R such that

∥
(
fHF(x)− ρfLF(x)

)
−
(
fHF(y)− ρfLF(y)

)
∥ ≤W∥x− y∥, ∀x,y ∈ RD.

The Assumption 2.2 allows for fLF to be uncalibrated, meaning that we do not require fLF(x) ≈ fHF(x)
since discrepancies can be reduced by building the surrogate φ̃k.

For each iteration k, the surrogate must be accurate; i.e., it satisfies Equation (2.4). In particular,
:::
Our

:::::
next

::::::::::
assumption,

::::::::::::
Assumption

::::
2.3,

::
is a sufficient condition is that

::::
that

::::
will

::
be

:::::
used

::
in

::::::::
Lemma

:::
2.7

::
to

::::::
show

::::
that

:::
the

:::::::::
surrogate

::
is

::::::::
accurate.

:

Assumption 2.3.
:::
For

:::::
each

::::::::
iteration

::
k,

:
the number of HF evaluations, nk, for building the surrogate φ̃k is

such that
nk ≥

WL(1 + c)αmax

cβ∥vk∥2 , i.e., nk = Ω
(
W (αmaxL+ 1)
∥vk∥2

)
,

where Ω(·) denotes a lower bound up to a constant difference.
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Using vk = ∇f(xk) and with the above assumptions satisfied and sufficiently large initial step size αmax ≥
c/(cL+ L), the designed bi-fidelity line search leads to the following result:
Theorem 2.4. Given an initial point x0, the algorithm in Section 2.1 generates a sequence (xk) such that

min
k∈{0,...,K}

∥∇fHF(xk)∥2 ≤ 2L(1 + c)(fHF(x0)− f∗)
(K + 1)cβ .

That is to say, Kϵ = O(L/ϵ) iterations are required to obtain mink≤Kϵ
∥∇fHF(xk)∥2 ≤ ϵ.

Remark 2.5. Theorem 2.4 holds when vk = ∇f(xk). The error in approximating ∇f(xk) using finite
difference methods with O(D) samples is typically negligible in comparison to the optimization error (see
Kozak et al. (2023) for a precise quantitative statement for the case of SSD). Hence, assuming we accurately
estimate vk = ∇f(xk) with O(D) samples per step, a bound for the total number of HF evaluations for
ϵ-convergence of the algorithm in Section 2.1 is

Nϵ =
Kϵ∑

k=1
(nk +O(D)) = O

(
WL2

ϵ
+ DL

ϵ

)
. (2.2)

The result in Equation (2.2) suggests that the number of function evaluations for ϵ-convergence for the
proposed algorithm can be significantly reduced when W is small.
Remark 2.6. When using zeroth-order gradient descent, with the same assumption that we accurately
estimate vk = ∇f(xk) with O(D) samples per step, a bound for the total number of HF evaluations for
ϵ-convergence is

Nϵ =
Kϵ∑

k=1
(logc−1(αmaxL) +O(D)) = O

(
L log(L)

ϵ
+ DL

ϵ

)
. (2.3)

The proof of Remark 2.6 follows the convergence proof of gradient descent using backtracking line search.
Comparing the results in Equations (2.2) and (2.3), we observe that the advantage of using our bi-fidelity
surrogate depends on the value of W . Notice that if W is sufficiently small so that WL2 ≤ L logL, then
the worst-case bound of our method is better than that of the zeroth-order gradient descent. We emphasize
that our convergence result in Equation (2.2) is loose, due to the global nature of the Assumption 2.2 and
difficulty in precisely describing the quality of the LF function relative to its HF counterpart. Hence, we view
our convergence analysis as a reassurance that the method does converge, and rely on numerical experiments
to elucidate when the method improves over baseline methods.

2.3 Proof of Theorem 2.4

Before the proof, we first introduce the following lemma:
Lemma 2.7. With Assumption 2.2 and Assumption 2.3 satisfied, for any α ∈ [0, αmax], the 1D surrogate
φ̃k(α) satisfies the following bound,

|φ̃k(α;nk)− φ(α)| ≤ ∥vk∥2

2 min
{

c

(1 + c)2L
,

cβ

(1 + c)L, βαmax

}
= cβ∥vk∥2

2(1 + c)L. (2.4)

The proof of Lemma 2.7 is in Appendix A. Following this lemma, the proof of Theorem 2.4 is given below.

Proof. Given Lemma 2.7, we have

|fHF(xk+1)− φ̃k(αk;nk)| = |φ(αk)− φ̃k(αk;nk)| ≤ ∥vk∥2

2 min
{

c

(1 + c)2L
,

cβ

(1 + c)L, βαmax

}
and, using the standard descent lemma for L-smooth functions (guaranteed by Assumption 2.1),

fHF(xk+1) ≤ fHF(xk)− αk∥vk∥2 + α2
kL

2 ∥vk∥2.
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Therefore, using the triangle inequality, the surrogate φ̃k is bounded as

φ̃k(αk;nk) ≤ fHF(xk+1) + |fHF(xk+1)− φ̃k(αk;nk)|

≤ fHF(xk) +
(
−αk + α2

kL

2 + c

2(1 + c)2L

)
∥vk∥2.

When the step size satisfies αk ∈ [c/(L+ cL), 1/(L+ cL)], the quadratic inequality −αk +α2
kL/2 + c/(2(1 +

c)2L) ≤ −αk/2 holds, along with the fact that β ≤ 1/2, which implies the following bi-fidelity-adjusted
Armijo condition

φ̃k (αk;nk) ≤ fHF(xk) +
(
−αk + α2

kL

2 + c

2(1 + c)2L

)
∥vk∥2

≤ fHF(xk)− αk

2 ∥vk∥2

≤ fHF(xk)− βαk∥vk∥2.

(2.5)

The last line in Equation (2.5) satisfies the bi-fidelity-adjusted Armijo condition in Equation (2.1). Therefore,
the bi-fidelity backtracking either terminates immediately with αk = αmax or else αk ≥ c/(L + cL), and
implies

φ̃k (αk;nk) ≤ fHF(xk)− β∥vk∥2 min
{

c

(1 + c)L,αmax

}
= fHF(xk)− βc

(1 + c)L∥vk∥2, (2.6)

where the last equality comes from αmax ≥ c/((1 + c)L). Using |fHF(xk+1)− φ̃k (αk;nk)| ≤ βc∥vk∥2/(2(1 +
c)L) (from Lemma 2.7) and Equation (2.6), we have

fHF(xk+1) ≤ φ̃k (αk;nk) +
∣∣∣∣fHF(xk+1)− φ̃k (αk;nk)

∣∣∣∣
≤ φ̃k (αk;nk) + βc∥vk∥2

2(1 + c)L

≤ fHF(xk)− βc∥vk∥2

2(1 + c)L.

(2.7)

Equation (2.7) leads to the telescopic series

βc

2(1 + c)L

K∑
k=0
∥vk∥2 ≤

K∑
k=0

(
fHF(xk)− fHF(xk+1)

)
= fHF(x0)− fHF(xK+1) ≤ fHF(x0)− f∗.

Hence,

(K + 1) min
k∈{0,...,K}

∥vk∥2 ≤
(

βc

2(1 + c)L

)−1
(fHF(x0)− f∗)

= 2(1 + c)L
βc

(
fHF(x0)− f∗) .

To guarantee mink≤Kϵ
∥∇fHF(xk)∥2 ≤ ϵ, the value of Kϵ should be

Kϵ ≥
2(fHF(x0)− f∗)(1 + c)L

βcϵ
= O

(
L

ϵ

)
.

Remark 2.8. Even if fHF is non-convex, Equation (2.7) implies that the method is a descent method,
meaning fHF(xk+1) ≤ fHF(xk). Hence, after K iterations, it is natural to use xK as the output. This
descent property is not enjoyed by other methods, such as subgradient descent, stochastic gradient descent,
or Polyak step size gradient descent.
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Remark 2.9. If fHF is convex, then Theorem 2.4 implies convergence to a global minimizer. Or, if fHF

satisfies the Polyak-Lojasiewicz inequality with parameter µ (which includes some non-convex functions, as
well as all strongly convex functions), then Theorem 2.4 in conjunction with the descent property implies
fHF(xK)− f∗ ≤ L(1+c)

(K+1)µcβ (fHF(x0)− f∗), cf. Karimi et al. (2016).

