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Abstract

Token-based text-to-speech (TTS) models001
have emerged as a promising avenue for002
generating natural and realistic speech, yet003
they grapple with low pronunciation accu-004
racy, speaking style and timbre inconsis-005
tency, and a substantial need for diverse006
training data. In response, we introduce007
a novel hierarchical acoustic modeling ap-008
proach complemented by a tailored data009
augmentation strategy and train it on the010
combination of real and synthetic data, scal-011
ing the data size up to 650k hours, leading012
to the zero-shot TTS model with 0.8B pa-013
rameters. Specifically, our method incorpo-014
rates a latent variable sequence containing015
supplementary acoustic information based016
on refined self-supervised learning (SSL)017
discrete units into the TTS model by a pre-018
dictor. This significantly mitigates pronun-019
ciation errors and style mutations in synthe-020
sized speech. During training, we strategi-021
cally replace and duplicate segments of the022
data to enhance timbre uniformity. More-023
over, a pretrained few-shot voice conversion024
model is utilized to generate a plethora of025
voices with identical content yet varied tim-026
bres. This facilitates the explicit learning027
of utterance-level one-to-many mappings,028
enriching speech diversity and also ensuring029
consistency in timbre. Comparative experi-030
ments1 demonstrate our model’s superior-031
ity over VALL-E in pronunciation precision032
and maintaining speaking style, as well as033
timbre continuity.034

1 Introduction035

In the last decade, significant strides (Good-036

fellow et al., 2014; Kingma and Welling, 2014;037

Van Den Oord et al., 2017; Dinh et al., 2015;038

Vaswani et al., 2017; Ho et al., 2020) have039

1Demo page: https://anonymous.4open.sci-
ence/w/ham-tts/

been made in the advancement of deep learn- 040

ing and neural network technologies, enabling 041

the text-to-speech (TTS) to evolve from the cas- 042

cade manner of acoustic models (Wang et al., 043

2017; Li et al., 2019; Kim et al., 2020; Popov 044

et al., 2021) and vocoders (van den Oord et al., 045

2016; Kong et al., 2020; Wang et al., 2022; 046

Kong et al., 2021) to the fully end-to-end (E2E) 047

style (Ren et al., 2021; Kim et al., 2021; Wang 048

et al., 2023a; Jiang et al., 2023; Tan et al., 049

2021). These methods are not only capable 050

of rapidly generating high-quality speech, but 051

also adept at synthesizing more challenging 052

vocal expressions such as singing (Lu et al., 053

2020; Wang et al., 2023b,d). However, most 054

TTS systems utilize continuous acoustic fea- 055

tures such as MFCC in the frequency domain 056

as intermediate representations for modeling, 057

hindering from generating high-quality speech 058

in the zero-shot scenario of timbre due to their 059

mixture of semantic and acoustic information 060

and difficulty of disentanglement (Zhang et al., 061

2023; Yang et al., 2023b). 062

Recently, token-based TTS (Borsos et al., 063

2022; Wang et al., 2023a; Yang et al., 2023a; 064

Shen et al., 2023; Wang et al., 2023c; Song 065

et al., 2024) methods have attracted extensive 066

attention from both academia and industry due 067

to their potential for synthesizing high-quality 068

speech in the zero-shot scenario. Among these, 069

the neural audio codec (Zeghidour et al., 2021; 070

Défossez et al., 2022; Yang et al., 2023b) has 071

demonstrated immense potential to serve as 072

the intermediate representation for TTS mod- 073

eling. For example, VALL-E (Wang et al., 074

2023a) utilizes a large language model (Rad- 075

ford et al., 2019; Brown et al., 2020; Touvron 076

et al., 2023a,b) to approximate the distribution 077

of neural audio codecs (Défossez et al., 2022) 078

and can synthesize speech that closely mimics a 079

target speaker’s voice from a mere three-second 080
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sample. However, despite their promising ca-081

