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Abstract

Token-based text-to-speech (T'TS) models
have emerged as a promising avenue for
generating natural and realistic speech, yet
they grapple with low pronunciation accu-
racy, speaking style and timbre inconsis-
tency, and a substantial need for diverse
training data. In response, we introduce
a novel hierarchical acoustic modeling ap-
proach complemented by a tailored data
augmentation strategy and train it on the
combination of real and synthetic data, scal-
ing the data size up to 650k hours, leading
to the zero-shot TTS model with 0.8B pa-
rameters. Specifically, our method incorpo-
rates a latent variable sequence containing
supplementary acoustic information based
on refined self-supervised learning (SSL)
discrete units into the TTS model by a pre-
dictor. This significantly mitigates pronun-
ciation errors and style mutations in synthe-
sized speech. During training, we strategi-
cally replace and duplicate segments of the
data to enhance timbre uniformity. More-
over, a pretrained few-shot voice conversion
model is utilized to generate a plethora of
voices with identical content yet varied tim-
bres. This facilitates the explicit learning
of utterance-level one-to-many mappings,
enriching speech diversity and also ensuring
consistency in timbre. Comparative experi-
ments! demonstrate our model’s superior-
ity over VALL-E in pronunciation precision
and maintaining speaking style, as well as
timbre continuity.

1 Introduction

In the last decade, significant strides (Good-
fellow et al., 2014; Kingma and Welling, 2014;
Van Den Oord et al., 2017; Dinh et al., 2015;
Vaswani et al., 2017; Ho et al., 2020) have
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been made in the advancement of deep learn-
ing and neural network technologies, enabling
the text-to-speech (TTS) to evolve from the cas-
cade manner of acoustic models (Wang et al.,
2017; Li et al., 2019; Kim et al., 2020; Popov
et al., 2021) and vocoders (van den Oord et al.,
2016; Kong et al., 2020; Wang et al., 2022;
Kong et al., 2021) to the fully end-to-end (E2E)
style (Ren et al., 2021; Kim et al., 2021; Wang
et al., 2023a; Jiang et al., 2023; Tan et al.,
2021). These methods are not only capable
of rapidly generating high-quality speech, but
also adept at synthesizing more challenging
vocal expressions such as singing (Lu et al.,
2020; Wang et al., 2023b,d). However, most
TTS systems utilize continuous acoustic fea-
tures such as MFCC in the frequency domain
as intermediate representations for modeling,
hindering from generating high-quality speech
in the zero-shot scenario of timbre due to their
mixture of semantic and acoustic information
and difficulty of disentanglement (Zhang et al.,
2023; Yang et al., 2023b).

Recently, token-based TTS (Borsos et al.,
2022; Wang et al., 2023a; Yang et al., 2023a;
Shen et al., 2023; Wang et al., 2023c; Song
et al., 2024) methods have attracted extensive
attention from both academia and industry due
to their potential for synthesizing high-quality
speech in the zero-shot scenario. Among these,
the neural audio codec (Zeghidour et al., 2021;
Défossez et al., 2022; Yang et al., 2023b) has
demonstrated immense potential to serve as
the intermediate representation for TTS mod-
eling. For example, VALL-E (Wang et al.,
2023a) utilizes a large language model (Rad-
ford et al., 2019; Brown et al., 2020; Touvron
et al., 2023a,b) to approximate the distribution
of neural audio codecs (Défossez et al., 2022)
and can synthesize speech that closely mimics a
target speaker’s voice from a mere three-second
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sample. However, despite their promising ca-
pabilities, we observe that these models often
struggle with maintaining accurate pronunci-
ation and consistent speaking style as well as
timbre in synthesized speech. Additionally, the
substantial requirement for large and diverse
training data further limits their widespread
adoption.

To tackle these issues, we proposed a
Hierarchical Acoustic Modeling method,
namely HAM-TTS, with a tailored data aug-
mentation strategy for the token-based TTS
model (Borsos et al., 2022; Wang et al., 2023a;
Yang et al., 2023a). Specifically, in order to
alleviate the difficulty of directly modeling the
mapping from text to neural audio codec in
previous studies, we incorporate a latent vari-
able sequence (LVS) containing supplementary
acoustic information based on HuBERT (Hsu
et al., 2021) features into the TTS model. A
Text-to-LVS predictor is optimized simultane-
ously with TTS model. In the inference stage,
the text prompt is converted to the LVS by
the predictor to provide imperative acoustic
information to mitigate pronunciation errors.

