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Abstract

Denoising di�usion models are a novel class of generative algorithms that achieve state-of-the-
art performance across a range of domains, including image generation and text-to-image tasks.
Building on this success, di�usion models have recently been extended to the Riemannian
manifold setting, broadening their applicability to a range of problems from the natural and
engineering sciences. However, these Riemannian di�usion models are built on the assumption
that their forward and backward processes are well-defined for all times, preventing them
from being applied to an important set of tasks that consider manifolds defined via a set of
inequality constraints. In this work, we introduce a principled framework to bridge this gap.
We present two distinct noising processes based on (i) the logarithmic barrier metric and
(ii) the reflected Brownian motion induced by the constraints. As existing di�usion model
techniques cannot be applied in this setting, we derive new tools to define such models in
our framework. We then demonstrate the practical utility of our methods on a number of
synthetic and real-world tasks, including applications from robotics and protein design.

1 Introduction

Di�usion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2021; Ho et al., 2020) have
recently been introduced as a powerful new paradigm for generative modelling. They work as follows: noise
is progressively added to data following a Stochastic Di�erential Equation (SDE)—the forward noising

process—until it is approximately Gaussian. The generative model is given by an approximation of the
associated time-reversed process called the backward denoising process. This is also an SDE whose drift
depends on the gradient of the logarithmic densities of the forward process, referred to as the Stein score.
This score is approximated by leveraging techniques from deep learning and score matching (Hyvärinen,
2005; Vincent, 2011). Building on the success of di�usion models in domains such as images and text, this
framework has recently been extended to a wide range of Riemannian manifolds (De Bortoli et al., 2022;
Huang et al., 2022), broadening their applicability to various important modelling domains from the natural
and engineering sciences—including Lie groups such as the group of rotations SO(3), the group of rigid body
motions SE(3), and many others (see e.g. Trippe et al., 2022; Corso et al., 2022; Watson et al., 2022; Leach
et al., 2022; Urain et al., 2022; Yim et al., 2023).
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Figure 1: The behaviour of di�erent types of noising processes considered in this work defined on the unit
interval. Bt: Unconstrained (Euclidean) Brownian motion. B̂t: Log-barrier forward noising process. B̄t:
Reflected Brownian motion. All sampled with the same initial point and driving noise. Black line indicates
the boundary.

However, a key assumption of the Riemannian di�usion models introduced in De Bortoli et al. (2022) and
Huang et al. (2022) is that the stochastic processes they consider are defined for all times. While this holds
for a large class of stochastic processes, it is not the case for most manifolds defined via a set of inequality
constraints. For instance, in the case of the hypercube (≠1, 1)d equipped with the Euclidean metric, the
Riemannian Brownian motion coincides with the Euclidean d-dimensional Brownian motion (Bt)tœ[0,T ] as
long as Bt œ (≠1, 1). With probability one, (Bt)tØ0 escapes from (≠1, 1), meaning that the Riemannian
Brownian motion is not defined for all times and the frameworks introduced in De Bortoli et al. (2022) and
Huang et al. (2022) do not apply. Such constrained manifolds comprise a wide variety of settings—including
polytopes and convex sets of Euclidean spaces—and are studied across a large number of disciplines, ranging
from computational statistics (Morris, 2002), over robotics (Han & Rudolph, 2006) and quantum physics
(Lukens et al., 2020), to computational biology (Thiele et al., 2013). Deriving principled di�usion models
that are able to operate directly on these manifolds is thus of significant practical importance, as they enable
generative modelling in data-scarce and safety-critical settings in which constraints on the modelled domain
may reduce the number of degrees of freedom or prevent unwanted behaviour.