pabilities, we observe that these models often082

struggle with maintaining accurate pronunci-083

ation and consistent speaking style as well as084

timbre in synthesized speech. Additionally, the085

substantial requirement for large and diverse086

training data further limits their widespread087

adoption.088

To tackle these issues, we proposed a089

Hierarchical Acoustic Modeling method,090

namely HAM-TTS, with a tailored data aug-091

mentation strategy for the token-based TTS092

model (Borsos et al., 2022; Wang et al., 2023a;093

Yang et al., 2023a). Specifically, in order to094

alleviate the difficulty of directly modeling the095

mapping from text to neural audio codec in096

previous studies, we incorporate a latent vari-097

able sequence (LVS) containing supplementary098

acoustic information based on HuBERT (Hsu099

et al., 2021) features into the TTS model. A100

Text-to-LVS predictor is optimized simultane-101

ously with TTS model. In the inference stage,102

the text prompt is converted to the LVS by103

the predictor to provide imperative acoustic104

information to mitigate pronunciation errors.105

Unfortunately, generating LVS based on sim-106

ple HuBERT features cannot revise the issue107

of inconsistency of speaking style in the syn-108

thesized speech due to the personalized infor-109

mation contained in HuBERT features, which110

is a distractor to the audio prompt. Therefore,111

we applied the K-Means (Ahmed et al., 2020)112

clustering method to refine HuBERT features113

for removing personalized information such as114

speaking styles, enabling the TTS model to115

make use of the remaining acoustic informa-116

tion to improve pronunciation accuracy while117

maintaining consistent speaking style with the118

audio prompt throughout the entire synthe-119

sized speech.120

Timbre inconsistency is another serious prob-121

lem for token-based TTS systems (Borsos et al.,122

2022). We designed a timbre consistency data123

augmentation strategy to train the proposed124

HAM-TTS system to revise it. Concretely, we125

randomly replace a successive segment of a126

training sample with a small chunk selected127

from other training utterances or duplicate a128

successive segment of a training sample while129

forcing the model to predict the original utter-130

ance. It enhances the timbre consistency of the131

synthesized speech in the zero-shot scenario.132

As illustrated in (Borsos et al., 2022; Wang 133

et al., 2023a; Shen et al., 2023), token-based 134

TTS methods require extensive training data 135

to assign the model the ability to synthesize 136

diverse and high-quality speech. In this paper, 137

instead of solely using substantial real speech 138

data for training, we utilized a pretrained UNet- 139

based (Ronneberger et al., 2015) few-shot voice 140

conversion model to generate voices with the 141

same content but different timbres as a sup- 142

plementary dataset, enabling the model to ex- 143

plicitly learn one-to-many mapping knowledge, 144

which is beneficial to improve the diversity of 145

generated speech and the timbre consistency. 146

We trained many models with different con- 147

figurations on a large-scale internal Chinese 148

dataset and evaluated them on the public 149

AISHELL1 dataset (Bu et al., 2017). We rigor- 150

ously compared HAM-TTS against the state-of- 151

the-art (SOTA) VALL-E model, which served 152

as our baseline. The results of these exper- 153

iments, conducted on a substantial dataset, 154

clearly establish the advantages of our approach 155

over the baseline model, demonstrating the en- 156

hanced capabilities of HAM-TTS, particularly 157

in terms of pronunciation accuracy, speaking 158

style consistency, and timbre continuity in chal- 159

lenging zero-shot scenarios. 160

This paper is structured to provide a compre- 161

hensive overview of our research and findings. 162

Following this introduction, some related works 163

are introduced in Section 2. We delve into the 164

specifics of our hierarchical acoustic modeling 165

method in Section 3. We then present the 166

experimental setup and results, offering a com- 167

parative analysis with current benchmarks in 168

Section 4. The paper concludes with a sum- 169

mary of our contributions and a discussion on 170

future research directions in Section 5. 171

2 Related Works 172

Although there are many studies (Tokuda et al., 173

2013; Li and Zen, 2016; Wang et al., 2017; 174

Li et al., 2019; Ren et al., 2021; Kim et al., 175

2021; Wang et al., 2023a) focusing on TTS, 176

in this section, we only briefly review some 177

representative works about neural audio codecs 178

and speech generative models based on them 179

for a closer connection to our work. 180
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2.1 Neural Audio Codec181

