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1. Introduction

ABSTRACT

This work introduces a new multispectral database and framework to train and evaluate
eyeblink detection in RGB and Near-Infrared (NIR). Our contributed dataset (nEBAL?2,
multimodal EyeBlink and Attention Level estimation, Version 2) is the largest existing
eyeblink database, representing a great opportunity to improve data-driven multispectral
approaches for blink detection and related applications (e.g., attention level estimation).
mEBAL?2 includes 21,100 image sequences from 180 different students (more than 2
million labeled images in total) while conducting a number of e-learning tasks of varying
difficulty or taking a real course on HTML initiation through the edX MOOC platform.
mEBAL?2 uses multiple sensors, including two Near-Infrared (NIR) and one RGB cam-
era to capture facial gestures during the execution of the tasks, as well as an Electroen-
cephalogram (EEG) band to get the cognitive activity of the user and blinking events.
Furthermore, this work proposes 3 data-driven approaches as benchmarks for blink de-
tection on mEBAL2, where the architecture based on Convolutional Long Short-Term
Memory (ConvLSTM) achieved performances of up to 99%. The experiments explored
whether combining RGB and NIR spectrum data improves blink detection in training and
architectures that merge both types of data. Experiments showed that the NIR spectrum
enhances results, even when only RGB images are available during inference. Finally,
the generalization capacity of the proposed eyeblink detectors, along with state-of-the-art
eyeblink detection implementations, is validated in wilder and more challenging environ-
ments like the HUST-LEBW dataset to show the usefulness of mEBAL?2 to train a new
generation of data-driven approaches for eyeblink detection.

© 2024 Elsevier Ltd. All rights reserved.

volving human behavior analysis, such as driver fatigue detec-
tion [3], attention level estimation [4, 5], dry eye syndrome re-

The act of involuntary closing and opening of the eyelids pe-
riodically is defined as eyeblink. The eye is one of the most
important organs in the human facial structure for image pro-
cessing applications from behavior analysis to biometric iden-
tification [[1} [2]]. The eyeblink has proven to be a valuable indi-
cator in various fields such as ocular activity, attention, fatigue,
emotions, etc., for this reason, eyeblink detection based on im-
age processing has become essential regarding applications in-
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covery [6], DeepFakes detection [7]], among others.

In the e-learning field, eyeblink detection can be a valuable
tool to address certain limitations, particularly, when combined
with the latest e-learning platforms [8} |9} [10] that allow collect-
ing students’ information to improve security, to guarantee a
safe and personalized evaluation, and to adapt dynamically the
contents and methodologies to different needs. Eyeblink de-
tection is a useful tool to improve e-learning platforms and get
high-quality online education, for at least two reasons. First,
since the 70s, studies relate the eyeblink rate with cognitive
activity like attention [11} [12]. Recent research suggests that
lower eyeblink rates can be associated with high attention peri-
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Fig. 1. Different examples from mEBAL2. (top) Sequence images with vari-
ations in illumination, posing, and distance to the camera. (bottom) Exam-
ples of eyeblink and no-blink with RGB and NIR images.

ods while higher eyeblink rates are related to low attention lev-
els [4,/5,13]]. And second, blink detection can be used in the de-
tection of fraud/cheating/lies and combined with other features
like heart rate, gaze tracking, micro-gestures or blood oxygen
saturation, can improve the trustworthiness of e-learning plat-
forms.

Over the past few years, significant progress has been made
in eyeblink detection [4] [T4] [T3]) thanks to the rise of new
computer vision technologies and deep learning techniques, fa-
cilitating improved detection of the region of interest and subtle
movements of the eyelids, even in challenging conditions such
as low lighting and variable poses.

However, the state of the art demonstrates that public eye-
blink detectors based on image processing are far from resolv-
ing the eyeblink detection problem, HUST-LEBW and
MPEDblink [13] are recent surveys that demonstrate the need for
research in this area. At the moment, there are very few pub-
lic data-driven algorithms (e.g., neural networks), mainly due
to the lack of large eyeblink databases. Most existing datasets
useful for research in this area have only a few hundred sam-
ples, representing a strong restriction to training data-driven ap-
proaches (e.g., deep learning). Also, current public databases
restrict their samples to RGB cameras, without using other sen-
sors that have proven to be useful in similar tasks such as NIR
cameras in gaze tracking or iris and pupil detection [16]].

