

PRORA: PROJECTION AWARE LOW-RANK ADAPTA- TION FOR PARAMETER EFFICIENT FINE-TUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite the remarkable success of large language models (LLMs) across diverse tasks, the computational cost of fine-tuning them remains high. Low-Rank Adaptation (LoRA) addresses this by updating through the product of two low rank matrices. LoRA initializes low-rank matrices using random Gaussian noise and zeros, while keeping the pretrained weights frozen. However, such random and zero initialization leads to slow convergence and limits expressiveness. To overcome these limitations, we propose **Projection Aware Low-Rank Adaptation** (ProRA). ProRA initializes adapter matrices by projecting the original weight matrix into its orthonormal subspace and keeps the residual weight matrix frozen. ProRA leverages the orthonormal projection to ensure that updates preserve the geometric structure of pretrained models and are aligned with orthogonal subspaces, leading to faster convergence and improved performance. Furthermore, we interpret ProRA through the lens of geometric complexity. ProRA lowers geometric complexity in the frozen weights, which facilitates more efficient fine-tuning. Our proposed ProRA demonstrates empirical superiority over LoRA across diverse tasks. On the GSM8K benchmark dataset, ProRA achieves 78.11% accuracy with GEMMA-7B, outperforming LoRA’s 74.53% by 3.58%. Comparative evaluations across various model architectures consistently show that ProRA outperforms LoRA, highlighting its robustness and effective fine-tuning capability.

1 INTRODUCTION

Large Language Models (LLMs) are at the forefront of progress in Natural Language Processing (NLP) (Hosseini and Fedorenko, 2023; Zheng et al., 2023; Creswell et al., 2023; Yu et al., 2024; Luo et al., 2024). Their success can largely be attributed to transfer learning (Strangmann et al., 2024; Wang et al., 2024; Raffel et al., 2020). Among the various transfer learning strategies, the most widely adopted approach involves two key stages. The first stage, known as pretraining, involves training the LLMs on large-scale, general-purpose datasets using either supervised or unsupervised learning objectives. The subsequent stage, known as fine-tuning, focuses on adapting the pretrained model to a specific downstream task by updating its weights (Bengio, 2012). Generally these downstream tasks are unknown at the time of pre-training. LLMs require fine-tuning to achieve optimal performance on downstream tasks. While fine-tuning is highly effective for adapting LLMs to task-specific datasets, the process is computationally intensive, requiring significant time and memory resources. To overcome these challenges, various Parameter-Efficient Fine-Tuning (PEFT) techniques have been proposed (Houlsby et al., 2019; Zhang et al., 2023; Liu et al., 2024b). These PEFT methods focus on updating only a small subset of the parameters to achieve efficient adaptation. PEFT includes a variety of techniques, such as tuning only select layers (partial fine-tuning) (Zaken et al., 2022; Lawton et al., 2023; Sung et al., 2021; Xu et al., 2021), using learnable input embeddings (soft prompts) (Hambardzumyan et al., 2021; Wang et al., 2023), and applying low-rank matrix factorization during adaptation (Kopitzko et al., 2024; Hu et al., 2022; Zhang et al., 2023; Aghajanyan et al., 2021). Among these methods, Low-Rank Adaptation (LoRA) (Hu et al., 2022) is notable for using two low-rank matrices to approximate parameter updates. LoRA achieves comparable performance to full fine-tuning with significantly fewer trainable parameters.

LoRA and its successors operate on the hypothesis that parameter adaptation can be effectively achieved using low-rank matrices. In LoRA, the pre-trained weights are updated through the product of two low-rank matrices. These two low-rank matrices are initialized such that one follows a

random Gaussian distribution, and the other is set to zero (Hu et al., 2022; Hayou et al., 2024). As a result, their initial product is a zero matrix, ensuring no alteration to the model’s output at initial step. LoRA eliminates the need to compute gradients or maintain optimizer states for the original weight matrix by optimizing two low-rank matrices instead. This approach reduces the number of trainable parameters by up to 10,000 times and significantly reduces memory requirements (Hu et al., 2022).

Furthermore, low-rank adaptation techniques can be analyzed through the lens of geometric complexity. Geometric complexity quantifies the variability of the function learned by a model (Dherin et al., 2022). Recent work (Munn et al., 2024), establishes a theoretical relationship between the geometric complexity of a pretrained model and its fine-tuning performance. Notably, the geometric complexity of a pretrained network directly influences its effectiveness in transfer learning. Models with lower geometric complexity tend to exhibit better generalization, leading to improved transfer accuracy during fine-tuning (Munn et al., 2024).

Despite having several benefits, we identify two key challenges of LoRA.

- **Slower Convergence:** Unlike full fine-tuning, LoRA initially preserves the output of the pretrained model for a given input, as the pretrained weights remain frozen. Consequently, the updates to the model’s output rely entirely on the product of two low-rank matrices. Since these matrices are typically initialized with Gaussian noise and zeros, these updates causing gradients remain informative for a longer duration during the initial steps, and this initialization leads to slower convergence during the early stages of fine-tuning.
- **High geometric complexity:** LLMs possess significantly higher geometric complexity, which arises from both their architectural design and training processes that emphasize expressive power over simplicity (Valeriani et al., 2023; Munn et al., 2024; Cosentino and Shekkizhar, 2024). Higher geometric complexity hinders effective adaptation during fine-tuning.

To address these challenges, we propose a unified approach called **Projection Aware Low-Rank Adaptation (ProRA)**, effectively tackling both issues with a single solution. ProRA separates the pretrained weights into a trainable low-rank projection and a frozen residual component. By initializing trainable parameters by the projection using orthonormal subspaces, enables faster convergence. Also with preserving the residual with lower geometric complexity, improves transfer learning performance empirically.

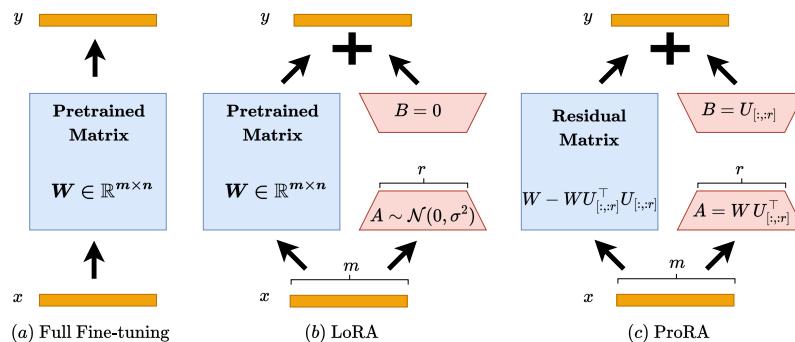


Figure 1: Comparison of Full Fine-tuning, LoRA, and ProRA approaches. In this illustration, blue modules denote frozen parameters during training, while pink modules highlight components that are updated.