2.4 Examples of Possible Low-Fidelity Functions

In practice, the LF function fLF can be constructed in various ways. The most straightforward approach is
when a multi-fidelity structure is intrinsically present in the problem. For example, in Cheng et al. (2024a,
Section 5.1), the LF model is the exact solution to a simplified physical model that can be simulated with
negligible cost, while the intended HF objective relies on relatively expensive finite element simulations. In
most machine learning problems, the LF model is not explicitly given, making its construction necessary. In
this section, we discuss multiple approaches for building the LF model and the associated upper bound on
W .

Affine Bi-Fidelity Relationship The most ideal case occurs when the HF model is an affine transfor-
mation of the LF model, i.e., fHF(x) = ρfLF(x) + c. In this case, the Lipschitz constant W , as defined in
Assumption 2.2, is zero, and the number of function evaluations required for convergence is proportional to
the number of iterations, as nk = 1 is sufficient.

Quadratic Objective with Low-Rank LF Approximation Consider the case where the objective is
quadratic with a positive semi-definite matrix A ∈ RD×D and denote its rank-r approximation Ã ∈ RD×D,
and assume that rank(A) ≫ rank(Ã). The HF objective is fHF(x) = 1

2 ⟨x,Ax⟩ + ⟨x,a⟩ for x ∈ X , where
⟨·, ·⟩ denotes the Euclidean inner-product, and the LF objective is fLF(x) = 1

2 ⟨x, Ãx⟩ + ⟨x,a⟩. Assuming
the input space X is bounded by a unit ball with radius R, the Lipschitz constant W is upper bounded as

W ≤ sup
x
∥∇fHF(x)−∇fLF(x)∥ = sup

x
∥A− Ã∥ · ∥x∥ ≤ λr+1R,

where λr+1 is the (r+ 1)-th largest eigenvalue of A. The empirical problems in Section 4.1 and Section 4.2.1
fall into this category.

::::
This

::::::::
use-case

::::::::
satisfies

:::
the

::::::::::::
assumptions

::::::::::
mentioned

:::
in

:::::::
Section

::::
2.2.

::::::::::::
Assumption

::::
2.1

::
is

::::::::
satisfied

:::::
since

::::
the

::::::::
minimum

::
is
::::::::
achieved

:::::
(fHF

::
is

::::::::::
continuous

:::
and

:::::::::
coercive)

:::
and

::::
the

::::::::
Lipschitz

::::::::
constant

::
of

::::
the

:::::::
gradient

::
is

:::::::::
L = ∥A∥.

::::::::::
Assumption

::::
2.2

::
is

:::::::
satisfied

::::::
using

:::
the

:::::
value

:::
of

::
W

:::::::
above,

::::
and

:::::::::::
Assumption

:::
2.3

::::
can

::
be

::::::::
satisfied

:::::
since

::
it

::
is

::::
just

:
a
::::::::::
parameter

::::::
choice.

:

Full-Batch HF and Mini-Batch LF Objectives In many machine learning settings, the objective
function is expressed as a sum over a large number of terms, each corresponding to the evaluation of a
loss function on an individual data sample. In this case, a natural choice for the LF objective is the
summation over a smaller subset of the data. Specifically, assuming that the HF objective sums over
datapoints i = 1, . . . , n and (without loss of generality, i.e., by relabeling) the LF objective sums over
datapoints i = 1, . . . , r for r ≪ n, the HF objective is fHF(x) = 1

n

∑n
i=1 fi(x), and the LF objective is

fLF(x) = 1
r

∑r
i=1 fi(x). Using the triangle inequality, the Lipschitz constant W is upper bounded as

W ≤ sup
x

∥∥∥∥∥ 1
n

n∑
i=1
∇fi(x)− 1

r

r∑
i=1
∇fi(x)

∥∥∥∥∥ ≤ n− r
n

(
max

1≤i≤r
∥∇fi(x)∥+ max

1≤i≤n
∥∇fi(x)∥

)
.

The terms ∥∇fi(x)∥ are bounded if each fi is Lipschitz, or equivalently, if fi is continuous and x is constrained
to a compact set. An empirical problem with this setting is presented in Section 4.2.3. Our analysis is
deterministic, so W is a worst-case bound, but if r is large and the LF subsamples are chosen uniformly at
random, it would be reasonable to expect that, due to the law of large numbers, the average case behavior
is significantly better than our bound.

::::
This

:::::::
use-case

::::
also

:::::::
satisfies

::::
the

:::::::::::
assumptions

:::::::::
mentioned

:::
in

::::::
Section

::::
2.2

:::::
under

::::::::::
reasonable

::::::::::
conditions.

::
If

::::
each

::::
∇fi

:
is
:::::::::
Lipschitz

::::::::::
continuous

::::
with

::::::::
constant

:::
Li::::

(i.e.,
::::
this

::
is
:::::::
always

::::
true

:
if
:::
fi ::

is
::::::::::
continuous

:::
and

::
x
::
is
:::::::::::
constrained

::
to

::
a

8
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:::::::
compact

:::::
set),

::::
then

::::::
∇fHF

::
is

::
L

::::::::
Lipschitz

::::::::::
continuous

:::::
with

:::::::::::::
L = 1

n

∑n
i=1 Li::::

via
:::
the

:::::::
triangle

::::::::::
inequality,

::
so

::::::
under

:::
the

::::
mild

:::::::::::
assumption

::::
that

::::
the

:::::::::
minimum

::
is

:::::::::
achieved,

:::::::::::
Assumption

:::
2.1

::
is

::::::::
satisfied.

:::::::::::::
Furthermore,

:::::::::::
Assumption

:::
2.2

::
is

:::::::
satisfied

:::::
using

::::
the

:::::
value

::
of

:::
W

::::::
above,

::::
and

:::::::::::
Assumption

:::
2.3

::::
can

:::::
again

:::
be

::::::::::::
automatically

::::::::
satisfied

:::::
since

::
it

:
is
::::
just

::
a
::::::::::
parameter

::::::
choice.

:

Generic Case Finally, we consider the most general case, without assuming specific relationships between
the HF and LF objectives. By assuming the Lipschitz continuity of both the HF and LF objectives, W can
be bounded as

W = ∥fHF(x)− ρfLF(x)∥L ≤ ∥fHF(x)∥L + |ρ| · ∥fLF(x)∥L,

for any choice of ρ, where ∥·∥L denotes the Lipschitz constant. The proportionality ρ should not be chosen
to minimize this bound (since that leads to ρ = 0) but can instead be chosen by any heuristic, such as the
one used in control variate techniques (Gorodetsky et al., 2020) where ρ = −ĉ/v̂ where ĉ is an estimate of
the covariance between fHF and fLF, and v̂ is an estimate of the variance of fHF.

3 Bi-Fidelity Line Search with Stochastic Subspace Descent

In this manuscript, we focus on zeroth-order optimization, utilizing stochastic subspace descent (SSD) as
the implementation method. Following the algorithmic steps introduced in Section 2.1, combined with SSD,
the entire process is divided into three main (iteratively implemented) components: gradient estimation to
construct vk, bi-fidelity surrogate construction, and Armijo backtracking on the surrogate.

Gradient Estimation SSD employs a random projection matrix Pk ∈ RD×ℓ with ℓ ≪ D. The random
matrix Pk satisfies the properties E[PkP ⊤

k ] = ID and P ⊤
k Pk = (D/ℓ)Iℓ. A common choice for Pk is based

on the Haar measure, where Pk is derived from the Gram-Schmidt orthogonalization of a random Gaussian
matrix. The gradient estimation is given by vk = Pkgk, where gk is the finite difference estimator of the
gradient:

gk :=
[
fHF(xk + ∆p1)− fHF(xk)

∆ ,
fHF(xk + ∆p2)− fHF(xk)

∆ , . . . ,
fHF(xk + ∆pℓ)− fHF(xk)

∆

]⊤

, (3.1)

where ∆ ∈ R is a small step size and pi is the i-th column of Pk. Estimating vk using Equation (3.1) requires
ℓ function evaluations – a more accurate O(∆2) approximation is also possible at the cost of 2ℓ function
evaluations if more than 8 digits of precision are needed. Up to the finite-difference error, gk ≈ P ⊤

k ∇fHF(xk)
so that vk ≈ PkP ⊤

k ∇fHF(xk), hence E[vk] ≈ ∇fHF(xk). It is also possible to construct the same estimator
without reference to the Haar measure by rewriting vk as vk = projcol(Qk)(∇fHF(xk)) where Qk ∈ RD×ℓ

is any random matrix with independent columns from an isotropic probability distribution (such as the
standard normal).