Recent advancements in neural audio codecs,182

as illustrated in (Zeghidour et al., 2021; Dé-183

fossez et al., 2022; Yang et al., 2023b), have184

significantly enhanced the field of speech syn-185

thesis. These studies collectively highlight the186

efficiency of neural codecs in encoding and de-187

coding audio data, offering a more compact and188

flexible representation compared to traditional189

methods.190

Soundstream (Zeghidour et al., 2021) intro-191

duces a novel end-to-end neural audio codec192

framework, demonstrating effective compres-193

sion of audio signals into a discrete latent space194

by residual vector quantization. This advance-195

ment facilitates the generation of high-quality196

audio from compact representations, highlight-197

ing the codec’s versatility in various audio ap-198

plications.199

Encodec (Défossez et al., 2022) further ex-200

plores this domain, emphasizing the codec’s201

role in efficiently compressing audio data while202

maintaining quality. Its approach showcases203

the potential of neural codecs in handling com-204

plex audio tasks with reduced data require-205

ments, a crucial factor in resource-constrained206

environments.207

In our research, these insights into neural208

audio codecs lay the foundation for developing209

a robust and efficient token-based TTS model.210

The enhanced fidelity and efficiency of neural211

codecs directly inform our approach, enabling212

us to achieve superior speech synthesis quality,213

particularly in zero-shot scenarios.214

2.2 Token-based Speech Generation215

Model216

More and more studies (Borsos et al., 2022;217

Wang et al., 2023a; Shen et al., 2023; Wang218

et al., 2023c; Song et al., 2024) are beginning to219

try to use neural audio codecs as intermediate220

representations for speech generation. These221

approaches highlight the growing consensus in222

the field regarding the effectiveness of neural223

codecs in handling complex tasks.224

AudioLM (Borsos et al., 2022) represents225

a significant leap in audio generation by em-226

ploying a language modeling approach. It par-227

ticularly stands out for its ability to generate228

coherent and contextually appropriate speech,229

attributed to its advanced use of latent vectors230

conditioned on inputs. This model demon- 231

strates how the integration of neural codecs 232

(Zeghidour et al., 2021) can facilitate the pro- 233

duction of diverse and high-quality speech. 234

VALL-E (Wang et al., 2023a), on the other 235

hand, capitalizes on the neural codec’s ability 236

(Défossez et al., 2022) to approximate large lan- 237

guage models, enabling the synthesis of speech 238

that closely mimics a target speaker’s voice 239

from a minimal sample. 240

NaturalSpeech2 (Shen et al., 2023) takes 241

these concepts further by integrating a neu- 242

ral audio codec with additional components 243

such as the diffusion model. Its emphasis on 244

zero-shot synthesis capabilities and prosody 245

highlights the model’s robustness and versatil- 246

ity, particularly in generating diverse speech 247

styles and maintaining voice quality across var- 248

ious scenarios. 249

These studies collectively underscore the im- 250

portance of neural codecs in speech generation 251

and pave the way for our research. In our 252

work, we build upon these foundations and 253

propose a novel hierarchical acoustic modeling 254

approach to enhance pronunciation accuracy 255

and speaking style consistency while utilizing 256

a data augmentation strategy and synthetic 257

data to emphasize the timbre consistency and 258

diversity of generated voices. 259

3 HAM-TTS 260

The introduction of the HAM-TTS model is 261

presented in this section. As depicted in Figure 262

1, in addition to the phoneme conversion and 263

audio codec encoder components originating 264

from the existing TTS model like VALL-E, we 265

design a predictor to directly transform the text 266

prompt to the latent variable sequence (LVS) 267

to incorporate supplementary acoustic infor- 268

mation into the neural codec language model 269

in the inference stage. The predictor is jointly 270

optimized with the TTS model in the train- 271

ing stage via the supervising signal from the 272

output of the Text-HuBERT aligner, which uti- 273

lizes the cross-attention mechanism (Li et al., 274

2023) to align the phoneme sequence and the 275

HuBERT features refined by K-Means cluster- 276

ing to generate the LVS. Detailed designs of 277

the Text-HuBERT aligner and the Text-to-LVS 278

predictor are presented in Section 3.1. The tim- 279

bre consistency data augmentation strategy is 280
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Neural Codec Language Model

Audio Codec Decoder

Waveform

L1

Phoneme Conversion

Text Prompt

Audio Codec Encoder

Audio Prompt

Text-HuBERT
Aligner

HuBERT

Text-to-LVS
Predictor

Phoneme
Latent Variable
Audio Codec
Only training

Training and inference
Only inference

k-means

Figure 1: Overview of HAM-TTS. Although it builds upon VALL-E, its design including Text-HuBERT
aligner and Text-to-LVS is applicable across various token-based TTS models. To enhance the ability
of HAM-TTS to process semantic information, we also let codec language models predict the phoneme
sequence based on the input text in the training stage.

Conv1D+ReLU

RMSNorm+DP

Conv1D+ReLU

RMSNorm+DP

Linear

Phoneme

LVS

Figure 2: Structure of Text-to-LVS predictor. “DP”
means dropout (Srivastava et al., 2014) operation.
It learns the mapping from the text prompt to the
LVS in the training stage. Once the training is
complete, it can generate the LVS from the text
prompt directly in the inference stage.

another important contribution of our work for281

revising the issue of timbre inconsistency in282

synthesized speech. It is concretely illustrated283

in Section 3.2. Finally, the supplementary syn-284

thetic dataset generated by the pretrained few-285

shot voice conversion model is elaborated in286

Section 3.3. Detailed configurations for models287

used in our experiment will be illustrated in288

Appendix A.1.289

3.1 Hierarchical Acoustic Modeling290

We observed that previous studies like Audi-291

oLM (Borsos et al., 2022) and VALL-E (Wang292

et al., 2023a) occasionally produced speech293

with incorrect pronunciation. This was largely294

due to the limitations in directly mapping text295

to a neural audio codec sequence without ad-296

equate acoustic information. To address this,297

the Text-to-LVS predictor shown in Figure 2298

is proposed to generate the latent variable se-299

quence containing the imperative acoustic in- 300

formation from the phoneme sequence in the 301

inference stage, which can be formulated as, 302

L′
1:T1

= fpred(X1:T1), (1) 303

where X1:T1 represents the phoneme sequence 304

with T1 phoneme units. fpred(·) denotes 305

the function of the predictor’s transformation. 306

L′
1:T1

is the generated LVS with the same 307

length of the phoneme sequence. The LVS is 308

concatenated with the corresponding phoneme 309

sequence. Following this concatenation, the 310

combined sequence is transformed via a con- 311

volutional layer to align with the dimension 312

required by the neural audio codec before feed- 313

ing them to the codec language model. It can 314

be represented as, 315

S1:T1 = Conv1d(Concat(X1:T1 ,L
′
1:T1

)), (2) 316

where S1:T1 is the output aligning with the 317

dimension of audio codecs. 318

As illustrated in Figure 1, the Text-to-LVS 319

predictor is simultaneously optimized with the 320

neural codec language model in the training 321

stage via the supervising signal generated from 322

another new module, namely Text-HuBERT 323

aligner. The aligner consists of N blocks with 324

the same architecture as shown in Figure 3. 325

Each block contains M residual convolution 326

networks (He et al., 2015) denoted as ResNet 327

Block in the figure, followed by a root mean 328

square layer normalization (RMSNorm) (Zhang 329

and Sennrich, 2019), and finally a multi-head 330

attention layer (Vaswani et al., 2017) is utilized 331

to align the output sequence of RMSNorm with 332

the HuBERT (Hsu et al., 2021) features (key 333
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Figure 3: Structure of Text-HuBERT aligner. It
utilizes the text prompt and the refined HuBERT
feature as input to generate the LVS in the training
stage. The generated LVS is also used as a super-
vising signal to train the Text-to-LVS predictor.

