A Genetic Programming Approach To Zero-Shot
Neural Architecture Ranking

Yash Akhauri J. Pablo Muifioz Ravi Iyer Nilesh Jain
Intel Labs Intel Labs Intel Labs Intel Labs
Abstract

Neural networks are becoming increasingly ubiquitous in a wide range of use cases.
A primary hurdle in deploying neural networks in many scenarios is the tedious and
difficult neural network architectural design process, which was reliant on expert
knowledge and iterative design. Neural Architecture Search (NAS) reduces the
human effort required for design, but still has considerable resource requirements
and is extremely slow. To address the inefficiencies of conventional NAS, Zero-
Shot NAS is a new paradigm, which introduces zero shot neural architecture scoring
metrics (NASMs) to identify good neural network designs without training them.
While applying Zero Shot NASMs is cheap and requires no training resources, we
identify that there is a lack of NASMs that generalize well across neural architecture
design spaces. In this paper, we present a program representation for NASMs and
automate its search with genetic programming. We discover effective NASMs for
Image Classification as well as Automatic Speech Recognition. We believe that
our work indicates a new direction for NASM design and can greatly benefit from
recent advances in program synthesis.

1 Introduction

As the diversity of hardware platforms and end use-cases of neural networks increase, practical
deployment of neural networks is becoming increasingly difficult. Maximizing accuracy of neural
network architectures is no longer the sole concern, with significant emphasis being placed on
the deployment efficiency and the carbon footprint of discovering efficient architectures. Further,
hardware performance metrics are often non-differentiable in nature as these costs can vary arbitrarily
depending on the the memory access pattern, cache hierarchy and other several factors. 1, 2] Given
the irregular deployment costs of neural networks in hardware aware settings, the efficiency of
differentiable neural architecture design is significantly lower than in accuracy aware settings. The
sample efficiency of non-differentiable methods also suffer due to the irregular nature of the loss
landscape of hardware performance.

Zero-shot Neural Architecture Search aims to alleviate the training costs in the Neural Architecture
Search process by ’scoring’ neural networks at initialization. Ideally, a higher score should correspond
to a higher test accuracy of the neural network after training. We refer to algorithms that can score
neural network architectures without training them as Zero Shot Neural Architecture Scoring Metrics
(NASMs). There exist several zero-shot NASMs such as NASWOT, ZenNAS, AngleNAS, TENAS
and SynFlow [3} 14} 1516, [7]. Design of these NASMs are driven by human intuition or are theoretically
inspired by discovering metrics that quantify the trainability and expressivity of neural networks. [4]
empirically studies metrics such as synflow, which was introduced as a techinque to pruning neural
network weights at initialization based on a saliency metric [8]. NASWOT [3] treats output of each
layer of a neural network as a binary indicator (zero if value is negative, one if value is positive) and
uses the hamming distance between two binary codes induced by an untrained network at two inputs
as a measure of dissimilarity. This is driven by the intuition that the more similar two inputs are,

35th Conference on Neural Information Processing Systems (aiplans 2021), Sydney, Australia.

Program Representation

2
2 S
23 BRI e == o,
£3 @ T A N A
§ & § § H Integer Program Representation Expression Tree Program Representation
S 1
=T
i eltwise _sum
1
1
H

InpAct_addr28 = eltwise_prod(InpAct_addr5, InpAct_addr8)

Dynamic

InpAct_addr33 = Abs(InpAct_addr21, InpAct_addr8) i
i

Program representation in
evolutionary algorithm

[T4GData | | T3 |

P [sim] [abslog] |

| 133,9,21,8,28,1,5,8,33, 10, 18, 13, 29, 14, 14, 28, 31, 13, 14, 33] ‘

[Wite Address | [operation> | [Read Addresses | [output Adaress |

Program Application

aggregation_function aggregation_function

—
[T

P T PP e e .
eltwise_sum H eltwise_sum |
H i

b
!

!

;| sign | [abslog
! - :
!

!

!

sign | [abslog |
-

[T4GDaa| S

Conv2D

Conv2D

i | BatchNorm2D
BatchNorm2D

BatchNorm2D

Apply program on every ‘ReLU-Conv2D-BatchNorm2d”

Figure 1: (Left) Integer program representation is unconstrained and introduces redundant operations,
leading to program bloating. It also has limited dynamic scalar and tensor memory addresses. (Right)
An expression tree structure introduces fewer redundancies and more interpretable programs.

the more challenging it should be for the network to learn how to separate them. Such methods of
scoring neural network architectures can work well for a small sub-set of neural architecture design
spaces, but in practice often fail to transfer across NN design spaces. These methods may also impose
structural restrictions on the neural networks that limit the architecture design space. For instance,
ZenNAS [6]] truncates the neural network representation by removing residual connections. This
limits the ability to distinguish differing connectivity patterns of the neural network architecture.

In this paper, we identify a domain specific language (DSL) which can effectively represent existing
SoTA NASMs. We also identify an appropriate choice of input-output example and formulate the
discovery of programs (NASMs) with the DSL as a program synthesis task driven by evolutionary
search. This method allows us to discover NASMs that impose minimal restrictions on the neural
network representation and task. Our contributions are as follows:

« Utilizing an expression tree structure to represent NASMs in a manner that is sufficiently
expressive to capture the task of neural architecture ranking across neural architecture design
spaces and tasks.

* Demonstration of our genetic programming driven methodology (EZNAS - Evolutionarily
Generated Zero Shot Neural Architecture Scoring Metric) to automate zero-shot NASM
design for Image Classification and Automatic Speech Recognition.

* Qutline of future work to motivate research in more robust input-output example representa-
tion, DSL design and program search strategies.

2 Evolutionary Framework

Domain Specific Language (DSL). DSLs are computer languages that are suitable for a specialized
domain and are more restrictive than full-features programming languages [9]]. An appropriate DSL
construction is crucial to discovering NASMs efficiently. We explored two alternative program
representations for evolutionary search of NASMs.