Surrogate Construction Given the estimated gradient vk and the current position xk, the goal of sur-
rogate construction is to build φ̃k, denoted as

φ̃k(α) := ρfLF(xk + αvk) + ψ̃k(α). (3.2)

The analysis in Section 2 assumes that ρ is known and fixed. However, in practice, ρ is tuned for better
performance. In our application, we set ρk = fHF(xk)/fLF(xk). We model ψ̃k as a piecewise linear function
using nk additional HF evaluations at equispaced points {0, α̃1, . . . , α̃nk

= αmax}. Specifically,

ψ̃k(α) = h− α
h

ψ(α̃j−1) + α

h
ψ(α̃j), α ∈ [α̃j−1, α̃j ], j = 1, . . . , nk, (3.3)

where h = αmax/nk and ψ(α) = ϕ(α)− fLF(xk − αvk). This piecewise linear interpolation is a simple, yet
effective, approach for interpolating φ in 1D and satisfies the bounds in Lemma 2.7 given sufficient nk. The
detailed algorithm is presented in Algorithm 1.

Figure 2 illustrates the bi-fidelity backtracking line search process using the example problem in Section 4.2.1.
The blue curve represents the bi-fidelity surrogate model φ̃k approximating the HF function φ (red curve).

9
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Rather than performing the line search directly on the computationally expensive HF function (red dots), the
method utilizes the surrogate φ̃k to estimate an optimal step size. While this surrogate is an approximation
and may require more surrogate function evaluations during the search itself, it substantially reduces the
computational cost of line search. In this example, the cost is decreased from 4 HF function calls (for a
direct search) to only 1 HF call (to build the surrogate) combined with 6 LF function calls.

Algorithm 1: Surrogate Construction
Input: fLF, fHF,xk,vk, nk ∈ N, αmax > 0
Output: 1D surrogate φ̃k

1: Define {(α̃j , φ(α̃j))}nk
j=0 as equispaced points between 0 and αmax (including endpoints), and compute

HF evaluations φ(α̃j)← fHF(xk + α̃jvk);
2: ρk ← fHF(xk)/fLF(xk);
3: ψ(α̃j)← φ(α̃j)− ρkf

LF(xk + α̃jvk), j = 1, . . . , nk;
4: Construct piecewise linear function ψ̃k using Equation (3.3);
5: Return φ̃k using Equation (3.2).
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Figure 2: Illustration of the bi-fidelity backtracking line search pro-
cess using the example problem in Section 4.2.1. The blue curve
represents the bi-fidelity surrogate model φ̃k approximating the HF
function φ (red curve). It significantly lowers computational cost
(e.g., reducing 4 HF calls to 1 HF + 6 LF calls).

Armijo Backtracking on the Surrogate Based on the criteria in Equation (2.1), we set the maximum
number of iterations for testing the Armijo condition to M ∈ N. The detailed procedure is presented in
Algorithm 2.

Convergence Analysis of SSD with Line Search The convergence results of SSD with line search (on
the exact φ(α)) are presented in Appendix B, under three separate scenarios: strongly convex, convex, and
non-convex. The proof shows that, in the SSD with line search setting, the value of β can be set as ℓ/2D.

The proposed bi-fidelity line search algorithm, combined with SSD, will be referred to as bi-fidelity SSD
(BF-SSD), and is summarized in Algorithm 3. Our theory covers either ℓ = D with bi-fidelity line search
(Thm. 2.4) or 1 ≤ ℓ ≤ D with HF line search (Appendix B)

:::::
under

::::::::
strongly

:::::::
convex,

:::::::
convex

::
or

:::::::::::
non-convex

:::::::
settings. Combining the two analyses is fairly complicated, and we defer it to a future study.

:::
For

:::::::::
reference,

:::
the

:::::::::
bi-fidelity

:::::
result

::
is
:::
in

::::::::
Theorem

:::
2.4

::::
and

::::::
below

::
is

:::
one

:::
of

:::
the

::::::
results

:::::
from

:::::::::
Appendix

::::
B.3

:::
for

:::
the

::::::::::
1 ≤ ℓ ≤ D

::::
with

:::
HF

::::
line

::::::
search

:::::
case,

::
in

::::::::::
particular,

::::
the

:::::
result

::::::::
covering

:::
the

:::::::::::
non-convex

:::::
case:

:

10



Under review as submission to TMLR

Algorithm 2: BF-Backtracking
Input: φ̃k, β > 0, c ∈ (0, 1), αmax > 0,vk,M ∈ N // typical value of c ≈ 0.9
Output: Step size αk

1: Initialize αk ← αmax;
2: for m = 0 : M do
3: if φ̃k(αk) ≤ fHF(xk)− αkβ∥ṽk∥2 then
4: Break;
5: else
6: αk ← cαk;
7: end if
8: end for
9: Return αk;

Theorem 3.1 (proof in Appendix B.3).
::::
With

:::::::::::
Assumption

::::
B.5

:::::::
holding

::::
and

::::::::::::
backtracking

::::::::::::
implemented

:::
for

:::
line

:::::::
search,

:::
we

::::
have

:

min
k∈{0,...,K}

E[∥∇f(xk)∥2] ≤ max
:::::::::::::::::::::::::::

 (f(x0)− f∗)
(K + 1)βαmax

,
DL(f(x0)− f∗)

(K + 1)ℓcβ
::::::::::::::::::::::::::::

 .

::::
That

:::
is,

:::::::::::::::::::::::::::::
k = O(1/(ϵβαmax) +DL/(ϵℓcβ))

:::::::::
iterations

::::
are

:::::::
required

:::
to

:::::::
achieve

:::::::::::::::
E∥∇f(xk)∥2 ≤ ϵ.

:

For practical purposes, since the parameters in Assumption 2.3 are often unknown, we set ρk as described
above and choose nk = 1 to minimize the cost of generating φ̃k(α). This choice also demonstrates excellent
empirical performance across all HF and LF pairs we have examined.

::
We

:::::
leave

::
it

::
as

::::::
future

:::::
work

::
for

::::::::::
adaptively

:::::::
choosing

::::
nk,

::::
but

:::::::
suggest

::::
one

:::::::
possible

:::::::
scheme

::::::::
inspired

:::
by

::::::
similar

::::::::
methods

:::::
used

::
in

:::::::::::
trust-region

:::::::::::
algorithms:

:::::::
starting

::::
with

::
a
:::::
small

::::
nk,

:::
we

::::
find

:::
the

::::::::
stepsize

:::
via

::::
line

::::::
search

:::
on

::::
the

:::::::::
surrogate,

::
as

::::::
usual,

::::
and

:::::
then

::::::::
compare

:::
the

::::::
actual

::::::::
function

:::::
value

:::
of

:::
the

:::::::::::
high-fidelity

::::::::
function

:::::
with

::::
the

:::::::::
predicted

:::::
value

:::::
from

:::
the

::::::::::
surrogate.

::
If
::::

the
::::::::
predicted

::::::::
decrease

:::::
from

:::
the

:::::::::
surrogate

::::
was

::::::
overly

::::::::::
optimistic,

:::
we

::::
then

:::::::
rebuild

:::
the

:::::::::
surrogate

:::::
with

:
a
::::::
larger

:::
nk

::::::::
(re-using

:::::::
existing

::::::::
samples)

::::
and

:::::::
repeat.

:

Algorithm 3: Bi-Fidelity Line Search SSD Algorithm
Input: fHF, fLF, ℓ, c,M, αmax, n // by default, n = 1 and β = ℓ/2D
Output: HF minimum value

1: Initialize x0 and set of HF values D = {fHF(x0)}
2: β ← ℓ/2d;
3: for k = 0 : K do
4: Sample random matrix Pk;
5: Approximate ṽk ≈ PkP T

k ∇f(xk) using finite difference (ℓ HF evaluations);
6: Normalize vk ← ṽk/∥ṽk∥;
7: Construct φ̃k ← surrogate-construction(fLF, fHF,xk,vk, n, αmax) (n HF evaluations);
8: αk ← BF-backtracking(φ̃k, β, c, αmax,vk,M);
9: Update xk+1 ← xk − αkvk;

10: Evaluate fHF(xk+1) and update D;
11: end for
12: Return minD;

4 Empirical Experiments

In this section, we evaluate the proposed BF-SSD Algorithm 3 on four distinct: one synthetic optimization
problem discussed in Section 4.1 and three machine learning-related problems across diverse scenarios pre-
sented in Section 4.2. These include dual-form kernel ridge regression (Section 4.2.1), black-box adversarial

11
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attacks (Section 4.2.2), and transformer-based black-box language model fine-tuning (soft prompting) in
Section 4.2.3. We demonstrate that the BF-SSD algorithm consistently outperforms competing methods.
To illustrate these advantages, we compare BF-SSD against the following baseline algorithms:

• Gradient descent (GD): A zeroth-order gradient descent method, where the full-batch gradient
is estimated using forward differences, and a fixed step size is used.

