
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRORA: PROJECTION AWARE LOW-RANK ADAPTA-
TION FOR PARAMETER EFFICIENT FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the remarkable success of large language models (LLMs) across diverse
tasks, the computational cost of fine-tuning them remains high. Low-Rank Adap-
tation (LoRA) addresses this by updating through the product of two low rank ma-
trices. LoRA initializes low-rank matrices using random Gaussian noise and ze-
ros, while keeping the pretrained weights frozen. However, such random and zero
initialization leads to slow convergence and limits expressiveness. To overcome
these limitations, we propose Projection Aware Low-Rank Adaptation (ProRA).
ProRA initializes adapter matrices by projecting the original weight matrix into
its orthonormal subspace and keeps the residual weight matrix frozen. ProRA
leverages the orthonormal projection to ensure that updates preserve the geomet-
ric structure of pretrained models and are aligned with orthogonal subspaces,
leading to faster convergence and improved performance. Furthermore, we in-
terpret ProRA through the lens of geometric complexity. ProRA lowers geomet-
ric complexity in the frozen weights, which facilitates more efficient fine-tuning.
Our proposed ProRA demonstrates empirical superiority over LoRA across di-
verse tasks. On the GSM8K benchmark dataset, ProRA achieves 78.11% accu-
racy with GEMMA-7B, outperforming LoRA’s 74.53% by 3.58%. Comparative
evaluations across various model architectures consistently show that ProRA out-
performs LoRA, highlighting its robustness and effective fine-tuning capability.

1 INTRODUCTION

Large Language Models (LLMs) are at the forefront of progress in Natural Language Processing
(NLP) (Hosseini and Fedorenko, 2023; Zheng et al., 2023; Creswell et al., 2023; Yu et al., 2024; Luo
et al., 2024). Their success can largely be attributed to transfer learning (Strangmann et al., 2024;
Wang et al., 2024; Raffel et al., 2020). Among the various transfer learning strategies, the most
widely adopted approach involves two key stages. The first stage, known as pretraining, involves
training the LLMs on large-scale, general-purpose datasets using either supervised or unsupervised
learning objectives. The subsequent stage, known as fine-tuning, focuses on adapting the pretrained
model to a specific downstream task by updating its weights (Bengio, 2012). Generally these down-
stream tasks are unknown at the time of pre-training. LLMs require fine-tuning to achieve optimal
performance on downstream tasks. While fine-tuning is highly effective for adapting LLMs to task-
specific datasets, the process is computationally intensive, requiring significant time and memory
resources. To overcome these challenges, various Parameter-Efficient Fine-Tuning (PEFT) tech-
niques have been proposed (Houlsby et al., 2019; Zhang et al., 2023; Liu et al., 2024b). These
PEFT methods focus on updating only a small subset of the parameters to achieve efficient adapta-
tion. PEFT includes a variety of techniques, such as tuning only select layers (partial fine-tuning)
(Zaken et al., 2022; Lawton et al., 2023; Sung et al., 2021; Xu et al., 2021), using learnable input
embeddings (soft prompts) (Hambardzumyan et al., 2021; Wang et al., 2023), and applying low-
rank matrix factorization during adaptation (Kopiczko et al., 2024; Hu et al., 2022; Zhang et al.,
2023; Aghajanyan et al., 2021). Among these methods, Low-Rank Adaptation (LoRA) (Hu et al.,
2022) is notable for using two low-rank matrices to approximate parameter updates. LoRA achieves
comparable performance to full fine-tuning with significantly fewer trainable parameters.

LoRA and its successors operate on the hypothesis that parameter adaptation can be effectively
achieved using low-rank matrices. In LoRA, the pre-trained weights are updated through the product
of two low-rank matrices. These two low-rank matrices are initialized such that one follows a

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

random Gaussian distribution, and the other is set to zero (Hu et al., 2022; Hayou et al., 2024). As a
result, their initial product is a zero matrix, ensuring no alteration to the model’s output at initial step.
LoRA eliminates the need to compute gradients or maintain optimizer states for the original weight
matrix by optimizing two low-rank matrices instead. This approach reduces the number of trainable
parameters by up to 10,000 times and significantly reduces memory requirements (Hu et al., 2022).

Furthermore, low-rank adaptation techniques can be analyzed through the lens of geometric com-
plexity. Geometric complexity quantifies the variability of the function learned by a model (Dherin
et al., 2022). Recent work (Munn et al., 2024), establishes a theoretical relationship between the
geometric complexity of a pretrained model and its fine-tuning performance. Notably, the geometric
complexity of a pretrained network directly influences its effectiveness in transfer learning. Models
with lower geometric complexity tend to exhibit better generalization, leading to improved transfer
accuracy during fine-tuning (Munn et al., 2024).

Despite having several benefits, we identify two key challenges of LoRA.

• Slower Convergence: Unlike full fine-tuning, LoRA initially preserves the output of the
pretrained model for a given input, as the pretrained weights remain frozen. Consequently,
the updates to the model’s output rely entirely on the product of two low-rank matrices.
Since these matrices are typically initialized with Gaussian noise and zeros, these updates
causing gradients remain informative for a longer duration during the initial steps, and this
initialization leads to slower convergence during the early stages of fine-tuning.

