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ABSTRACT

Despite the remarkable success of large language models (LLMs) across diverse
tasks, the computational cost of fine-tuning them remains high. Low-Rank Adap-
tation (LoRA) addresses this by updating through the product of two low rank ma-
trices. LoRA initializes low-rank matrices using random Gaussian noise and ze-
ros, while keeping the pretrained weights frozen. However, such random and zero
initialization leads to slow convergence and limits expressiveness. To overcome
these limitations, we propose Projection Aware Low-Rank Adaptation (ProRA).
ProRA initializes adapter matrices by projecting the original weight matrix into
its orthonormal subspace and keeps the residual weight matrix frozen. ProRA
leverages the orthonormal projection to ensure that updates preserve the geomet-
ric structure of pretrained models and are aligned with orthogonal subspaces,
leading to faster convergence and improved performance. Furthermore, we in-
terpret ProRA through the lens of geometric complexity. ProRA lowers geomet-
ric complexity in the frozen weights, which facilitates more efficient fine-tuning.
Our proposed ProRA demonstrates empirical superiority over LoRA across di-
verse tasks. On the GSM8K benchmark dataset, ProRA achieves 78.11% accu-
racy with GEMMA-7B, outperforming LoRA’s 74.53% by 3.58%. Comparative
evaluations across various model architectures consistently show that ProRA out-
performs LoRA, highlighting its robustness and effective fine-tuning capability.

1 INTRODUCTION

Large Language Models (LLMs) are at the forefront of progress in Natural Language Processing
(NLP) (Hosseini and Fedorenko, 2023; Zheng et al., 2023; Creswell et al., 2023; Yu et al., 2024; Luo
et al., 2024). Their success can largely be attributed to transfer learning (Strangmann et al., 2024;
Wang et al., 2024; Raffel et al., 2020). Among the various transfer learning strategies, the most
widely adopted approach involves two key stages. The first stage, known as pretraining, involves
training the LLMs on large-scale, general-purpose datasets using either supervised or unsupervised
learning objectives. The subsequent stage, known as fine-tuning, focuses on adapting the pretrained
model to a specific downstream task by updating its weights (Bengio, 2012). Generally these down-
stream tasks are unknown at the time of pre-training. LLMs require fine-tuning to achieve optimal
performance on downstream tasks. While fine-tuning is highly effective for adapting LLMs to task-
specific datasets, the process is computationally intensive, requiring significant time and memory
resources. To overcome these challenges, various Parameter-Efficient Fine-Tuning (PEFT) tech-
niques have been proposed (Houlsby et al., 2019; Zhang et al., 2023; Liu et al., 2024b). These
PEFT methods focus on updating only a small subset of the parameters to achieve efficient adapta-
tion. PEFT includes a variety of techniques, such as tuning only select layers (partial fine-tuning)
(Zaken et al., 2022; Lawton et al., 2023; Sung et al., 2021; Xu et al., 2021), using learnable input
embeddings (soft prompts) (Hambardzumyan et al., 2021; Wang et al., 2023), and applying low-
rank matrix factorization during adaptation (Kopiczko et al., 2024; Hu et al., 2022; Zhang et al.,
2023; Aghajanyan et al., 2021). Among these methods, Low-Rank Adaptation (LoRA) (Hu et al.,
2022) is notable for using two low-rank matrices to approximate parameter updates. LoRA achieves
comparable performance to full fine-tuning with significantly fewer trainable parameters.

LoRA and its successors operate on the hypothesis that parameter adaptation can be effectively
achieved using low-rank matrices. In LoRA, the pre-trained weights are updated through the product
of two low-rank matrices. These two low-rank matrices are initialized such that one follows a
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random Gaussian distribution, and the other is set to zero (Hu et al., 2022; Hayou et al., 2024). As a
result, their initial product is a zero matrix, ensuring no alteration to the model’s output at initial step.
LoRA eliminates the need to compute gradients or maintain optimizer states for the original weight
matrix by optimizing two low-rank matrices instead. This approach reduces the number of trainable
parameters by up to 10,000 times and significantly reduces memory requirements (Hu et al., 2022).

Furthermore, low-rank adaptation techniques can be analyzed through the lens of geometric com-
plexity. Geometric complexity quantifies the variability of the function learned by a model (Dherin
et al., 2022). Recent work (Munn et al., 2024), establishes a theoretical relationship between the
geometric complexity of a pretrained model and its fine-tuning performance. Notably, the geometric
complexity of a pretrained network directly influences its effectiveness in transfer learning. Models
with lower geometric complexity tend to exhibit better generalization, leading to improved transfer
accuracy during fine-tuning (Munn et al., 2024).