•
:::::::::
Nesterov

::::::::::::
accelerated

:::::::::
gradient

::::::::
descent

::::::::
(NAG)

:
:
:::
An

::::::::::
accelerated

::::::::::::
zeroth-order

::::::::
gradient

:::::::
descent

:::::::
method

:::
by

:::::::::
Nesterov

::::
that

:::::::::::
incorporates

::
a
:::::::::

decaying
:::::::::::
momentum

:::::
term,

::::::
which

::::::
often

:::::
leads

:::
to

::::::
faster

:::::::::::
convergence.

::::
The

::::::::
gradient

::
is

:::::::::
estimated

:::::
using

::::::::
forward

::::::::::
differences.

:

• Coordinate descent (CD): Iteratively and individually optimizes each coordinate using finite-
difference estimated coordinate gradients.

• Stochastic subspace descent with fixed step size (FS-SSD): The standard stochastic subspace
descent method, which samples subspaces from the Haar measure and uses a fixed step size.

• Simultaneous perturbation stochastic approximation (SPSA): A randomized optimization
method using a Hadamard random variable to estimate the gradient, as proposed by Spall (1992)
and with step sizes as described in Spall (1998); this is a time-tested, well-established zeroth-order
method.

• Gaussian smoothing (GS): A method popularized by Nesterov & Spokoiny (2017), which is nearly
equivalent to SSD with ℓ = 1, and uses a fixed step size.

• High-Fidelity stochastic subspace descent (HF-SSD): A single-fidelity SSD method that
utilizes a high-fidelity function for backtracking line search, with its convergence analysis detailed
in Appendix B.

• Variance-reduced stochastic subspace descent (VR-SSD): A variance-reduced version of the
SSD method inspired by SVRG (Johnson & Zhang, 2013), as described in the technical report Kozak
et al. (2019, Section 2.2) of the SSD authors.

• Bi-fidelity stochastic subspace descent (BF-SSD): The proposed method detailed in Section 3.

The performance of the optimizers is assessed based on the number of HF objective function evaluations
required, accounting for LF calls (in terms of fractional equivalent HF function calls) as appropriate.

:::::
While

::
we

::::
also

:::::::::
measured

:::::::::
wall-clock

::::::
time,

:::
the

::::::
results

::::::::
strongly

:::::::
aligned

:::::
with

:::
the

::::::::::
equivalent

:::
HF

::::
call

:::::
data.

::::::::::
Therefore,

::
for

:::::::
clarity,

:::
we

:::::::
present

:::::::::::
performance

:::::::::
primarily

::
in

::::::
terms

::
of

::::::::::
equivalent

:::
HF

:::::
calls.

:

4.1 Synthetic Problem: Worst Function in the World

In this section, we investigate the performance of our proposed BF-SSD algorithm on the “worst function in
the world” (Nesterov, 2013). With a fixed Lipschitz constant L > 0, the function is

f(x; r, L) = L

(
x2

1 +
∑r−1

i=1 (xi − xi+1)2 + x2
r

8 − x1

4

)
− Lr

8(r + 1) ,

where xi denotes the ith entry of the input x and r < D is a constant integer defining the intrinsic dimension
of the problem. The function is convex with

:::
the global minimum value 0. The Lipschitz constant of the

gradient of this function is L. Nesterov (2013) has shown that a wide range of iterative first-order methods
perform poorly when minimizing f(x; r, L) with initial point x0 = 0.

We set the dimension D = 1,000, ℓ = 20, and L = 20. The intrinsic dimensions of the LF and HF functions
are rH and rL, respectively. We choose rL ≪ rH and assume the computational cost ratio between HF and
LF evaluations is rH : rL. For Gradient Descent, we choose the standard step size of 1/L = 0.05, and for
the GS and SSD-based methods, the step size is ℓ/(LD). The backtracking parameter is β = ℓ/(2D). The

12
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Figure 3: Convergence performance for different optimizers. The x-
axis is the equivalent number of HF function evaluations, including
the number of LF function evaluations based on the cost ratio rL/rH .
The y-axis is the HF function evaluation value at the current stage.
We investigate the results when ℓ = 20, 50, 100, 200 with rL = 2,
rH = 100. The corresponding results are presented with their ti-
tles indicating the specific choices. The shadow regions are the area
between the best and the worst behavior over 10 trials.

hyperparameter study is conducted according to different values of c ∈ {0.8, 0.9, 0.99} and ℓ ∈ {5, 10, 20}.
All the experiments are repeated 10 times, with shaded regions denoting the worst and the best performance
over 10 trials.

Figure 3 illustrates the performance of various optimizers across different values of ℓ. Detailed results for
ℓ = 20 and c = 0.99 at N from 500 to 8,000 are presented in Table 1, while additional comparisons across
different ℓ and c configurations are included in Table 4. These results show that BF-SSD consistently
outperforms the other optimizers in most scenarios. For different SSD methods, the effect of ℓ on the final
performance varies. Large values of ℓ improve the optimization results for FS-SSD and VR-SSD, while
HF-SSD and BF-SSD prefer relatively smaller ℓ, as highlighted in Table 2.

4.2 Zeroth-Order Optimization for Machine Learning Problems

Next, we contrast the BF-SSD optimization results against other competing zeroth-order methods. Besides
showing the advantages of the BF-SSD, we also show that it is often convenient to design a cheap LF model
in many machine learning problems that can be leveraged to accelerate the convergence.
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Equivalent HF function evaluations N
Method N = 100 N = 1000 N = 10000 N = 20000 N = 30000
GD 2.48± 0.00 2.48± 0.00 0.62± 0.00 0.43± 0.00 0.34± 0.00
CD 1.48± 0.00 1.48± 0.00 0.70± 0.00 0.49± 0.00 0.40± 0.00
:::::
NAG

::::::::::
2.48± 0.00

: ::::::::::
2.48± 0.00

::::::::::
0.33± 0.00

: ::::::::::
0.16± 0.00

: ::::::::::
0.11± 0.00

:

FS-SSD 2.47± 0.00 2.45± 0.00 2.26± 0.00 2.08± 0.00 1.92± 0.00
::::::::::
1.93± 0.00

:

SPSA 1.95± 0.05
::::::::::
1.93± 0.00

:
0.61± 0.04

:::::::::::
0.66± 0.00 0.19± 0.00

::::::::::
0.20± 0.00

:
0.14± 0.00

::::::::::
0.15± 0.00

:
0.12± 0.00

GS 2.47± 0.00 2.46± 0.00 2.36± 0.00 2.25± 0.00 2.15± 0.00
HF-SSD 2.07± 0.15

::::::::::
1.99± 0.05

:
0.77± 0.06

::::::::::
0.75± 0.01

:
0.22± 0.02

::::::::::
0.40± 0.21

:
0.17± 0.02

::::::::::
0.37± 0.21

:
0.14± 0.02

::::::::::
0.20± 0.06

:

BF-SSD 2.00± 0.05
::::::::::
2.00± 0.08

:
0.66± 0.03

::::::::::
0.68± 0.02

:
0.17± 0.00 0.11± 0.00 0.09± 0.00

VR-SSD 2.47± 0.00 2.10± 0.02
::::::::::
2.09± 0.01

:
0.63± 0.01

::::::::::
0.62± 0.00

:
0.43± 0.00 0.35± 0.00

Table 1: Performance values (mean ± std over 10 runs) showing
the objective function for different optimization methods at various
HF function evaluations N with ℓ = 20 and c = 0.99

::::::
c = 0.9. The

minimum values in each column are highlighted in bold.