Unfortunately, generating LVS based on sim-
ple HuBERT features cannot revise the issue
of inconsistency of speaking style in the syn-
thesized speech due to the personalized infor-
mation contained in HuBERT features, which
is a distractor to the audio prompt. Therefore,
we applied the K-Means (Ahmed et al., 2020)
clustering method to refine HUBERT features
for removing personalized information such as
speaking styles, enabling the TTS model to
make use of the remaining acoustic informa-
tion to improve pronunciation accuracy while
maintaining consistent speaking style with the
audio prompt throughout the entire synthe-
sized speech.

Timbre inconsistency is another serious prob-
lem for token-based TTS systems (Borsos et al.,
2022). We designed a timbre consistency data
augmentation strategy to train the proposed
HAM-TTS system to revise it. Concretely, we
randomly replace a successive segment of a
training sample with a small chunk selected
from other training utterances or duplicate a
successive segment of a training sample while
forcing the model to predict the original utter-
ance. It enhances the timbre consistency of the
synthesized speech in the zero-shot scenario.

As illustrated in (Borsos et al., 2022; Wang
et al., 2023a; Shen et al., 2023), token-based
TTS methods require extensive training data
to assign the model the ability to synthesize
diverse and high-quality speech. In this paper,
instead of solely using substantial real speech
data for training, we utilized a pretrained UNet-
based (Ronneberger et al., 2015) few-shot voice
conversion model to generate voices with the
same content but different timbres as a sup-
plementary dataset, enabling the model to ex-
plicitly learn one-to-many mapping knowledge,
which is beneficial to improve the diversity of
generated speech and the timbre consistency.

We trained many models with different con-
figurations on a large-scale internal Chinese
dataset and evaluated them on the public
AISHELL1 dataset (Bu et al., 2017). We rigor-
ously compared HAM-TTS against the state-of-
the-art (SOTA) VALL-E model, which served
as our baseline. The results of these exper-
iments, conducted on a substantial dataset,
clearly establish the advantages of our approach
over the baseline model, demonstrating the en-
hanced capabilities of HAM-TTS, particularly
in terms of pronunciation accuracy, speaking
style consistency, and timbre continuity in chal-
lenging zero-shot scenarios.

This paper is structured to provide a compre-
hensive overview of our research and findings.
Following this introduction, some related works
are introduced in Section 2. We delve into the
specifics of our hierarchical acoustic modeling
method in Section 3. We then present the
experimental setup and results, offering a com-
parative analysis with current benchmarks in
Section 4. The paper concludes with a sum-
mary of our contributions and a discussion on
future research directions in Section 5.

2 Related Works

Although there are many studies (Tokuda et al.,
2013; Li and Zen, 2016; Wang et al., 2017;
Li et al., 2019; Ren et al., 2021; Kim et al.,
2021; Wang et al., 2023a) focusing on TTS,
in this section, we only briefly review some
representative works about neural audio codecs
and speech generative models based on them
for a closer connection to our work.



2.1 Neural Audio Codec

Recent advancements in neural audio codecs,
as illustrated in (Zeghidour et al., 2021; Dé-
fossez et al., 2022; Yang et al., 2023b), have
significantly enhanced the field of speech syn-
thesis. These studies collectively highlight the
efficiency of neural codecs in encoding and de-
coding audio data, offering a more compact and
flexible representation compared to traditional
methods.

Soundstream (Zeghidour et al., 2021) intro-
duces a novel end-to-end neural audio codec
framework, demonstrating effective compres-
sion of audio signals into a discrete latent space
by residual vector quantization. This advance-
ment facilitates the generation of high-quality
audio from compact representations, highlight-
ing the codec’s versatility in various audio ap-
plications.

Encodec (Défossez et al., 2022) further ex-
plores this domain, emphasizing the codec’s
role in efficiently compressing audio data while
maintaining quality. Its approach showcases
the potential of neural codecs in handling com-
plex audio tasks with reduced data require-
ments, a crucial factor in resource-constrained
environments.

In our research, these insights into neural
audio codecs lay the foundation for developing
a robust and efficient token-based TTS model.
The enhanced fidelity and efficiency of neural
codecs directly inform our approach, enabling
us to achieve superior speech synthesis quality,
particularly in zero-shot scenarios.

2.2 Token-based Speech Generation
Model

More and more studies (Borsos et al., 2022;
Wang et al., 2023a; Shen et al., 2023; Wang
et al., 2023c; Song et al., 2024) are beginning to
try to use neural audio codecs as intermediate
representations for speech generation. These
approaches highlight the growing consensus in
the field regarding the effectiveness of neural
codecs in handling complex tasks.

AudioLM (Borsos et al., 2022) represents
a significant leap in audio generation by em-
ploying a language modeling approach. It par-
ticularly stands out for its ability to generate
coherent and contextually appropriate speech,
attributed to its advanced use of latent vectors

conditioned on inputs. This model demon-
strates how the integration of neural codecs
(Zeghidour et al., 2021) can facilitate the pro-
duction of diverse and high-quality speech.