Considering all of the above, this work aims to provide re-
sources to train and evaluate eyeblink detectors, investigate the
potential utility of the NIR spectrum for eyeblink detection, and
evaluate new data-driven approaches in realistic environments.
The main contributions are:

e We present a new version of the mEBAL database called
mEBALZﬂ a multimodal database for eyeblink detection
and attention level estimation obtained from an e-learning
environment. This database is the largest existing public
eyeblink database. This database includes videos from 180
students, with 21,100 labeled image sequences (10,550

Ihttps://github.com/BiDAlab/mEBAL2
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eyeblinks and 10,550 no-blink events), more than 2.4 mil-
lion labeled frames, and students’ cognitive activity labels
synchronized with all the eyeblink data. Additionally, the
new mEBAL?2 contains variations on illuminations, poses,
distances between user and camera, objects over the face
(glasses, hair, hand occlusion, etc.), physical activity, and
other naturally-occurring factors. Fig. [I] shows some ex-
amples from mEBAL2.

o Specific tasks were designed to provoke changes in the stu-
dents’ cognitive activity like mental load, attention, visual
attention, etc. The experiments comprise data from two
groups divided into 60 and 120 users. The second group
attended a Massive Open Online Course (MOOC) offered
by the Universidad Autonoma de Madrid (UAM). This ap-
proach provides a real-world environment.

e Our architecture, presented in mEBAL [13]], was trained
on the proposed mEBAL2 dataset using both RGB and
NIR frames. The results demonstrate that NIR images im-
prove the eyeblink detector’s training process and outper-
form the results even when only RGB images are available
during the inference.

e Two new data-driven approaches are proposed: An eye-
blink detection at frame level based on CNNs that com-
bines all spectral information, and an eyeblink detection at
video-sequence level based on ConvLSTM. Additionally,
two benchmarks are introduced within mEBAL2: (1) for
blink detection at video-sequence level, and (2) for blink
detection at frame level.

o Finally, experiments were conducted to showcase the
ability of mEBAL?2 to train data-driven approaches that
can generalize to unseen scenarios. The public bench-
mark HUST-LEBW, captured in uncontrolled environ-
ments, was utilized for evaluation. The results highlight
mEBALZ2’s proficiency in developing new eyeblink detec-
tors that effectively adapt to previously unseen scenarios.

A preliminary version of this article was presented in [13].
This article significantly improves in various aspects:

e An improved version of the mEBAL database with 180
users and 7,550 additional eyeblink events, which now in-
cludes 5 times more users and 3.5 times more eyeblink
events compared with [13]. Furthermore, a new real e-
learning environment has been added.

o For the first time, we trained our architecture proposed in
mEBAL on mEBAL?2, using RGB, NIR, and both images.
We conducted a new study to verify whether using NIR
images during training could enhance eyeblink detection.

e Two new blink detectors are proposed, being the most ac-
curate systems on mEBAL2, surpassing the previous ver-
sion presented in mEBAL.

e Evaluations were conducted on the public HUST-LEBW
database using the same eyeblink detector introduced
in mEBAL, but with training on the new version. This
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Table 1. State of the art of eyeblink database.

’ DB. ‘ Year ‘ Blinks ‘ Users ‘ Att. ‘ Sensors
(171 NA 61 1 No RGB
[18] | 2007 255 20 No RGB
[19] | 2014 353 4 No RGB
[20] | 2015 300 5 No RGB
[14] | 2019 381 172 No RGB
[13] | 2020 3000 38 Yes | 1 RGB -2NIR
[15] | 2023 8748 NA No RGB
Ours | 2024 | 10550 180 Yes | 1 RGB-2NIR

resulted in an error reduction of 37.31% for the left eye
and 27.85% for the right eye.

The rest of the paper is organized as follows. Section 2 sum-
marizes works related to eyeblink detection. Section 3 presents
the mEBAL2 database. Section 4 describes the architecture
proposal for the eye’s localization and the architectures for the
eyeblink verification. Section 5 describes the experiments. Fi-
nally, Section 6 provides conclusions and future work.

2. Related Works

2.1. Eyeblink detection databases

There are several well-known databases for blink detection,
such as Talking Face [17], ZJU [18]], Eyeblink8 [19], and Sile-
sian5 [20]], which all share a common limitation: the small num-
ber of users and blinks (see Table[I). This limited amount of
data implies a significant restriction for data-driven approaches
during training. The reported results from published evalua-
tions show saturated scores close to 99% of accuracy due to the
reduced number of eyeblink samples [17, 18} 19, 20].