Table 2: Comparison of SSD methods for different values of ℓ (Mean
± Std at N = 20, 000). Bold values indicate the minimum mean for
each SSD method, i.e., across each row.

Method ℓ = 20 ℓ = 50 ℓ = 100 ℓ = 200
FS-SSD 2.0766± 0.0038

:::::::::::::
2.0787± 0.0013

:
1.6726± 0.0057

:::::::::::::
1.6621± 0.0003

:
1.2943± 0.0047

::::::::::::::
1.2942± 0.0022

:
0.9447± 0.0041

:::::::::::::::
0.9473± 0.0027

:

HF-SSD 0.1745± 0.0209
:::::::::::::
0.3696± 0.2109

:
0.1357± 0.0073

:::::::::::::::
0.1482± 0.0098

:
0.1482± 0.0067

::::::::::::::
0.1574± 0.0157

:
0.1893± 0.0115

:::::::::::::
0.3696± 0.2368

:

BF-SSD 0.1149± 0.0016
:::::::::::::::
0.1143± 0.0005

:
0.1206± 0.0015

:::::::::::::
0.1226± 0.0015

:
0.1236± 0.0028

::::::::::::::
0.1260± 0.0032

:
0.1329± 0.0024

:::::::::::::
0.1298± 0.0013

:

VR-SSD 0.4328± 0.0030
:::::::::::::
0.4309± 0.0025

:
0.4268± 0.0023

:::::::::::::
0.4281± 0.0013

:
0.4232± 0.0018

::::::::::::::
0.4238± 0.0009

:
0.4227± 0.0016

:::::::::::::::
0.4226± 0.0013

:

4.2.1 Dual Form of Kernel Ridge Regression

Consider a kernel ridge regression problem as follows. By the representer theorem, given data {(xi, yi)}D
i=1

and a kernel function κ : Rm̃ × Rm̃ → R, the goal is to find the coefficients α̃ such that

fpredict(x) =
D∑

i=1
α̃ik(x,xi). (4.1)

One way to compute the coefficients is to solve the dual form of the kernel ridge regression,

α̃∗ = arg min
α

αT Kα− 2⟨α,y⟩+ λ∥α∥2, (4.2)

where K is the kernel matrix with [K]i,j = κ(xi,xj), [y]i = yi, and λ is a positive scalar regularization
parameter. The solution of Equation (4.2) can be explicitly represented as

α̃∗ = (K + λI)−1y.

However, solving the explicit solution involves inverting the matrix K + λI, which takes O(D3) and can be
extremely expensive when D is large. When D is sufficiently large, evaluating the function in Equation (4.1)
takes O(D2) and becomes expensive. Therefore, an alternative approach to solve this problem is to build a
low-rank approximation (surrogate) of the kernel matrix K, which we adopt for evaluating the LF objective.
To do this, we employ the Nyströem method, which finds a subset S ⊂ [1, . . . , D] with size l ≪ D and
builds the kernel surrogate K̃ = K[:,S](K[S,S])−1K[S, :]. By implementing the Nyströem method, the
complexity of evaluating the objective function is reduced to O(lD). Therefore, the ratio of computational
cost between HF and LF function evaluation is D/l.
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Figure 4: The eigenvalues of the kernel matrix implemented in Equa-
tion (4.2).

We pretend the problem in a black-box format, where access to the HF function is only available through
an API, thus hiding y (and/or K) in Equation (4.2) and making derivative information inaccessible. In this
case, we assume the values of y are unavailable for privacy reasons. For the regression data, we select the
first D = 1,000 samples from the California housing dataset provided in the scikit-learn library (Pedregosa
et al., 2011). A subset S with size l = 10 is randomly selected for the Nyströem approximation. We use a
Gaussian (RBF) kernel with lengthscale 1.0 to generate the corresponding kernel matrix K. Figure 4 shows
the decay of eigenvalues for K, with a rapid drop, especially within the first 100 eigenvalues, due to the
Gaussian kernel’s properties. This fast decay motivates our focus on cases where the values of ℓ are below
100. The starting point x0 is set at the origin 0.
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Figure 5: Similar to Figure 3, we compare the opti-
mizer performances with varying parameters ℓ = 100 and
c ∈ {0.9, 0.95, 0.99}

::::::::::::
c ∈ {0.9, 0.99}. The corresponding results are pre-

sented with their titles indicating the specific choices. The shadow
regions are the area between the best and the worst behavior over 10
trials.

The results of kernel ridge regression are shown in Figure 5, with values of c chosen from 0.9 and 0.99, and the
value of ℓ is fixed as 100. According to these results, BF-SSD shows advantages over other methods except
:::::
NAG

:::
and

:
HF-SSD in Figure 5a. When the backtracking factor c decreases, the step sizes determined by the

backtracking method become more conservative, leading to suboptimal results, especially for BF-SSD. We
also implement different combinations of c and ℓ and collect the SSD performances in Table 3. The results
suggest that BF-SSD outperforms other

::::
SSD methods for most cases, and larger values of ℓ and c improve

the performance of BF-SSD.
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c ℓ FS-SSD HF-SSD VR-SSD BF-SSD

0.9
10 3497.69± 3.56

::::::::::::
3500.91± 5.74

:
8.98± 0.43

::::::::::
9.49± 0.21

:
23.65± 0.83

:::::::::::
23.31± 0.83

:
8.77± 0.72

:::::::::::
8.18± 0.60

50 1016.43± 9.26
::::::::::::
1015.82± 5.90

:
3.96± 0.17

:::::::::::
4.01± 0.13

:
22.19± 0.66

:::::::::::
20.87± 0.55

:
6.49± 0.51

::::::::::
6.13± 0.22

:

100 268.71± 3.32
:::::::::::
270.95± 7.07

:
5.70± 0.26

:::::::::::
5.49± 0.18

:
21.81± 0.71

:::::::::::
21.56± 0.69

:
6.01± 0.36

::::::::::
6.22± 0.25

:

0.95
10 3499.15± 6.41

::::::::::::::
3493.88± 11.27

:
19.17± 0.99

:::::::::::
18.39± 0.28

:
23.39± 0.72

:::::::::::
23.20± 0.30

:
3.21± 0.40

:::::::::::
2.94± 0.49

50 1009.36± 9.14
::::::::::::
1013.22± 8.76

:
5.52± 0.13

::::::::::
5.33± 0.35

:
21.46± 0.55

:::::::::::
21.44± 1.37

:
2.42± 0.38

:::::::::::
2.22± 0.21

100 269.68± 2.79
:::::::::::
270.36± 2.62

:
6.07± 0.23

::::::::::
6.15± 0.17

:
21.32± 1.09

:::::::::::
21.02± 0.98

:
2.06± 0.27

:::::::::::
2.28± 0.10

0.99
10 3499.32± 7.90

::::::::::::
3503.99± 3.77

:
30.18± 1.08

:::::::::::
29.55± 0.05

:
23.04± 0.91

:::::::::::
23.35± 0.38

:
1.59± 0.74

:::::::::::
1.40± 0.29

50 1010.93± 6.68
::::::::::::
1010.92± 7.17

:
6.94± 0.21

::::::::::
6.95± 0.19

:
21.94± 0.50

:::::::::::
20.90± 0.31

:
0.88± 0.49

:::::::::::
0.75± 0.12

100 270.82± 4.04
:::::::::::
273.64± 3.41

:
6.17± 0.19

::::::::::
6.26± 0.08

:
21.53± 0.75

:::::::::::
21.38± 0.46

:
0.75± 0.38

:::::::::::
0.79± 0.24

Table 3: Black-box kernel ridge regression HF function values (mean
± std) for FS-SSD, HF-SSD, VR-SSD, and BF-SSD at various com-
binations of ℓ and c at N = 50, 000. Considering uncertainties, the
minimum values in each row are highlighted in bold.

4.2.2 Black-box Adversarial Attack on MNIST

In practice, especially in explainable AI (XAI), researchers have found that many deep learning models are
not robust to data noise. Specifically, if test data is contaminated by a small perturbation imperceptible to
humans, many previously well-performing deep learning models fail to produce reasonable results (Goodfellow
et al., 2014). Generating such biased noise to confuse a trained neural network model is usually referred to
as “attack” in adversarially robust training. This need not be a “black hat” activity, as it can be used as
part of hardening a system to prevent these attacks in the future.