VALL-E (Wang et al., 2023a), on the other
hand, capitalizes on the neural codec’s ability
(Défossez et al., 2022) to approximate large lan-
guage models, enabling the synthesis of speech
that closely mimics a target speaker’s voice
from a minimal sample.

NaturalSpeech2 (Shen et al., 2023) takes
these concepts further by integrating a neu-
ral audio codec with additional components
such as the diffusion model. Its emphasis on
zero-shot synthesis capabilities and prosody
highlights the model’s robustness and versatil-
ity, particularly in generating diverse speech
styles and maintaining voice quality across var-
ious scenarios.

These studies collectively underscore the im-
portance of neural codecs in speech generation
and pave the way for our research. In our
work, we build upon these foundations and
propose a novel hierarchical acoustic modeling
approach to enhance pronunciation accuracy
and speaking style consistency while utilizing
a data augmentation strategy and synthetic
data to emphasize the timbre consistency and
diversity of generated voices.

3 HAM-TTS

The introduction of the HAM-TTS model is
presented in this section. As depicted in Figure
1, in addition to the phoneme conversion and
audio codec encoder components originating
from the existing TTS model like VALL-E, we
design a predictor to directly transform the text
prompt to the latent variable sequence (LVS)
to incorporate supplementary acoustic infor-
mation into the neural codec language model
in the inference stage. The predictor is jointly
optimized with the TTS model in the train-
ing stage via the supervising signal from the
output of the Text-HuBERT aligner, which uti-
lizes the cross-attention mechanism (Li et al.,
2023) to align the phoneme sequence and the
HuBERT features refined by K-Means cluster-
ing to generate the LVS. Detailed designs of
the Text-HuBERT aligner and the Text-to-LVS
predictor are presented in Section 3.1. The tim-
bre consistency data augmentation strategy is
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Figure 1: Overview of HAM-TTS. Although it builds upon VALL-E, its design including Text-HuBERT
aligner and Text-to-LVS is applicable across various token-based TTS models. To enhance the ability
of HAM-TTS to process semantic information, we also let codec language models predict the phoneme
sequence based on the input text in the training stage.
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Figure 2: Structure of Text-to-LVS predictor. “DP”
means dropout (Srivastava et al., 2014) operation.
It learns the mapping from the text prompt to the
LVS in the training stage. Once the training is
complete, it can generate the LVS from the text
prompt directly in the inference stage.

another important contribution of our work for
revising the issue of timbre inconsistency in
synthesized speech. It is concretely illustrated
in Section 3.2. Finally, the supplementary syn-
thetic dataset generated by the pretrained few-
shot voice conversion model is elaborated in
Section 3.3. Detailed configurations for models
used in our experiment will be illustrated in
Appendix A.1.

3.1 Hierarchical Acoustic Modeling

We observed that previous studies like Audi-
oLM (Borsos et al., 2022) and VALL-E (Wang
et al., 2023a) occasionally produced speech
with incorrect pronunciation. This was largely
due to the limitations in directly mapping text
to a neural audio codec sequence without ad-
equate acoustic information. To address this,
the Text-to-LVS predictor shown in Figure 2
is proposed to generate the latent variable se-

quence containing the imperative acoustic in-
formation from the phoneme sequence in the
inference stage, which can be formulated as,

,1:T1 = fpred(X11T1)> (1)

where X ;.7 represents the phoneme sequence
with 77 phoneme units.  fprq(-) denotes
the function of the predictor’s transformation.

Ly, is the generated LVS with the same
length of the phoneme sequence. The LVS is
concatenated with the corresponding phoneme
sequence. Following this concatenation, the
combined sequence is transformed via a con-
volutional layer to align with the dimension
required by the neural audio codec before feed-
ing them to the codec language model. It can
be represented as,

S = COIlVld(COIlC&t(Xl:TlaLII:Tl))’ (2)

where Si.7, is the output aligning with the
dimension of audio codecs.

As illustrated in Figure 1, the Text-to-LVS
predictor is simultaneously optimized with the
neural codec language model in the training
stage via the supervising signal generated from
another new module, namely Text-HuBERT
aligner. The aligner consists of N blocks with
the same architecture as shown in Figure 3.
Each block contains M residual convolution
networks (He et al., 2015) denoted as ResNet
Block in the figure, followed by a root mean
square layer normalization (RMSNorm) (Zhang
and Sennrich, 2019), and finally a multi-head
attention layer (Vaswani et al., 2017) is utilized
to align the output sequence of RMSNorm with
the HuBERT (Hsu et al., 2021) features (key
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Figure 3: Structure of Text-HuBERT aligner. It
utilizes the text prompt and the refined HuBERT
feature as input to generate the LVS in the training
stage. The generated LVS is also used as a super-
vising signal to train the Text-to-LVS predictor.