In ProRA, adapters are derived directly from the pretrained weight matrix W by decomposing it into two distinct components: a projection matrix W_{proj} and a residual matrix W_{res} . The projection matrix W_{proj} obtained by projecting W onto a low dimensional orthonormal subspace U^\top . The residual matrix W_{res} , which represents the difference between the original matrix W and its projection W_{proj} . The projection matrix W_{proj} is expressed as the product of two low-rank matrices, A and B , both of which are trainable. To obtain this initialization, the pretrained matrix W is first compressed by

projecting it onto a low-dimensional orthonormal subspace, yielding matrix A . Subsequently, B is then initialized as an orthonormal matrix, thereby reconstructing a low-rank approximation of W . Since A is derived through orthonormal projection, it inherently preserves the Frobenius norm of the original weight matrix. B , with its orthonormal structure, exhibits favorable geometric properties, which can lead to a better-conditioned optimization landscape (Huang et al., 2018). Leveraging both norm preservation and structured orthonormal subspaces leads to faster convergence and in an appropriate direction. The proposed ProRA approach also aims to keep the geometric complexity of frozen weights lower. W_{res} of the pretrained matrix is utilized to reduce the geometric complexity of the frozen component. In this paper, we have theoretically shown that the frozen weights in ProRA have lower geometric complexity than the pretrained weight W . This lower geometric complexity of frozen weights allows for better transfer learning, resulting in better performance empirically. A comparison between full fine-tuning, LoRA, and the proposed ProRA is shown in Figure 1.

This paper makes the following key contributions:

- We introduce Projection Aware Low-Rank Adaptation (ProRA), a unified framework that performs low-rank adaptation along orthonormal directions while minimizing geometric complexity.
- We propose a novel initialization method named ProRA. By initializing trainable parameters through projections onto orthonormal subspaces, ProRA enables stable gradient flow and better-conditioned updates. This structured initialization significantly accelerates convergence.
- ProRA enhances transfer learning performance by reducing the geometric complexity of the frozen residual weights during fine-tuning. Lower geometric complexity allows for better generalization to downstream tasks.
- We demonstrate both theoretically and empirically that ProRA maintains lower geometric complexity in the frozen components, leading to improved performance and accelerated convergence.

2 PRELIMINARY

2.1 LoRA

LoRA is a prominent contribution in the area of PEFT. It freezes the weights of pretrained models and integrates trainable low-rank matrices into each layer of the transformer. Given a pretrained weight matrix W , LoRA approximates the weight update using a low-rank decomposition:

$$\Delta W = AB,$$

where $A \in \mathbb{R}^{p \times r}$, $B \in \mathbb{R}^{r \times q}$, and the rank $r \ll \min(p, q)$. The modified forward pass is given by:

$$Y = (W + \Delta W)X.$$

Matrix A and B are trainable parameter, while pretrained weights W are frozen during finetuning. Trainable parameters are initialized with Gaussian noise and zero matrix of appropriate dimension.

LoRA variants: In recent years, following the introduction of LoRA, several variants have been proposed to further improve parameter efficiency. VERA (Vector-based Random Matrix Adaptation) (Kopczko et al., 2023) reduces the number of trainable parameters by employing two diagonal matrices that are shared across layers. AdaLoRA (Zhang et al., 2023) dynamically learns the optimal rank for each layer during training. Another approach, DoRA (Decomposed Low-Rank Adaptation) (Liu et al., 2024a), factorizes the parameter matrix into directional and magnitude components and applies low-rank adaptation to reduce trainable parameters. An alternative method, PiSSA (Principal Singular Value and Singular Vector Adaptation) (Meng et al., 2024), initializes the low-rank matrices B and A using the principal singular vectors and singular values of the pretrained weight matrix, enabling faster convergence. Moreover, OLoRA (Büyükköyüz, 2024) leverages the orthonormal decomposition of pretrained weight matrices to initialize low-rank adapters. Similarly, SVFT (Lingam et al., 2024) is another PEFT technique that utilises adaptation singular vector decomposition of pretrained weight matrix.

162 2.2 GEOMETRIC COMPLEXITY ((DHERIN ET AL., 2022))
163164 For a model function $f : \mathbb{R}^d \rightarrow \mathbb{R}^p$, the **geometric complexity** is quantified as:
165

166
$$\text{GC}(f) = \mathbb{E}_{x \sim \mathcal{Q}} [\|\nabla_x f(x)\|_F^2], \quad (1)$$

167

168 where $\nabla_x f(x)$ represents the Jacobian of f with respect to the input x , $\|\cdot\|_F$ is the Frobenius norm,
169 and the expectation is taken over a data distribution \mathcal{Q} .
170171 **Geometric Complexity in Linear Mappings:** For a linear transformation $f(x) = Wx + b$, where
172 $W \in \mathbb{R}^{p \times d}$ is the weight matrix, the geometric complexity becomes:
173

174
$$\text{GC}(f) = \|W\|_F^2. \quad (2)$$

175

176 Here, $\|W\|_F^2 = \sum_{i=1}^p \sum_{j=1}^d W_{i,j}^2$ represents the squared Frobenius norm of the weight matrix. This
177 expression aligns with the concept of discrete Dirichlet energy.
178179 3 PRORA: PROJECTION AWARE LOW-RANK ADAPTATION
180181 In this section, we formally introduce our proposed method, **Projection Aware Low-Rank Adaptation (ProRA)**, for fine-tuning pretrained LLMs. The central innovation of ProRA lies in controlled
182 geometric complexity and its geometry aware update strategy. Unlike traditional low-rank adaptation
183 approaches, ProRA begins by considering the entire set of pretrained weights, denoted as W .
184 ProRA decomposes the pretrained weights W into two matrices such that one is orthonormal to the
185 other. This decomposition is motivated by the fact that orthonormal matrices exhibit favorable geo-
186 metric properties, leading to a better-conditioned optimization landscape. Specifically, the weights
187 are split into a *residual part*, W_{res} , which is kept frozen during training, and a *projected part*, W_{proj} ,
188 which contains trainable parameters. We first focus on the residual part so that it has lower geometric
189 complexity. The residual component preserves geometric structures because it remains orthogonal
190 to the subspace spanned by the original weights, while the projected component is obtained by pro-
191 jecting the original matrix onto a low rank matrix. The *projected part*, W_{proj} is further decomposed
192 into two low rank matrices.
193194 Mathematically, this can be expressed as
195