• High geometric complexity: LLMs possess significantly higher geometric complexity,
which arises from both their architectural design and training processes that emphasize
expressive power over simplicity (Valeriani et al., 2023; Munn et al., 2024; Cosentino and
Shekkizhar, 2024). Higher geometric complexity hinders effective adaptation during fine-
tuning.

To address these challenges, we propose a unified approach called Projection Aware Low-Rank
Adaptation (ProRA), effectively tackling both issues with a single solution. ProRA separates the
pretrained weights into a trainable low-rank projection and a frozen residual component. By ini-
tializing trainable parameters by the projection using orthonormal subspaces, enables faster con-
vergence. Also with preserving the residual with lower geometric complexity, improves transfer
learning performance empirically.

Figure 1: Comparison of Full Fine-tuning, LoRA, and ProRA approaches. In this illustration, blue
modules denote frozen parameters during training, while pink modules highlight components that
are updated.

In ProRA, adapters are derived directly from the pretrained weight matrix W by decomposing it into
two distinct components: a projection matrix Wproj and a residual matrix Wres. The projection matrix
Wproj obtained by projecting W onto a low dimentional orthonormal subspace U⊤. The residual
matrix Wres, which represents the difference between the original matrix W and its projection Wproj.
The projection matrix Wproj is expressed as the product of two low-rank matrices, A and B, both
of which are trainable. To obtain this initialization, the pretrained matrix W is first compressed by

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

projecting it onto a low-dimensional orthonormal subspace, yielding matrix A. Subsequently, B is
then initialized as an orthonormal matrix, thereby reconstructing a low-rank approximation of W .
Since A is derived through orthonormal projection, it inherently preserves the Frobenius norm of the
original weight matrix. B, with its orthonormal structure, exhibits favorable geometric properties,
which can lead to a better-conditioned optimization landscape (Huang et al., 2018). Leveraging
both norm preservation and structured orthonormal subspaces leads to faster convergence and in an
appropriate direction. The proposed ProRA approach also aims to keep the geometric complexity of
frozen weights lower. Wres of the pretrained matrix is utilized to reduce the geometric complexity of
the frozen component. In this paper, we have theoretically shown that the frozen weights in ProRA
have lower geometric complexity than the pretrained weight W . This lower geometric complexity
of frozen weights allows for better transfer learning, resulting in better performance empirically. A
comparison between full fine-tuning, LoRA, and the proposed ProRA is shown in Figure 1.

This paper makes the following key contributions:

• We introduce Projection Aware Low-Rank Adaptation (ProRA), a unified framework that
performs low-rank adaptation along orthonormal directions while minimizing geometric
complexity.

• We propose a novel initialization method named ProRA. By initializing trainable parame-
ters through projections onto orthonormal subspaces, ProRA enables stable gradient flow
and better-conditioned updates. This structured initialization significantly accelerates con-
vergence.

• ProRA enhances transfer learning performance by reducing the geometric complexity of
the frozen residual weights during fine-tuning. Lower geometric complexity allows for
better generalization to downstream tasks.

• We demonstrate both theoretically and empirically that ProRA maintains lower geometric
complexity in the frozen components, leading to improved performance and accelerated
convergence.

2 PRELIMINARY

2.1 LORA

LoRA is a prominent contribution in the area of PEFT. It freezes the weights of pretrained models
and integrates trainable low-rank matrices into each layer of the transformer. Given a pretrained
weight matrix W , LoRA approximates the weight update using a low-rank decomposition:

∆W = AB,

where A ∈ Rp×r, B ∈ Rr×q, and the rank r ≪ min(p, q). The modified forward pass is given by:

Y = (W +∆W )X.

Matrix A and B are trainable parameter, while pretrained weights W are frozen during finetuning.
Trainable parameters are initialized with Gaussian noise and zero matrix of appropriate dimension.

LoRA varients: In recent years, following the introduction of LoRA, several variants have been
proposed to further improve parameter efficiency. VERA (Vector-based Random Matrix Adapta-
tion) (Kopiczko et al., 2023) reduces the number of trainable parameters by employing two diagonal
matrices that are shared across layers. AdaLoRA (Zhang et al., 2023) dynamically learns the optimal
rank for each layer during training. Another approach, DoRA (Decomposed Low-Rank Adaptation)
(Liu et al., 2024a), factorizes the parameter matrix into directional and magnitude components and
applies low-rank adaptation to reduce trainable parameters. An alternative method, PiSSA (Principal
Singular Value and Singular Vector Adaptation) (Meng et al., 2024), initializes the low-rank matri-
ces B and A using the principal singular vectors and singular values of the pretrained weight matrix,
enabling faster convergence. Moreover, OLoRA (Büyükakyüz, 2024) leverages the orthonormal de-
composition of pretrained weight matrices to initialize low-rank adapters. Similarly, SVFT (Lingam
et al., 2024) is another PEFT technique that utilise adaptation singular vector decomposition of pre-
trained weight matrix.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 GEOMETRIC COMPLEXITY ((DHERIN ET AL., 2022))

For a model function f : Rd → Rp, the geometric complexity is quantified as:

GC(f) = Ex∼Q
[
∥∇xf(x)∥2F

]
, (1)

where ∇xf(x) represents the Jacobian of f with respect to the input x, ∥ · ∥F is the Frobenius norm,
and the expectation is taken over a data distribution Q.