Despite having several benefits, we identify two key challenges of LoRA.

• Slower Convergence: Unlike full fine-tuning, LoRA initially preserves the output of the
pretrained model for a given input, as the pretrained weights remain frozen. Consequently,
the updates to the model’s output rely entirely on the product of two low-rank matrices.
Since these matrices are typically initialized with Gaussian noise and zeros, these updates
causing gradients remain informative for a longer duration during the initial steps, and this
initialization leads to slower convergence during the early stages of fine-tuning.

• High geometric complexity: LLMs possess significantly higher geometric complexity,
which arises from both their architectural design and training processes that emphasize
expressive power over simplicity (Valeriani et al., 2023; Munn et al., 2024; Cosentino and
Shekkizhar, 2024). Higher geometric complexity hinders effective adaptation during fine-
tuning.

To address these challenges, we propose a unified approach called Projection Aware Low-Rank
Adaptation (ProRA), effectively tackling both issues with a single solution. ProRA separates the
pretrained weights into a trainable low-rank projection and a frozen residual component. By ini-
tializing trainable parameters by the projection using orthonormal subspaces, enables faster con-
vergence. Also with preserving the residual with lower geometric complexity, improves transfer
learning performance empirically.

Figure 1: Comparison of Full Fine-tuning, LoRA, and ProRA approaches. In this illustration, blue
modules denote frozen parameters during training, while pink modules highlight components that
are updated.

In ProRA, adapters are derived directly from the pretrained weight matrix W by decomposing it into
two distinct components: a projection matrix Wproj and a residual matrix Wres. The projection matrix
Wproj obtained by projecting W onto a low dimentional orthonormal subspace U⊤. The residual
matrix Wres, which represents the difference between the original matrix W and its projection Wproj.
The projection matrix Wproj is expressed as the product of two low-rank matrices, A and B, both
of which are trainable. To obtain this initialization, the pretrained matrix W is first compressed by
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projecting it onto a low-dimensional orthonormal subspace, yielding matrix A. Subsequently, B is
then initialized as an orthonormal matrix, thereby reconstructing a low-rank approximation of W .
Since A is derived through orthonormal projection, it inherently preserves the Frobenius norm of the
original weight matrix. B, with its orthonormal structure, exhibits favorable geometric properties,
which can lead to a better-conditioned optimization landscape (Huang et al., 2018). Leveraging
both norm preservation and structured orthonormal subspaces leads to faster convergence and in an
appropriate direction. The proposed ProRA approach also aims to keep the geometric complexity of
frozen weights lower. Wres of the pretrained matrix is utilized to reduce the geometric complexity of
the frozen component. In this paper, we have theoretically shown that the frozen weights in ProRA
have lower geometric complexity than the pretrained weight W . This lower geometric complexity
of frozen weights allows for better transfer learning, resulting in better performance empirically. A
comparison between full fine-tuning, LoRA, and the proposed ProRA is shown in Figure 1.

This paper makes the following key contributions:

• We introduce Projection Aware Low-Rank Adaptation (ProRA), a unified framework that
performs low-rank adaptation along orthonormal directions while minimizing geometric
complexity.

• We propose a novel initialization method named ProRA. By initializing trainable parame-
ters through projections onto orthonormal subspaces, ProRA enables stable gradient flow
and better-conditioned updates. This structured initialization significantly accelerates con-
vergence.

• ProRA enhances transfer learning performance by reducing the geometric complexity of
the frozen residual weights during fine-tuning. Lower geometric complexity allows for
better generalization to downstream tasks.

• We demonstrate both theoretically and empirically that ProRA maintains lower geometric
complexity in the frozen components, leading to improved performance and accelerated
convergence.

2 PRELIMINARY

2.1 LORA

LoRA is a prominent contribution in the area of PEFT. It freezes the weights of pretrained models
and integrates trainable low-rank matrices into each layer of the transformer. Given a pretrained
weight matrix W , LoRA approximates the weight update using a low-rank decomposition:

∆W = AB,

where A ∈ Rp×r, B ∈ Rr×q, and the rank r ≪ min(p, q). The modified forward pass is given by:

Y = (W +∆W )X.