196
$$W = W_{\text{res}} + W_{\text{proj}}. \quad (3)$$

197

198 Where $W_{\text{proj}} = WP = WU_{[:,r]}^T U_{[:,r]}$ and $U_{[:,r]}$ is an orthonormal subspace of W . $U_{[:,r]}$ is
199 obtained by taking top r column of orthonormal subspace of W . The residual is given by

200
$$W_{\text{res}} = W - WU_{[:,r]}^T U_{[:,r]}. \quad (4)$$

201

202 Since W_{res} is frozen, only W_{proj} is updated during fine-tuning. To ensure compatibility with the
203 LoRA architecture, W_{proj} is further decomposed into two low-rank matrices,
204

205
$$A = WU_{[:,r]}^T \in \mathbb{R}^{p \times r}, \quad (5)$$

206

207 and
208

209
$$B = U_{[:,r]} \in \mathbb{R}^{r \times q}. \quad (6)$$

210

211 Hence $W_{\text{proj}} = AB$, and both A and B are low rank matrices with or lower rank than r . Conse-
212 quently, the output of the layer can be written as
213

214
$$Y = WX = (W_{\text{res}} + W_{\text{proj}}) = (W_{\text{res}} + AB)X, \quad (7)$$

215

216 which maintains full compatibility with the pretrained model during fine-tuning. The gradients of
217 B and A are given by
218

219
$$\frac{\partial \mathcal{L}}{\partial B} = A^\top \frac{\partial \mathcal{L}}{\partial Y} X^\top, \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial A} = \frac{\partial \mathcal{L}}{\partial Y} X^\top B^\top,$$

220

216 respectively. Here, $\frac{\partial \mathcal{L}}{\partial Y}$ denotes the gradient of the loss with respect to the layer output Y . Since U is
 217 initialized as an orthonormal matrix, A consequently preserves the Frobenius norm. The orthonormal
 218 initialization of $B = U$ ensures that adaptation occurs within a well-conditioned subspace,
 219 enabling ProRA to converge more quickly. In contrast, LoRA initializes its A and B matrices with
 220 Gaussian noise and zero adapters in the early stages, potentially wasting initial gradient descent
 221 steps. Such uninformative initialization in LoRA can lead to suboptimal local solutions and de-
 222 graded performance.

223 Since ProRA ultimately reduces to the LoRA architecture (equation 7), it inherits most of LoRA’s
 224 benefits, including a reduced number of trainable parameters. Furthermore, we provide a theoretical
 225 analysis of ProRA’s adaptation properties, demonstrating its advantages in terms of convergence
 226 speed, parameter efficiency, and preservation of geometric structure within the model’s weights.
 227

228 3.1 GEOMETRIC COMPLEXITY OF W_{res}

229 While constructing the ProRA approach, we take into account that the geometric complexity of
 230 the frozen model becomes lower. Various studies have shown that lower geometric complexity is
 231 responsible for better transfer of knowledge from pretrained weights and improved fine-tuning per-
 232 formance (Dherin et al., 2022). In the literature, low-rank adaptation techniques for fine-tuning have
 233 not been explored through the lens of geometric complexity using the Dirichlet energy function.
 234 To ensure lower geometric complexity, we split the original weight matrix such that the frozen and
 235 trainable parts are orthonormal to each other. In this way, we are able to explicitly control geometric
 236 complexity. Our proposed ProRA framework is specifically designed to keep the geometric com-
 237 plexity of the frozen weights low, while updating only a small subset of the pretrained weights. The
 238 architecture of ProRA, which is similar to LoRA, allows us to control the geometric complexity of
 239 the frozen weights. In the forward pass, the change in output Y is achieved by updating the weights
 240 linearly via the equation $Y = (W + \Delta W)X$. Thus, utilizing linear weight updates, we can express
 241 geometric complexity in terms of the Frobenius norm of the weight matrix. We have theoretically
 242 shown that the geometric complexity of the frozen part is lower than that of W , i.e., the frozen part
 243 in LoRA. Empirical results also show that explicitly controlling geometric complexity through or-
 244 thonormal splitting leads to faster convergence and better performance compared to both PiSSA and
 245 LoRA.
 246

247 3.2 THEORETICAL PROPERTIES OF PRORA

248 **Theorem 1** (Orthogonality of Residual and Projected Weights at Initialization). *The residual com-
 249 ponent W_{res} and the projected component W_{proj} are orthogonal under the Frobenius inner product,
 250 i.e.*

$$251 \langle W_{res}, W_{proj} \rangle_F = \text{tr}(W_{res}^\top W_{proj}) = 0.$$

253 *Proof.* Let $P = U_{[:,r]}^\top U_{[:,r]}$ denote the orthonormal projection matrix onto the column space of U .
 254 By construction, P is idempotent ($P^2 = P$) and symmetric ($P^\top = P$). The projected and residual
 255 components can be expressed as
 256

$$257 W_{proj} = WP, \quad \text{and} \quad W_{res} = W(I - P),$$

258 where I is the $k \times k$ identity matrix.
 259

260 The Frobenius inner product between W_{res} and W_{proj} is

$$261 \begin{aligned} \text{tr}(W_{res}^\top W_{proj}) &= \text{tr}((W(I - P))^\top (WP)) \\ 262 &= \text{tr}((I - P)W^\top WP) \\ 263 &= \text{tr}(W^\top WP(I - P)). \end{aligned}$$

266 Since $P(I - P) = P - P^2 = P - P = 0$, it follows that
 267

$$268 \text{tr}(W_{res}^\top W_{proj}) = \text{tr}(W^\top W \cdot 0) = 0.$$

269 \square

270 **Theorem 2.** *The residual matrix W_{res} has lower geometric complexity than the original pretrained
271 weight matrix W .*

273 *Proof.* Proof of this theorem is described in Appendix A.1. \square

275 3.3 INTERPRETATION OF W_{proj}

277 We interpret W_{proj} in terms of the down-projection and reconstruction of the pretrained weights W .
278 In the first initialization step, ProRA compresses the pretrained weights by projecting them onto a
279 low-rank orthonormal submatrix, given by $A = WU_{[:,r]}^\top$. The second part of W_{proj} is $B = U_{[:,r]}$.
280 After down-projection using $U_{[:,r]}^\top$, we reconstruct W via an up-projection using $U_{[:,r]}$. Since or-
281 orthonormal matrices belong to the orthogonal group, they provide favorable geometric conditions for
282 optimization (Huang et al., 2018). Hence, initializing A and B in this way preserves the Frobenius
283 norm and yields a well-conditioned optimization landscape for adaptation in ProRA.