Our initial choice of DSL was inspired by AutoML-Zero [10] and posed minimal structural restrictions
on the program. The program representation and application is depicted in Figure|l|(Left). A total
of 22 tensors were generated at every ReLU-Conv2D-BatchNorm2D (RCB tensors) instance of the
neural network (weights, activations and gradients). Each NASM was applied to every RCB instance
and the score was generated by averaging the score assigned by the NASM at every RCB instance of
the neural network. We had 22 static memory addresses to store the RCB tensors (referenced with
integers 0-21), 80 dynamic memory addresses to store intermediate tensors generated by the program
and 20 dynamic memory addresses to store intermediate scalars. The fitness of each individual
program is calculated by measuring the Kendall Tau rank correlation between the scores generated of
80 neural network architectures, and their test accuracy. The test accuracy is readily available to us as
we use public NAS data-sets (NASBench-201 [[L1]] and NDS [12]).

As seen in Figure[T](Left), each NASM was sequentially represented as a set of integers, with every
four integers indicating an expression with a result, operation ID and two operands. We initialize valid
random integer arrays and convert them to programs to evaluate and fetch the fitness. Valid integer
arrays are the arrays that can be converted to programs and generate a float score. We allow Mate,
InsertOP, RemoveOP, MutateOP & MutateOPArg as variation functions described further in
the appendix. While we discover weak NASMs with this formulation, we observe that there are too
many redundancies in the programs discovered. Program length bloating as well as operations that do
not contribute to the final output made the run time intractable. In EZNAS, each individual NASM
has to be evaluated on several gigabytes of input-output examples with no approximations to generate
precise fitness values.

To reduce the computational complexity of search, we necessitate an expression tree structure on
the NASM program to capture the executional ordering of the program. As depicted in Figure
(Right), the program output appears at a root node, and the child (terminal) nodes are the arguments
of the expression tree. These arguments are the 22 RCB tensors. The advantage of this program
representation is that there is only a single root node with dense connectivity form the root to
terminal nodes, leading to lesser redundancies. As the expression tree describes the executional
ordering of the mathematical operations available to us, it is crucial to provide a varied set of
mathematical operations. We provide 34 unique operations in our program search space, including
basic mathematical operations such as Addition, Product, Log as well as operations such as Cosine
Similarity, KL Divergence and Hamming Distance. We provide the full list of mathematical operations
available in the supplementary material.

Search Technique. Our search algorithm discovers programs by modifying the expression tree
representation. At each generation, fitness score is generated for every expression tree (NASM) in the
population. A selection and variation algorithm is then used to generate new offspring. We utilize the
VarOr implementation from Distributed Evolutionary Algorithms in Python (DEAP) [[13] framework
for variation of individual programs. We generate n valid offspring programs at each generation.
n/2 offspring are generated as a result of three operations; crossover, mutation or reproduction. To
encourage diversity, we also randomly generate n/2 valid individuals at every generation. Invalid
programs that either fail to execute or give inf, nan outputs are replaced by new individuals. We
give an algorithmic description of our search method in the Appendix.

3 Results

We choose the most consistent NASM from all our evolutionary runs on the image classification
task (EZNAS-A) and the automatic speech recognition task (EZNAS-ASR) and compare with existing

Image Classification Automatic Speech Recognition
NASM Amoeba DARTS ENAS PNAS NASNet NASM ASR TIMIT
EZNAS-A 0.42 0.55 0.51 0.48 0.43 EZNAS-ASR 0.33
NASWOT 0.22 0.47 0.37 0.38 0.3 SNIP 0.01
grad_norm -0.1 0.28 -0.02 -0.01 -0.08 grad_norm 0.07
syn_flow -0.06 0.37 0.02 0.03 -0.03 syn_flow 04

Table 1: (Left) Kendall Tau rank correlation for the image classification task on NDS [12] Neural
Architecture Design Space. (Right) Spearman rank correlation for the automatic speech recognition
task on the NASBench-ASR [14]] dataset.

NASMs from recent works. We can see that we are able to obtain competitive Spearman rank
correlation coefficient on the NASBench-ASR automatic speech recognition task. Our EZNAS-A
NASM is able to outperform competitive NASMs consistently and able to generalize across the
architecture design spaces, as indicated by the test in Table 2] (Left).

4 Discussion

In this paper, we present EZNAS, a novel genetic programming driven approach to discover Zero Shot
Neural Architecture Scoring Metrics NASMs). EZNAS automates the discovery of relevant features
of a neural network with minimal human intervention, and outperforms most existing human-designed
NASMs in both generalizability and Kendall Tau Ranking Correlation. We believe that this is a first
step towards not only efficient neural architecture search but also discovering interpretable programs
that indicate the attributes of neural network that contribute to accuracy. In the rest of this section, we
discuss the limitations of our current approach and outline future work that may enable us to discover
better NASMs.

Program Design. To simplify the search problem, we take a mean (aggregation_function
in Figure [T)) of the scores generated across all ReLU-Conv2D-BatchNorm2D instances. This is a
major limitation, as it hopes to capture layer connectivity patterns implicitly in the network at-
tribute tensors (22 tensors). Extending our evolutionary search to take into account the global
connectivity pattern of the neural networks or learning weighted averaging techniques for the
individual layer scores along with the scoring program could help us discover better NASMs.
Research in graph neural networks along with evolutionary program synthesis may allow us to
obtain higher performance NASMs. Further, we impose structural restrictions on our program by
necessitating a fixed structure (ReLU-Conv2D-BatchNorm2D). We have to truncate instances of
ReLU-Conv2D-Conv2D-BatchNorm2D from the NDS space by ignoring the second convolution. As
more diverse architectures are introduced in the field, we must reformulate collection of network
statistics in a more robust manner. It is important to note that NASWOT measures the similarity in
the binary codes generated from the ReLU units for two different inputs. Our implemented program
design limits us to only using a single/batch of inputs and does not compare different input samples
directly. Thus, we would not be able to discover the NASWOT NASM metric with our current
formulation. Fortunately, integrating such functionality into the program design space is trivial and is
an interesting line of future work to generate more complex metrics.