The previous databases are characterized by acquisition
setups under controlled environments. The HUST-LEBW
database [14] was proposed to explore the detection of eye-
blinks in unconstrained scenarios. This database uses eyeblink
video clips from 20 commercial movies (The Matrix, Lord of
the Rings, etc.). It contains indoor and outdoor examples with
scene/illumination changes and varying human poses, similar to
a wild environment. HUST-LEBW consists of 172 actors with
381 eyeblinks. It is divided into training with 254 eyeblinks
(253 right eye and 243 left eye) and testing with 127 eyeblinks
(126 right eye and 122 left eye). The database is unbalanced be-
cause the training includes 190 no-eyeblink (190 right eye and
181 left eye) and testing includes 98 no-eyeblink (98 right eye
and 98 left eye). The major drawback is the small training set
for data-driven approaches (448 samples). A small training set
may cause a poor generalization because a few eyeblink exam-
ples are not able to handle different head poses, illumination,
hair on the eyes, makeup (overstated use of makeup), etc.

The MPEblink database [15] was published recently, and
also collected eyeblink data from a wild environment, similar
to the HUST-LEBW [14]. This database contains 686 short
video clips (7.1-85.9 s) of 86 different movies. 8,748 eyeblink
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events were labeled in total, and each video has different eye-
blink events from different people.

mEBAL [13]] is a previous version of mEBAL?2, also cap-
tured in an e-learning environment in a multispectral setup
(RGB and NIR cameras). mEBAL has 38 users with 3,000 eye-
blinks. mEBAL?2 comprises three times more users and blink
samples with more than 2.4 million frames recorded from 180
MOOC users. Table [I] summarizes the main differences be-
tween mEBAL?2 and the databases used in the literature.

2.2. Eyeblink detection methods

An eyeblink is a sequence of “eyes open - eyes closed - eyes
open” that occurs in a short time. For this reason, eyeblink
detectors can be categorized into two groups:

e Eyeblink detection at frame level (image-based eye-
blink detection): In this case, the methods classify
each frame in open, closed, or the degree of eye clo-
sure. Then a sequence of events is defined to detect the
eyeblink action like “open/closed/open”, “open/partially-
closed/closed/open”, etc. Some methods based on CNN
have been proposed for this group. For example, in [21]],
Anas et al presented two methods based on CNN. The
first method had two states (open or closed eyes), and
the second had a third state for a partially opened eye.
The authors evaluated ZJU and Talking Face datasets get-
ting 93.72% and 100% blink detection accuracy using F1
scores. Phuong et al [22] presented a model based on the
Eye Aspect Ratio (EAR), innovating with a custom EAR
threshold.

e Eyeblink detection at video-sequence level: This approach
uses in a holistic manner the information obtained from a
sequence of frames, which is classified entirely as blink
or no-blink. Some researchers like Soukupova et al [23]]
used 13 consecutive frames as input to extract the EAR
using facial landmarks. 13 EARs were concatenated as
input to an SVM to classify between blink or no-blink.
In addition, Huge et al [14] proposed a model based on a
Multi-Scale LSTM (MS-LSTM). Appearance and motion
features were extracted in each frame sequence to clas-
sify eyeblinks. The MS-LSTM model outperformed some
state-of-the-art algorithms in wild environments. Zeng et
al [[15] presented the InstBlink model recently, which used
Query-based methods [24] as its foundation to obtain the
face bounding box and eyeblink labels, without using the
eye localization method. Zeng et al [25]], in a recent work,
proposed an approach that captured eyelid movement fea-
tures to differentiate between blink and no-blink. The net-
work has an architecture with an attention module to gen-
erate an attention map, which is fed into a CNN model
to jointly learn the appearance and movement features in
each frame. Finally, the features extracted are used as in-
put to an LSTM model.

3. mEBAL2 Database

mEBAL?2 contains synchronized information from multiple
sensors while the students use an interface designed for e-



learning tasks. mEBAL?2 acquisition is based on the works
of Hernandez et al in [8] and Daza et al in [9]. The au-
thors proposed a platform for remote education assessment
called edBB (Biometrics and Behavior for Education). A mul-
timodal acquisition framework was designed to monitor cog-
nitive and eyeblink activity during e-learning tasks. mEBAL2
includes 21,100 events (10,500 blinks and 10,500 no-blinks)
from 180 students/sessions. The session duration varies from
15 to 40 min. Each eyeblink event has 19 frames using three
cameras: one RGB and two NIR cameras. This database con-
tains 2,405,400 frames (3 cameras X 19 frames x 21,100 events
X 2 eyes), making it the largest existing eyeblink database.