285 3.4 COMPARATIVE ANALYSIS OF PRORA AND LORA VARIANTS: AN INITIALIZATION VIEW

287 In this subsection, we present a comparison between our proposed method and LoRA along with
288 its variants. While many successor methods adopt a similar strategy to LoRA for initializing the
289 update matrices A and B , certain approaches, such as PiSSA diverge from this pattern by employing
290 distinct initialization techniques for the adapter layers. Table 1 presents a comparison between
291 LoRA, PiSSA, and the proposed ProRA method regarding the initialization of low-rank adapters A
292 and B . LoRA initializes its adapters randomly, whereas PiSSA employs singular vectors derived
293 from the original weight matrices for initialization. In contrast, ProRA utilizes an orthonormal
294 projection of W to initialize its adapters. From a computational perspective, PiSSA necessitates
295 performing singular value decomposition (SVD) for each layer, whereas ProRA only requires QR
296 decomposition of W , which is significantly more efficient for large weight matrices commonly
297 encountered in LLMs. Additionally, ProRA ensures that updates to the adapters remain orthogonal,
298 unlike LoRA and PiSSA, where the adapters are not orthogonal to the frozen weights. This property
improves faster convergence during initial training steps.

300 Table 1: Comparison of PEFT Methods: LoRA, PiSSA, and ProRA.

301 Method	302 LoRA	303 PiSSA	304 ProRA
303 Initialization	304 random	305 singular vectors	306 orthonormal projection
304 Complexity	305 Low	306 High (due to SVD)	307 Low
305 Orthogonality of Updates at initialization	306 \times	307 \times	308 \checkmark

308 4 EXPERIMENTS

310 We employed widely used language generation models (LLaMA2-7B (Touvron et al., 2023),
311 Mistral-7B (Jiang et al., 2023), Gemma-7B (Team et al., 2024)) alongside an encoder-only Vision
312 Transformer (ViT-B/16) (Dosovitskiy et al., 2020) model, pretrained on ImageNet. We validated our
313 claims of improved initialization and faster convergence by testing the proposed ProRA on large-
314 scale models and a diverse range of datasets (12 language and 3 vision task). The experiments were
315 conducted on Nvidia A100-SXM4 (40GB) GPUs with a learning rate ranging from 1e-4 to 5e-5. For
316 the rest of the experimental setup, we followed similar experimental setup as (Meng et al., 2024),
317 using the AdamW optimizer and a batch size of 128. More details on experimental setup are pro-
318 vided in the Appendix A.3 and to ensure reproducibility of the ProRA, codes are also provided in
319 supplementary material.

320 4.1 EVALUATION ON NATURAL LANGUAGE GENERATION (NLG) TASKS: WITH DIFFERENT 321 LORA INITIALIZATION

322 We begin by comparing ProRA with different adapter initialization methods, namely PiSSA, LoRA,
323 and full-parameter fine-tuning, on natural language generation (NLG) tasks. We tested our proposed

324 ProRA approach on a range of language generation tasks. All experiments were conducted using a
 325 100K-sample subset and trained for a single epoch to minimize training time and resource usage. For
 326 math reasoning, we fine-tuned three models LLaMA 2-7B, Mistral-7B-v0.1, and Gemma-7B, on the
 327 MetaMathQA-40K (Yu et al., 2023) dataset and evaluated them on the GSM8K (Cobbe et al., 2021)
 328 and MATH (Hendrycks et al., 2021) validation sets. For code generation, the models were evaluated
 329 on the HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) benchmarks. Based on the
 330 results in Table 7 ProRA achieves consistent improvements over most of the NLG tasks. Specifically,
 331 on LLaMA 2-7B, ProRA achieves the best performance across all tasks, outperforming PiSSA by
 332 up to 36.4% on HumanEval and 29.9% on MATH, and showing significant improvement compared
 333 to LoRA on some benchmarks. On Mistral-7B, ProRA delivers the strongest result on HumanEval
 334 (+8.4% over PiSSA) and matches the performance with leading methods on other tasks.
 335

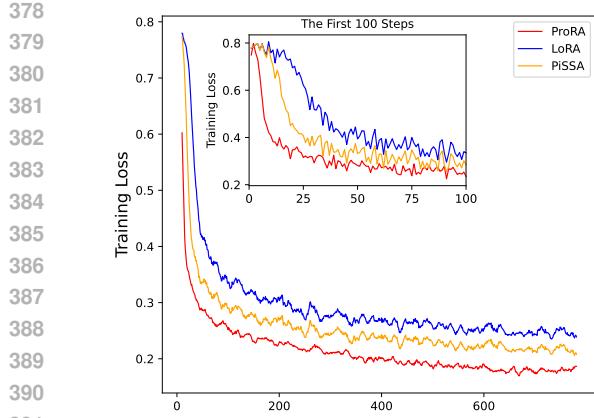
336 Table 2: Comparison of ProRA, PiSSA and LoRA on NLG tasks, with results averaged over three
 337 runs and reported with standard deviations.
 338