Network Statistics. Due to the computational resources required to generate network statistics,
we have to pre-compute them and use the generated data as an evolutionary task dataset. We only
use network statistics with input batch-size of 1 for evolution. A single sample statistic of a neural
network is insufficient to describe the architecture. Unfortunately, this would cause a linear increase
in memory requirement as well as increase in run-time of the evolutionary search. If we were to
generate network statistics of all neural networks in the NASBench-201 and NDS spaces (excluding
ImageNet), it would be 7 terabytes of tensors with a batch size of just 1. Computing network statistics
at run-time can be made more efficient by using lower precision numerical formats, or exploring proxy
tasks on smaller datasets (down-sampled image datasets, smaller neural network design architecture
etc.) to discover metrics that can influence accuracy.

Evolutionary Search. Recent advances in the field of Neuro-Symbolic Program Synthesis [15] to
learn mappings from input-output examples (neural network statistics to neural architecture scores)
can motivate improvements in our evolutionary search. Further, exploring architecture connectivity
encodings [[16]] for neural architecture search and discovering programs to rank neural architecture
encodings may enable discovery of effective connectivity patterns to enable a deeper understanding
of important features in neural architecture design beyond those contained in activations maps and
weights.

References
[1] Akhauri, Y., A. Niranjan, J. P. Munoz, et al. Rhnas: Realizable hardware and neural architecture
search, 2021.

[2] Abdelfattah, M. S., Lukasz Dudziak, T. Chau, et al. Best of both worlds: Automl codesign of a
cnn and its hardware accelerator, 2020.

[3] Mellor, J., J. Turner, A. Storkey, et al. Neural architecture search without training, 2021.
[4] Abdelfattah, M. S., A. Mehrotra, Lukasz Dudziak, et al. Zero-cost proxies for lightweight nas,
2021.

[5] Chen, W., X. Gong, Z. Wang. Neural architecture search on imagenet in four gpu hours: A
theoretically inspired perspective, 2021.

[6] Lin, M., P. Wang, Z. Sun, et al. Zen-nas: A zero-shot nas for high-performance deep image
recognition, 2021.
[7] Hu, Y., Y. Liang, Z. Guo, et al. Angle-based search space shrinking for neural architecture
search, 2020.
[8] Tanaka, H., D. Kunin, D. L. K. Yamins, et al. Pruning neural networks without any data by
iteratively conserving synaptic flow, 2020.
[9] Balog, M., A. L. Gaunt, M. Brockschmidt, et al. Deepcoder: Learning to write programs, 2017.
[10] Real, E., C. Liang, D. R. So, et al. Automl-zero: Evolving machine learning algorithms from
scratch, 2020.
[11] Dong, X., Y. Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search, 2020.
[12] Radosavovic, 1., J. Johnson, S. Xie, et al. On network design spaces for visual recognition,
2019.
[13] Fortin, F.-A., F.-M. De Rainville, M.-A. Gardner, et al. DEAP: Evolutionary algorithms made
easy. Journal of Machine Learning Research, 13:2171-2175, 2012.

[14] Mehrotra, A., A. G. C. P. Ramos, S. Bhattacharya, et al. {NAS}-bench-{asr}: Reproducible
neural architecture search for speech recognition. In International Conference on Learning
Representations (ICLR). 2021.

[15] Parisotto, E., A. Mohamed, R. Singh, et al. Neuro-symbolic program synthesis. In 5th
International Conference on Learning Representations (ICLR 2017). 2017.

[16] White, C., W. Neiswanger, S. Nolen, et al. A study on encodings for neural architecture search,
2021.

Appendix
A Genetic Programming Approach To Zero-Shot
Neural Architecture Ranking

Yash Akhauri J. Pablo Muifioz Ravi Iyer Nilesh Jain
Intel Labs Intel Labs Intel Labs Intel Labs

1 Details of Evolutionary Framework

EZNAS uses evolutionary search to discover programs that can score neural network architectures
in proportion to their accuracy. There are several components that are instrumental in facilitating
efficient search for such a program in the prohibitively large program space. In this section, we go
over the different components of our framework in detail.

1.1 Program Representation

In our evolutionary search, each individual program has to be evaluated on tens of gigabytes of
network statistics with no approximations to generate precise NASM score-accuracy KTR fitness. To
make such search computationally tractable, it is crucial to not introduce redundant operations in the
program. Our initial attempt described in the Appendix [2.3]resembled that of AutoML-Zero [[1] where
NASMs were represented as a sequence of instructions and a memory space to store intermediate
tensors. This led to discovery of NASMs with many redundant computations and an intractably large
run-time. To reduce the complexity of search, we necessitate a expression tree structure on the NASM
program to capture the executional ordering of the program. The program output appears at a root
node, and the child (terminal) nodes are the arguments of the expression tree. These arguments are
the network statistics. The advantage of this program representation is that there is only a single root
node with dense connectivity from the root to the terminal nodes, leading to lesser redundancies.

1.2 Neural Network Statistics Generation

To search for genetic programs that can rank neural network architectures effectively, we need to
generate a dataset of ‘network statistics’. As depicted in Figure[I] for any sampled neural network
from the NDS or NASBench-201 spaces, we identify every ReLU-Conv2D-BatchNorm2D instance
after randomly initializing the neural network. We register the input and output activation (T1, T2)
and gradient (T1G, T2G) to the ReLLU unit, weight and weight gradient of the Conv2D layer (T3,
T3G) and the output and output gradient of BatchNorm2D (T4, T4G). We register these values for a
single randomly sampled training data item (a single image D), a random noise input () with mean
0 and variance 1 and a training sample perturbed by random noise (D + +/0.01N). In the Appendix
[2.8] we also present an alternate formulation which identifies every Conv2D-BatchNorm2D-ReLU
instance for network statistics generation to demonstrate that the evolutionary framework is not
restricted to a ReLU-Conv2D-BatchNorm2D structure.