and value) refined by K-Means clustering. Un-334

like the standard layer normalization used in335

the Transformer model (Vaswani et al., 2017),336

we employ RMSNorm in the aligner, enhanc-337

ing its capability to handle complex sequences338

and achieve faster convergence. The supervis-339

ing LVS with the same length of the phoneme340

sequence can be computed by,341

L1:T1 = faligner(X1:T1 ,H1:T2), (3)342

where H1:T2 is the refined HuBERT feature343

sequence with T2 length and L1:T1 denotes the344

supervising LVS. faligner(·) means the func-345

tion of Text-HuBERT aligner module. Note346

that it is imperative to leverage the K-Means347

clustering to remove personalized information348

from the original HuBERT feature for revising349

the mutation of speaking style in synthesized350

speech in the zero-shot scenario.351

The approximation between L1:T1 and L′
1:T1

352

is measured by a L1 loss function shown as,353

LLV S =

T1∑
t=1

|L′
t −Lt|, (4)354

where LLV S is the metric measuring how close355

the L′
1:T1

is to L1:T1 .356

3.2 Timbre Consistency Data357

Augmentation358

Timbre inconsistency of the synthesized speech359

has been a non-negligible problem plaguing360

the TTS system in the zero-shot scenario de-361

spite the fact that contemporary token-based362

TTS systems (Wang et al., 2023a; Yang et al.,363

2023a) claim to enable timbre cloning. In this364

section, we will illustrate our proposed tim- 365

bre consistency data augmentation strategy for 366

this issue. 367

To ensure timbre consistency in the synthe- 368

sized speech, we implemented a data augmenta- 369

tion strategy on our training data. Specifically, 370

during the loading of a batch of speech data, 371

for 10% portion, we either randomly select a 372

continuous segment from another sample to 373

replace a segment in the current sample, or we 374

randomly duplicate a segment from the same 375

sample and concatenate it to the end of that 376

segment. In the loss calculation, neural audio 377

codecs from samples without data augmenta- 378

tion are treated as ground truth for comput- 379

ing the cross-entropy loss with the generated 380

codecs. This approach enables the model to 381

develop strong resistance to timbre perturba- 382

tions. Consequently, it prevents short-term 383

timbre variations from affecting the timbre of 384

the entire generated speech segment, thus en- 385

suring timbre consistency in the synthesized 386

speech. 387

3.3 Supplmentary Synthetic Dataset 388

The fact that extensive speech data are needed 389

to train a TTS model is prohibitive for many 390

academic researchers. For example, Audiobox 391

(Vyas et al., 2023) has scaled the size of the 392

training data up to 100k hours, which is a 393

heavy burden to collect that much data for 394

academic institutions. At the same time, there 395

are many legal risks associated with using real 396

data without authorization. These facts moti- 397

vate us to consider using synthetic data to train 398

TTS models. In this section, we will show how 399

to generate synthetic data as a supplementary 400

dataset for real data. 401

It is difficult to collect a large amount of data 402

for voices with single timbre and long duration 403

in the real world, especially for more than ten 404

seconds, which leads to sparse data for speech 405

with long duration when training speech syn- 406

thesis models and also makes it more difficult 407

for the model to ensure the consistency of the 408

timbre of the whole sentence when generating 409

long speech. With this in mind, we utilize a pre- 410

trained UNet-based (Ronneberger et al., 2015) 411

few-shot voice conversion model concretely il- 412

lustrated in Appendix A.2 to generate a large 413

amount of long speech data to compensate for 414

the lack of real data. We randomly select 1,000 415
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speakers with a few minutes of speech from416