Matrix A and B are trainable parameter, while pretrained weights W are frozen during finetuning.
Trainable parameters are initialized with Gaussian noise and zero matrix of appropriate dimension.

LoRA varients: In recent years, following the introduction of LoRA, several variants have been
proposed to further improve parameter efficiency. VERA (Vector-based Random Matrix Adapta-
tion) (Kopiczko et al., 2023) reduces the number of trainable parameters by employing two diagonal
matrices that are shared across layers. AdaLoRA (Zhang et al., 2023) dynamically learns the optimal
rank for each layer during training. Another approach, DoRA (Decomposed Low-Rank Adaptation)
(Liu et al., 2024a), factorizes the parameter matrix into directional and magnitude components and
applies low-rank adaptation to reduce trainable parameters. An alternative method, PiSSA (Principal
Singular Value and Singular Vector Adaptation) (Meng et al., 2024), initializes the low-rank matri-
ces B and A using the principal singular vectors and singular values of the pretrained weight matrix,
enabling faster convergence. Moreover, OLoRA (Büyükakyüz, 2024) leverages the orthonormal de-
composition of pretrained weight matrices to initialize low-rank adapters. Similarly, SVFT (Lingam
et al., 2024) is another PEFT technique that utilise adaptation singular vector decomposition of pre-
trained weight matrix.
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2.2 GEOMETRIC COMPLEXITY ((DHERIN ET AL., 2022))

For a model function f : Rd → Rp, the geometric complexity is quantified as:

GC(f) = Ex∼Q
[
∥∇xf(x)∥2F

]
, (1)

where ∇xf(x) represents the Jacobian of f with respect to the input x, ∥ · ∥F is the Frobenius norm,
and the expectation is taken over a data distribution Q.

Geometric Complexity in Linear Mappings: For a linear transformation f(x) = Wx+b, where
W ∈ Rp×d is the weight matrix, the geometric complexity becomes:

GC(f) = ∥W∥2F . (2)

Here, ∥W∥2F =
∑p

i=1

∑d
j=1 W

2
i,j represents the squared Frobenius norm of the weight matrix. This

expression aligns with the concept of discrete Dirichlet energy.

3 PRORA: PROJECTION AWARE LOW-RANK ADAPTATION

In this section, we formally introduce our proposed method, Projection Aware Low-Rank Adapta-
tion (ProRA), for fine-tuning pretrained LLMs. The central innovation of ProRA lies in controlled
geometric complexity and its geometry aware update strategy. Unlike traditional low-rank adapta-
tion approaches, ProRA begins by considering the entire set of pretrained weights, denoted as W .
ProRA decomposes the pretrained weights W into two matrices such that one is orthonormal to the
other. This decomposition is motivated by the fact that orthonormal matrices exhibit favorable geo-
metric properties, leading to a better-conditioned optimization landscape. Specifically, the weights
are split into a residual part, Wres, which is kept frozen during training, and a projected part, Wproj,
which contains trainable parameters. We first focus on the residual part so that it has lower geometric
complexity. The residual component preserves geometric structures because it remains orthogonal
to the subspace spanned by the original weights, while the projected component is obtained by pro-
jecting the original matrix onto a low rank matrix. The projected part, Wproj is further decomposed
into two low rank matrices.

Mathematically, this can be expressed as

W = Wres +Wproj . (3)

Where Wproj = WP = WUT
[:,:r]U[:,:r] and U[:,:r] is an orthonormal subspace of W . U[:,:r] is

obtained by taking top r column of orthonormal subspace of W . The residual is given by

Wres = W −WUT
[:,:r]U[:,:r]. (4)

Since Wres is frozen, only Wproj is updated during fine-tuning. To ensure compatibility with the
LoRA architecture, Wproj is further decomposed into two low-rank matrices,

A = WUT
[:,:r] ∈ Rp×r, (5)

and
B = U[:,:r] ∈ Rr×q. (6)

Hence Wproj = AB, and both A and B are low rank matrices with or lower rank than r. Conse-
quently, the output of the layer can be written as

Y = WX = (Wres +Wproj) = (Wres +AB)X, (7)

which maintains full compatibility with the pretrained model during fine-tuning. The gradients of
B and A are given by

∂L
∂B

= A⊤ ∂L
∂Y

X⊤, and
∂L
∂A

=
∂L
∂Y

X⊤B⊤,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

respectively. Here, ∂L
∂Y denotes the gradient of the loss with respect to the layer output Y . Since U is

initialized as an orthonormal matrix, A consequently preserves the Frobenius norm. The orthonor-
mal initialization of B = U ensures that adaptation occurs within a well-conditioned subspace,
enabling ProRA to converge more quickly. In contrast, LoRA initializes its A and B matrices with
Gaussian noise and zero adapters in the early stages, potentially wasting initial gradient descent
steps. Such uninformative initialization in LoRA can lead to suboptimal local solutions and de-
graded performance.