and value) refined by K-Means clustering. Un-
like the standard layer normalization used in
the Transformer model (Vaswani et al., 2017),
we employ RMSNorm in the aligner, enhanc-
ing its capability to handle complex sequences
and achieve faster convergence. The supervis-
ing LVS with the same length of the phoneme
sequence can be computed by,

Ll:T1 = faligner(Xl:T1 ) Hl:Tg)v (3)

where H .7, is the refined HuBERT feature
sequence with 75 length and L.7, denotes the
supervising LVS. fuigner(-) means the func-
tion of Text-HuBERT aligner module. Note
that it is imperative to leverage the K-Means
clustering to remove personalized information
from the original HuBERT feature for revising
the mutation of speaking style in synthesized
speech in the zero-shot scenario.

The approximation between Li.7y and L’lle
is measured by a L1 loss function shown as,

T
Livs =) |Li— L, (4)
t=1

where L1y g is the metric measuring how close
/ .
the Ly.p, is to Ly.y.

3.2 Timbre Consistency Data
Augmentation

Timbre inconsistency of the synthesized speech
has been a non-negligible problem plaguing
the TTS system in the zero-shot scenario de-
spite the fact that contemporary token-based
TTS systems (Wang et al., 2023a; Yang et al.,
2023a) claim to enable timbre cloning. In this

section, we will illustrate our proposed tim-
bre consistency data augmentation strategy for
this issue.

To ensure timbre consistency in the synthe-
sized speech, we implemented a data augmenta-
tion strategy on our training data. Specifically,
during the loading of a batch of speech data,
for 10% portion, we either randomly select a
continuous segment from another sample to
replace a segment in the current sample, or we
randomly duplicate a segment from the same
sample and concatenate it to the end of that
segment. In the loss calculation, neural audio
codecs from samples without data augmenta-
tion are treated as ground truth for comput-
ing the cross-entropy loss with the generated
codecs. This approach enables the model to
develop strong resistance to timbre perturba-
tions. Consequently, it prevents short-term
timbre variations from affecting the timbre of
the entire generated speech segment, thus en-
suring timbre consistency in the synthesized
speech.

3.3 Supplmentary Synthetic Dataset

The fact that extensive speech data are needed
to train a TTS model is prohibitive for many
academic researchers. For example, Audiobox
(Vyas et al., 2023) has scaled the size of the
training data up to 100k hours, which is a
heavy burden to collect that much data for
academic institutions. At the same time, there
are many legal risks associated with using real
data without authorization. These facts moti-
vate us to consider using synthetic data to train
TTS models. In this section, we will show how
to generate synthetic data as a supplementary
dataset for real data.

It is difficult to collect a large amount of data
for voices with single timbre and long duration
in the real world, especially for more than ten
seconds, which leads to sparse data for speech
with long duration when training speech syn-
thesis models and also makes it more difficult
for the model to ensure the consistency of the
timbre of the whole sentence when generating
long speech. With this in mind, we utilize a pre-
trained UNet-based (Ronneberger et al., 2015)
few-shot voice conversion model concretely il-
lustrated in Appendix A.2 to generate a large
amount of long speech data to compensate for
the lack of real data. We randomly select 1,000



speakers with a few minutes of speech from
the real data as candidates and convert around
500 hours of real speech whose duration ranges
from 10 to 20 seconds in the training dataset
for each candidate. Consequently, the large
amount of synthetic data improves the diver-
sity of training data by explicitly providing
one-to-many mapping for the scenario of long
voices, distinct from previous studies (Wang
et al., 2017; Ren et al., 2021; Borsos et al.,
2022; Wang et al., 2023a) in which only the
phoneme-level diversity was considered.

3.4 Loss Function

We follow the training strategy of VALL-E
(Wang et al., 2023a) regarding TTS as a con-
ditional codec language modeling task. Two
Transformer (Vaswani et al., 2017) decoder-
only codec language models are trained for
autoregressive (AR) and non-autoregressive
(NAR) modeling, respectively. We utilize the
cross-entropy (CE) loss function to measure
the distance between the real and the learned
distribution of codecs. It can be formulated as,

T3
Lcodecs = Z CE(At7 A:‘,)7 (5)
t=1
where A and A’ mean codec sequences of the
ground truth and synthesized one, respectively.
T3 denotes the length of the codec sequence.
Lcodecs 18 the loss for codec generation.
Moreover, to enhance the ability of HAM-
TTS to process semantic information, the
teacher forcing loss is computed on the AR
codec LM and the NAR codec LM to fit the
distribution of input texts, and the correspond-
ing CE loss function is shown as,

T
'Cphoneme = Z CE(Xt7 X:‘,)7 (6)
t=1

where X’ means the synthesized phoneme se-
quence. Lphoneme is the loss for text generation.
The total loss is the sum of three loss terms,
illustrated as Eq. 7. More details of the train-
ing method are available in Appendix A.3.