the real data as candidates and convert around417

500 hours of real speech whose duration ranges418

from 10 to 20 seconds in the training dataset419

for each candidate. Consequently, the large420

amount of synthetic data improves the diver-421

sity of training data by explicitly providing422

one-to-many mapping for the scenario of long423

voices, distinct from previous studies (Wang424

et al., 2017; Ren et al., 2021; Borsos et al.,425

2022; Wang et al., 2023a) in which only the426

phoneme-level diversity was considered.427

3.4 Loss Function428

We follow the training strategy of VALL-E429

(Wang et al., 2023a) regarding TTS as a con-430

ditional codec language modeling task. Two431

Transformer (Vaswani et al., 2017) decoder-432

only codec language models are trained for433

autoregressive (AR) and non-autoregressive434

(NAR) modeling, respectively. We utilize the435

cross-entropy (CE) loss function to measure436

the distance between the real and the learned437

distribution of codecs. It can be formulated as,438

Lcodecs =

T3∑
t=1

CE(At,A
′
t), (5)439

where A and A′ mean codec sequences of the440

ground truth and synthesized one, respectively.441

T3 denotes the length of the codec sequence.442

Lcodecs is the loss for codec generation.443

Moreover, to enhance the ability of HAM-444

TTS to process semantic information, the445

teacher forcing loss is computed on the AR446

codec LM and the NAR codec LM to fit the447

distribution of input texts, and the correspond-448

ing CE loss function is shown as,449

Lphoneme =

T1∑
t=1

CE(Xt,X
′
t), (6)450

where X ′ means the synthesized phoneme se-451

quence. Lphoneme is the loss for text generation.452

The total loss is the sum of three loss terms,453

illustrated as Eq. 7. More details of the train-454

ing method are available in Appendix A.3.455

L = LLV S + Lphoneme + Lcodecs (7)456

4 Experiment457

4.1 Experiment Setup458

Dataset: All TTS models were trained on459

our internal Chinese speech dataset comprising460

both real and synthetic speech. The dataset 461

includes 150k hours of real speech and 500k 462

hours of synthetic speech. The real speech 463

component encompasses approximately 20,000 464

speakers, with each audio segment ranging be- 465

tween 5 to 20 seconds in length and a sampling 466

rate of 24kHz. On the other hand, the synthetic 467

speech dataset is derived from 1,000 speakers, 468

with each audio segment varying from 10 to 469

20 seconds in length. This extensive and di- 470

verse dataset plays a critical role in the robust 471

training and performance of our model. As for 472

the test data, we selected 50 speakers from the 473

public AISHELL1 dataset (Bu et al., 2017) and 474

each speaker has five sentences whose duration 475

varies from 5-20 seconds. Since our training 476

data has no overlap with the public dataset, all 477

testing speakers are unseen, aiming at showing 478

the zero-shot ability of our model. 479

Baseline: VALL-E (Wang et al., 2023a) is 480

used as the baseline model in our experiments 481

since it is a representative SOTA work of 482

token-based TTS systems. We reproduced and 483

trained it on the internal dataset due to no 484

official implementation available. 485

Evaluation metrics: We evaluate all mod- 486

els from three aspects: pronunciation accuracy, 487

speaking style consistency, and timbre consis- 488

tency. Pronunciation accuracy is represented 489

by character error rate (CER) metric, which 490

is calculated by a pretrained Whisper (Rad- 491

ford et al., 2023) model2 provided by ESPNet 492

(Watanabe et al., 2018). Speaking style con- 493

sistency is evaluated by mean opinion score 494

regarding the naturalness (NMOS) of speech 495

since the mutation of speaking style is percep- 496

tible from the feedback of listeners. Timbre 497

consistency is evaluated by the speaker similar- 498

ity MOS (SMOS) metric. Additionally, we also 499

requested all listeners to evaluate the overall 500

quality of testing data, including the natural- 501

ness, audio quality, and pronunciation accuracy. 502

It is represented as the MOS metric. As for the 503

number of listeners, we employed 60 people to 504

participate in the test. Each listener will eval- 505

uate the performance for all utterances. We 506

believe that a listening test of this magnitude 507

would provide a relatively objective result for 508

2https://huggingface.co/esp-
net/pengcheng_aishell_asr_train_asr_whis-
per_medium_finetune_raw_zh_whisper_multi-
lingual_sp
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Table 1: Performance comparison on AISHELL1 dataset. All models were trained exclusively on 150k
hours of real data. We compare the performance of ground truth (GT), VALL-E, HAM-TTS-S, and
HAM-TTS-L models, showcasing the effectiveness of HAM-TTS in pronunciation accuracy, naturalness,
and speaker similarity. The NMOS, SMOS, and MOS were computed with a 95% confidence interval.

Model #Params CER%(↓) NMOS(↑) SMOS(↑) MOS(↑)

GT - 2.6 4.03±0.08 4.30±0.06 4.45±0.07

VALL-E 426M 5.5 3.65±0.15 4.03±0.12 4.05±0.10
HAM-TTS-S 421M 4.0 3.79±0.11 4.12±0.10 4.27±0.08
HAM-TTS-L 827M 3.2 4.01±0.07 4.26±0.09 4.45±0.07

the experiment.509

4.2 Primary Experimental Result510

In our experimental analysis, as detailed in511

Table 1, all models were trained exclusively512

on 150k hours of real data. The HAM-TTS513

model, designed in two variants, HAM-TTS-514

S and HAM-TTS-L, explores different scales515

of parameterization. HAM-TTS-S, matching516

VALL-E with 421M parameters, ensures a fair517

comparison, while HAM-TTS-L expands to518

827M parameters, aiming to unlock the full519

potential of the HAM-TTS. This scaling is520

crucial for assessing the effectiveness of our521

model in various parameter configurations.522

In the table, our reproduced VALL-E523

achieves a CER of 5.5%, an NMOS of 3.65,524

an SMOS of 4.03, and an overall MOS of 4.05,525

aligning with those presented in the original526

VALL-E paper (Wang et al., 2023a), indicating527

the reliability of our experimental setup. These528

results demonstrate VALL-E’s proficiency in529

generating speech, but also highlight areas for530

improvement, particularly in pronunciation ac-531

curacy and naturalness compared with the re-532

sult of GT. The HAM-TTS-S model achieves533

a CER of 4.0%, lower than VALL-E’s 5.5%,534

indicating better pronunciation accuracy. Its535

NMOS at 3.79 and SMOS at 4.12 also sur-536

pass VALL-E, suggesting improved perceived537

quality and speaker similarity. The HAM-TTS-538

L further improves these metrics, recording539

a CER of 3.2%, and comparable NMOS and540

SMOS scores to GT, illustrating the scalability541

and effectiveness of the HAM-TTS model in542

generating high-quality, realistic speech. These543

results demonstrate the HAM-TTS model’s su-544

periority in pronunciation accuracy and the545

consistency of speaking style and timbre.546

Table 2: A comparison of HAM-TTS-S model per-
formance with and without K-Means clustering is
provided to highlight the improvement in CER,
NMOS, and overall MOS metrics due to K-Means
feature refinement.