Since ProRA ultimately reduces to the LoRA architecture (equation 7), it inherits most of LoRA’s
benefits, including a reduced number of trainable parameters. Furthermore, we provide a theoretical
analysis of ProRA’s adaptation properties, demonstrating its advantages in terms of convergence
speed, parameter efficiency, and preservation of geometric structure within the model’s weights.

3.1 GEOMETRIC COMPLEXITY OF Wres

While constructing the ProRA approach, we take into account that the geometric complexity of
the frozen model becomes lower. Various studies have shown that lower geometric complexity is
responsible for better transfer of knowledge from pretrained weights and improved fine-tuning per-
formance (Dherin et al., 2022). In the literature, low-rank adaptation techniques for fine-tuning have
not been explored through the lens of geometric complexity using the Dirichlet energy function.
To ensure lower geometric complexity, we split the original weight matrix such that the frozen and
trainable parts are orthonormal to each other. In this way, we are able to explicitly control geometric
complexity. Our proposed ProRA framework is specifically designed to keep the geometric com-
plexity of the frozen weights low, while updating only a small subset of the pretrained weights. The
architecture of ProRA, which is similar to LoRA, allows us to control the geometric complexity of
the frozen weights. In the forward pass, the change in output Y is achieved by updating the weights
linearly via the equation Y = (W +∆W )X . Thus, utilizing linear weight updates, we can express
geometric complexity in terms of the Frobenius norm of the weight matrix. We have theoretically
shown that the geometric complexity of the frozen part is lower than that of W , i.e., the frozen part
in LoRA. Empirical results also show that explicitly controlling geometric complexity through or-
thonormal splitting leads to faster convergence and better performance compared to both PiSSA and
LoRA.

3.2 THEORITICAL PROPERTIES OF PRORA

Theorem 1 (Orthogonality of Residual and Projected Weights at Initialization). The residual com-
ponent Wres and the projected component Wproj are orthogonal under the Frobenius inner product,
i.e.

⟨Wres,Wproj⟩F = tr(W⊤
resWproj) = 0.

Proof. Let P = U⊤
[:,:r]U[:,:r] denote the orthonormal projection matrix onto the column space of U .

By construction, P is idempotent (P 2 = P ) and symmetric (P⊤ = P ). The projected and residual
components can be expressed as

Wproj = WP, and Wres = W (I − P ),

where I is the k × k identity matrix.

The Frobenius inner product between Wres and Wproj is

tr(W⊤
resWproj) = tr

(
(W (I − P ))⊤(WP )

)
= tr

(
(I − P )W⊤WP

)
= tr

(
W⊤WP (I − P )

)
.

Since P (I − P ) = P − P 2 = P − P = 0, it follows that

tr(W⊤
resWproj) = tr(W⊤W · 0) = 0.
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Theorem 2. The residual matrix Wres has lower geometric complexity than the original pretrained
weight matrix W .

Proof. Proof of this theorem is described in Appendix A.1.

3.3 INTERPRETATION OF Wproj

We interpret Wproj in terms of the down-projection and reconstruction of the pretrained weights W .
In the first initialization step, ProRA compresses the pretrained weights by projecting them onto a
low-rank orthonormal submatrix, given by A = WU⊤

[:,:r]. The second part of Wproj is B = U[:,:r].
After down-projection using U⊤

[:,:r], we reconstruct W via an up-projection using U[:,:r]. Since or-
thonormal matrices belong to the orthogonal group, they provide favorable geometric conditions for
optimization (Huang et al., 2018). Hence, initializing A and B in this way preserves the Frobenius
norm and yields a well-conditioned optimization landscape for adaptation in ProRA.