Geometric Complexity in Linear Mappings: For a linear transformation f(x) = Wx+b, where
W ∈ Rp×d is the weight matrix, the geometric complexity becomes:

GC(f) = ∥W∥2F . (2)

Here, ∥W∥2F =
∑p

i=1

∑d
j=1 W

2
i,j represents the squared Frobenius norm of the weight matrix. This

expression aligns with the concept of discrete Dirichlet energy.

3 PRORA: PROJECTION AWARE LOW-RANK ADAPTATION

In this section, we formally introduce our proposed method, Projection Aware Low-Rank Adapta-
tion (ProRA), for fine-tuning pretrained LLMs. The central innovation of ProRA lies in controlled
geometric complexity and its geometry aware update strategy. Unlike traditional low-rank adapta-
tion approaches, ProRA begins by considering the entire set of pretrained weights, denoted as W .
ProRA decomposes the pretrained weights W into two matrices such that one is orthonormal to the
other. This decomposition is motivated by the fact that orthonormal matrices exhibit favorable geo-
metric properties, leading to a better-conditioned optimization landscape. Specifically, the weights
are split into a residual part, Wres, which is kept frozen during training, and a projected part, Wproj,
which contains trainable parameters. We first focus on the residual part so that it has lower geometric
complexity. The residual component preserves geometric structures because it remains orthogonal
to the subspace spanned by the original weights, while the projected component is obtained by pro-
jecting the original matrix onto a low rank matrix. The projected part, Wproj is further decomposed
into two low rank matrices.

Mathematically, this can be expressed as

W = Wres +Wproj . (3)

Where Wproj = WP = WUT
[:,:r]U[:,:r] and U[:,:r] is an orthonormal subspace of W . U[:,:r] is

obtained by taking top r column of orthonormal subspace of W . The residual is given by

Wres = W −WUT
[:,:r]U[:,:r]. (4)

Since Wres is frozen, only Wproj is updated during fine-tuning. To ensure compatibility with the
LoRA architecture, Wproj is further decomposed into two low-rank matrices,

A = WUT
[:,:r] ∈ Rp×r, (5)

and
B = U[:,:r] ∈ Rr×q. (6)

Hence Wproj = AB, and both A and B are low rank matrices with or lower rank than r. Conse-
quently, the output of the layer can be written as

Y = WX = (Wres +Wproj) = (Wres +AB)X, (7)

which maintains full compatibility with the pretrained model during fine-tuning. The gradients of
B and A are given by

∂L
∂B

= A⊤ ∂L
∂Y

X⊤, and
∂L
∂A

=
∂L
∂Y

X⊤B⊤,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

respectively. Here, ∂L
∂Y denotes the gradient of the loss with respect to the layer output Y . Since U is

initialized as an orthonormal matrix, A consequently preserves the Frobenius norm. The orthonor-
mal initialization of B = U ensures that adaptation occurs within a well-conditioned subspace,
enabling ProRA to converge more quickly. In contrast, LoRA initializes its A and B matrices with
Gaussian noise and zero adapters in the early stages, potentially wasting initial gradient descent
steps. Such uninformative initialization in LoRA can lead to suboptimal local solutions and de-
graded performance.

Since ProRA ultimately reduces to the LoRA architecture (equation 7), it inherits most of LoRA’s
benefits, including a reduced number of trainable parameters. Furthermore, we provide a theoretical
analysis of ProRA’s adaptation properties, demonstrating its advantages in terms of convergence
speed, parameter efficiency, and preservation of geometric structure within the model’s weights.

3.1 GEOMETRIC COMPLEXITY OF Wres

While constructing the ProRA approach, we take into account that the geometric complexity of
the frozen model becomes lower. Various studies have shown that lower geometric complexity is
responsible for better transfer of knowledge from pretrained weights and improved fine-tuning per-
formance (Dherin et al., 2022). In the literature, low-rank adaptation techniques for fine-tuning have
not been explored through the lens of geometric complexity using the Dirichlet energy function.
To ensure lower geometric complexity, we split the original weight matrix such that the frozen and
trainable parts are orthonormal to each other. In this way, we are able to explicitly control geometric
complexity. Our proposed ProRA framework is specifically designed to keep the geometric com-
plexity of the frozen weights low, while updating only a small subset of the pretrained weights. The
architecture of ProRA, which is similar to LoRA, allows us to control the geometric complexity of
the frozen weights. In the forward pass, the change in output Y is achieved by updating the weights
linearly via the equation Y = (W +∆W )X . Thus, utilizing linear weight updates, we can express
geometric complexity in terms of the Frobenius norm of the weight matrix. We have theoretically
shown that the geometric complexity of the frozen part is lower than that of W , i.e., the frozen part
in LoRA. Empirical results also show that explicitly controlling geometric complexity through or-
thonormal splitting leads to faster convergence and better performance compared to both PiSSA and
LoRA.