L= ELVS + Ephoneme + Ecodecs (7)
4 Experiment

4.1 Experiment Setup

Dataset: All TTS models were trained on
our internal Chinese speech dataset comprising

both real and synthetic speech. The dataset
includes 150k hours of real speech and 500k
hours of synthetic speech. The real speech
component encompasses approximately 20,000
speakers, with each audio segment ranging be-
tween 5 to 20 seconds in length and a sampling
rate of 24kHz. On the other hand, the synthetic
speech dataset is derived from 1,000 speakers,
with each audio segment varying from 10 to
20 seconds in length. This extensive and di-
verse dataset plays a critical role in the robust
training and performance of our model. As for
the test data, we selected 50 speakers from the
public AISHELL1 dataset (Bu et al., 2017) and
each speaker has five sentences whose duration
varies from 5-20 seconds. Since our training
data has no overlap with the public dataset, all
testing speakers are unseen, aiming at showing
the zero-shot ability of our model.

Baseline: VALL-E (Wang et al., 2023a) is
used as the baseline model in our experiments
since it is a representative SOTA work of
token-based TTS systems. We reproduced and
trained it on the internal dataset due to no
official implementation available.

Evaluation metrics: We evaluate all mod-
els from three aspects: pronunciation accuracy,
speaking style consistency, and timbre consis-
tency. Pronunciation accuracy is represented
by character error rate (CER) metric, which
is calculated by a pretrained Whisper (Rad-
ford et al., 2023) model? provided by ESPNet
(Watanabe et al., 2018). Speaking style con-
sistency is evaluated by mean opinion score
regarding the naturalness (NMOS) of speech
since the mutation of speaking style is percep-
tible from the feedback of listeners. Timbre
consistency is evaluated by the speaker similar-
ity MOS (SMOS) metric. Additionally, we also
requested all listeners to evaluate the overall
quality of testing data, including the natural-
ness, audio quality, and pronunciation accuracy.
It is represented as the MOS metric. As for the
number of listeners, we employed 60 people to
participate in the test. Each listener will eval-
uate the performance for all utterances. We
believe that a listening test of this magnitude
would provide a relatively objective result for

https://huggingface.co/esp-
net/pengcheng_ aishell _asr_ train_asr_ whis-
per__medium_ finetune_raw_ zh_ whisper_ multi-
lingual sp
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Table 1: Performance comparison on AISHELL1 dataset. All models were trained exclusively on 150k
hours of real data. We compare the performance of ground truth (GT), VALL-E, HAM-TTS-S, and
HAM-TTS-L models, showcasing the effectiveness of HAM-TTS in pronunciation accuracy, naturalness,
and speaker similarity. The NMOS, SMOS, and MOS were computed with a 95% confidence interval.

Model #Params CER%(|) NMOS({) SMOS(t) MOS(?)
GT - 2.6  4.03+0.08 4.30+£0.06 4.45:0.07
VALL-E 426M 55 3.6540.15 4.03+0.12 4.0540.10
HAM-TTS-S 421M 40  3.7940.11 4.1240.10 4.2740.08
HAM-TTS-L 827TM 32 4.01+0.07 4.26£0.09 4.45:+0.07

the experiment.

4.2 Primary Experimental Result

In our experimental analysis, as detailed in
Table 1, all models were trained exclusively
on 150k hours of real data. The HAM-TTS
model, designed in two variants, HAM-TTS-
S and HAM-TTS-L, explores different scales
of parameterization. HAM-TTS-S, matching
VALL-E with 421M parameters, ensures a fair
comparison, while HAM-TTS-L. expands to
827M parameters, aiming to unlock the full
potential of the HAM-TTS. This scaling is
crucial for assessing the effectiveness of our
model in various parameter configurations.

In the table, our reproduced VALL-E
achieves a CER of 5.5%, an NMOS of 3.65,
an SMOS of 4.03, and an overall MOS of 4.05,
aligning with those presented in the original
VALL-E paper (Wang et al., 2023a), indicating
the reliability of our experimental setup. These
results demonstrate VALL-E’s proficiency in
generating speech, but also highlight areas for
improvement, particularly in pronunciation ac-
curacy and naturalness compared with the re-
sult of GT. The HAM-TTS-S model achieves
a CER of 4.0%, lower than VALL-E’s 5.5%,
indicating better pronunciation accuracy. Its
NMOS at 3.79 and SMOS at 4.12 also sur-
pass VALL-E, suggesting improved perceived
quality and speaker similarity. The HAM-TTS-
L further improves these metrics, recording
a CER of 3.2%, and comparable NMOS and
SMOS scores to GT, illustrating the scalability
and effectiveness of the HAM-TTS model in
generating high-quality, realistic speech. These
results demonstrate the HAM-TTS model’s su-
periority in pronunciation accuracy and the
consistency of speaking style and timbre.