We register 24 different tensors for each ReLU-Conv2D-BatchNorm2D instance, however since the

weight tensor is the same for the three types of input (D, N, D + +/0.01N), we have 22 unique
tensors. For evolutionary search, we generate an evolution task dataset by randomly sampling 80
neural networks from each available search space (NASBench-201 and NDS) and dataset (CIFAR-10,
CIFAR-100, ImageNet-16-120). At the time of evolution, we only have access to evolution task
dataset. At the end of the search, we use a test task dataset to identify the best programs. The test

35th Conference on Neural Information Processing Systems (aiplans 2021), Sydney, Australia.

task dataset has 1000 neural networks statistics for each dataset on the NASBench-201 space and
200 neural network statistics for each design space on NDS. We generate a smaller network statistics
dataset on NDS due to RAM constraints. Since we are generating statistics for each layer on over
4640 (= 1000 x 3 + 200 x 5 + 80 x 8) neural networks, the dataset size is approximately 400 GB
for a batch size of 1.

1.3 Mathematical Operations

As an expression tree describes the execution order of the mathematical operations available to us, it
is crucial to provide a varied set of operations to process the neural network statistics effectively. We
provide 34 unique operations in our program search space. We include basic mathematical operations
such as Addition, Product, Log as well as some advanced operations such as Cosine Similarity, KL
Divergence, Hamming Distance. We provide the full list of mathematical operations at the end.

1.4 Program Application

Majority of the neural network architectures available in NASBench-201 and NDS have over 100
instances of ReLU-Conv2D-BatchNorm2D. This may mean that an expression tree would have as
many as 2200 (22 x 100) possible arguments (terminal nodes), each of which can be used multiple
times. This would result in a computationally intractable expression tree. To simplify the search
problem, we generate a single expression tree with 22 possible inputs. This expression tree is
then applied on every ReLU-Conv2D-BatchNorm2D instance and the output is aggregated across all
instances using an aggregation_function. It is not necessary that the root node of an expression
tree would give a scalar value, so we add a to_scalar operation above the root node of the expression
tree. This serves as the ’score’ of a single layer of the the sampled neural network architecture. We
demonstrate how an expression tree is applied to a neural network architecture to generate a score in
Figure 3] In EZNAS-A, the aggregation_function and to_scalar are both mean. In Appendix
[2.8] we explore L2-Norm as a to_scalar function as well and find that we are able to discover
effective NASMs.

Input Tensor Name
D Data
N Noise
D + V0.01N | Perturb

Conv2D
!
BatchNorm2d
!

Collect for each ‘Rel. U—Conv2D—BatchN01:m2D’

OT1 OT3 O Forward Tensor
OTIG OT3G O Backward Tensor

Figure 1: Collecting network statistics for the NASBench-201 and NDS search spaces. The D
input tensor represents a single sample image from the dataset such as CIFAR-10, CIFAR-100
serving as input to the neural network. A represents a randomly initialized noise tensor. We refer
to D + +/0.01A as ’Perturb’. It represents an input to the neural network which is a data-sample
perturbed by noise.

Program 1 Program 2 Program 3 Program 4
— | I1norm |
g ‘ i
S exp =t
[e] '—_Tj;g;“t '
% | T2GPerturb | | 11norm | ata [sign ‘ | abs‘log |
I
© [T3GPerturb | [symeigen | [T3 |
3 [E 3
E e = 5
a o S8 <o S @
55 =g £i.2 S8
Sin) 3R re)
- 2 E ¥
Program 1 Program 2 Program 3 Program 4
[frob_norm |
- . [Tinom | tob_norm
] R
O | l?g | | cigen | | abslog |
I
[T4Perturb | | T4GData | [13 |

Figure 2: Variation of expression trees every generation. The x signs denote point of cross-over or
mutation.

| aggregation_function ‘

to_scalar to_scalar
eltwise sum eltwise sum

sigl; B | xerslog H sigI;] ‘ | \\ai)slog H sign |
I [[[[
sym_eigen | T3 H sym_eigen ‘ | T3 H sym_eigen |

T4GData T4GData T4GData

RelLU
Conv2D
Conv2D

Conv2D
BatchNorm2D
ReLU
BatchNorm2D
ReLU
BatchNorm2D

Apply program on every ‘ReLU-Conv2D-BatchNorm2d’ instance

Figure 3: A program is evaluated by applying the NASM program followed by a to_scalar (such
as L2-Norm, Mean) function on every ReLU-Conv2D-BatchNorm2d instance in the sampled neural
network architecture. This is followed by an aggregation_function to give a final score to the
sampled neural network architecture.

1.5 Evolutionary Algorithm

Our search algorithm discovers programs by modifying the expression tree representation. A fitness
score is generated for every expression tree in the population. A selection and variation algorithm is
then used to generate new offspring.

1.5.1 Population Initialization

We initialize a population of n programs. We do not impose any restrictions on the operations the
nodes can use in the expression tree. Due to this, the number of valid expression trees several is
orders of magnitude lesser than the total number of expression trees that can be generated with our
mathematical operators and network statistics. To increase search efficiency, we would like to ensure
we sample and evolve only valid expression trees. To enable this, we ensure that all individuals
in the population are valid programs by testing program execution on a small sub-set of network
statistics data. All programs that produce outputs with in f, nan or fail to execute are replaced by
new randomly initialized valid programs.

1.5.2 Fitness Objective

As the goal of zero shot NAS is to be able to rank neural network architectures well, we utilize the
Kendall Tau rank correlation coefficient as the fitness objective. The search objective is to maximize
the Kendall Tau rank correlation coefficient between the scores generated by a program and the test
accuracy of the neural networks.