3.2 THEORITICAL PROPERTIES OF PRORA

Theorem 1 (Orthogonality of Residual and Projected Weights at Initialization). The residual com-
ponent Wres and the projected component Wproj are orthogonal under the Frobenius inner product,
i.e.

⟨Wres,Wproj⟩F = tr(W⊤
resWproj) = 0.

Proof. Let P = U⊤
[:,:r]U[:,:r] denote the orthonormal projection matrix onto the column space of U .

By construction, P is idempotent (P 2 = P ) and symmetric (P⊤ = P ). The projected and residual
components can be expressed as

Wproj = WP, and Wres = W (I − P ),

where I is the k × k identity matrix.

The Frobenius inner product between Wres and Wproj is

tr(W⊤
resWproj) = tr

(
(W (I − P ))⊤(WP )

)
= tr

(
(I − P )W⊤WP

)
= tr

(
W⊤WP (I − P )

)
.

Since P (I − P ) = P − P 2 = P − P = 0, it follows that

tr(W⊤
resWproj) = tr(W⊤W · 0) = 0.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 2. The residual matrix Wres has lower geometric complexity than the original pretrained
weight matrix W .

Proof. Proof of this theorem is described in Appendix A.1.

3.3 INTERPRETATION OF Wproj

We interpret Wproj in terms of the down-projection and reconstruction of the pretrained weights W .
In the first initialization step, ProRA compresses the pretrained weights by projecting them onto a
low-rank orthonormal submatrix, given by A = WU⊤

[:,:r]. The second part of Wproj is B = U[:,:r].
After down-projection using U⊤

[:,:r], we reconstruct W via an up-projection using U[:,:r]. Since or-
thonormal matrices belong to the orthogonal group, they provide favorable geometric conditions for
optimization (Huang et al., 2018). Hence, initializing A and B in this way preserves the Frobenius
norm and yields a well-conditioned optimization landscape for adaptation in ProRA.

3.4 COMPARATIVE ANALYSIS OF PRORA AND LORA VARIANTS: AN INITIALIZATION VIEW

In this subsection, we present a comparison between our proposed method and LoRA along with
its variants. While many successor methods adopt a similar strategy to LoRA for initializing the
update matrices A and B, certain approaches, such as PiSSA diverge from this pattern by employing
distinct initialization techniques for the adapter layers. Table 1 presents a comparison between
LoRA, PiSSA, and the proposed ProRA method regarding the initialization of low-rank adapters A
and B. LoRA initializes its adapters randomly, whereas PiSSA employs singular vectors derived
from the original weight matrices for initialization. In contrast, ProRA utilizes an orthonormal
projection of W to initialize its adapters. From a computational perspective, PiSSA necessitates
performing singular value decomposition (SVD) for each layer, whereas ProRA only requires QR
decomposition of W , which is significantly more efficient for large weight matrices commonly
encountered in LLMs. Additionally, ProRA ensures that updates to the adapters remain orthogonal,
unlike LoRA and PiSSA, where the adapters are not orthogonal to the frozen weights. This property
inproves faster convergence during initial training steps.

Table 1: Comparison of PEFT Methods: LoRA, PiSSA, and ProRA.

Method LoRA PiSSA ProRA
Initialization random singular vectors orthonormal projection
Complexity Low High (due to SVD) Low
Orthogonality of Updates at initialization × × ✓

4 EXPERIMENTS

We employed widely used language generation models (LLaMA2-7B (Touvron et al., 2023),
Mistral-7B (Jiang et al., 2023), Gemma-7B (Team et al., 2024)) alongside an encoder-only Vision
Transformer (ViT-B/16) (Dosovitskiy et al., 2020) model, pretrained on ImageNet. We validated our
claims of improved initialization and faster convergence by testing the proposed ProRA on large-
scale models and a diverse range of datasets (12 language and 3 vision task). The experiments were
conducted on Nvidia A100-SXM4 (40GB) GPUs with a learning rate ranging from 1e-4 to 5e-5. For
the rest of the experimental setup, we followed similar experimental setup as (Meng et al., 2024),
using the AdamW optimizer and a batch size of 128. More details on experimental setup are pro-
vided in the Appendix A.3 and to ensure reproducibility of the ProRA, codes are also provided in
supplementary material.

4.1 EVALUATION ON NATURAL LANGUAGE GENERATION (NLG) TASKS: WITH DIFFERENT
LORA INITIALIZATION

We begin by comparing ProRA with different adapter initialization methods, namely PiSSA, LoRA,
and full-parameter fine-tuning, on natural language generation (NLG) tasks. We tested our proposed

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ProRA approach on a range of language generation tasks. All experiments were conducted using a
100K-sample subset and trained for a single epoch to minimize training time and resource usage. For
math reasoning, we fine-tuned three models LLaMA 2-7B, Mistral-7B-v0.1, and Gemma-7B, on the
MetaMathQA-40K (Yu et al., 2023) dataset and evaluated them on the GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) validation sets. For code generation, the models were evaluated
on the HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) benchmarks. Based on the
results in Table 7 ProRA achieves consistent improvements over most of the NLG tasks. Specifically,
on LLaMA 2-7B, ProRA achieves the best performance across all tasks, outperforming PiSSA by
up to 36.4% on HumanEval and 29.9% on MATH, and showing significant improvement compared
to LoRA on some benchmarks. On Mistral-7B, ProRA delivers the strongest result on HumanEval
(+8.4% over PiSSA) and matches the performance with leading methods on other tasks.