There are primarily two types of attacks: one is a white-box attack, in which we have knowledge of the model
and inject the adversarial noise to confuse the given model. The standard approach under this scenario is
to generate the shift in pixel space based on the gradient of the objective function to maximize the loss.
The other type of attack is called a black-box attack, in which one does not have knowledge of the trained
model and would like to generate adversarial data from it. The black-box scenario is more difficult due to
the missing knowledge, and one way to solve it is to treat this problem as a black box optimization. To
generate an adversarial sample for a given data instance x† ∈ RD, with D representing the number of pixels
in the given image, a common formulation of the adversarial attack is to find a noise sample x∗ solving

x∗ = argmax
∥x∥≤ε

L
(
g(x + x†), y†) , (4.3)

where y† is the correct label of x†, L is the attack loss function, and g represents the model for attack.
Following the adversarial attack paradigm of Carlini & Wagner (2017) and its black-box extension (Chen
et al., 2017), we use a soft version of the problem (4.3) as follows:

x∗ = arg min
x

−CE
(
g(x + x†), y†)+ τ̃∥x∥2,

where the cross entropy loss CE is assigned as the attack loss and g(·) outputs the probabilities of different
classes, usually using a softmax function for normalization. τ̃ is a variable balancing the attack loss function
CE and the attack norm. The optimization goal is to find a small shift x in pixel space so that the output
results are greatly changed.

In this study, we utilized two convolutional neural network (CNN) architectures to model the HF and LF
representations for classification tasks on the MNIST dataset with 60,000 training data and 10,000 testing
data. The HF model was a deeper CNN consisting of two convolutional layers, the first with 32 filters and
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the second with 64 filters, both using 5 × 5 kernels, followed by ReLU activations and 2 × 2 max-pooling.
The flattened output from the convolutional layers (7 × 7 × 64) was connected to a fully connected layer
with 1024 neurons, followed by a 10-class output layer. In contrast, the LF model employed a simplified
architecture with a single convolutional layer containing 2 filters and a 3 × 3 kernel, followed by ReLU
activation and 2 × 2 max-pooling. The output (13 × 13 × 2) was flattened and passed through a fully
connected layer with 16 neurons, leading to a 10-class output layer with log-softmax activation. The HF
model was designed to provide high-capacity representations, while the LF model served as a lightweight
alternative for computational efficiency. The LF model was trained using knowledge distillation (Hinton
et al., 2014), leveraging only 1000 training samples and 1000 evaluations of the HF function. Knowledge
distillation is a technique where a smaller, simpler model (the student) learns to replicate the outputs of a
larger, more complex model (the teacher), effectively transferring knowledge while reducing computational
costs. The classification accuracy for the HF and LF CNNs are 99.02% and 82.21%, respectively. There
are 27,562 parameters for the LF CNN and 3,274,634 parameters for the HF CNN. We estimate the ratio
between HF and LF computational costs as 3274634/27562 ≈ 118.8. The images in MNIST dataset are
28 × 28 with a single channel, hence the dimension is D = 784. The starting points are initialized as the
origin point for all experiments.
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Figure 6: Optimization performances according to different attack
targets. The images and their attack noises are presented in Figure 7.

Figure 6 illustrates the convergence of various zeroth-order methods on two test images. For the SSD methods
(including the line search version), the parameters are set to ℓ = 50 and αmax = 2.0. Since BF-SSD uses
1,000 HF evaluations for knowledge distillation training, it begins at N = 1,000. The convergence results
demonstrate that HF-SSD outperforms other methods in this task. Additionally, HF-SSD, BF-SSD, and
SPSA exhibit clear advantages over other methods, underscoring the importance of tuning suitable step
sizes for the optimization process.

In Figure 7, we present the adversarially attacked test images generated by different optimization approaches
for N = 2,000, 5,000, and 7,000. For the first test image (a-f), only HF-SSD, BF-SSD, and SPSA successfully
flip the output of the HF model under limited HF evaluations (N ≤ 7,000). Similarly, for the second test
image (g-l), HF-SSD, BF-SSD, SPSA, and VR-SSD succeed in flipping the HF model output. However, in
both cases, we observe that HF-SSD (Figure 7c and Figure 7i) and BF-SSD (Figure 7d and Figure 7j) tend
to blur the images more than SPSA (Figure 7b and Figure 7h). This behavior may result from differences in
sampling strategies, such as Haar measure sampling versus Hadamard sampling. From an adversarial attack
perspective, a successful attack should flip the model’s output without excessively blurring the image. In
this regard, SPSA outperforms HF-SSD and BF-SSD, although its loss function remains higher than that
of the other methods. The reason for this observation requires further investigationbut ,

::::
but

::
it is out of the

scope of this work.
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Figure 7: Adversarial examples for MNIST sample #8 (top two rows)
and MNIST sample #18 (bottom two rows) using different methods
at N = 2,000, 5,000, and 7,000.

4.2.3 Soft Prompting Black-box Language Model

Fine-tuning pre-trained models like BERT or GPT has become a cornerstone of modern natural language
processing (NLP). These models, trained on massive corpora, achieve state-of-the-art performance across
a wide range of downstream tasks when adapted using task-specific fine-tuning. However, traditional fine-
tuning involves updating millions or even billions of parameters, making it computationally expensive and
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prone to overfitting, especially in low-resource settings. To address these challenges, soft prompting has
emerged as a lightweight and efficient alternative. Instead of modifying the model’s internal parameters,
soft prompting introduces learnable embeddings (soft prompts) that are prepended to the input sequence,
enabling task adaptation with minimal computational cost. This approach is particularly appealing for tasks
requiring minimal intervention in the model’s architecture while leveraging its pre-trained knowledge.

Despite the efficiency of soft prompting, its practical applicability faces challenges when dealing with black-
box models where gradients with respect to the model parameters are inaccessible. For instance, many com-
mercial APIs or proprietary models only provide access to predictions or loss values, making gradient-based
optimization infeasible. In such scenarios, zeroth-order optimization becomes a crucial tool. Specifically,
in this section, we consider a black-box, pre-trained language classifier fc : RLt×768 → [0, 1], a pre-trained
tokenizer ft : str → RLt×768, where str is any string of arbitrary length, and the sequence length Lt is
a positive integer up to 512 representing the length of the embedding. The goal is to find a soft prompt
x∗ ∈ R768 such that

x∗ = arg min
x

E(z,y)
[
CE(fc(cat[x, ft(z)]), y)

]
, (4.4)

where CE(·, ·) is the cross-entropy loss function, and the dataset (z, y) ∈ str × {0, 1}. This particular
formulation addresses a binary sentiment analysis task where a given string is classified as expressing a
positive (1) or negative (0) sentiment. Since the classifier fc is pre-trained and treated as a black box,
gradient information for the loss function is unavailable, necessitating the use of zeroth-order optimization
to solve the problem.

For the pre-trained classifier and tokenizer, we employed the BERT model, a state-of-the-art transformer-
based architecture trained on large corpora. Specifically, we focused on a simplified version of BERT, named
DistilBERT. Sentiment analysis on the aclImdb dataset was used as a soft prompting task. This dataset
comprises movie reviews categorized into positive and negative sentiments, forming a binary classification
problem. A D = 768 dimension soft prompt x is considered as the input. The transformer’s parameters were
kept frozen to focus optimization on the soft prompt, reducing the degrees of freedom and computational
overhead. For computational convenience, we focus on small-scale

::::
small

:::::
scale

:
in this example. The HF model,

as described in Equation (4.4), was evaluated using 10 samples from aclImdb to approximate the expectation,
while the LF model leveraged only 2 samples that were randomly selected from them. Consequently, the
evaluation cost ratio between HF and LF was 5:1.

We set the initial starting point at the origin. We let ℓ = 50, c = 0.99, and for the methods without line
search we chose a fixed step size of 1× 10−2. The y-axis in the following figure represents the average cross
entropy

::::::::::::
cross-entropy

:
loss. Figure 8 illustrates the performances of different competing methods with the

BF-SSD demonstrating notable advantages.

5 Conclusion

In this work, we proposed and analyzed a bi-fidelity line search scheme designed to accelerate the convergence
of zeroth-order optimization algorithms. By constructing a surrogate model using both computationally
expensive high-fidelity (HF) and inexpensive low-fidelity (LF) objective function evaluations, our approach
enables an efficient backtracking line search on the surrogate to determine suitable step sizes. This method
significantly reduces the reliance on costly HF evaluations, a common bottleneck in zeroth-order methods. We
established theoretical convergence guarantees for this scheme under standard assumptions and subsequently
integrated it into the stochastic subspace descent framework, yielding the Bi-Fidelity Stochastic Subspace
Descent (BF-SSD) algorithm.