Therefore, mEBAL2 provides a dataset consisting of 540
long-duration videos (1 RGB video and 2 NIR videos per ses-
sion). Each video comes along with the facial bounding box
information, 68 facial landmarks, and cropped eye regions for
each frame. Furthermore, the dataset includes timestamps for
eyeblink and no-eyeblink events and a total of 21,100 cropped
samples. Additionally, the dataset provides EEG band infor-
mation, including attention level, meditation level, 5 electroen-
cephalographic channels, and eyeblink intensity measures. Fi-
nally, mEBAL2 contributes two subsets: (i) For frame-level
blink detectors, a subset based on the eye state, with 21,000
frames for open eyes and 21,000 frames for closed eyes, is pro-
vided. This offers a resource where frame-level blink detec-
tors can be trained and evaluated. (ii) For video-sequence level
blink detectors, the subset contains 10,500 blinks and 10,500
no-blinks.

The acquisition setup uses the following sensors (see [9] for
a graphical representation of the setup):

e An Intel RealSense (model D435i), which contains 1 RGB
and 2 NIR cameras. The 3 cameras are configured to 30
Hz and 1280 x 720 resolution. According to the Harvard
Database of Useful Biological Numbers [26], an average
eyeblink ranges between 100 ms—400 ms. Our experience
with mEBAL2 reveals that normally eyeblink duration is
between 198-263 ms. Therefore, bearing in mind previous
studies, our experience, and the setup settings, the average
eyeblink can last between 3 to 13 frames.

o An EEG headset by NeuroSky, which measures the power
spectrum density of 5 electroencephalographic channels
(a,B,v,06,0). EEG measures the voltage signals produced
usually by synaptic excitations of the dendrites of pyra-
midal cells in the top layer of the brain cortex [27]. The
signals are produced mainly by the number of neurons and
fibers fired synchronously [28]. Eyeblinks introduce ar-
tifacts that can be easily recognized in EEG signals. In
this dataset, the EEG band was used to generate the initial
ground truth necessary to label the eyeblink events.

The eyeblinks were labeled using a semi-supervised ap-
proach. For that labeling, we first used the eyeblink informa-
tion provided automatically by the EEG band as candidates for
ground truth, and then a human manually checked all the de-
tected events. Without human intervention, the number of eye-
blinks detected was 21,484. After the human intervention, the
eyeblinks were reduced to 12,032, where 1,482 were labeled
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as possible eyeblinks and the remaining eyeblinks were con-
sidered ground truth. Each eyeblink in mEBAL2 contains 19
frames in total.

3.1. Tasks

The database was divided into two groups. The first group
of 60 students did a series of tasks carefully designed to reach
certain goals, and the second group of 120 students did a real
lesson from a MOOC entitled “Introduction to Development of
Web Applications” (WebApp), available in the edX platform.
The lesson is about introduction to HTML coding, where stu-
dents perform different tasks including watching videos, read-
ing documents, reading and writing HTML code, and perform-
ing a final exam.

The tasks for both groups were designed with two goals.
First, to generate changes in the students’ cognitive activity
such as mental load, attention, visual attention, etc., looking
to cause variations of the eyeblink rate. Second, to generate a
realistic setting of online assessments. The tasks can be catego-
rized into five groups (see [9] for a video demonstratiorﬂ):

e Enrollment form: Student’s data are obtained here. This
simple task targets a relaxed state with attention levels be-
tween normal and low.

e Logical questions: These require more complex interac-
tions, and some of them include crosswords and math-
ematical problems for the first group. For the MOOC
course, some activities involve writing HTML codes and
generating more efficient ones.

o Visual tasks: These demand visual attention from the stu-
dents under different situations, such as watching pre-
recorded classes, describing images, and detecting errors
in HTML code.

e Reading tasks: Reading documents has proven to have an
impact on eyeblink rates and it is highly common in e-
learning environments.

e Multiple choice questions: These are essential to help
evaluate the students on assessment platforms and most
Learning Management Systems provide templates to per-
form these assessments [29]].

4. Proposed Eyeblink Detector

We propose architectures for eyeblink detection: (1) ROI lo-
calization, which is commonly used in eyeblink detectors, and
(2) Eyeblink verification.