Table 2: Comparison of ProRA, PiSSA and LoRA on NLG tasks, with results averaged over three
runs and reported with standard deviations.

Model Strategy GSM8K MATH HumanEval MBPP
LLaMA 2-7B Full FT 49.13±0.21 7.29±0.22 21.20±0.30 35.59±0.25

LoRA(gaussian) 42.85±0.12 5.50±0.33 18.35±0.31 35.50±0.14
LoRA(kaiming) 43.23±0.64 5.90±0.16 18.21±0.45 35.47±0.37
PiSSA 53.22±0.55 7.47±0.34 21.92±0.38 37.24±0.63
ProRA(ours) 55.59±0.17 9.7±0.09 29.9±0.48 40.1±0.43

Mistral-7B Full FT 69.91±0.25 18.64±0.35 45.31±0.14 51.46±0.13
LoRA(gaussian) 69.50±0.42 19.93±0.44 45.78±0.11 58.46±0.27
LoRA(kaiming) 69.40±0.25 19.99±0.44 43.74±0.14 58.39±0.42
PiSSA 73.31±0.23 23.12±0.52 46.88±0.25 62.55±0.58
ProRA(ours) 72.72±0.44 22.4±0.49 50.8±0.74 62.73±0.37

Gemma-7B Full FT 72.09±0.32 22.71±0.34 47.02±0.27 55.67±0.60
LoRA(gaussian) 75.11±0.64 30.44±0.16 53.70±0.25 65.58±0.29
LoRA(kaiming) 74.53±0.47 29.90±0.16 53.12±0.27 65.25±0.29
PiSSA 77.78±0.32 31.33±0.33 54.31±0.28 66.17±0.43
ProRA(ours) 78.11±0.27 27.9±0.19 50.4±0.75 66.3±1.01

As seen in Figure 2, on the MetaMath dataset, ProRA achieves the fastest reduction in training
loss during the first 100 steps and later on, outperforming both LoRA and PiSSA. This suggests
that ProRA learns more effectively right from the beginning of training. In Figure 3, ProRA also
shows the highest gradient norm among the methods early in training. This indicates that ProRA
enables larger and more expressive updates, specially at initial updates. Together, these trends show
that ProRA is more responsive and adaptive in the initial phase of training compared to LoRA and
PiSSA, which likely contributes to its stronger overall performance.

4.2 EXPERIMENTS OVER COMMONSENSE REASONING TASKS: WITH DIFFERENT LORA
VARIANTS

We have also evaluated ProRA on eight commonsense reasoning benchmarks: BoolQ (Clark et al.,
a), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (HS) (Zellers et al., 2019), Wino-
grande (WG) (Sakaguchi et al., 2021), ARC-easy/challenge (Clark et al., b) and OpenBookQA
(OBQA) (Mihaylov et al.). In Table 3, ProRA outperforms full fine-tuning (Gemma-2B) on most
commonsense reasoning benchmarks. We conducted this study across several LoRA variants, and
ProRA outperformed LoRA on 7 out of 8 datasets at rank 32, while also demonstrating superior
performance on all datasets at the higher rank of 128.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 200 400 600

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 L
os

s

0 25 50 75 100
0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 L
os

s

The First 100 Steps ProRA
LoRA
PiSSA

Figure 2: Training metrics for the MetaMathQA
dataset: loss over training steps.

0 200 400 600

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 G
ra

d 
No

rm

0 25 50 75 100
0

1

2

3

4

Tr
ai

ni
ng

 G
ra

d 
No

rm

The First 100 Steps ProRA
LoRA
PiSSA

Figure 3: Training metrics for the MetaMathQA
dataset: gradient over training steps.

Table 3: Commonsense Reasoning benchmarks using GEMMA-2B. Results are reported as accuracy
(%) across various datasets.

Method BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA
Full-FT 63.57 74.1 65.86 70 61.95 75.36 59.72 69
LoRA(r=32) 63.11 73.44 63.2 47.79 52.95 74.78 57.16 67
ProRA (r=32) 64.49 80.35 72.97 89.63 51.22 77.39 58.7 61
DoRA(r=1) 62.17 68.77 55.93 32.95 51.22 68.81 48.72 55.6
VeRA(r=2048) 62.11 64.31 49.18 32 50.74 58.08 42.83 42.6
SVFT 62.26 70.18 56.7 32.47 47.04 69.31 50.08 58.4
LoRA(r=128) 66.06 80.36 74.56 91.36 53.04 79.25 59.73 65.2
PiSSA(r=128) 67.29 80.57 76.4 91.85 50.82 78.15 59.04 65.4
ProRA(r=128) 67.75 82.2 76.92 92.31 53.74 80.68 60.49 65.6