3.4 COMPARATIVE ANALYSIS OF PRORA AND LORA VARIANTS: AN INITIALIZATION VIEW

In this subsection, we present a comparison between our proposed method and LoRA along with
its variants. While many successor methods adopt a similar strategy to LoRA for initializing the
update matrices A and B, certain approaches, such as PiSSA diverge from this pattern by employing
distinct initialization techniques for the adapter layers. Table 1 presents a comparison between
LoRA, PiSSA, and the proposed ProRA method regarding the initialization of low-rank adapters A
and B. LoRA initializes its adapters randomly, whereas PiSSA employs singular vectors derived
from the original weight matrices for initialization. In contrast, ProRA utilizes an orthonormal
projection of W to initialize its adapters. From a computational perspective, PiSSA necessitates
performing singular value decomposition (SVD) for each layer, whereas ProRA only requires QR
decomposition of W , which is significantly more efficient for large weight matrices commonly
encountered in LLMs. Additionally, ProRA ensures that updates to the adapters remain orthogonal,
unlike LoRA and PiSSA, where the adapters are not orthogonal to the frozen weights. This property
inproves faster convergence during initial training steps.

Table 1: Comparison of PEFT Methods: LoRA, PiSSA, and ProRA.

Method LoRA PiSSA ProRA
Initialization random singular vectors orthonormal projection
Complexity Low High (due to SVD) Low
Orthogonality of Updates at initialization × × ✓

4 EXPERIMENTS

We employed widely used language generation models (LLaMA2-7B (Touvron et al., 2023),
Mistral-7B (Jiang et al., 2023), Gemma-7B (Team et al., 2024)) alongside an encoder-only Vision
Transformer (ViT-B/16) (Dosovitskiy et al., 2020) model, pretrained on ImageNet. We validated our
claims of improved initialization and faster convergence by testing the proposed ProRA on large-
scale models and a diverse range of datasets (12 language and 3 vision task). The experiments were
conducted on Nvidia A100-SXM4 (40GB) GPUs with a learning rate ranging from 1e-4 to 5e-5. For
the rest of the experimental setup, we followed similar experimental setup as (Meng et al., 2024),
using the AdamW optimizer and a batch size of 128. More details on experimental setup are pro-
vided in the Appendix A.3 and to ensure reproducibility of the ProRA, codes are also provided in
supplementary material.

4.1 EVALUATION ON NATURAL LANGUAGE GENERATION (NLG) TASKS: WITH DIFFERENT
LORA INITIALIZATION

We begin by comparing ProRA with different adapter initialization methods, namely PiSSA, LoRA,
and full-parameter fine-tuning, on natural language generation (NLG) tasks. We tested our proposed

6
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ProRA approach on a range of language generation tasks. All experiments were conducted using a
100K-sample subset and trained for a single epoch to minimize training time and resource usage. For
math reasoning, we fine-tuned three models LLaMA 2-7B, Mistral-7B-v0.1, and Gemma-7B, on the
MetaMathQA-40K (Yu et al., 2023) dataset and evaluated them on the GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) validation sets. For code generation, the models were evaluated
on the HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) benchmarks. Based on the
results in Table 7 ProRA achieves consistent improvements over most of the NLG tasks. Specifically,
on LLaMA 2-7B, ProRA achieves the best performance across all tasks, outperforming PiSSA by
up to 36.4% on HumanEval and 29.9% on MATH, and showing significant improvement compared
to LoRA on some benchmarks. On Mistral-7B, ProRA delivers the strongest result on HumanEval
(+8.4% over PiSSA) and matches the performance with leading methods on other tasks.

Table 2: Comparison of ProRA, PiSSA and LoRA on NLG tasks, with results averaged over three
runs and reported with standard deviations.

Model Strategy GSM8K MATH HumanEval MBPP
LLaMA 2-7B Full FT 49.13±0.21 7.29±0.22 21.20±0.30 35.59±0.25

LoRA(gaussian) 42.85±0.12 5.50±0.33 18.35±0.31 35.50±0.14
LoRA(kaiming) 43.23±0.64 5.90±0.16 18.21±0.45 35.47±0.37
PiSSA 53.22±0.55 7.47±0.34 21.92±0.38 37.24±0.63
ProRA(ours) 55.59±0.17 9.7±0.09 29.9±0.48 40.1±0.43