Zhttps://www.youtube.com/watch?v=JbcL2N4YcDM
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4.1. ROI detection

A sequential approach using deep learning is proposed for
ROI detection in 5 steps: (i) Face detection: using the well-
known RetinaFace Detector [30], a robust single-stage face
detector that uses extra-supervised and self-supervised multi-
task learning. (i7) Landmark detection: using a 68 SBR land-
mark detector [31], based on VGG-16 [32] and Convolutional
Pose Machines stages [33]]. (iii) Face Alignment: The Dlib li-
brary [34] is used to align both eyes parallel to a horizontal
line [35]. The alignment is performed utilizing five landmarks
(two eyes, the nose, and two at the mouth). The inclination
angle formed by the eye landmarks is calculated in the face ro-
tation process, and an affine transformation is applied to cor-
rect the tilt. (iv) Data quality: Using detectors’ probabilities
(pror), ROI quality can be assessed. Two different probabili-
ties are calculated, one before alignment (pro;,,,) and another
after (proi,,,)- leading to three potential decisions: maintaining
alignment (0.60 < pro,,,), not maintaining it (0.60 > pgoy,,,
or %X PROI,,. > PROL,,)> Or discarding the frame (0.25 > proy,,,,
and 0.25 > pgoy,,). Consequently, the process involves re-
calculating the eye landmarks. A pgo; below 0.25 indicates a
failed detection or a turned head. (v) Eye cropping: Finally,
each eye was cropped using the ROI’s information from the
landmark detectors. Later, all eyes were resized to 50 x 50.

4.2. Eyeblink verification architecture

The mEBAL?2 experimental framework includes 2 blink de-
tectors at frame-level based on CNN architectures and 1 blink
detector at video-sequence level based on a ConvLSTM archi-
tecture [36].

One-Eye ConvNet architecture (OE-ConvNet) [13]]: This
architecture is based on the popular VGG16 neural network
model [32]] (see mEBAL [13]] for details). The architecture
is formed by 3 convolutional layers with ReLU activation
(32/32/64 filters of size 3 x 3), with 3 max pooling layers be-
tween them. The last layer is used as input for a dense layer
of 64 units with ReLU activations and 0.5 of dropout. In this
work, we have adapted [13]] for different training scenarios in-
cluding RGB and NIR spectrums. During the training process,
the RGB and NIR images were introduced in the training batch
depending on the scenario.

Left NIR + Right NIR + RGB ConvNet architecture (LI-
RI-RGB-ConvNet): We propose a late fusion [37] using the
3 channels of the Intel RealSense information (1 RGB and 2
NIR). It consists of six inputs (2 eyes X 3 cameras), and each
input layer has 50 x 50 x C dimensions, where C is the number
of channels for each used spectrum (3 for RGB and 1 for NIR).
All 6 inputs were connected to 6 different convolutional blocks,
with the same characteristics of the OE-ConvNet. The outputs
of the 6 convolutional blocks were concatenated and connected
to a dense layer of 64 units (ReLU activation) and an output
layer with one unit (sigmoid activation). A dropout of 0.5 was
used.

One-Eye ConvLSTM architecture (OE-ConvLSTM):
This architecture processes sequences of 10 input images. It
consists of three ConvLSTM layers using recurrent activation
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with hard sigmoid, 32 filters with a kernel size of 3x3 (tanh acti-
vation) followed by a batch normalization layer and a max pool-
ing layer, excepting the third layer, which changes the number
of filters from 32 to 64. Finally, the architecture incorporates
a dense layer of 64 units with ReLU activations. Classification
between an eyeblink and no-blink is performed by a final output
layer with one unit and sigmoid activation. In addition, dropout
(0.5) is used.

OE-ConvNet and OE-ConvLSTM offer significant advan-
tages as they were trained to model each eye separately. There-
fore, they allow for detecting eyeblinks in side poses, even
when one of the eyes is occluded. On the other hand, the LI-RI-
RGB-ConvNet takes advantage of all the information provided
by the RealSense camera.

5. Experiments and Results

5.1. Experimental protocol

The proposed architectures were trained using mEBAL?2
from scratch with a batch size of 32, an Adam optimizer (0.001
learning rate) and a binary cross-entropy loss.

The mEBAL?2 benchmark includes a leave-one-out cross val-
idation protocol with one user for testing and the remaining
users for training. The process was repeated for each user in
the database and the obtained results were averaged. The deci-
sion threshold was fixed to the point of Equal Error Rate (EER),
in which the False Positive and False Negative rates in blink de-
tection are equal.