Model	Strategy	GSM8K	MATH	HumanEval	MBPP
LLaMA 2-7B	Full FT	49.13 \pm 0.21	7.29 \pm 0.22	21.20 \pm 0.30	35.59 \pm 0.25
	LoRA(gaussian)	42.85 \pm 0.12	5.50 \pm 0.33	18.35 \pm 0.31	35.50 \pm 0.14
	LoRA(kaiming)	43.23 \pm 0.64	5.90 \pm 0.16	18.21 \pm 0.45	35.47 \pm 0.37
	PiSSA	53.22 \pm 0.55	7.47 \pm 0.34	21.92 \pm 0.38	37.24 \pm 0.63
	ProRA(ours)	55.59\pm0.17	9.7\pm0.09	29.9\pm0.48	40.1\pm0.43
Mistral-7B	Full FT	69.91 \pm 0.25	18.64 \pm 0.35	45.31 \pm 0.14	51.46 \pm 0.13
	LoRA(gaussian)	69.50 \pm 0.42	19.93 \pm 0.44	45.78 \pm 0.11	58.46 \pm 0.27
	LoRA(kaiming)	69.40 \pm 0.25	19.99 \pm 0.44	43.74 \pm 0.14	58.39 \pm 0.42
	PiSSA	73.31 \pm 0.23	23.12\pm0.52	46.88 \pm 0.25	62.55 \pm 0.58
	ProRA(ours)	72.72\pm0.44	22.4 \pm 0.49	50.8\pm0.74	62.73\pm0.37
Gemma-7B	Full FT	72.09 \pm 0.32	22.71 \pm 0.34	47.02 \pm 0.27	55.67 \pm 0.60
	LoRA(gaussian)	75.11 \pm 0.64	30.44 \pm 0.16	53.70 \pm 0.25	65.58 \pm 0.29
	LoRA(kaiming)	74.53 \pm 0.47	29.90 \pm 0.16	53.12 \pm 0.27	65.25 \pm 0.29
	PiSSA	77.78 \pm 0.32	31.33\pm0.33	54.31\pm0.28	66.17 \pm 0.43
	ProRA(ours)	78.11\pm0.27	27.9 \pm 0.19	50.4 \pm 0.75	66.3\pm1.01

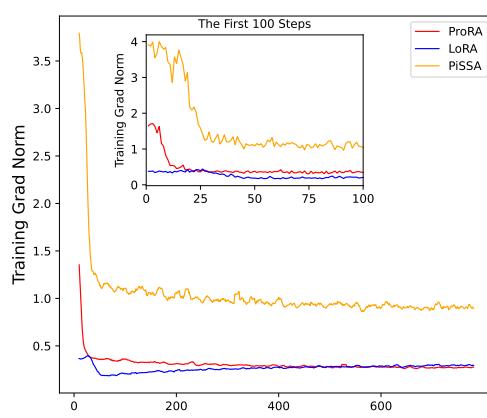
399 As seen in Figure 2, on the MetaMath dataset, ProRA achieves the fastest reduction in training
 400 loss during the first 100 steps and later on, outperforming both LoRA and PiSSA. This suggests
 401 that ProRA learns more effectively right from the beginning of training. In Figure 3, ProRA also
 402 shows the highest gradient norm among the methods early in training. This indicates that ProRA
 403 enables larger and more expressive updates, specially at initial updates. Together, these trends show
 404 that ProRA is more responsive and adaptive in the initial phase of training compared to LoRA and
 405 PiSSA, which likely contributes to its stronger overall performance.
 406

4.2 EXPERIMENTS OVER COMMONSENSE REASONING TASKS: WITH DIFFERENT LORA VARIANTS

414 We have also evaluated ProRA on eight commonsense reasoning benchmarks: BoolQ (Clark et al.,
 415 a), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (HS) (Zellers et al., 2019), Wino-
 416 grande (WG) (Sakaguchi et al., 2021), ARC-easy/challenge (Clark et al., b) and OpenBookQA
 417 (OBQA) (Mihaylov et al.). In Table 3, ProRA outperforms full fine-tuning (Gemma-2B) on most
 418 commonsense reasoning benchmarks. We conducted this study across several LoRA variants, and
 419 ProRA outperformed LoRA on 7 out of 8 datasets at rank 32, while also demonstrating superior
 420 performance on all datasets at the higher rank of 128.
 421



392 Figure 2: Training metrics for the MetaMathQA
393 dataset: loss over training steps.
394



392 Figure 3: Training metrics for the MetaMathQA
393 dataset: gradient over training steps.
394

395 Table 3: Commonsense Reasoning benchmarks using GEMMA-2B. Results are reported as accuracy
396 (%) across various datasets.
397

Method	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA
Full-FT	63.57	74.1	65.86	70	61.95	75.36	59.72	69
LoRA(r=32)	63.11	73.44	63.2	47.79	52.95	74.78	57.16	67
ProRA (r=32)	64.49	80.35	72.97	89.63	51.22	77.39	58.7	61
DoRA(r=1)	62.17	68.77	55.93	32.95	51.22	68.81	48.72	55.6
VeRA(r=2048)	62.11	64.31	49.18	32	50.74	58.08	42.83	42.6
SVFT	62.26	70.18	56.7	32.47	47.04	69.31	50.08	58.4
LoRA(r=128)	66.06	80.36	74.56	91.36	53.04	79.25	59.73	65.2
PiSSA(r=128)	67.29	80.57	76.4	91.85	50.82	78.15	59.04	65.4
ProRA(r=128)	67.75	82.2	76.92	92.31	53.74	80.68	60.49	65.6

4.3 EVALUATION ON IMAGE CLASSIFICATION TASKS

414 For vision tasks, we evaluate our proposed ProRA method on three datasets: CIFAR-100
415 (Krizhevsky et al., 2009), RESISC45 (Ullah et al., 2022), and Flowers102 (Nilsback and Zisser-
416 man, 2008). We apply ProRA during fine-tuning under standard image classification settings. We
417 evaluated ProRA on vision tasks using ViT-B as the backbone. As shown in the Table 4, ProRA
418 achieves substantial improvements over other methods on all three datasets, outperforming LoRA,
419 DoRA, and SVFT by large margins, most notably by +4.0% on CIFAR100 and over +18% on Re-
420 sisc45, while provides comparable performance on Flowers102 datasets.
421

422 Table 4: Performance on vision classification tasks using ViT-B backbone. ProRA achieves superior
423 performance while using fewer parameters than Full-FT. #Params is parameter count.
424

Model	Method	#Params	CIFAR100	Flower102	Resisc45
ViT-B	Full-FT	85.8M	85.35	98.37	68.03
	LoRA (r=8)	1.32M	84.41	99.23	76.86
	DoRA (r=8)	1.41M	85.03	99.30	76.95
	SVFT (d=8)	0.94M	85.69	98.88	70.41
	ProRA(r=8)	1.32M	89.70	99.07	95.04