Mistral-7B Full FT 69.91±0.25 18.64±0.35 45.31±0.14 51.46±0.13
LoRA(gaussian) 69.50±0.42 19.93±0.44 45.78±0.11 58.46±0.27
LoRA(kaiming) 69.40±0.25 19.99±0.44 43.74±0.14 58.39±0.42
PiSSA 73.31±0.23 23.12±0.52 46.88±0.25 62.55±0.58
ProRA(ours) 72.72±0.44 22.4±0.49 50.8±0.74 62.73±0.37

Gemma-7B Full FT 72.09±0.32 22.71±0.34 47.02±0.27 55.67±0.60
LoRA(gaussian) 75.11±0.64 30.44±0.16 53.70±0.25 65.58±0.29
LoRA(kaiming) 74.53±0.47 29.90±0.16 53.12±0.27 65.25±0.29
PiSSA 77.78±0.32 31.33±0.33 54.31±0.28 66.17±0.43
ProRA(ours) 78.11±0.27 27.9±0.19 50.4±0.75 66.3±1.01

As seen in Figure 2, on the MetaMath dataset, ProRA achieves the fastest reduction in training
loss during the first 100 steps and later on, outperforming both LoRA and PiSSA. This suggests
that ProRA learns more effectively right from the beginning of training. In Figure 3, ProRA also
shows the highest gradient norm among the methods early in training. This indicates that ProRA
enables larger and more expressive updates, specially at initial updates. Together, these trends show
that ProRA is more responsive and adaptive in the initial phase of training compared to LoRA and
PiSSA, which likely contributes to its stronger overall performance.

4.2 EXPERIMENTS OVER COMMONSENSE REASONING TASKS: WITH DIFFERENT LORA
VARIANTS

We have also evaluated ProRA on eight commonsense reasoning benchmarks: BoolQ (Clark et al.,
a), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (HS) (Zellers et al., 2019), Wino-
grande (WG) (Sakaguchi et al., 2021), ARC-easy/challenge (Clark et al., b) and OpenBookQA
(OBQA) (Mihaylov et al.). In Table 3, ProRA outperforms full fine-tuning (Gemma-2B) on most
commonsense reasoning benchmarks. We conducted this study across several LoRA variants, and
ProRA outperformed LoRA on 7 out of 8 datasets at rank 32, while also demonstrating superior
performance on all datasets at the higher rank of 128.
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Figure 2: Training metrics for the MetaMathQA
dataset: loss over training steps.
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Figure 3: Training metrics for the MetaMathQA
dataset: gradient over training steps.

Table 3: Commonsense Reasoning benchmarks using GEMMA-2B. Results are reported as accuracy
(%) across various datasets.

Method BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA
Full-FT 63.57 74.1 65.86 70 61.95 75.36 59.72 69
LoRA(r=32) 63.11 73.44 63.2 47.79 52.95 74.78 57.16 67
ProRA (r=32) 64.49 80.35 72.97 89.63 51.22 77.39 58.7 61
DoRA(r=1) 62.17 68.77 55.93 32.95 51.22 68.81 48.72 55.6
VeRA(r=2048) 62.11 64.31 49.18 32 50.74 58.08 42.83 42.6
SVFT 62.26 70.18 56.7 32.47 47.04 69.31 50.08 58.4
LoRA(r=128) 66.06 80.36 74.56 91.36 53.04 79.25 59.73 65.2
PiSSA(r=128) 67.29 80.57 76.4 91.85 50.82 78.15 59.04 65.4
ProRA(r=128) 67.75 82.2 76.92 92.31 53.74 80.68 60.49 65.6

4.3 EVALUATION ON IMAGE CLASSIFICATION TASKS

For vision tasks, we evaluate our proposed ProRA method on three datasets: CIFAR-100
(Krizhevsky et al., 2009), RESISC45 (Ullah et al., 2022), and Flowers102 (Nilsback and Zisser-
man, 2008). We apply ProRA during fine-tuning under standard image classification settings. We
evaluated ProRA on vision tasks using ViT-B as the backbone. As shown in the Table 4, ProRA
achieves substantial improvements over other methods on all three datasets, outperforming LoRA,
DoRA, and SVFT by large margins, most notably by +4.0% on CIFAR100 and over +18% on Re-
sisc45, while provides comparable performance on Flowers102 datasets.

Table 4: Performance on vision classification tasks using ViT-B backbone. ProRA achieves superior
performance while using fewer parameters than Full-FT. #Params is parameter count.