The generalization ability of the eyeblink detector trained
with mEBAL?2 was evaluated on the public benchmark HUST-
LEBW [14]. The HUST-LEBW dataset comprises videos ob-
tained from films characterized as in-the-wild completely dif-
ferent to the mEBAL?2 environment (e-learning).

5.2. Experiments: mEBAL2 Benchmark

5.2.1. mEBAL2: Blink detection at frame-level
Table2ppresents the mEBAL?2 benchmark results of the OE-
ConvNet under different training scenarios (e.g., RGB or NIR,
different eyes). The results show detection accuracies up to
97.30% in the RGB and 93.94% in the NIR images. Results
also show how training a specific detector for each eye leads to
a slight improvement compared to training one for both eyes.
One of our goals was to understand if the NIR images could
serve to improve current eyeblink detectors. For this reason, we
trained OE-ConvNet using RGB, NIR, or both. The results in
Table 2] show that eyeblink detection with RGB images is more
accurate than the NIR images with a difference of 2.49% ap-
proximately. The results with the left NIR camera are similar
to the right NIR camera. We trained our OE-ConvNet approach
using data from all 3 images (1 RGB + 2 NIR) and evaluated
the performance over the RGB images, adopting a similar ap-
proach to [38]. The batch of size 32 was generated with both
RGB and NIR images. The NIR images (size 50 x 50 x 1) were
expanded to size 50x50x%3, which became the input size for our
architecture. As we can see in Table[2] there is an improvement
of 0.41% when all three images are used for training (FS = Full



Table 2. Comparison of OE-ConvNet on mEBAL?2 under different train-
ing/evaluation scenarios. The Eyes column denotes the eyes used for train-
ing/evaluation. FS: Full Spectrum (RGB and both NIR cameras). NIR,: x
is the Camera (R: Right, L: Left, or B: Both).

’ Eyes \ Training Evaluation Acc

RGB RGB 0.9615

NIRg NIRg 0.9373

Both NIR,, NIR;, 0.9360
NIRp NIRp 0.9394

FS (RGB+NIRp) RGB 0.9656

Left RGB RGB 0.9730
Right RGB RGB 0.9669

Table 3. Eyeblink detection accuracy at frame-level obtained by OE-
ConvNet (FS), LI-RI-RGB-ConvNet, and two existing blink detectors
[224123].

Method Acc

Blink Detection [22] 0.5837
Soukupova Threshold [23] + Insightface | 0.6153
OE-ConvNet (FS) 0.9656
LI-RI-RGB-ConvNet 0.9760

Spectrum), compared to the results obtained when training with
RGB only.

Finally, Table [3] presents a comparison between the perfor-
mance obtained by the OE-ConvNet (FS = Full Spectrum) and
LI-RI-RGB-ConvNet EyeBlink detectors (our proposals), and
two existing eyeblink detectors: Blink Detection+ [22] and
Soukupova Threshold [23] + InsightFace. The thresholds of
both detectors [22] 23] were retrained using the frame-level sub-
set of mEBAL2 and the cross-validation protocol proposed in
the mEBAL2 benchmark. The face detector of [23] was up-
dated with the state-of-the-art detector InsightFace [30]. Our
LI-RI-RGB-ConvNet proposal achieves the highest accuracy
with 0.9760, outperforming OE-ConvNet (FS). This demon-
strates that our LI-RI-RGB-ConvNet architecture enhances ac-
curacy through late fusion [38] of information from the 3
cameras instead of the heterogeneous training used for OE-
ConvNet (FS). However, as a downside, this multispectral ap-
proach requires specific hardware with three synchronized sen-
sors. The performance of data-driven approaches such as OE-
ConvNet (FS) and LI-RI-RGB-ConvNet is clearly superior to
the performance achieved by the methods Blink Detection+ and
Soukupova Threshold + InsightFace based on the EAR thresh-
old (see Section[2.2).

The models proposed and evaluated here are aimed to
demonstrate the usefulness of mEBAL?2 for training and eval-
uating novel blink detectors, and in that regard compare well
with recent methods like [22} [23]]. Note that we are not claim-
ing superior performance of our models in comparison with
cutting-edge detectors based on advanced data-driven learning
architectures such as [[15, 25]].

Table 4. Eyeblink detection accuracy at video-level obtained by OE-
ConvLSTM and two state-of-the-art implementations [22}23]].