432 4.4 ABLATION STUDY
433

434 Here, we present the ablation study conducted for ProRA. The ProRA method have two key aspects:
 435 the choice of relative ranks for low-rank updates and the selection of the projection matrix P . In
 436 this subsection, we discuss the impact of each aspect separately. We have also provided effect of
 437 ProRA on different transformer component and an empirical view of reduced geometric complexity
 438 of residual matrix in Appendix A.2

439 4.4.1 EVALUATION OF PRORA ON DIFFERENT RANKS
440

441 We conducted an ablation study on the proposed ProRA method by varying the adapter rank
 442 ($r = 8, 32, 128$). This analysis was performed on the commonsense reasoning benchmark using
 443 the Gemma-2B model, with results reported as the mean and standard deviation over three runs. As
 444 summarized in Table 5, the findings indicate a consistent trend: increasing the adapter rank leads to
 445 improved average performance across all evaluated datasets.

446 Table 5: Ablation on commonsense reasoning benchmarks using Gemma-2B with different ProRA
 447 ranks. Results reported as the mean and standard deviation over three runs
448

Rank	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA
8	62.32 ± 0.07	74.57 ± 0.12	65.23 ± 0.09	71.20 ± 0.14	50.87 ± 0.14	70.05 ± 0.11	49.37 ± 0.11	49.27 ± 0.25
32	64.58 ± 0.06	80.39 ± 0.09	73.18 ± 0.17	89.62 ± 0.03	51.09 ± 0.10	77.48 ± 0.10	58.78 ± 0.18	61.00 ± 0.20
128	67.43 ± 0.24	82.67 ± 1.03	76.23 ± 0.71	92.47 ± 0.17	53.29 ± 2.17	80.80 ± 0.86	60.15 ± 0.86	65.93 ± 0.25

454 4.4.2 EFFECT OF DIFFERENT CHOICES FOR THE PROJECTION MATRIX
455

456 We investigated the effect of different choices for the projection matrix P , as presented in Table
 457 6, by evaluating two construction strategies: randomized and deterministic. In the randomized
 458 approach, the orthonormal subspace is derived by projection of the weight matrix onto a random
 459 matrix, whose entries are independently sampled from a Gaussian distribution. We conducted ex-
 460 periments using both strategies on the LLaMA 2-7B model across GSM8K, MATH, HumanEval,
 461 and MBPP datasets. As shown in Table 6, when employing a randomized projection matrix, the
 462 proposed ProRA method outperforms LoRA, achieving up to a 3.41% increase in accuracy on the
 463 GSM8K dataset, with more modest gains observed on the other datasets. However, with the de-
 464 terministic projection matrix constructed from the orthonormal subspace of the pretrained weight
 465 matrix, ProRA not only surpasses LoRA but also the randomized variant of ProRA, achieving a no-
 466 table margin of improvement on all evaluated datasets. All experiments were conducted in a single
 467 run, and the corresponding results are reported in Table 6.

468 Table 6: Ablation on different choice of projection matrix P , on GSM8K, MATH, HumanEval, and
 469 MBPP using LLaMA 2-7B. ProRA^{*R*} denotes the random projection matrix and ProRA^{*D*} represents
 470 the deterministic projection matrix. Accuracy scores are reported for each task.

Model	Method	GSM8K	MATH	HumanEval	MBPP
LLaMA 2-7B	LoRA	42.17	6.12	22.0	37.8
	ProRA ^{<i>R</i>}	45.48	6.38	22.3	38.4
	ProRA ^{<i>D</i>}	55.72	9.8	25.6	39.7

478 5 CONCLUSION
479

480 In this work, we proposed Projection Aware Low-Rank Adaptation (ProRA), a unified framework
 481 that introduces low-rank adaptation along orthonormal directions while explicitly minimizing geo-
 482 metric complexity. By projecting pretrained weights onto orthonormal subspaces, ProRA not only
 483 enables structured and stable initialization but also preserves norm and gradient flow, leading to
 484 faster and more stable convergence. Our theoretical analysis and empirical results confirm that
 485 ProRA effectively reduces the geometric complexity of frozen residual components, which facili-
 486 tates better generalization to downstream tasks.

486 REFERENCES
487

488 Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
489 fectiveness of language model fine-tuning. In *Proceedings of the 59th Annual Meeting of the*
490 *Association for Computational Linguistics and the 11th International Joint Conference on Natu-*
491 *ral Language Processing (Volume 1: Long Papers)*, pages 7319–7328, 2021.

492 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
493 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
494 models. *arXiv preprint arXiv:2108.07732*, 2021.

495 Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In *Proceed-*
496 *ings of ICML workshop on unsupervised and transfer learning*, pages 17–36. JMLR Workshop
497 and Conference Proceedings, 2012.

498 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
499 physical commonsense in natural language. 2020.

500 Kerim Büyükköyüz. Olora: Orthonormal low-rank adaptation of large language models. *arXiv*
501 *preprint arXiv:2406.01775*, 2024.

502 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
503 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
504 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

505 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
506 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. a.

507 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
508 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
509 b.

510 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
511 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
512 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

513 Romain Cosentino and Sarath Shekizhar. Reasoning in large language models: A geometric per-
514 spective. *arXiv preprint arXiv:2407.02678*, 2024.

515 Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
516 guage models for interpretable logical reasoning. In *The Eleventh International Conference on*
517 *Learning Representations*, 2023.

518 Benoit Dherin, Michael Munn, Mihaela Rosca, and David Barrett. Why neural networks find sim-
519 ple solutions: The many regularizers of geometric complexity. *Advances in Neural Information*
520 *Processing Systems*, 35:2333–2349, 2022.

521 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
522 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
523 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
524 *arXiv:2010.11929*, 2020.

525 Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial re-
526 programming. In *Proceedings of the 59th Annual Meeting of the Association for Computational*
527 *Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume*
528 *1: Long Papers)*, pages 4921–4933, 2021.

529 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.
530 *Advances in Neural Information Processing Systems*, 37:117015–117040, 2024.

531 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
532 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *Sort*, 2
533 (4):0–6, 2021.