1.5.3 Variation Algorithms

In our tests, we utilize the VarOr implementation from Distributed Evolutionary Algorithms in
Python (DEAP) [2] framework for variation of individual programs. We generate n (hyper-parameter)
offspring programs at each generation. n/2 offspring are generated as a result of three operations;
crossover, mutation or reproduction. These variations are depicted in Figure[2] For crossover, two
individual programs are randomly selected from the population and mated. Our mating function
randomly selects a crossover point from each individual and exchanges the sub-trees with the selected
point as root between each individual. The first child is appended to the offspring population. For
mutation, we randomly select a point in the individual program, and replace the sub-tree at that point
by a randomly generated expression tree. We repeat the variation algorithm on the population till
n/2 valid individuals are generated. To encourage diversity, we also randomly generate n/2 valid
individuals. We have placed static limits on the height of all expression trees at 10.

1.6 Program Evaluation Methodology

At each generation, the fitness of the entire population is invalidated and recalculated. Calculating the
fitness of each program on the entire dataset (which can be approximately 1 TB) is computationally
infeasible. Further, we may want to find generalized programs that give high fitness on many different
architecture design spaces and datasets. This means we have to evaluate each individual on 7 TB of
data. Reducing the computation by evaluating the fitness of the population on a single small fixed
sub-set of neural networks from the search space causes discovered programs to trivially over-fit to
the sub-set statistics in our tests. To address over-fitting of programs to small datasets of network
statistics while minimizing compute resources required for evaluating on the entire dataset of network
statistics, we use our evolution task dataset. The evolution task dataset contains statistics of 80 neural
networks on each search space. We evaluate individuals by randomly choosing s search spaces, and
sampling 20 neural networks from each of the chosen search spaces. We take the minimum fitness
achieved by the individual program on the s spaces. We consider s as a hyper-parameter. In our tests,
this is consistently kept at 4.

1.7 Program Testing Methodology

At the end of the evolutionary search, our primary goal is to test whether the programs discovered are
able to provide high fitness on previously unseen neural network architecture statistics. We test the
fittest program from our final population as well as the two fittest programs encountered through-out
the evolutionary search. At test time, we take the program and find the score-accuracy KTR over the
entire fest task dataset.

EZNAS-A | def EZNAS_A(ic,oc,k):

T3GNoise = torch.randn(ic, oc, k, k)

tens = torch.sign(T3GNoise)

tens = torch.logdet(tens)

tens[tens!=tens] = ©

tens = torch.sigmoid(tens)

tens = torch.norm(tens, p='fro’)

sigmoid # Testing

c_var = [4, 8, 16, 32, 64, 128]

k_var = [1, 3, 5, 7]

E -> repeat 5000 times and return average
logdet # Vary output channels

E([NASM(ic=8, oc=x, k=3).item() for x in c_var])
>>> [2.29, 3.26, 4.60, 6.50, 9.25, 13.06]

Vary input channels

E([NASM(ic=x, oc=8, k=3).item() for x in c_var])
>>> [2.30, 3.24, 4.61, 6.55, 9.23, 13.07]

Vary kernel size

T3GNoise E([NASM(ic=8, oc=8, k=x).item() for x in k_var])
>>> [4.00 , 3.25, 3.53, 4.04]

Score monotonically increasing non-linearly with channel count.
Kernel size of 1 and 7 gives higher score than 3 or 5

frob_norm

sign

Figure 4: Analysis of our best program (EZNAS-A) on the Image Classification task. to_scalar not
required as the output is scalar already.

2 Examination Of Our Best Programs

We analyze two NASMs discovered by EZNAS to give a deeper understanding of the nature of
programs our search finds. The first program we analyze is EZNAS-A. This evolution task dataset for
discovering this program was NDS DARTS. The input to the NASM in Figure []is the T3GNoise
(Weight Gradient with Random Noise Input). To understand how the NASM score varies with the
weight gradient size, we generate random tensors of varying sizes and average the NASM output 5000
times. We find that the score increases as the number of channels or depth increases, we also observe
that kernel sizes of 1 and 7 give higher scores than 3 and 5 with the lowest score being assigned
to kernel of size 3. It is interesting to see that the expectation value of EZNAS-A NASM in Figure
M]translates to a weighted form of parameter counting, with a non-linear monotonically increasing
scaling of score with the number of input/output channels and a locally parabolic relationship between
the score and the kernel size with the minimum score (among integers) at kernel size of 3.

The second program we analyze (EZNAS-B) is depicted in Figure[5] This evolution task dataset for
discovering this program was NDS ENAS and its score-accuracy KTR on the test task dataset is
provided in Figure[I3] We analyze this NASM in a manner similar to Figure] We provide random
tensors in place of T1GPerturb (Difference in pre-activation gradients for a random noisy input and
a data-sample input). This is an approximation to understand how the NASM responds to change in
activation gradient size. We find that the activation map size is exponentially more influential to the
score when compared to the number of channels.

With the random initialization approximation done in our analysis, we find that our NASM EZNAS-A
is counting the number of parameters in a *weighted fashion’. EZNAS-B generates a score by giving
higher weightage to feature map size over number of channels as a proxy for accuracy. It is interesting
to note that when compared to the methods from recent papers in zero shot NASMs, this form of
weighted parameter counting works more consistently and better. This is further supported by our
finding that FLOPs and parameter count are competitive NASMs which work more consistently as
opposed to synflow or grad_norm which work on the NASBench-201 space but fail on the NDS
space.

EZNAS-B def EZNAS_B(c, k):
TiGPerturb = torch.randn(1, c, k, k)
elt_invert tens = torch.sigmoid(T1GPerturb)
T tens[tens<=0] = 1
tens = torch.log(tens)
tens = torch.sigmoid(tens)
B tens[tens<=0] =1
frob_norm exp tens = torch.log(tens)
tens = torch.norm(tens, p='fro')
tens = torch.exp(tens)
tens += torch.norm(pagp, p='fro")
tens = to_scalar(1l/tens)
log # Testing
. c_var = [4, 8, 16, 32, 64, 128]
k_var = [4, 8, 16, 32]
E -> repeat 5000 times and return average
Vary channels
log E([NASM(c=x, k=4).item() for x in c_var])
: >>> [4.6e-5, 7.1e-7, 1.98e-9,

eltwise_sum

T1GPerturb frob_norm

sigmoid

4.4e-13, 3.2e-18, 1.7e-25]

sigmoid ; A :
Vary activation size
E([NASM(c=2, k=x).item() for x in k_var])
T1GPerturb >>> [4.7e-5, 1.9e-9, 3.2e-18, 9.3e-36]

Activation map size is exponentially more important than the number of channels.