Model CER%(↓) NMOS(↑) MOS(↑)

GT 2.6 4.30±0.06 4.45±0.09

w/o K-Means 4.2 3.63±0.12 4.14±0.08
HAM-TTS-S 4.0 3.79±0.11 4.27±0.08

4.3 Ablation Study of K-Means 547

In our HAM-TTS model, we employed the K- 548

Means clustering technique to refine HuBERT 549

features. This approach aims to remove per- 550

sonalized information such as speaking styles, 551

enabling the TTS model to focus on the core 552

acoustic information for enhancing pronuncia- 553

tion accuracy and maintaining consistent speak- 554

ing style with the audio prompt throughout 555

the synthesized speech. 556

Table 2 in our experimental results presents 557

the effectiveness of the K-Means clustering in 558

our model. We compared the performance of 559

HAM-TTS-S with and without the application 560

of K-Means clustering. The results demon- 561

strate that the application of K-Means cluster- 562

ing further improves the model’s performance. 563

Specifically, the CER for the HAM-TTS-S with- 564

out K-Means clustering was 4.2%, while the 565

implementation of K-Means clustering reduced 566

the CER to 4.0%. This reduction in CER indi- 567

cates an improvement in pronunciation accu- 568

racy, which is a direct result of the refined Hu- 569

BERT features providing more accurate acous- 570

tic information. 571

Furthermore, the NMOS and the overall 572

MOS also slightly improved with the use of 573

K-Means clustering. The NMOS increased 574

from 3.63 to 3.79, and the MOS increased from 575

4.14 to 4.27, indicating that the speech synthe- 576

7



Table 3: Experimental result to show the effective-
ness of synthetic data. We trained the HAM-TTS-
S model with different sizes and combinations of
real(R) and synthetic(S) data.

Training data CER%(↓) SMOS(↑) MOS(↑)

GT 2.6 4.30±0.06 4.45±0.07

150k(R) 4.0 4.12±0.10 4.27±0.08
150k(R)+150k(S) 3.6 4.26±0.09 4.32±0.07
150k(R)+500k(S) 2.8 4.32±0.07 4.49±0.08

150k(S) 4.5 4.05±0.10 4.10±0.13
300k(S) 4.1 4.13±0.07 4.25±0.08
500k(S) 3.3 4.25±0.06 4.35±0.06