540 Eghbal Hosseini and Evelina Fedorenko. Large language models implicitly learn to straighten neu-
 541 ral sentence trajectories to construct a predictive representation of natural language. In A. Oh,
 542 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, *Advances in Neu-
 543 ral Information Processing Systems*, volume 36, pages 43918–43930. Curran Associates, Inc.,
 544 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/88ddda430b5bc38ab8228902bb61821-Paper-Conference.pdf.

545

546 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 547 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 548 In *International conference on machine learning*, pages 2790–2799. PMLR, 2019.

549

550 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 551 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

552

553 Lei Huang, Xianglong Liu, Bo Lang, Adams Yu, Yongliang Wang, and Bo Li. Orthogonal weight
 554 normalization: Solution to optimization over multiple dependent stiefel manifolds in deep neural
 555 networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.

556

557 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 558 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 559 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 560 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

561

562 Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
 563 adaptation. In *The Twelfth International Conference on Learning Representations*, 2023.

564

565 Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Elora: Efficient low-rank adaptation
 566 with random matrices. In *The Twelfth International Conference on Learning Representations*,
 567 2024.

568

569 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 570 2009.

571

572 Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, and Greg Ver Steeg. Neural architec-
 573 ture search for parameter-efficient fine-tuning of large pre-trained language models. In *Findings
 574 of the Association for Computational Linguistics: ACL 2023*, pages 8506–8515, 2023.

575

576 Vijay Chandra Lingam, Atula Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur,
 577 Joydeep Ghosh, Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, and Sujay Sanghavi. Svft:
 578 Parameter-efficient fine-tuning with singular vectors. *Advances in Neural Information Processing
 579 Systems*, 37:41425–41446, 2024.

580

581 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 582 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first
 583 International Conference on Machine Learning*, 2024a.

584

585 Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
 586 Liu, Juyeon Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly
 587 factorization. In *The Twelfth International Conference on Learning Representations*, 2024b.

588

589 Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
 590 Ma, Qingwei Lin, and Dixin Jiang. Wizardcoder: Empowering code large language models with
 591 evol-instruct. In *ICLR*, 2024.

592

593 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
 594 vectors adaptation of large language models. *Advances in Neural Information Processing Systems*,
 595 37:121038–121072, 2024.

596

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 597 electricity? a new dataset for open book question answering.

594 Michael Munn, Benoit Dherin, and Javier Gonzalvo. The impact of geometric complexity on neural
 595 collapse in transfer learning. In *The Thirty-eighth Annual Conference on Neural Information
 596 Processing Systems*, 2024.

597

598 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 599 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*,
 600 pages 722–729. IEEE, 2008.

601

602 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 603 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
 604 text transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020. URL <http://jmlr.org/papers/v21/20-074.html>.

605

606 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 607 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

608

609 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Com-
 610 monsense reasoning about social interactions. In *Conference on Empirical Methods in Natural
 611 Language Processing*, 2019.

612

613 Tobias Strangmann, Lennart Purucker, Jörg K.H. Franke, Ivo Rapant, Fabio Ferreira, and Frank
 614 Hutter. Transfer learning for finetuning large language models. In *Adaptive Foundation Models:
 615 Evolving AI for Personalized and Efficient Learning*, 2024. URL <https://openreview.net/forum?id=gDeW6B8WCh>.

616

617 Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
 618 *Advances in Neural Information Processing Systems*, 34:24193–24205, 2021.

619

620 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashti, Surya Bhupatiraju, Shreya
 621 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
 622 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

623

624 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 625 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 626 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

627

628 Ihsan Ullah, Dustin Carrión-Ojeda, Sergio Escalera, Isabelle Guyon, Mike Huisman, Felix Mohr,
 629 Jan N van Rijn, Haozhe Sun, Joaquin Vanschoren, and Phan Anh Vu. Meta-album: Multi-domain
 630 meta-dataset for few-shot image classification. *Advances in Neural Information Processing Sys-
 631 tems*, 35:3232–3247, 2022.

632

633 Lucrezia Valeriani, Diego Doimo, Francesca Cuturrello, Alessandro Laio, Alessio Ansuini, and Al-
 634 berto Cazzaniga. The geometry of hidden representations of large transformer models. *Advances
 635 in Neural Information Processing Systems*, 36:51234–51252, 2023.

636

637 Runqian Wang, Soumya Ghosh, David Cox, Diego Antognini, Aude Oliva, Rogerio Feris, and
 638 Leonid Karlinsky. Trans-lora: towards data-free transferable parameter efficient finetuning. In
 639 *Annual Conference on Neural Information Processing Systems*, 2024.

640

641 Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Mul-
 642 titask prompt tuning enables parameter-efficient transfer learning. In *The Eleventh International
 643 Conference on Learning Representations*, 2023.

644

645 Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
 646 Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning.
 647 In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*,
 648 pages 9514–9528, 2021.

649

650 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
 651 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 652 for large language models. *arXiv preprint arXiv:2309.12284*, 2023.

648 Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
 649 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 650 for large language models. In *The Twelfth International Conference on Learning Representations*,
 651 2024.

652 Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
 653 for transformer-based masked language-models. In *Proceedings of the 60th Annual Meeting of*
 654 *the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 1–9, 2022.

655 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 656 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

657 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
 658 Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *11th International*
 659 *Conference on Learning Representations, ICLR 2023*, 2023.

660 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 661 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 662 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

663 A APPENDIX

664 A.1 THEORETICAL PROPERTIES OF PRORA

665 **Theorem 2.** The residual matrix W_{res} has lower geometric complexity than the original pretrained
 666 weight matrix W .