Figure 5: Analysis of our second best program (EZNAS-B) on the Image Classification task.

0.7

=
£06 | mm]
205 * m——

50:4 + T - 4

03

NB201 NB201 NB201 NDS NDS NDS NDS NDS
CF10 CF100 IN16120 Amoeba DARTS ENAS PNAS NASNet

Figure 6: Effect of seed on our score-accuracy KTR of EZNAS-A with a batch size of 1. CIFAR and
ImageNet abbreviated as CF and IN respectively. This test was done on each design space over 7
seeds for 400 Neural Networks.

2.1 NASBench-201 and NDS

For image classification, we utilize the NASBench-201 [3]] and NDS [4] NAS search spaces for our
evolutionary search as well as testing. NASBench-201 consists of 15,625 neural networks trained
on the CIFAR-10, CIFAR-100 and ImageNet-16-120 datasets. Neural Networks in Network Design
Spaces (NDS) uses the DARTS [3]] skeleton. The networks are comprised of cells sampled from each
of AmoebaNet [6]], DARTS [5]], ENAS [7], NASNet [8] and PNAS [9]. There exists approximately
5000 neural network architectures

0.5

E 0.48 * . ——
— 0.46 *

3

2 0.44

Q
M 0.42
0.4

1 2 4 8 16
Batch Size

Figure 7: Effect on score-accuracy KTR of EZNAS-A with respect to batch size. This test was done
on the NDS PNAS design space over 7 seeds for 400 Neural Networks.

2.2 Our evolutionary algorithm

We explicitly describe our evolutionary search method in Algorithm|[I] evolution_space refers
to the evolution task dataset. the evaluate function evaluates every individual in the offspring and
assigns a fitness value to them. This fitness value is the minimum score-accuracy KTR obtained by
testing it on each of the evolution_space. test_space refers to the test task dataset, and is used
after the last generation to identify good programs. The genValidPopulation function generates N
valid individuals. The VarOr function is the variation algorithm we have used to mate, mutate and
cross-over the population. We repeat the VarOr function generates half the offsprings, while the other
half is randomly initialized at each generation. This is to promote diversity in the population. The
selectValid function selects all the valid individuals produced by the VarOr function by evaluating
each individual on a single neural network statistic. The se1Top3 selects the three individuals with
the highest fitness. The top 3 individuals are propagated to the next generation with no variation.
selTournament selects the best individual among x randomly chosen individuals, k times. We set
the x=4 and k=N.

2.3 Details of Sequential Program Representation

Our initial attempts at discovering NASMs took a different approach to program representation. This
sequential program representation posed no structural limitations on the program. We have 22 static
memory addresses, which contained network statistics and are referenced with integers 0-21. To store
intermediate tensors generated by the program, we allocate 80 dynamic memory addresses, which
can be over-written in the program as well. To store intermediate scalars generated by the program,
we allocate 20 memory addresses. As seen in Figure[8] we represent the programs as integers, where
each instruction is expressed as 4 integers. The first integer provides the write address, the second
integer provides the operation ID and the third and fourth integers provide the read addresses for
the operation. We initialize valid random integer arrays and convert them to programs to evaluate
and fetch the fitness (score-accuracy KTR). We allow Mate, InsertOP, RemoveOP, MutateOP
& MutateOpArg as variation functions. The Mate function takes two individuals, and takes the first
half of each individual. Then, these components are interpolated to generate a new individual. The
InsertOP function inserts an operation at a random point in the program. The RemoveOP function
removes an operation at a random point in the program. The MutateOP changes a random operation
in program without changing read/write addresses. The MutateOpArg function simply replaces one
of the read arguments of any random instruction with another argument from the same address space
(dynamic address argument cannot be replaced by a scalar address argument).

While we are able to discover weak NASMs with this formulation, we observe that there are too
many redundancies in the programs discovered. Program length bloating as well as operations that
do not contribute to the final output were frequently observed. Due to these issues, the evolution
time evaluation of individual fitness quickly became an intractable problem. To address this, we
change our program representation to a expression tree representation in the results reported in the
paper. This representation necessitates contribution of each operation to the final output, which means
there is no redundant compute. While the sequential program representation is valid, we believe

Algorithm 1 EZNAS Search Algorithm

evolution_space = ' DARTS’, "NB201-CIFAR10’]
test_space = ['PNAS’, ’ENAS’]
population = genValidPopulation(N)
evol_dataset = loadDataset(evolution_space)
evaluate(population)
top_gen =[]
for gen=1:T do
offspring = []
if len(top_gen)>0 then
offspring.append(top_gen)
top_gen =]
while len(offspring) < N//2 do
Applies crossover, mutation & reproduction
individuals = VarOr(population)
offspring.append(selectValid(individuals))

Half the population is randomly

initialized at each generation

individuals = genValidPopulation(N//2)

offspring.append(individuals)

population = evaluate(offspring)

top_gen.append(selTop3(population))

if gen!=T then

population = selTournament(population)

test(population)
top_NASMs = selTop3(population)

that significant engineering efforts are required to ensure discovery of meaningful programs. Our
sequential program representation is directly inspired by the formulation used in AutoML-Zero [1].
AutoML-Zero makes significant approximations in the learning task to evolutionarily discover MLPs.
While AutoML-Zero has a much larger program space to search for, approximations in computing
individual fitness are not feasible in our formulation as generating exact score-accuracy KTR is an
important factor in selecting individuals with high fitness.