Method Acc

Blink Detection+ [22] 0.6758
Soukupova SVM [23]] + Insightface | 0.8145
OE-ConvLSTM 0.9909

5.2.2. mEBAL2: Blink detection at video-sequence level

Table [ presents the eyeblink detection accuracies at
video-sequence level of the mEBAL2 Benchmark for our
OE-ConvLSTM and two existing blink detectors: Blink
Detection+ [22]] and Soukupova SVM [23] + InsightFace. Both
detectors [22, 23] were retrained on the video-sequence level
subset of mMEBAL?2, including recalibration of Blink Detection+
thresholds and parameter optimization for the Soukupova SVM
model. The results demonstrate the potential of mEBAL2
database to train eye detectors obtaining an accuracy of 0.9909.
The methods proposed in [22} 23] improve in comparison with
the accuracies obtained at frame level. However, the perfor-
mance of these methods, based on eye landmarks, adaptive
thresholds, and SVM is far from those obtained using data-
driven learning architectures such as OE-ConvLSTM.

These results are even more remarkable when considering
the size of the database and the challenging e-learning envi-
ronment, where pose changes are common due to the students
looking at the keyboard, resulting in closed eyes appearance, as
well as changes in lighting, among other factors.

5.3. Experiments on HUST-LEBW: Evaluating the generaliza-
tion ability of models trained with mEBAL2

Table [5] compares different eyeblink detectors (ours vs rel-
evant related works) based on the public benchmark HUST-
LEBW [14]]. Our OE-ConvLSTM architecture (Proposal 4) was
evaluated through two distinct approaches: (i) OE-ConvLSTM
trained using the RGB images of mEBAL2, and (ii) OE-
ConvLSTM trained using the HUST-LEBW images. The archi-
tecture trained with mEBAL?2 achieves the second-best perfor-
mance in terms of the F1 metric for both eyes, only being out-
performed by the recent eyelid method [25]. It is important to
note that eyelid incorporates a more complex structure, includ-
ing an attention generator, CNN, and LSTM architectures (see
Section [2.2). When OE-ConvLSTM is trained with mEBAL2,
a slight decrease in the performance of approximately 3% in
the F1 metric is observed, demonstrating the effectiveness of
mEBALZ2 for training data-driven approaches capable of gener-
alizing in unseen scenarios.

Our OE-ConvNet architecture (Proposals 1-3) was evaluated
with different training settings on mEBAL2: Proposal 1 was
trained with both eyes using RGB and NIR images, Proposal 2
was trained with both eyes using only RGB images, and Pro-
posal 3 consists of two detectors trained using RGB images for
both eyes separately. Proposal 1 outperforms the best results
in the F1 score for architectures trained on mEBAL?2, even sur-
passing our OE-ConvLSTM architecture. These results sug-
gest the usefulness of multispectral training (RGB+NIR) when



Table 5. Eyeblink detection results on the HUST-LEBW dataset [14]. Our
OE-ConvNet proposals were trained on mEBAL?2 (see Table[2]for the train-
ing configuration of each Proposal). Our OE-ConvLSTM (Proposal 4) un-
derwent two distinct training: one on mEBAL2 and the other on HUST-
LEBW. The method described in [23] was updated using InsightFace [30].

’Training‘ Method ‘ Eye ‘ Recall ‘ Precision‘ F1 ‘

23] | Both | 0.4073 | 0.8495 |0.5506
[22] | Both [ 0.5899 | 0.8005 |0.6790

. [15] | Both [ 0.9764 | 0.5662 |0.7168
3 ([14] Left | 0.5410 | 0.8919 |0.6735
[:.‘ Right | 0.4444 | 0.7671 |0.5628
2 23] Left |0.9180 | 0.8960 |0.9069
= Right | 0.9127 | 0.9274 |0.9200
Proposal 4 | Left | 0.8968 | 0.8014 | 0.8464
Right | 0.8780 | 0.7826 |0.8276

2 [13] Left | 0.9603 | 0.6080 |0.7446
E'rg Right [ 0.7950 | 0.7348 |0.7637
Proposal 1 | Left | 0.9440 | 0.7564 | 0.8399
Right | 0.8770 | 0.7868 |0.8295

o  |Proposal2 | Left |0.9520 | 0.7126 |0.8151
= Right | 0.8934 | 0.6855 |0.7758
B |Proposal 3| Left |0.9200| 0.6928 |0.7904
: Right [ 0.9262 [ 0.7152 |0.8072
Proposal 4 | Left | 0.8596 | 0.7656 | 0.8100
Right | 0.8303 | 0.7750 |0.8017

testing on a different dataset (note that HUST-LEBW includes
RGB images only).