Model Method #Params CIFAR100 Flower102 Resisc45
ViT-B Full-FT 85.8M 85.35 98.37 68.03

LoRA (r=8) 1.32M 84.41 99.23 76.86
DoRA (r=8) 1.41M 85.03 99.30 76.95
SVFT (d=8) 0.94M 85.69 98.88 70.41
ProRA(r=8) 1.32M 89.70 99.07 95.04
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4.4 ABLATION STUDY

Here, we present the ablation study conducted for ProRA. The ProRA method have two key aspects:
the choice of relative ranks for low-rank updates and the selection of the projection matrix P . In
this subsection, we discuss the impact of each aspect separately. We have also provided effect of
ProRA on different transformer component and an empirical view of reduced geometric complexity
of residual matrix in Appendix A.2

4.4.1 EVALUATION OF PRORA ON DIFFERENT RANKS

We conducted an ablation study on the proposed ProRA method by varying the adapter rank
(r = 8, 32, 128). This analysis was performed on the commonsense reasoning benchmark using
the Gemma-2B model, with results reported as the mean and standard deviation over three runs. As
summarized in Table 5, the findings indicate a consistent trend: increasing the adapter rank leads to
improved average performance across all evaluated datasets.

Table 5: Ablation on commonsense reasoning benchmarks using Gemma-2B with different ProRA
ranks. Results reported as the mean and standard deviation over three runs

Rank BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA
8 62.32±0.07 74.57±0.12 65.23±0.09 71.20±0.14 50.87±0.14 70.05±0.11 49.37±0.11 49.27±0.25
32 64.58±0.06 80.39±0.09 73.18±0.17 89.62±0.03 51.09±0.10 77.48±0.10 58.78±0.18 61.00±0.20
128 67.43±0.24 82.67±1.03 76.23±0.71 92.47±0.17 53.29±2.17 80.80±0.86 60.15±0.86 65.93±0.25

4.4.2 EFFECT OF DIFFERENT CHOICES FOR THE PROJECTION MATRIX

We investigated the effect of different choices for the projection matrix P , as presented in Table
6, by evaluating two construction strategies: randomized and deterministic. In the randomized
approach, the orthonormal subspace is derived by projection of the weight matrix onto a random
matrix, whose entries are independently sampled from a Gaussian distribution. We conducted ex-
periments using both strategies on the LLaMA 2-7B model across GSM8K, MATH, HumanEval,
and MBPP datasets. As shown in Table 6, when employing a randomized projection matrix, the
proposed ProRA method outperforms LoRA, achieving up to a 3.41% increase in accuracy on the
GSM8K dataset, with more modest gains observed on the other datasets. However, with the de-
terministic projection matrix constructed from the orthonormal subspace of the pretrained weight
matrix, ProRA not only surpasses LoRA but also the randomized variant of ProRA, achieving a no-
table margin of improvement on all evaluated datasets. All experiments were conducted in a single
run, and the corresponding results are reported in Table 6.

Table 6: Ablation on different choice of projection matrix P , on GSM8K, MATH, HumanEval, and
MBPP using LLaMA 2-7B. ProRAR denotes the random projection matrix and ProRAD represents
the deterministic projection matrix. Accuracy scores are reported for each task.

Model Method GSM8K MATH HumanEval MBPP
LLaMA 2-7B LoRA 42.17 6.12 22.0 37.8

ProRAR 45.48 6.38 22.3 38.4
ProRAD 55.72 9.8 25.6 39.7

5 CONCLUSION

In this work, we proposed Projection Aware Low-Rank Adaptation (ProRA), a unified framework
that introduces low-rank adaptation along orthonormal directions while explicitly minimizing geo-
metric complexity. By projecting pretrained weights onto orthonormal subspaces, ProRA not only
enables structured and stable initialization but also preserves norm and gradient flow, leading to
faster and more stable convergence. Our theoretical analysis and empirical results confirm that
ProRA effectively reduces the geometric complexity of frozen residual components, which facili-
tates better generalization to downstream tasks.
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A APPENDIX

A.1 THEORETICAL PROPERTIES OF PRORA

Theorem 2. The residual matrix Wres has lower geometric complexity than the original pretrained
weight matrix W .

Proof. The squared Frobenius norm of W is defined as

∥W∥2F = tr(W⊤W ).

Substituting W = Wres +Wproj, we have

∥W∥2F = tr
(
(Wres +Wproj)

⊤(Wres +Wproj)
)

= tr(W⊤
resWres +W⊤

resWproj +W⊤
projWres +W⊤

projWproj).