Table 2: A comparison of HAM-TTS-S model per-
formance with and without K-Means clustering is
provided to highlight the improvement in CER,
NMOS, and overall MOS metrics due to K-Means
feature refinement.

Model CER%(]) NMOS(t) MOS(1)
GT 2.6  4.30+£0.06 4.45+0.09
w/o K-Means 4.2 3.63+£0.12 4.14+0.08
HAM-TTS-S 4.0  3.7940.11 4.27+0.08

4.3 Ablation Study of K-Means

In our HAM-TTS model, we employed the K-
Means clustering technique to refine HuBERT
features. This approach aims to remove per-
sonalized information such as speaking styles,
enabling the T'TS model to focus on the core
acoustic information for enhancing pronuncia-
tion accuracy and maintaining consistent speak-
ing style with the audio prompt throughout
the synthesized speech.

Table 2 in our experimental results presents
the effectiveness of the K-Means clustering in
our model. We compared the performance of
HAM-TTS-S with and without the application
of K-Means clustering. The results demon-
strate that the application of K-Means cluster-
ing further improves the model’s performance.
Specifically, the CER for the HAM-TTS-S with-
out K-Means clustering was 4.2%, while the
implementation of K-Means clustering reduced
the CER to 4.0%. This reduction in CER. indi-
cates an improvement in pronunciation accu-
racy, which is a direct result of the refined Hu-
BERT features providing more accurate acous-
tic information.

Furthermore, the NMOS and the overall
MOS also slightly improved with the use of
K-Means clustering. The NMOS increased
from 3.63 to 3.79, and the MOS increased from
4.14 to 4.27, indicating that the speech synthe-



Table 3: Experimental result to show the effective-
ness of synthetic data. We trained the HAM-TTS-
S model with different sizes and combinations of
real(R) and synthetic(S) data.

Training data CER%(]) SMOS(1) MOS(T)

GT 2.6 4.30£0.06 4.45+0.07
150k(R) 40 4.1240.10 4.27+0.08
150k (R)+150k(S) 3.6 4.26£0.09 4.32+0.07
150k (R)+500k(S) 2.8 4.3240.07 4.49+0.08
150k(S) 45 4.0540.10 4.10+0.13
300k(S) 41 4.1340.07 4.25+0.08
500k (S) 3.3 4.2540.06 4.35+0.06

sized with the refined features was perceived as
more natural and of higher quality by listeners.
These results clearly illustrate the impact of
K-Means clustering in enhancing the overall
performance of the HAM-TTS-S, affirming its
effectiveness in providing a more accurate and
consistent speaking style in synthesized speech.

4.4 Ablation Study of Synthetic Data

In our HAM-TTS model, synthetic data plays
a pivotal role in enhancing the diversity and
quality of the generated speech. We focused on
demonstrating the impact of this synthetic data
through a series of experiments, the results of
which are detailed in Table 3.

The experiments were conducted using the
HAM-TTS-S model, trained on different com-
binations and sizes of real and synthetic
data. Our findings clearly show the signifi-
cant improvements synthetic data brings to
the model’s performance. When trained solely
on 150k hours of real data, the HAM-TTS-S
model achieves a CER of 4.0%, an SMOS of
4.12, and an overall MOS of 4.27. However,
when augmented with synthetic data, there is
a marked improvement in all metrics.

Specifically, training with an additional 150k
hours of synthetic data (150k(R)+150k(S)) re-
duces the CER to 3.6%, and further increases
the SMOS to 4.26 and the MOS to 4.32. This
improvement is even more pronounced when
the model is trained with an additional 500k
hours of synthetic data (150k(R)+500k(S)), re-
sulting in a CER of 2.8%, an SMOS of 4.32,
and an MOS of 4.49. These results clearly in-
dicate that synthetic data not only contributes
to the reduction in pronunciation errors but
also significantly enhances the quality of the
synthesized speech since it enables the model

to explicitly learn the knowledge of utterance-
level one-to-many mappings.

Furthermore, the results underscore the
promise of training HAM-TTS models solely
on synthetic data. When the model was
trained with varying amounts of synthetic data
(150k(S), 300k(S), and 500k(S)), we observed
a steady improvement in all evaluation met-
rics, approaching the performance levels of the
model trained on real data. The model trained
with 500k hours of synthetic data achieved a
CER of 3.3%, closely matching the 2.8% CER
of the model trained with a combination of real
and synthetic data. This finding is particularly
promising as it suggests that high-quality T'TS
systems can be developed even in scenarios
where access to large amounts of real speech
data is limited, highlighting the potential of
synthetic data in training effective speech syn-
thesis models.