The practical efficacy of BF-SSD was demonstrated through comprehensive experiments across diverse ap-
plications, including a synthetic optimization benchmark, dual-form kernel ridge regression, black-box ad-
versarial attacks, and the fine-tuning of transformer-based language models. Across these tasks, BF-SSD
consistently outperformed relevant baseline methods, including standard gradient descent, coordinate de-
scent, SPSA, and a purely high-fidelity SSD variant, particularly when comparing solution quality achieved
for a given budget of HF evaluations.
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Figure 8: Average cross entropy loss for various zeroth-order optimiz-
ers. The BF-SSD method achieves competitive performance while
requiring substantially fewer expensive HF function evaluations.

These findings underscore the potential of leveraging bi-fidelity information within stochastic subspace meth-
ods to effectively address large-scale, high-dimensional optimization problems where function evaluations are
expensive. While the current analysis focuses on deterministic subspace steps, future work could extend the
theoretical guarantees to encompass the stochastic nature of gradient estimation within the SSD frame-
work. Overall, BF-SSD presents a promising and computationally efficient optimization tool for a variety of
challenging real-world applications.
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A Proof of Lemma 2.7

Proof. We let nk evaluations positioned at equispaced points between xk and xk +αmaxvk, each sub-interval
has length αmax/nk. We also define ψk(α) := φ(α) − fLF(x + αvk). For each sub-interval, we define the
surrogate ψ̃k(α;nk) as a linear function connecting these values.

WLOG, we prove the bound in Equation (2.4) holds in the interval α ∈ [0, h] with h = αmax/nk and this
result can be extended to other sub-intervals. The surrogate ψ(α) is defined as

ψ̃k(α;nk) := h− α
h

ψ(0) + α

h
ψ(h), α ∈ [0, h],

and similar definitions of ψ̃k(α;nk) hold when α in other sub-intervals. Such linear approximation ψ̃k(α)
satisfies

|φ(α)− φ̃k(α;nk)| = |ψ(α)− ψ̃k(α;nk)| =
∣∣∣∣h− αh (ψ(0)− ψ(α)) + α

h
(ψ(h)− ψ(α))

∣∣∣∣, (A.1)

for any α ∈ [0, h]. Since the Lipschitz constant of ψ(α) is strictly controlled by W and the fact that vk is a
unit vector, Equation (A.1) satisfies

|φ(α)− φ̃k(α;nk)| ≤W αmax/nk − α
αmax/nk

(α− 0) +W
α

αmax/nk
(αmax/nk − α) ≤ Wαmax

2nk
, ∀α ∈ [0, h].

Since we have
nk ≥

WL(1 + c)αmax

cβ∥vk∥2 ,

the sup-norm is bounded as

|φ(α)− φ̃k(α;nk)| ≤ cβ∥vk∥2

2(1 + c)L = ∥vk∥2

2 min
{

c

(1 + c)2L
,

cβ

(1 + c)L, βαmax

}
,

where the last equality stems from the fact that β ≤ 1/2 and αmax ≥ c/(cL+ L).

B Single-fidelity SSD with Line Search

B.1 Assuming Strong-convexity

Assumption B.1. Assume the objective function fHF and algorithm satisfies the following conditions

1. Pk ∈ RD×ℓ are independent random matrices such that E[PkP T
k ] = Id and P T

k Pk = (D/ℓ)Iℓ with
D > ℓ;

2. Objective function fHF : RD → R attains its minimum f∗ and ∇fHF is L-Lipschitz continuous;

3. Objective function fHF : RD → R is γ-strongly convex; note γ ≤ L.

Theorem B.2. (Single fidelity) With the assumptions of B.1, SSD with line search (either exact line search
or backtracking) converges in the sense that f(xk) a.s.→ f∗ and f(xk) L1

→ f∗.

::
In

::::::::::
particular,

E[f(xk+1)]− f∗ ≤ ωk+1(f(
:::::::::::::::::::::::

x0)− f∗),
:::::::

::
for

:::::::::
ω ∈ (0, 1)

::::::
where

:

ω =
:::


1− γℓ

DL
::::::

exact line search
::::::::::::::

1−min
::::::

{
2γβ
:::

αmax,
2ℓcγβ

DL
:::::

}
backtracking.
:::::::::::
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Proof. Define the filtration Fk := σ(P1, . . . ,Pk−1) and F1 = {∅,ΩP }, with ΩP as the sample space. By
Lipschitz continuity, we have

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + L

2 ∥xk+1 − xk∥2. (B.1)

By defining fe(x) := f(x)− f∗ and plugging xk+1 = xk − αkPkP T
k ∇f(xk), Equation (B.1) yields

fe(xk+1)− fe(xk) ≤ −αk⟨∇f(xk),PkP T
k ∇f(xk)⟩+ α2

kL

2 ⟨PkP T
k ∇f(xk),PkP T

k ∇f(xk)⟩

= −αk⟨∇f(xk),PkP T
k ∇f(xk)⟩+ Dα2

kL

2ℓ ⟨∇f(xk),PkP T
k ∇f(xk)⟩

=
(
−αk + Dα2

kL

2ℓ

)
⟨∇f(xk),PkP T

k ∇f(xk)⟩,

(B.2)

where the fact PkP T
k PkP T

k = (D/ℓ)PkP T
k is applied. We have two line search approaches to determine the

step size αk,

1. Exact line search:
αk = arg min

α
f(xk − αPkP T

k ∇f(xk)); (B.3)

2. Backtracking: for some fixed αmax > 0, β ∈ (0, ℓ/2d), and c ∈ (0, 1),

αk = max
m∈N

cmαmax

s.t. f(xk − cmαmaxPkP T
k ∇f(xk)) ≤ f(xk)− βcmαmax∥PkP T

k ∇f(xk)∥2.
(B.4)

We will prove the convergence for two line search methods separately. All the following analyses hold for
any Pk satisfying Assumption B.1.

Exact line search According to Equation (B.3), the exact line search method can find the optimal αk

such that the quadratic term in Equation (B.2) yields −αk +Dα2
kL/2ℓ ≤ −ℓ/(2dL) for any Pk, thereby

fe(xk+1)− fe(xk) ≤ − ℓ

2dL ⟨∇f(xk),PkP T
k ∇f(xk)⟩ ∀Pk.

With condition on the current filtration Fk, the conditional expectation on both sides turn to

E[fe(xk+1)|Fk] ≤ − ℓ

2dLE
[
⟨∇f(xk),PkP T

k ∇f(xk)⟩|Fk

]
+ fe(xk)

= − ℓ

2dL∥∇f(xk)∥2 + fe(xk),
(B.5)

where the equality is from the fact E[PkP T
k |Fk] = Id. By invoking the Polyak-Lojasiewicz inequality,

E[fe(xk+1)|Fk] ≤ − γℓ

DL
fe(xk) + fe(xk) =

(
1− γℓ

DL

)
fe(xk). (B.6)

Recursive application yields

E[fe(xk+1)|Fk] ≤
(

1− γℓ

DL

)
fe(xk) =

(
1− γℓ

DL

)
E[fe(xk)|Fk−1] ≤

(
1− γℓ

DL

)k+1
E[fe(x0)]. (B.7)

Since ℓ ≤ D and γ ≤ L, the term 1− γℓ/DL is less than 1. Equation (B.7) implies

E [f(xk+1)]− f∗ ≤
(

1− γℓ

DL

)k+1
E[(f(x0)− f∗)] =

(
1− γℓ

DL

)k+1
(f(x0)− f∗),

which proves f(xk) a.s.→ f∗ and f(xk) L1

→ f∗.
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Backtracking (Showing the existence of a feasible set such that the Armijo condition is satisfied.) Follow-
ing Equation (B.4), the backtracking method selects the maximal possible step size value that satisfies the
Armijo condition with specified parameter β ≤ ℓ/2d and shrinking parameter c < 1. When 0 ≤ αk ≤ ℓ/DL,
−αk + Dα2

kL/2ℓ ≤ −αk/2 holds with Haar measure probability one, which implies the following Armijo
stopping condition

f(xk+1) ≤ f(xk)− αk⟨∇f(xk),PkP T
k ∇f(xk)⟩+ Dα2

kL

2ℓ ⟨∇f(xk),PkP T
k ∇f(xk)⟩

≤ f(xk)− αk

2 ⟨∇f(xk),PkP T
k ∇f(xk)⟩

= f(xk)− αkℓ

2d ∥PkP T
k ∇f(xk)∥2

≤ f(xk)− βαk∥PkP T
k ∇f(xk)∥2.