Using orthogonality, tr(W⊤
resWproj) = tr(W⊤

projWres) = 0, this simplifies to

∥W∥2F = ∥Wres∥2F + ∥Wproj∥2F .

Since both terms are non-negative, it follows that

∥Wres∥2F ≤ ∥W∥2F .

Hence, geometric complexity is measured by the squared Frobenius norm (as in Dirichlet energy)
(Dherin et al., 2022), we have

GC(Wres) ≤ GC(W ).

A.2 ABLATION STUDY

A.2.1 EFFECT OF PRORA DIFFERENT TRANSFORMER COMPONENTS

Figure 4 and 5 investigates the impact of fine-tuning specific transformer components, including
Query, Key, Value, Output, Up, Gate, and Down projections. The findings indicate that Query and
Key have the smallest effect, followed by Value and Down, while Gate, Output, and Up have the
greatest influence. This aligns with their functional roles: Query and Key mainly contribute to
attention scoring, whereas the other components directly affect the transformation and retention of
learned representations.
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Figure 4: Effect of ProRA on different
transformer component on GSM8K dataset
(LLaMA-7B)
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Figure 5: Effect of ProRA on different
transformer component on GSM8K dataset
(LLaMA-7B)

A.2.2 ANALYSIS ON GEOMETRIC COMPLEXITY (WRES VS W )

Figure 6 presents an empirical analysis of reduced Geometric complexity of residual matrix from
original weight matrix W. we have studied the geometric complexity at initial layers of the LLaMA
2-7B during training on MetaMathQA dataset, and find out that residual matrix have lower geometric
complexity.
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Figure 6: Analysis on Geometric Complexity (Wres Vs W ), during training MetaMathQA dataset
on LLaMA 2-7B model.

A.3 HYPERPARAMETER SETTING FOR DIFFERENT TASKS

In this section we will provide additional settings in order to reproduce our results. we have con-
ducted our study on natural language and vision tasks.

A.3.1 NATURAL LANGUAGE GENERATION (NLG) TASK

We tested our proposed ProRA approach on a range of language generation tasks using LLaMA2-7B
(Touvron et al., 2023), Mistral-7B-v0.1 (Jiang et al., 2023), Gemma-7B (Team et al., 2024), as dis-
cussed in Table 2 of main paper. In the Table 7 optimal learning rate for each model for the proposed
approach ProRA. For NLG task we have utilised GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) benchmarks.

Table 7: Learning rate of ProRA on NLG tasks.

Model GSM8K MATH HumanEval MBPP
LLaMA 2-7B 1e-4 1e-4 1e-4 1e-4

Mistral-7B 5e-5 5e-5 2e-5 2e-5
Gemma-7B 3e-5 3e-5 2e-5 2e-5
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A.3.2 COMMONSENSE REASONING

All hyperparameter values used in our experiments for are listed in Table 8. LR represents Learning
rate. We use the Hugging Face Transformers1 and PEFT2 libraries, which also provide access to
training and evaluation datasets.

Table 8: Hyperparameters used for fine-tuning Gemma-2B on the Commonsense-15K dataset for
ProRA.

Hyperparameter Value
Optimizer AdamW
Learning rate 3e-5
Warmup steps 100
Batch size (train/eval) 16 / 16
Number of epochs 50
Weight decay 0.0
LR scheduler Cosine
ProRA rank (r) 8
α 8

A.3.3 VISION TRANSFORMER

We fine-tune a pretrained ViT-B model on each vision dataset using ProRA, following a fixed set of
hyperparameters (Table 9). ProRA is trained for 10 epochs on CIFAR-100 (Krizhevsky et al., 2009)
and RESISC45 (Ullah et al., 2022), and for 30 epochs on Flower102 (Nilsback and Zisserman, 2008)
to allow for better convergence. For other methods, we report results directly from their original
implementations. We use the same Transformers and PEFT libraries as in the commonsense setup.

Table 9: Hyperparameters used for fine-tuning of ViT-B using proposed PEFT technique ProRA.

Hyperparameter Value
Model ViT-B/16
Batch size (train/eval) 64 / 64
Learning rate 5e-4
Weight decay 0.01
Warmup steps 500
LR scheduler Cosine
ProRA rank (r) 8
α 8
ProRA target modules query, key, value, dense

1https://github.com/huggingface/transformers
2https://github.com/huggingface/peft
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