2.4 Noise and Perturbation for Network Statistics

To generate network statistics, we use three types of input data. The first is simply a
single random sample from the dataset (e.g. a single image or a batch of images from
CIFAR-10). To generate a noisy input, we simply use the default torch.randn func-
tion as input = torch.randn(data_sample.shape). The third type of input we pro-
vide is a data-sample which has been perturbed by random noise (input = data_sample +
0.01*x0.5*torch.randn(data_sample.shape)).

2.5 Network Initialization Seed Test

In Figure[9] we use different seeds to change the initialization and input tensors, but keep the neural
architectures being sampled fixed in the respective spaces. The variance in the score accuracy KTR is
much lesser than in Figure [I0]where the seed also controls the neural architectures being sampled.
This shows the true variation in our EZNAS-A NASM with respect to network initialization.

2.6 Hardware used for evolution and testing

Our evolutionary algorithm runs on Intel(R) Xeon(R) Gold 6242 CPU with 630GB of RAM. Our
RAM utilization for evolving programs on a single Image Classification dataset was approximately
60GB. RAM utilization can vastly vary (linearly) based on the number of neural network statistics
that are being used for the evolutionary search. Our testing to generate the statistics for the seed

Static memory address Dynamic memory address

(Network statistics) (Intermediate tensors)

Dynamic memory address
(Intermediate scalars)

l

Access to
memory

Evolutionary Program
InpAct addr33 = Abs(InpAct addr21, InpAct addr8)
InpAct addr28 =eltwise_prod(InpAct addr5, InpAct addr8)
InpAct addr33 = Power(InpAct_addrl8, InpAct_addrl3)

[InpAct addr29 = Sign(InpAct addrl4 InpAct addr28)F——/

Redundant
H

InpAct addr31 =ReLU(InpAct addrl4 InpAct addr33)

compulte

Program represeniation in
evolutionary algorithm

[33.9,21,8,28,1,5,8,33,10, 18, 13, 29, 14, 14, 28, 31, 13, 14, 33]

Read Addresses

Operation ID
Write Address

Final output address

Figure 8: Our sequential program representation.

experiments as well as the final Spearman p and Kendall Tau Rank Correlation Coefficient is done on
an NVIDIA DGX-2 server with 4 NVIDIA V-100 32GB GPUs.

0.65

0.6 = e —_—

0.55

Kendall Tau
It
wn

<
=
O

NB201 NB201 NB201 NDS NDS NDS NDS NDS
CF10 CF100 IN16120 Amoeba DARTS ENAS PNAS NASNet

Figure 9: Experiment demonstrating the effect of seed on our score-accuracy KTR for neural network
initialization with a batch size of 1.

0.7

=
F00 | mm mm EE
205 m——

50:4 + T - 4

0.3

NB201 NB201 NB201 NDS NDS NDS NDS NDS
CF10 CF100 IN16120 Amoeba DARTS ENAS PNAS NASNet

Figure 10: Effect of seed on our score-accuracy KTR with a batch size of 1. CIFAR and ImageNet
abbreviated as CF and IN respectively. This test was done on each design space over 7 seeds for 400
Neural Networks.

2.7 Hyper-parameters for discovering EZNAS-A

num_generation: 15
population_size: 50
tournament_size: 4
MU: 25

lambda_ : 50
crossover_prob: 0.4
mutation_prob: 0.4
min_tree_depth: 2
max_tree_depth: 6

2.8 Varying network statistics and to_scalar

In Figure [T1] we detail 3 tests while evolving on the NDS_DARTS CIFAR-10 search space in an iden-
tical fashion to EZNAS-A (referred to as EZNAS- (R-C-B) - (Mean) here). EZNAS- (C-B-R) - (Mean)

10

BEZNAS-(R-C-B)»-(Mean) ®EZNAS-(C-B-R)-(Mean) EZNAS-(C-B-R)-(L2)

0.6

0.5
0.
0.
0.
0.

NDS_DARTS NDS_ENAS NDS_NASNET NDS_PNAS NDS_Amoeba NB201_CIFARI00 NB201_CIFAR10 NB201_IN16120

Kendall Tau

[

o

Figure 11: Experiment demonstrating the ability to discover NASMs with an alternate network
statistics collection strategy and to_scalar function. Experiments are named as EZNAS-(Statistics
Collection Structure)-(to_scalar). Two statistics collection structures are tested. (R-C-B) is
a ReLU-Conv2D-BatchNorm2D structure, (C-B-R) is a Conv2D-BatchNorm2D-ReLU structure.
(to_scalar) can be Mean or L2.

and EZNAS- (C-B-R) - (L2) correspond to alternate to_scalar and network statistics collection
tests respectively. We demonstrate that while EZNAS- (R-C-B) - (Mean) is superior, we are able to
discover NASMs with all three formulations.

11

Figure 12: Scatter plot between EZNAS-A NASM score and accuracy on NASBench-201 and NDS

Imag

EZNAS-A
cifarl0_NASBench201; KendallTau: 0.604; Spearman: 0.788

80

0.0 05 10 15 2.0 25 3.0
Score

EZNAS-A
nds_amoeba; KendallTau: 0.422; Spearman: 0.589

80

10 12 14 16 18 20 22 24
score
EZNAS-A
nds_pnas; KendallTau: 0.484; Spearman: 0.664
- AR
80
60
0
20
0 Tl a
-5 6 é lb 1‘5 2‘0 25

neural architecture search spaces.

References

(1]

(2]

(3]

EZNAS-A
cifar100_NASBench201; KendallTau: 0.613; Spearman: 0.793

70
60
50
>
g a0
3
€ 5 |
20
10
od ¢
o 2 4 6 8 10 12 14
Score
EZNAS-A
nds_darts; KendallTau: 0.547; Spearman: 0.738
80
60
>
g
3
< 40
20
04
B 10 15 20 25 30
Score
EZNAS-A
nds_enas; KendallTau: 0.508; Spearman: 0.689
80
60
>
g
3
< a0

100

Accuracy

80

60

20

75 100 125 150 175 200 225 250 275
Score

EZNAS-A
nds_nasnet; KendallTau: 0.433; Spearman: 0.609

10 12 14 16 18 20 22 24
score

Real, E., C. Liang, D. R. So, et al. Automl-zero: Evolving machine learning algorithms from
scratch, 2020.