4.3 EVALUATION ON IMAGE CLASSIFICATION TASKS

For vision tasks, we evaluate our proposed ProRA method on three datasets: CIFAR-100
(Krizhevsky et al., 2009), RESISC45 (Ullah et al., 2022), and Flowers102 (Nilsback and Zisser-
man, 2008). We apply ProRA during fine-tuning under standard image classification settings. We
evaluated ProRA on vision tasks using ViT-B as the backbone. As shown in the Table 4, ProRA
achieves substantial improvements over other methods on all three datasets, outperforming LoRA,
DoRA, and SVFT by large margins, most notably by +4.0% on CIFAR100 and over +18% on Re-
sisc45, while provides comparable performance on Flowers102 datasets.

Table 4: Performance on vision classification tasks using ViT-B backbone. ProRA achieves superior
performance while using fewer parameters than Full-FT. #Params is parameter count.

Model Method #Params CIFAR100 Flower102 Resisc45
ViT-B Full-FT 85.8M 85.35 98.37 68.03

LoRA (r=8) 1.32M 84.41 99.23 76.86
DoRA (r=8) 1.41M 85.03 99.30 76.95
SVFT (d=8) 0.94M 85.69 98.88 70.41
ProRA(r=8) 1.32M 89.70 99.07 95.04

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDY

Here, we present the ablation study conducted for ProRA. The ProRA method have two key aspects:
the choice of relative ranks for low-rank updates and the selection of the projection matrix P . In
this subsection, we discuss the impact of each aspect separately. We have also provided effect of
ProRA on different transformer component and an empirical view of reduced geometric complexity
of residual matrix in Appendix A.2

4.4.1 EVALUATION OF PRORA ON DIFFERENT RANKS

We conducted an ablation study on the proposed ProRA method by varying the adapter rank
(r = 8, 32, 128). This analysis was performed on the commonsense reasoning benchmark using
the Gemma-2B model, with results reported as the mean and standard deviation over three runs. As
summarized in Table 5, the findings indicate a consistent trend: increasing the adapter rank leads to
improved average performance across all evaluated datasets.

Table 5: Ablation on commonsense reasoning benchmarks using Gemma-2B with different ProRA
ranks. Results reported as the mean and standard deviation over three runs

Rank BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA
8 62.32±0.07 74.57±0.12 65.23±0.09 71.20±0.14 50.87±0.14 70.05±0.11 49.37±0.11 49.27±0.25
32 64.58±0.06 80.39±0.09 73.18±0.17 89.62±0.03 51.09±0.10 77.48±0.10 58.78±0.18 61.00±0.20
128 67.43±0.24 82.67±1.03 76.23±0.71 92.47±0.17 53.29±2.17 80.80±0.86 60.15±0.86 65.93±0.25

4.4.2 EFFECT OF DIFFERENT CHOICES FOR THE PROJECTION MATRIX

We investigated the effect of different choices for the projection matrix P , as presented in Table
6, by evaluating two construction strategies: randomized and deterministic. In the randomized
approach, the orthonormal subspace is derived by projection of the weight matrix onto a random
matrix, whose entries are independently sampled from a Gaussian distribution. We conducted ex-
periments using both strategies on the LLaMA 2-7B model across GSM8K, MATH, HumanEval,
and MBPP datasets. As shown in Table 6, when employing a randomized projection matrix, the
proposed ProRA method outperforms LoRA, achieving up to a 3.41% increase in accuracy on the
GSM8K dataset, with more modest gains observed on the other datasets. However, with the de-
terministic projection matrix constructed from the orthonormal subspace of the pretrained weight
matrix, ProRA not only surpasses LoRA but also the randomized variant of ProRA, achieving a no-
table margin of improvement on all evaluated datasets. All experiments were conducted in a single
run, and the corresponding results are reported in Table 6.

Table 6: Ablation on different choice of projection matrix P , on GSM8K, MATH, HumanEval, and
MBPP using LLaMA 2-7B. ProRAR denotes the random projection matrix and ProRAD represents
the deterministic projection matrix. Accuracy scores are reported for each task.

Model Method GSM8K MATH HumanEval MBPP
LLaMA 2-7B LoRA 42.17 6.12 22.0 37.8

ProRAR 45.48 6.38 22.3 38.4
ProRAD 55.72 9.8 25.6 39.7

5 CONCLUSION

In this work, we proposed Projection Aware Low-Rank Adaptation (ProRA), a unified framework
that introduces low-rank adaptation along orthonormal directions while explicitly minimizing geo-
metric complexity. By projecting pretrained weights onto orthonormal subspaces, ProRA not only
enables structured and stable initialization but also preserves norm and gradient flow, leading to
faster and more stable convergence. Our theoretical analysis and empirical results confirm that
ProRA effectively reduces the geometric complexity of frozen residual components, which facili-
tates better generalization to downstream tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pages 7319–7328, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Proceed-
ings of ICML workshop on unsupervised and transfer learning, pages 17–36. JMLR Workshop
and Conference Proceedings, 2012.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. 2020.