These findings illustrate the significant im-
pact of synthetic data in improving the perfor-
mance of HAM-TTS models, both when used
in conjunction with real data and when used
exclusively, marking a substantial advancement
in the field of speech synthesis.

5 Conclusion and Future Work

In this study, we have introduced HAM-TTS,
a novel text-to-speech system that leverages a
hierarchical acoustic modeling approach. This
system integrates advanced techniques such
as K-Means clustering for refining HuBERT
features and a comprehensive strategy incor-
porating both real and synthetic data. Our
experiments demonstrate the effectiveness of
HAM-TTS in improving pronunciation accu-
racy, speaking style consistency, and timbre
consistency in zero-shot scenarios.

Despite these significant advancements, fu-
ture work could explore the optimal combi-
nation of synthetic data in terms of speaker
diversity and duration per speaker. This aspect
could lead to further enhancements in handling
a wide range of speech variations. Additionally,
optimizing the inference speed of the HAM-
T'TS model is crucial for enhancing its practical
usability, making it suitable for real-time appli-
cations and user interactions. The exploration
of these avenues will contribute significantly to
advancing the field of speech synthesis.



Limitation

We acknowledge that while our HAM-TTS
model has demonstrated significant advance-
ments, certain aspects remain unexplored and
present opportunities for future research. One
such area is the optimal combination of syn-
thetic data in terms of speaker diversity and
duration per speaker. We have not yet inves-
tigated whether a greater number of speakers
with less duration per speaker or fewer speak-
ers but more duration per speaker would be
more beneficial. This aspect is crucial for en-
hancing the model’s ability to handle a wide
range of speech variations and could potentially
lead to further improvements in the model’s
performance.

Another limitation is the inference speed of
the HAM-TTS model. Although the model
achieves high-quality speech synthesis, the cur-
rent inference process is not as efficient as it
could be. There is considerable room for im-
provement in this area, particularly in terms of
reducing the time taken to generate speech. Op-
timizing the model’s architecture and stream-
lining the inference pipeline could significantly
enhance the practical usability of HAM-TTS,
making it more suitable for real-time applica-
tions and user interactions.

Addressing these limitations will be a focus
of our future work, aiming to refine the HAM-
TTS model further and expand its applicability
in various speech synthesis scenarios.

Ethics Statement

This research adheres to ethical standards in
Al and speech synthesis, emphasizing data pri-
vacy, consent, and inclusivity. We address the
potential for bias in our datasets and ensure
fairness across diverse voices. Recognizing the
risks of misuse, we advocate for responsible
use and transparency in our methodology. Our
work aims to contribute positively to technolog-
ical advancements, balancing innovation with
societal and individual well-being.
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A  Appendix

A.1 Model Details

HAM-TTS is constructed based on the VALL-E
framework, inheriting certain key architectural
features. Similar to VALL-E, HAM-TTS in-
corporates two distinct Transformer decoders.

3In order to have a fair comparison with the HAM-
TTS-S model, we increase the number of parameters
of VALL-E to a comparable level by increasing two
additional attention blocks.



Table 4: Configuration of VALL-E in the experiment.

Component Config Value
Phoneme Conversion Embedding Layer 1024
. . Quantizer 8
Audio Codec Encoder(Défossez et al., 2022) Codebook Size 1024
Codebook Dimension 1024
Attention Block 143
Heads 16
Codec Language Model Hidden Size 4096
Dropout 0.1
Output Affine Layer 1024

These decoders are integral to the model’s de-
sign, each serving a specific purpose in the
speech synthesis process.

One of the Transformer decoders in HAM-
TTS is dedicated to autoregressive modeling.
This decoder plays a crucial role in sequentially
predicting each element of the output based
on the previously generated elements, thereby
capturing the temporal dependencies in the
speech sequence.

The other Transformer decoder in HAM-
TTS is utilized for non-autoregressive modeling.
This approach allows for the parallel genera-
tion of output elements, which can significantly
enhance the model’s efficiency by reducing the
dependency on the sequential generation pro-
cess.

Concrete configurations for VALL-E, HAM-
TTS-S, and HAM-TTS-L are shown as Table
4, Table 5, and Table 6, respectively.

A.2 Pretrained Voice Conversion
Model

We employed a UNet-based (Ronneberger et al.,
2015) voice conversion model illustrated in Fig-
ure 4 to generate 500k hours of speech data for
training.

In this voice conversion model, the initial
processing stage involves extracting HuBERT
and FO features from the input audio. These
extracted features are then concatenated and
fed into a ResNet module for preprocessing.
The ResNet module is designed to transform
and refine these features, outputting them in
the dimensions of (96, T, F), where ‘T” and ‘F’
represent the time and frequency dimensions,
respectively.