Fortin, F.-A., F.-M. De Rainville, M.-A. Gardner, et al. DEAP: Evolutionary algorithms made
easy. Journal of Machine Learning Research, 13:2171-2175, 2012.

Dong, X., Y. Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search, 2020.

Kendall Tau NASBench201 NASBench201 = NASBench201 Amocba DARTS ENAS PNAS NASNet Params
CIFAR10 CIFAR100 ImageNet16-120 | CIFAR10 | CIFAR10 | CIFAR10 | CIFAR10 | CIFAR10

NASBen 1 0.533 -0.499 0.4345 0.4422 0.5777 0472 04514 0.2633 05610 0.5610
CIFAR10

NASBen 1 0.5242 -0.496 0.4522 0.4152 0.5627 0476 0453 0.2531 05472 0.5472
CIFAR100

NASBench201 04575 -0.424 0.4350 04213 0.5733 0456 0.2903 0.2338 05036 0.5036
TmageNet16-120

Amoeba 0.1146 -0.029 0.3263 0.352 03774 0.380 0.35278 0.4042 02614 0.2658
CIFAR10

DARTS 0.3236 -0.173 0.2088 0.4187 0.5077 0.460 0.47570 0.1439 0.5079 0.5042
CIFAR10
ENAS 0.2833 -0.143 0.3132 0.4292 0.3795 0422 0.41701 0.3400 04739 04704
CIFAR10

PNAS 0.2208 -0.053 04212 0.4466 0.4435 0.514 0.4874 0.3799 03363 03223
CIFAR10
NASNet 02370 0.0229 0.2880 03789 0.4381 0.364 0.3594 0.3757 0.1996 0.2102

CIFAR10

Figure 13: Full correlation table. Each column represents the dataset evolution was performed
on. The DARTS-CIFARI10 column is the EZNAS-A NASM. Each row represents the dataset the
best discovered NASM program was tested on. Best score-accuracy KTR in bold and underlined.
Second best score-accuracy KTR in italics and underlined. These tests are done by evolving on 100
neural networks and testing on the test task dataset (1000 randomly sampled neural networks on
NASBench-201 and 200 randomly sampled neural networks on NDS). The network statistics were
generated with a batch size of 1.

[4] Radosavovic, L., J. Johnson, S. Xie, et al. On network design spaces for visual recognition, 2019.
[5] Liu, H., K. Simonyan, Y. Yang. Darts: Differentiable architecture search, 2019.

[6] Real, E., A. Aggarwal, Y. Huang, et al. Regularized evolution for image classifier architecture
search, 2019.

[7] Pham, H., M. Y. Guan, B. Zoph, et al. Efficient neural architecture search via parameter sharing,
2018.

[8] Zoph, B., V. Vasudevan, J. Shlens, et al. Learning transferable architectures for scalable image
recognition, 2018.

[9] Liu, C., B. Zoph, M. Neumann, et al. Progressive neural architecture search, 2018.

13

OpID

Operation

Description
Output: C, Input: A, B

OPO
OP1
opP2
OP3
OP4
OP5
OP6

OP7

OP8

OP9
OP10
OP11

OP12

OP13
OP14
OP15
OP16
OP17
OP18

OP19

OP20

OP21

OP22
0OP23

OP24

OP25

OP26

OoP27
OP28
OP29
OP30
OP31
0OP32
OP33

Element-wise Sum

Element-wise Difference
Element-wise Product
Matrix Multiplication

Lesser Than
Greater Than
Equal To

Log

AbsLog

Abs

Power

Exp

Normalize

ReLU

Sign

Heaviside
Element-wise Invert

Frobenius Norm
Determinant

LogDeterminant

SymFEigRatio

EigRatio

Normalized Sum
L1 Norm

Hamming Distance

KL Divergence

Cosine Similarity

Softmax

Sigmoid

Ones Like

Zeros Like

Greater Than Zero
Less Than Zero
Number Of Elements

C = A+B

C = A-B

C = A*B

C = AGB

C = (A<B) .bool()
C = (A>B) .bool()
C = (A==B) .bool()
A[A<=0] =1

C = torch.log(A)
A[A==0] =1

torch.log(torch.abs(A))

= torch.abs(A)

torch.pow(A, 2)
torch.exp(A)

= (A - Apean)/Asia

[C!=C] =0

= torch.functional.F.relu(A)
torch.sign(A)
torch.heaviside (A, values=[0])
1/A

torch.norm(A, p=’fro’)
torch.det (A)

= torch.logdet (A)

[C!=C]=0

= A.reshape(A.shape[0], -1)

= AQA.T

=A+ AT

,v = torch.symeig(A, eigenvectors=False)

e[-1]1/e[0]

= A.reshape(A.shape[0], -1)
torch.einsum(’nc,mc->nm’, [A,A])
= torch.eig(A)

(e[-1]1/e[0]) [0]
torch.sum(A) /A .numel ()
orch.sum(abs(A))/A.numel ()

= Heaviside(A)

= Heaviside(B)

= sum(A!=B)

= torch.nn.KLDivLoss (’batchmean’) (A,B)
= A.reshape(A.shape[0], -1)

= B.reshape(B.shape[0], -1)

= torch.nn.CosineSimilarity() (A, B)
= torch.sum(C)

= torch.functional .F.softmax(A)

= torch.functional.F.sigmoid(A)

= torch.ones_like(A)

= torch.zeros_like(A)

= A>0

= A<O

= torch.Tensor ([A.numel()])

<

oNoNo NN NONONO NN A _NoNeNe N o NN NI _JeoNoE_J 2 _oNoNoNoNoNoNoNoNoNoNoNO N Ne]
|

Table 1: List of operations available for the genetic program.

14