Kerim Büyükakyüz. Olora: Orthonormal low-rank adaptation of large language models. arXiv
preprint arXiv:2406.01775, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. a.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Romain Cosentino and Sarath Shekkizhar. Reasoning in large language models: A geometric per-
spective. arXiv preprint arXiv:2407.02678, 2024.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. In The Eleventh International Conference on
Learning Representations, 2023.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David Barrett. Why neural networks find sim-
ple solutions: The many regularizers of geometric complexity. Advances in Neural Information
Processing Systems, 35:2333–2349, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial re-
programming. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 4921–4933, 2021.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.
Advances in Neural Information Processing Systems, 37:117015–117040, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. Sort, 2
(4):0–6, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eghbal Hosseini and Evelina Fedorenko. Large language models implicitly learn to straighten neu-
ral sentence trajectories to construct a predictive representation of natural language. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems, volume 36, pages 43918–43930. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/88dddaf430b5bc38ab8228902bb61821-Paper-Conference.pdf.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pages 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Lei Huang, Xianglong Liu, Bo Lang, Adams Yu, Yongliang Wang, and Bo Li. Orthogonal weight
normalization: Solution to optimization over multiple dependent stiefel manifolds in deep neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2023.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Elora: Efficient low-rank adaptation
with random matrices. In The Twelfth International Conference on Learning Representations,
2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, and Greg Ver Steeg. Neural architec-
ture search for parameter-efficient fine-tuning of large pre-trained language models. In Findings
of the Association for Computational Linguistics: ACL 2023, pages 8506–8515, 2023.

Vijay Chandra Lingam, Atula Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur,
Joydeep Ghosh, Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, and Sujay Sanghavi. Svft:
Parameter-efficient fine-tuning with singular vectors. Advances in Neural Information Processing
Systems, 37:41425–41446, 2024.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024a.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly
factorization. In The Twelfth International Conference on Learning Representations, 2024b.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In ICLR, 2024.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038–121072, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/88dddaf430b5bc38ab8228902bb61821-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/88dddaf430b5bc38ab8228902bb61821-Paper-Conference.pdf
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael Munn, Benoit Dherin, and Javier Gonzalvo. The impact of geometric complexity on neural
collapse in transfer learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing,
pages 722–729. IEEE, 2008.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Com-
monsense reasoning about social interactions. In Conference on Empirical Methods in Natural
Language Processing, 2019.

Tobias Strangmann, Lennart Purucker, Jörg K.H. Franke, Ivo Rapant, Fabio Ferreira, and Frank
Hutter. Transfer learning for finetuning large language models. In Adaptive Foundation Models:
Evolving AI for Personalized and Efficient Learning, 2024. URL https://openreview.
net/forum?id=gDeW6B8WCh.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ihsan Ullah, Dustin Carrión-Ojeda, Sergio Escalera, Isabelle Guyon, Mike Huisman, Felix Mohr,
Jan N van Rijn, Haozhe Sun, Joaquin Vanschoren, and Phan Anh Vu. Meta-album: Multi-domain
meta-dataset for few-shot image classification. Advances in Neural Information Processing Sys-
tems, 35:3232–3247, 2022.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and Al-
berto Cazzaniga. The geometry of hidden representations of large transformer models. Advances
in Neural Information Processing Systems, 36:51234–51252, 2023.

Runqian Wang, Soumya Ghosh, David Cox, Diego Antognini, Aude Oliva, Rogerio Feris, and
Leonid Karlinsky. Trans-lora: towards data-free transferable parameter efficient finetuning. In
Annual Conference on Neural Information Processing Systems, 2024.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Mul-
titask prompt tuning enables parameter-efficient transfer learning. In The Eleventh International
Conference on Learning Representations, 2023.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 9514–9528, 2021.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

12

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=gDeW6B8WCh
https://openreview.net/forum?id=gDeW6B8WCh


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 1–9, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In 11th International
Conference on Learning Representations, ICLR 2023, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

A APPENDIX

A.1 THEORETICAL PROPERTIES OF PRORA

Theorem 2. The residual matrix Wres has lower geometric complexity than the original pretrained
weight matrix W .

Proof. The squared Frobenius norm of W is defined as

∥W∥2F = tr(W⊤W ).

Substituting W = Wres +Wproj, we have

∥W∥2F = tr
(
(Wres +Wproj)

⊤(Wres +Wproj)
)

= tr(W⊤
resWres +W⊤

resWproj +W⊤
projWres +W⊤

projWproj).

Using orthogonality, tr(W⊤
resWproj) = tr(W⊤

projWres) = 0, this simplifies to

∥W∥2F = ∥Wres∥2F + ∥Wproj∥2F .

Since both terms are non-negative, it follows that

∥Wres∥2F ≤ ∥W∥2F .

Hence, geometric complexity is measured by the squared Frobenius norm (as in Dirichlet energy)
(Dherin et al., 2022), we have

GC(Wres) ≤ GC(W ).