This output feature is then introduced into
the encoder of a UNet architecture. The en-
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| HUBERT

(96,7, F)

(192, T,F/2)
Figure 4: Structure of UNet-based voice conversion
model. It is leveraged to generate extensive speech
data with the same content but different timbres by

several minutes of real speech from unseen target
speakers.

(384, T,F/4)

coder performs downsampling on the frequency
dimension twice, resulting in an output with
dimensions (384, T, F / 4). Following this,
another ResNet module is employed to further
refine the output of the encoder. The refined
features are then passed to the decoder of the
UNet.

In the decoding process, the frequency di-
mension undergoes two stages of upsampling.
Prior to each upsampling step, speaker char-
acteristics are integrated into the input. This
integration is crucial for ensuring that the syn-
thesized speech retains the unique attributes
of the speaker’s voice. The final output from
the decoder has the dimensions of (96, T, F),
effectively restoring the original frequency di-
mension.

It is important to note that throughout the
UNet architecture, the convolutional kernels
used are of size (1,7). This specific kernel size
aids in capturing the essential temporal and



Table 5: Configuration of HAM-TTS-S in the experiment.

Component Config Value
Phoneme Conversion Embedding Layer 1024
Quantizer 8
Audio Codec Encoder(Défossez et al., 2022) Codebook Size 1024
Codebook Dimension 1024
Attention Block 12
Heads 16
Codec Language Model Hidden Size 4096
Dropout 0.1
Output Affine Layer 1024
ConvlD Layers 2
Text-to-LVS Predictor ConvlD Kernel Size 3
Dropout 0.1
Output Affine Layer 2
Attention Block 10
Heads 8
Hidden Size 4096
. Dropout 0.1
Text-HuBERT Aligner ResNet Block 3
ConvlD Layer 2
Conv1D Kernel Size 3
Output Affine Layer 2

Table 6: Configuration of HAM-TTS-L in the experiment.

Component Config Value
Phoneme Conversion Embedding Layer 1024
Quantizer 8
Audio Codec Encoder(Défossez et al., 2022) Codebook Size 1024
Codebook Dimension 1024
Attention Block 24
Heads 16
Codec Language Model Hidden Size 4096
Dropout 0.1
Output Affine Layer 1024
ConvlD Layers 2
Text-to-LVS Predictor ConvlD Kernel Size 3
Dropout 0.1
Output Affine Layer 2
Attention Block 10
Heads 8
Hidden Size 4096
. Dropout 0.1
Text-HuBERT Aligner ResNet Block 3
ConvlD Layer 2
Conv1D Kernel Size 3
Output Affine Layer 2
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spectral characteristics of the speech signal.
The next stage involves the conversion of
these processed features into the final waveform.
This is achieved using a PostNet followed by
a UnivNet vocoder (Jang et al., 2021), which
together ensure the synthesized speech is both
natural-sounding and closely matches the orig-
inal audio in terms of timbre and prosody.

A.3 Training Method

We followed the training strategy used in
VALL-E to employ a dual training approach
to optimize the performance of the HAM-TTS
model in both autoregressive (AR) and non-
autoregressive (NAR) modeling.

AR Training: The AR model is trained on
the concatenation of the sequence Si.7, and
the audio codec sequence Agl%s from the first
quantizer of the Encodec model (Défossez et al.,

2022). It can be formulated as,

p(A'WAW 8:0,45) =
T
[TraV1A), AV, S:0.4r)
t=0
NAR Training: The NAR model is employed
for the audio codecs from the second to the last
quantizers. This model is conditioned on Sy.7,,

(8)

the acoustic prompt A§21§3 ), and the predicted
acoustic tokens A§<T2 from the previous code-
books. Each training step randomly samples a
quantizer i € [2, 8], and the model is trained to
fit the distribution of codecs from the selected

quantizer codebook. It can be formulated as,
(9)

8
= [[p(ADIAD A S 04r)  (10)
=2

p(A'*%)| A, S0y aR)

Both AR and NAR models were optimized
using the Adam optimizer (Kingma and Ba,
2015), with a learning rate set at 0.03 and a
warmup spanning the first 15,000 steps. Af-
ter the warmup phase, the learning rate was
managed using the CosineAnnealingL.R sched-
uler (Loshchilov and Hutter, 2017). The train-
ing was conducted on a robust setup of 512
NVIDIA A100 80GB GPUs, and the model
processed a batch size of 8k acoustic tokens.
This extensive training was carried out over
a total of 400k steps, leveraging the powerful
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computational capabilities of the A100 GPUs
to efficiently handle the large batch size and
extensive training steps.
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