Proposal 2 has the same architecture as Proposal 1 but it
was trained only with RGB images. As a result, Proposal 2
has lower performance than Proposal 1, especially for the right
eye. It is interesting because this indicates that training with
more data and with both spectra allows the creation of mod-
els with a greater generalization capacity for different environ-
ments (different illumination, head orientation, etc.). Further-
more, our initial approach presented in [13]] shares the same
architecture as Proposal 2 (OE-ConvNet). However, it was
trained with the first version of mEBAL with RGB images and
therefore presents inferior results in comparison with our Pro-
posal 2 trained now with mEBAL?2. Proposal 2 improves the F1
metric in both eyes, with 7.05% for the left eye and 1.21% for
the right eye. These results suggest the importance of the usage
of wide databases to train data-driven eyeblink detectors.

The training of the OE-ConvNet architecture in Proposal 3,
which consists of two detectors trained using RGB images for
both eyes separately, outperforms the performance of the other
OE-ConvNet proposals in the mnEBAL2 evaluation (see table[2).
However, in the HUST-LEBW evaluation, Proposal 3 obtains
worse results for F1 metrics in both eyes than the OE-ConvNet
architecture trained with both eyes using RGB and NIR images
(Proposal 1). Also, for the left eye, it obtains lower F1 scores
than the OE-ConvNet architecture trained with both eyes using
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Fig. 2. F1 score results on HUST-LEBW evaluation for different training
ratios in mEBAL?2 for OE-ConvNet and Soukupova [23] + Insightface ar-
chitectures.

RGB images (Proposal 2). This result again shows the impor-
tance of training with databases with a large number of samples
and how the NIR spectrum can be useful to train data-driven
approaches with robust generalization capabilities.

Finally, Figure[2]shows the results achieved for the F1 scores
on the HUST-LEBW dataset for different training percentages
on mEBAL2 of our OE-ConvNet method (Proposal 1) along
with our adaptation of Soukupova + InsightFace [23]]. The re-
sults demonstrate an increase in accuracy for both architectures
when training with a larger volume of data. Even Soukupova
+ InsightFace achieves better performance when trained on
mEBAL?2 than with HUST-LEBW training. As we can see, the
large number of samples and users in mEBAL?2 allows for the
improvement in the performance of eyeblink detectors even in
unconstrained scenarios.

6. Conclusions

This work has presented a new multispectral database for
eyeblink detection. mEBAL?2 is 3.52 times wider than the first
version in terms of samples and around 5 times larger in terms
of users, being the largest existing eyeblink database in the liter-
ature for research in image- and video-based eyeblink detection
and related applications, e.g.: attention level estimation [5] and
presentation attack detection to face biometrics [39]. mEBAL?2
uses visible and NIR spectra (1 RGB and 2 NIR cameras).

Besides, we explored the effects of the visible (RGB) and
NIR spectra for eyeblink detection. Our results demonstrate
that: (i) the approaches trained with both spectra have a good
generalization capacity for unseen scenarios, (ii) the combina-
tion of the RGB and NIR spectrum through late fusion architec-
tures improves the results in eyeblink detection on e-learning
environments.

Our proposed architecture for blink detection at video-
sequence level, based on ConvLSTM, has achieved the high-
est levels of accuracy, approximately 99%, in the challenging
e-learning environment considered in mEBAL2. Additionally,
our methods achieved the second-best performance under un-
controlled conditions in the HUST-LEBW dataset, only sur-
passed by the eyelid method [25]], which is a more complex
architecture (see Section[2.2).



mEBAL?2 has proven to be a valuable resource to train data-
driven algorithms, since a simple CNN learning architecture,
when trained on mEBAL?2, has demonstrated robust generaliza-
tion capabilities and significantly improved results compared to
its performance with mEBAL. Therefore, the results show that
mEBAL?2 can be used to train a new generation of data-driven
approaches for eyeblink detection.

Future work includes: exploring in more depth the NIR spec-
trum, advancing in new architectures to leverage the tempo-
ral information across frames (GRU, Transformers, etc.), ex-
ploiting modern multimodal strategies [40] integrating context
information in the periocular region [2]], exploiting recent ad-
vances in generative face biometrics [41]], and exploiting gen-
eral large-scale Al models with facial analysis capabilities [42]
to provide added-value in this specific problem of eyeblink de-
tection.
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