A.2 ABLATION STUDY

A.2.1 EFFECT OF PRORA DIFFERENT TRANSFORMER COMPONENTS

Figure 4 and 5 investigates the impact of fine-tuning specific transformer components, including
Query, Key, Value, Output, Up, Gate, and Down projections. The findings indicate that Query and
Key have the smallest effect, followed by Value and Down, while Gate, Output, and Up have the
greatest influence. This aligns with their functional roles: Query and Key mainly contribute to
attention scoring, whereas the other components directly affect the transformation and retention of
learned representations.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Q K V Up Down O Gate All20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

Figure 4: Effect of ProRA on different
transformer component on GSM8K dataset
(LLaMA-7B)

Q K V Up Down O Gate All0
1
2
3
4
5
6
7
8
9

Ac
cu

ra
cy

 (%
)

Figure 5: Effect of ProRA on different
transformer component on GSM8K dataset
(LLaMA-7B)

A.2.2 ANALYSIS ON GEOMETRIC COMPLEXITY (WRES VS W )

Figure 6 presents an empirical analysis of reduced Geometric complexity of residual matrix from
original weight matrix W. we have studied the geometric complexity at initial layers of the LLaMA
2-7B during training on MetaMathQA dataset, and find out that residual matrix have lower geometric
complexity.

0 2 4 6 8 10 12 14 16 18
Layers

10

11

12

13

14

Ge
om

et
ric

 C
om

pl
ex

ity
(G

C)

W
Wres

Figure 6: Analysis on Geometric Complexity (Wres Vs W ), during training MetaMathQA dataset
on LLaMA 2-7B model.

A.3 HYPERPARAMETER SETTING FOR DIFFERENT TASKS

In this section we will provide additional settings in order to reproduce our results. we have con-
ducted our study on natural language and vision tasks.

A.3.1 NATURAL LANGUAGE GENERATION (NLG) TASK

We tested our proposed ProRA approach on a range of language generation tasks using LLaMA2-7B
(Touvron et al., 2023), Mistral-7B-v0.1 (Jiang et al., 2023), Gemma-7B (Team et al., 2024), as dis-
cussed in Table 2 of main paper. In the Table 7 optimal learning rate for each model for the proposed
approach ProRA. For NLG task we have utilised GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) benchmarks.

Table 7: Learning rate of ProRA on NLG tasks.

Model GSM8K MATH HumanEval MBPP
LLaMA 2-7B 1e-4 1e-4 1e-4 1e-4

Mistral-7B 5e-5 5e-5 2e-5 2e-5
Gemma-7B 3e-5 3e-5 2e-5 2e-5

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3.2 COMMONSENSE REASONING

All hyperparameter values used in our experiments for are listed in Table 8. LR represents Learning
rate. We use the Hugging Face Transformers1 and PEFT2 libraries, which also provide access to
training and evaluation datasets.

Table 8: Hyperparameters used for fine-tuning Gemma-2B on the Commonsense-15K dataset for
ProRA.

Hyperparameter Value
Optimizer AdamW
Learning rate 3e-5
Warmup steps 100
Batch size (train/eval) 16 / 16
Number of epochs 50
Weight decay 0.0
LR scheduler Cosine
ProRA rank (r) 8
α 8

A.3.3 VISION TRANSFORMER

We fine-tune a pretrained ViT-B model on each vision dataset using ProRA, following a fixed set of
hyperparameters (Table 9). ProRA is trained for 10 epochs on CIFAR-100 (Krizhevsky et al., 2009)
and RESISC45 (Ullah et al., 2022), and for 30 epochs on Flower102 (Nilsback and Zisserman, 2008)
to allow for better convergence. For other methods, we report results directly from their original
implementations. We use the same Transformers and PEFT libraries as in the commonsense setup.

Table 9: Hyperparameters used for fine-tuning of ViT-B using proposed PEFT technique ProRA.

Hyperparameter Value
Model ViT-B/16
Batch size (train/eval) 64 / 64
Learning rate 5e-4
Weight decay 0.01
Warmup steps 500
LR scheduler Cosine
ProRA rank (r) 8
α 8
ProRA target modules query, key, value, dense

1https://github.com/huggingface/transformers
2https://github.com/huggingface/peft

15

https://github.com/huggingface/transformers
https://github.com/huggingface/peft

	Introduction
	Preliminary
	LoRA
	Geometric Complexity (dherin2022neural)

	ProRA: Projection Aware Low-Rank Adaptation
	Geometric Complexity of Wres
	Theoritical Properties of ProRA
	Interpretation of Wproj
	Comparative Analysis of ProRA and LoRA variants: An Initialization View

	Experiments
	Evaluation on Natural Language Generation (NLG) Tasks: with different LoRA Initialization
	Experiments over Commonsense Reasoning Tasks: with different LoRA Variants
	Evaluation on Image Classification Tasks
	Ablation Study
	Evaluation of ProRA On Different ranks
	Effect of different choices for the projection matrix


	Conclusion
	Appendix
	Theoretical Properties of ProRA
	Ablation study
	Effect of ProRA different transformer components
	Analysis on Geometric Complexity ( Wres  Vs W) 

	Hyperparameter setting for different tasks
	Natural Language Generation (NLG) Task
	Commonsense reasoning
	Vision Transformer