sized with the refined features was perceived as577

more natural and of higher quality by listeners.578

These results clearly illustrate the impact of579

K-Means clustering in enhancing the overall580

performance of the HAM-TTS-S, affirming its581

effectiveness in providing a more accurate and582

consistent speaking style in synthesized speech.583

4.4 Ablation Study of Synthetic Data584

In our HAM-TTS model, synthetic data plays585

a pivotal role in enhancing the diversity and586

quality of the generated speech. We focused on587

demonstrating the impact of this synthetic data588

through a series of experiments, the results of589

which are detailed in Table 3.590

The experiments were conducted using the591

HAM-TTS-S model, trained on different com-592

binations and sizes of real and synthetic593

data. Our findings clearly show the signifi-594

cant improvements synthetic data brings to595

the model’s performance. When trained solely596

on 150k hours of real data, the HAM-TTS-S597

model achieves a CER of 4.0%, an SMOS of598

4.12, and an overall MOS of 4.27. However,599

when augmented with synthetic data, there is600

a marked improvement in all metrics.601

Specifically, training with an additional 150k602

hours of synthetic data (150k(R)+150k(S)) re-603

duces the CER to 3.6%, and further increases604

the SMOS to 4.26 and the MOS to 4.32. This605

improvement is even more pronounced when606

the model is trained with an additional 500k607

hours of synthetic data (150k(R)+500k(S)), re-608

sulting in a CER of 2.8%, an SMOS of 4.32,609

and an MOS of 4.49. These results clearly in-610

dicate that synthetic data not only contributes611

to the reduction in pronunciation errors but612

also significantly enhances the quality of the613

synthesized speech since it enables the model614

to explicitly learn the knowledge of utterance- 615

level one-to-many mappings. 616

Furthermore, the results underscore the 617

promise of training HAM-TTS models solely 618

on synthetic data. When the model was 619

trained with varying amounts of synthetic data 620

(150k(S), 300k(S), and 500k(S)), we observed 621

a steady improvement in all evaluation met- 622

rics, approaching the performance levels of the 623

model trained on real data. The model trained 624

with 500k hours of synthetic data achieved a 625

CER of 3.3%, closely matching the 2.8% CER 626

of the model trained with a combination of real 627

and synthetic data. This finding is particularly 628

promising as it suggests that high-quality TTS 629

systems can be developed even in scenarios 630

where access to large amounts of real speech 631

data is limited, highlighting the potential of 632

synthetic data in training effective speech syn- 633

thesis models. 634

These findings illustrate the significant im- 635

pact of synthetic data in improving the perfor- 636

mance of HAM-TTS models, both when used 637

in conjunction with real data and when used 638

exclusively, marking a substantial advancement 639

in the field of speech synthesis. 640

5 Conclusion and Future Work 641

In this study, we have introduced HAM-TTS, 642

a novel text-to-speech system that leverages a 643

hierarchical acoustic modeling approach. This 644

system integrates advanced techniques such 645

as K-Means clustering for refining HuBERT 646

features and a comprehensive strategy incor- 647

porating both real and synthetic data. Our 648

experiments demonstrate the effectiveness of 649

HAM-TTS in improving pronunciation accu- 650

racy, speaking style consistency, and timbre 651

consistency in zero-shot scenarios. 652

Despite these significant advancements, fu- 653

ture work could explore the optimal combi- 654

nation of synthetic data in terms of speaker 655

diversity and duration per speaker. This aspect 656

could lead to further enhancements in handling 657

a wide range of speech variations. Additionally, 658

optimizing the inference speed of the HAM- 659

TTS model is crucial for enhancing its practical 660

usability, making it suitable for real-time appli- 661

cations and user interactions. The exploration 662

of these avenues will contribute significantly to 663

advancing the field of speech synthesis. 664
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Limitation665

We acknowledge that while our HAM-TTS666

model has demonstrated significant advance-667

ments, certain aspects remain unexplored and668

present opportunities for future research. One669

such area is the optimal combination of syn-670

thetic data in terms of speaker diversity and671

duration per speaker. We have not yet inves-672

tigated whether a greater number of speakers673

with less duration per speaker or fewer speak-674

ers but more duration per speaker would be675

more beneficial. This aspect is crucial for en-676

hancing the model’s ability to handle a wide677

range of speech variations and could potentially678

lead to further improvements in the model’s679

performance.680

Another limitation is the inference speed of681

the HAM-TTS model. Although the model682

achieves high-quality speech synthesis, the cur-683

rent inference process is not as efficient as it684

could be. There is considerable room for im-685

provement in this area, particularly in terms of686

reducing the time taken to generate speech. Op-687

timizing the model’s architecture and stream-688

lining the inference pipeline could significantly689

enhance the practical usability of HAM-TTS,690

making it more suitable for real-time applica-691

tions and user interactions.692

Addressing these limitations will be a focus693

of our future work, aiming to refine the HAM-694

TTS model further and expand its applicability695

in various speech synthesis scenarios.696

Ethics Statement697

This research adheres to ethical standards in698

AI and speech synthesis, emphasizing data pri-699

vacy, consent, and inclusivity. We address the700

potential for bias in our datasets and ensure701

fairness across diverse voices. Recognizing the702

risks of misuse, we advocate for responsible703

use and transparency in our methodology. Our704

work aims to contribute positively to technolog-705

ical advancements, balancing innovation with706

societal and individual well-being.707
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A Appendix 975

A.1 Model Details 976

HAM-TTS is constructed based on the VALL-E 977

framework, inheriting certain key architectural 978

features. Similar to VALL-E, HAM-TTS in- 979

corporates two distinct Transformer decoders. 980

3In order to have a fair comparison with the HAM-
TTS-S model, we increase the number of parameters
of VALL-E to a comparable level by increasing two
additional attention blocks.
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Table 4: Configuration of VALL-E in the experiment.

Component Config Value

Phoneme Conversion Embedding Layer 1024

Audio Codec Encoder(Défossez et al., 2022) Quantizer 8
Codebook Size 1024

Codebook Dimension 1024

Codec Language Model

Attention Block 143

Heads 16
Hidden Size 4096

Dropout 0.1
Output Affine Layer 1024

These decoders are integral to the model’s de-981

sign, each serving a specific purpose in the982

speech synthesis process.983

One of the Transformer decoders in HAM-984

TTS is dedicated to autoregressive modeling.985

This decoder plays a crucial role in sequentially986

predicting each element of the output based987

on the previously generated elements, thereby988

capturing the temporal dependencies in the989

speech sequence.990

The other Transformer decoder in HAM-991

TTS is utilized for non-autoregressive modeling.992

This approach allows for the parallel genera-993

tion of output elements, which can significantly994

enhance the model’s efficiency by reducing the995

dependency on the sequential generation pro-996

cess.997

Concrete configurations for VALL-E, HAM-998

TTS-S, and HAM-TTS-L are shown as Table999

4, Table 5, and Table 6, respectively.1000

A.2 Pretrained Voice Conversion1001

Model1002

We employed a UNet-based (Ronneberger et al.,1003

2015) voice conversion model illustrated in Fig-1004

ure 4 to generate 500k hours of speech data for1005

training.1006

In this voice conversion model, the initial1007

processing stage involves extracting HuBERT1008

and F0 features from the input audio. These1009

extracted features are then concatenated and1010

fed into a ResNet module for preprocessing.1011

The ResNet module is designed to transform1012

and refine these features, outputting them in1013

the dimensions of (96, T, F), where ‘T’ and ‘F’1014

represent the time and frequency dimensions,1015

respectively.1016

This output feature is then introduced into1017

the encoder of a UNet architecture. The en-1018

ResNet

HuBERT

Audio

F0C

ResNet

PostNet

UnivNet

Audio

Mel

+

+

+ Spk

Spk

Spk

(96, T, F)