Therefore, the backtracking terminates when αk = αmax or αk ≥ ℓc/DL, which implies

fe(xk+1) ≤ fe(xk)− βαmax⟨∇f(xk),PkP T
k ∇f(xk)⟩, (B.8)

or
fe(xk+1) ≤ fe(xk)− ℓcβ

DL
⟨∇f(xk),PkP T

k ∇f(xk)⟩. (B.9)

Similar with Equation (B.5), by combining Equations (B.8) and (B.9), and taking expectations conditioned
on the filtration Fk, we have

E[fe(xk+1)|Fk] ≤ −min
{
βαmax,

ℓcβ

DL

}
E
[
⟨∇f(xk),PkP T

k ∇f(xk)⟩|Fk

]
+ fe(xk)

= −min
{
βαmax,

ℓcβ

DL

}
∥∇f(xk)∥2 + fe(xk).

(B.10)

Similar to Equation (B.6), by invoking the Polyak-Lojasiewicz inequality,

E[fe(xk+1)|Fk] ≤ −min
{

2γβαmax,
2ℓcγβ
DL

}
fe(xk) + fe(x) =

(
1−min

{
2γβαmax,

2ℓcγβ
DL

})
fe(xk).

(B.11)
By recursively implementing Equation (B.11), we have

E[fe(xk+1)] ≤
(

1−min
{

2γβαmax,
2ℓcγβ
DL

})k+1
fe(x0).

Since 0 < c < 0, 0 < γ ≤ L, 0 < ℓ ≤ D, and 0 < β < 0.5, the term 0 < (1−min{2γβ, 2ℓcγβ/DL}) < 1, the
convergences f(xk) a.s.→ f∗ and f(xk) L1

→ f∗ are guaranteed.

B.2 Assuming Convexity

Assumption B.3. For the non-strongly convex objective function fHF and the algorithm, we make the
following assumptions

1. Pk ∈ RD×ℓ are independent random matrices such that E[PkP T
k ] = Id and P T

k Pk = (D/ℓ)Iℓ with
D > ℓ;

2. Objective function fHF : RD → R is convex and ∇fHF is L-Lipschitz continuous;

3. The function fHF attains its minimum(s) f∗ at x∗ so that there exists a known R satisfying
maxx,x∗{∥x− x∗∥ : fHF(x) ≤ fHF(x0)} ≤ R;

Given the above convex-but-not-strongly-convex assumption, we have the following L1 convergence result:
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Theorem B.4. With backtracking implemented for line search, we have

E[f(xk)]− f∗ ≤ max
{

2R2

kβαmax
,

2dLR2

kℓcβ

}
.

Proof. We use the same notation as in the proof of Thm. B.2. Starting from Equation (B.10), we have

E[fe(xk+1)|Fk] = −min
{
βαmax,

ℓcβ

DL

}
∥∇f(xk)∥2 + fe(xk).

By convexity and the Cauchy-Schwartz inequality, ∥∇f(xk)∥ ≥ fe(xk)/R. With the fact that Efe(xk+1) ≤
Efe(xk), we have

Efe(xk+1)− fe(xk) ≤ −min
{
βαmax,

ℓcβ

DL

}
Ef2

e (xk)
2R2

≤ −min
{
βαmax,

ℓcβ

DL

}
E2fe(xk)

2R2

≤ −min
{
βαmax,

ℓcβ

DL

}
Efe(xk+1)Efe(xk)

2R2 ,

which further implies
1

Efe(xk+1) ≥
1

Efe(xk) + 2R2 min
{
βαmax,

ℓcβ

DL

}
. (B.12)

Applying (B.12) recursively, we obtain

Efe(xk+1) ≤
(

min
{
βαmax,

ℓcβ

DL

})−1 2R2

k
= max

{
2R2

kβαmax
,

2dLR2

kℓcβ

}
.

B.3 No convexity assumptions

Assumption B.5. We make the following assumptions:

1. Pk ∈ RD×ℓ are independent random matrices such that E[PkP T
k ] = Id and P T

k Pk = (D/ℓ)Iℓ with
D > ℓ;

2. The objective function fHF : RD → R (or fHF) attains its minimum f∗ and ∇fHF is L-Lipschitz
continuous;

When Assumption B.5 holds, we have the following L2 convergence of the gradient norm result for SSD with
line search:
Theorem B.6 (Same as Theorem 3.1). With Assumption B.5 holding and backtracking implemented for
line search, we have

min
k∈{0,...,K}

E[∥∇f(xk)∥2] ≤ max
{

(f(x0)− f∗)
(K + 1)βαmax

,
DL(f(x0)− f∗)

(K + 1)ℓcβ

}
.

That is, k = O(1/(ϵβαmax) +DL/(ϵℓcβ)) iterations are required to achieve E∥∇f(xk)∥2 ≤ ϵ.

Proof. Following Equation (B.10)

min
{
βαmax,

ℓcβ

DL

}
∥∇f(xk)∥2 ≤ fe(xk)− E[fe(xk+1)|Fk],
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which leads to the telescope series

min
{
βαmax,

ℓcβ

DL

} K∑
k=0
∥∇f(xk)∥2 ≤

K∑
k=0

(fe(xk)− E[fe(xk+1)|Fk])

= f(x0)− Ef(xK+1) ≤ f(x0)− f∗.

Therefore,

(K + 1) min
k∈{0,...,K}

E∥∇f(xk)∥2 ≤
(

min
{
βαmax,

ℓcβ

DL

})−1
(f(x0)− f∗)

= max
{

(f(x0)− f∗)
βαmax

,
DL(f(x0)− f∗)

ℓcβ

}
.

A sufficient condition to let E∥∇f(xk)∥2 be ϵ-small is to let

k ≥ max
{

(f(x0)− f∗)
ϵβαmax

,
DL(f(x0)− f∗)

ϵℓcβ

}
.

C Worst Function in the World: Additional Data

c = 0.8 c = 0.9 c = 0.99
Method ℓ = 5 ℓ = 10 ℓ = 20 ℓ = 5 ℓ = 10 ℓ = 20 ℓ = 5 ℓ = 10 ℓ = 20
GD 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026 0.9026
CD 0.8984 0.8984 0.8984 0.8984 0.8984 0.8984 0.8984 0.8984 0.8984
FS-SSD 2.4495 2.4194 2.3611 2.4495 2.4196 2.3619 2.4497 2.4194 2.3622
SPSA 0.7713 0.7756 0.7502 0.6245 0.4623 0.5549 0.6046 0.6721 0.7006
GS 2.4598 2.4442 2.4129 2.4597 2.4447 2.4144 2.4596 2.4445 2.4150
HF-SSD 0.3620 0.2511 0.2194 0.8667 0.5109 0.3337 3.4582 1.7191 1.0331
BF-SSD 0.3177 0.2947 0.2932 0.2686 0.2526 0.2497 0.2316 0.2104 0.1984
VR-SSD 0.9885 0.9374 0.9178 0.9881 0.9464 0.9154 0.9925 0.9395 0.9121

Table 4: Performance values for different optimization methods across
various c and ℓ combinations at N = 5,000. The minimum value in
each row is highlighted in bold.

28


	Introduction
	Related Work
	Contributions

	Line Search on Bi-fidelity Surrogate
	Algorithm
	Convergence Results
	Proof of Theorem 2.4
	Examples of Possible Low-Fidelity Functions

	Bi-Fidelity Line Search with Stochastic Subspace Descent
	Empirical Experiments
	Synthetic Problem: Worst Function in the World
	Zeroth-Order Optimization for Machine Learning Problems
	Dual Form of Kernel Ridge Regression
	Black-box Adversarial Attack on MNIST
	Soft Prompting Black-box Language Model


	Conclusion
	Proof of Lemma 2.7
	Single-fidelity SSD with Line Search
	Assuming Strong-convexity
	Assuming Convexity
	No convexity assumptions

	Worst Function in the World: Additional Data