667 *Proof.* The squared Frobenius norm of W is defined as

$$668 \|W\|_F^2 = \text{tr}(W^\top W).$$

669 Substituting $W = W_{\text{res}} + W_{\text{proj}}$, we have

$$670 \|W\|_F^2 = \text{tr}((W_{\text{res}} + W_{\text{proj}})^\top (W_{\text{res}} + W_{\text{proj}})) \\ 671 = \text{tr}(W_{\text{res}}^\top W_{\text{res}} + W_{\text{res}}^\top W_{\text{proj}} + W_{\text{proj}}^\top W_{\text{res}} + W_{\text{proj}}^\top W_{\text{proj}}).$$

672 Using orthogonality, $\text{tr}(W_{\text{res}}^\top W_{\text{proj}}) = \text{tr}(W_{\text{proj}}^\top W_{\text{res}}) = 0$, this simplifies to

$$673 \|W\|_F^2 = \|W_{\text{res}}\|_F^2 + \|W_{\text{proj}}\|_F^2.$$

674 Since both terms are non-negative, it follows that

$$675 \|W_{\text{res}}\|_F^2 \leq \|W\|_F^2.$$

676 Hence, geometric complexity is measured by the squared Frobenius norm (as in Dirichlet energy)
 677 (Dherin et al., 2022), we have

$$678 \text{GC}(W_{\text{res}}) \leq \text{GC}(W).$$

679 \square

680 A.2 ABLATION STUDY

681 A.2.1 EFFECT OF PRORA DIFFERENT TRANSFORMER COMPONENTS

682 Figure 4 and 5 investigates the impact of fine-tuning specific transformer components, including
 683 Query, Key, Value, Output, Up, Gate, and Down projections. The findings indicate that Query and
 684 Key have the smallest effect, followed by Value and Down, while Gate, Output, and Up have the
 685 greatest influence. This aligns with their functional roles: Query and Key mainly contribute to
 686 attention scoring, whereas the other components directly affect the transformation and retention of
 687 learned representations.

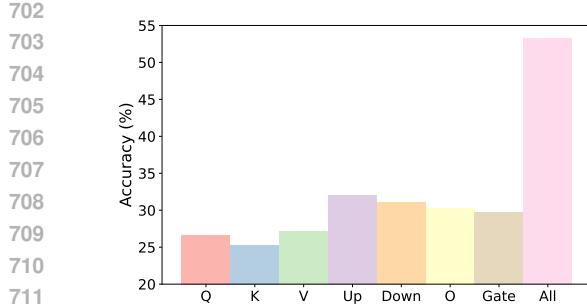


Figure 4: Effect of ProRA on different transformer component on GSM8K dataset (LLaMA-7B)

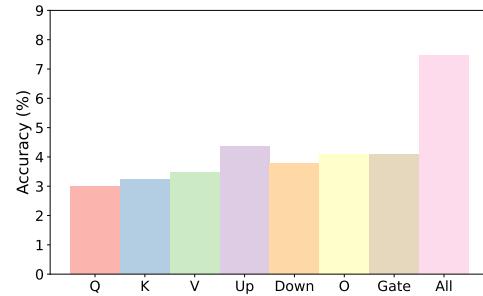


Figure 5: Effect of ProRA on different transformer component on GSM8K dataset (LLaMA-7B)

A.2.2 ANALYSIS ON GEOMETRIC COMPLEXITY (W_{RES} VS W)

Figure 6 presents an empirical analysis of reduced Geometric complexity of residual matrix from original weight matrix W . we have studied the geometric complexity at initial layers of the LLaMA 2-7B during training on MetaMathQA dataset, and find out that residual matrix have lower geometric complexity.

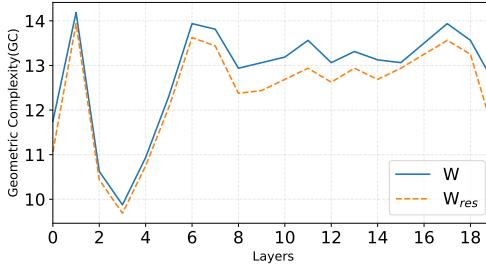


Figure 6: Analysis on Geometric Complexity (W_{res} Vs W), during training MetaMathQA dataset on LLaMA 2-7B model.

A.3 HYPERPARAMETER SETTING FOR DIFFERENT TASKS

In this section we will provide additional settings in order to reproduce our results. we have conducted our study on natural language and vision tasks.

A.3.1 NATURAL LANGUAGE GENERATION (NLG) TASK

We tested our proposed ProRA approach on a range of language generation tasks using LLaMA2-7B (Touvron et al., 2023), Mistral-7B-v0.1 (Jiang et al., 2023), Gemma-7B (Team et al., 2024), as discussed in Table 2 of main paper. In the Table 7 optimal learning rate for each model for the proposed approach ProRA. For NLG task we have utilised GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) benchmarks.

Table 7: Learning rate of ProRA on NLG tasks.

Model	GSM8K	MATH	HumanEval	MBPP
LLaMA 2-7B	1e-4	1e-4	1e-4	1e-4
Mistral-7B	5e-5	5e-5	2e-5	2e-5
Gemma-7B	3e-5	3e-5	2e-5	2e-5

756 A.3.2 COMMONSENSE REASONING
757758 All hyperparameter values used in our experiments for are listed in Table 8. LR represents Learning
759 rate. We use the Hugging Face Transformers¹ and PEFT² libraries, which also provide access to
760 training and evaluation datasets.761 Table 8: Hyperparameters used for fine-tuning Gemma-2B on the Commonsense-15K dataset for
762 ProRA.
763

764 Hyperparameter	765 Value
766 Optimizer	767 AdamW
768 Learning rate	769 3e-5
770 Warmup steps	771 100
772 Batch size (train/eval)	773 16 / 16
774 Number of epochs	775 50
776 Weight decay	777 0.0
778 LR scheduler	779 Cosine
780 ProRA rank (r)	781 8
782 α	783 8

777 A.3.3 VISION TRANSFORMER
778779 We fine-tune a pretrained ViT-B model on each vision dataset using ProRA, following a fixed set of
780 hyperparameters (Table 9). ProRA is trained for 10 epochs on CIFAR-100 (Krizhevsky et al., 2009)
781 and RESISC45 (Ullah et al., 2022), and for 30 epochs on Flower102 (Nilsback and Zisserman, 2008)
782 to allow for better convergence. For other methods, we report results directly from their original
783 implementations. We use the same Transformers and PEFT libraries as in the commonsense setup.784 Table 9: Hyperparameters used for fine-tuning of ViT-B using proposed PEFT technique ProRA.
785

786 Hyperparameter	787 Value
788 Model	789 ViT-B/16
790 Batch size (train/eval)	791 64 / 64
792 Learning rate	793 5e-4
794 Weight decay	795 0.01
796 Warmup steps	797 500
798 LR scheduler	799 Cosine
800 ProRA rank (r)	801 8
802 α	803 8
804 ProRA target modules	805 query, key, value, dense

806 ¹<https://github.com/huggingface/transformers>807 ²<https://github.com/huggingface/peft>