(192, T, F / 2)

(384, T, F / 4)

Figure 4: Structure of UNet-based voice conversion
model. It is leveraged to generate extensive speech
data with the same content but different timbres by
several minutes of real speech from unseen target
speakers.

coder performs downsampling on the frequency 1019

dimension twice, resulting in an output with 1020

dimensions (384, T, F / 4). Following this, 1021

another ResNet module is employed to further 1022

refine the output of the encoder. The refined 1023

features are then passed to the decoder of the 1024

UNet. 1025

In the decoding process, the frequency di- 1026

mension undergoes two stages of upsampling. 1027

Prior to each upsampling step, speaker char- 1028

acteristics are integrated into the input. This 1029

integration is crucial for ensuring that the syn- 1030

thesized speech retains the unique attributes 1031

of the speaker’s voice. The final output from 1032

the decoder has the dimensions of (96, T, F), 1033

effectively restoring the original frequency di- 1034

mension. 1035

It is important to note that throughout the 1036

UNet architecture, the convolutional kernels 1037

used are of size (1,7). This specific kernel size 1038

aids in capturing the essential temporal and 1039
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Table 5: Configuration of HAM-TTS-S in the experiment.

Component Config Value

Phoneme Conversion Embedding Layer 1024

Audio Codec Encoder(Défossez et al., 2022)
Quantizer 8

Codebook Size 1024
Codebook Dimension 1024

Codec Language Model

Attention Block 12
Heads 16

Hidden Size 4096
Dropout 0.1

Output Affine Layer 1024

Text-to-LVS Predictor
Conv1D Layers 2

Conv1D Kernel Size 3
Dropout 0.1

Output Affine Layer 2

Text-HuBERT Aligner

Attention Block 10
Heads 8

Hidden Size 4096
Dropout 0.1

ResNet Block 3
Conv1D Layer 2

Conv1D Kernel Size 3
Output Affine Layer 2

Table 6: Configuration of HAM-TTS-L in the experiment.

Component Config Value

Phoneme Conversion Embedding Layer 1024

Audio Codec Encoder(Défossez et al., 2022)
Quantizer 8

Codebook Size 1024
Codebook Dimension 1024

Codec Language Model

Attention Block 24
Heads 16

Hidden Size 4096
Dropout 0.1

Output Affine Layer 1024

Text-to-LVS Predictor
Conv1D Layers 2

Conv1D Kernel Size 3
Dropout 0.1

Output Affine Layer 2

Text-HuBERT Aligner

Attention Block 10
Heads 8

Hidden Size 4096
Dropout 0.1

ResNet Block 3
Conv1D Layer 2

Conv1D Kernel Size 3
Output Affine Layer 2
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spectral characteristics of the speech signal.1040

The next stage involves the conversion of1041

these processed features into the final waveform.1042

This is achieved using a PostNet followed by1043

a UnivNet vocoder (Jang et al., 2021), which1044

together ensure the synthesized speech is both1045

natural-sounding and closely matches the orig-1046

inal audio in terms of timbre and prosody.1047

A.3 Training Method1048

We followed the training strategy used in1049

VALL-E to employ a dual training approach1050

to optimize the performance of the HAM-TTS1051

model in both autoregressive (AR) and non-1052

autoregressive (NAR) modeling.1053

AR Training: The AR model is trained on1054

the concatenation of the sequence S1:T1 and1055

the audio codec sequence A
(1)
1:T3

from the first1056

quantizer of the Encodec model (Défossez et al.,1057

2022). It can be formulated as,1058

p(A′(1)|A(1),S; θAR) = (8)1059

T∏
t=0

p(A
′(1)
t |A′(1)

<t ,A
(1),S; θAR)1060

NAR Training: The NAR model is employed1061

for the audio codecs from the second to the last1062

quantizers. This model is conditioned on S1:T1 ,1063

the acoustic prompt A
(2:8)
1:T3

, and the predicted1064

acoustic tokens A
(<i)
1:T3

from the previous code-1065

books. Each training step randomly samples a1066

quantizer i ∈ [2, 8], and the model is trained to1067

fit the distribution of codecs from the selected1068

quantizer codebook. It can be formulated as,1069

p(A′(2:8)|A,S; θNAR) (9)1070

=

8∏
i=2

p(A′(i)|A′(<i),A,S; θAR) (10)1071

Both AR and NAR models were optimized1072

using the Adam optimizer (Kingma and Ba,1073

2015), with a learning rate set at 0.03 and a1074

warmup spanning the first 15,000 steps. Af-1075

ter the warmup phase, the learning rate was1076

managed using the CosineAnnealingLR sched-1077

uler (Loshchilov and Hutter, 2017). The train-1078

ing was conducted on a robust setup of 5121079

NVIDIA A100 80GB GPUs, and the model1080

processed a batch size of 8k acoustic tokens.1081

This extensive training was carried out over1082

a total of 400k steps, leveraging the powerful1083

computational capabilities of the A100 GPUs 1084

to efficiently handle the large batch size and 1085

extensive training steps. 1086
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