As sampling problems on such manifolds are important (Kook et al., 2022; Heirendt et al., 2019), a flurry
of Markov chain based methods have been developed to sample from unnormalised densities. Successful
algorithms include the reflected Brownian motion (Williams, 1987; Petit, 1997; Shkolnikov & Karatzas, 2013),
log-barrier methods (Kannan & Narayanan, 2009; Lee & Vempala, 2017; Noble et al., 2022; Kook et al.,
2022; Gatmiry & Vempala, 2022; Lee & Vempala, 2018) and hit-and-run approaches in the case of polytopes
(Smith, 1984; Lovász & Vempala, 2006). In this work, we study the generative modelling counterparts of
these algorithms through the lens of di�usion models. Among existing methods for statistical sampling on
constrained manifolds, the geodesic Brownian motion (Lee & Vempala, 2017) and the reflected Brownian
motion (Williams, 1987) are continuous stochastic processes, and thus well suited for extending the continuous
Riemannian di�usion framework developed by De Bortoli et al. (2022) and Huang et al. (2022). In particular,
we introduce two principled di�usion models for generative modelling on constrained domains based on (i) the
geodesic Brownian motion, leveraging tools from the log-barrier methods, and (ii) the reflected Brownian
motion. In both cases, we show how one can extend the ideas of time-reversal and score matching to these
settings. We demonstrate the practical utility of these methods on a range of tasks defined on convex
polytopes and the space of symmetric positive definite matrices, including the constrained conformational
modelling of proteins and robotic arms. The code for all of our experiments is available here.

2 Background

Riemannian manifolds. A Riemannian manifold is a tuple (M, g) with M a smooth manifold and g a
metric which defines an inner product on tangent spaces. The metric g induces key quantities on the manifold,
such as an exponential map expx : TxM æ M, defining the notion of following straight lines on manifolds, a
gradient operator Ò1 and a divergence operator div2. It also induces the Laplace-Beltrami operator � and

1The (Riemannian) gradient Ò is defined s.t. for any smooth f œ CŒ(M), x œ M, v œ TxM, g(x)(f(x), v) = df(x)(v).
2The Riemannian divergence acts vector fields and can be defined using the volume form of M.
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Figure 2: A convex polytope defined by six con-
straints {fi}iœI , along with the log barrier po-
tential, and ‘straight trajectories’ under the log-
barrier metric and under the Euclidean metric
with and without reflection at the boundary.

consequently a Brownian motion with density (w.r.t. the volume form3), whose density is given by the heat
equation ˆtpt = �pt. We refer the reader to Appendix A for a brief introduction to di�erential geometry, to
Lee (2013) for a thorough treatment and to Hsu (2002) for details on stochastic analysis on manifolds.

Constrained manifolds. In this work, we are concerned with constrained manifolds. More precisely, given
a Riemannian manifold (N , h), we consider a family of real functions {fi : N æ R}iœI indexed by I. We
then define

M = {x œ N : fi(x) < 0, i œ I}. (1)

In this scenario, {fi}iœI is interpreted as a set of constraints on N . For example, choosing N = Rd and
a�ne constraints fi(x) = Èai, xÍ ≠ bi, x œ Rd, we get that M is an open polytope as illustrated in Figure 2.
This setting naturally appears in many areas of engineering, biology, and physics (Boyd et al., 2004; Han &
Rudolph, 2006; Lukens et al., 2020).

While the two methods we introduce in Section 3 can be applied to the general framework (1), in our
applications, we focus on two specific settings: (a) Polytopes—N = Rd and (b) symmetric positive-definite
(SPD) matrices under trace constraints—N = Sd

++.

Continuous di�usion models. We briefly recall the framework for constructing continuous di�usion
processes introduced by Song et al. (2021) in the context of generative modelling over Rd. At minimum
di�usion models need four things: (i) A forward noising process converging to an invariant distribution.
(ii) A time reversal for the reverse process. (iii) A discretization of the continuous-time process for the
forward/reverse process. (iv) A score matching loss — in this paper we will focus on the implicit score
matching loss. Song et al. (2021) consider a forward noising process (Xt)tœ[0,T ] which progressively noises
a data distribution p0 into a Gaussian N(0, Id). More precisely (Xt)tœ[0,T ] is an Ornstein–Uhlenbeck (OU)
process which is given by the following stochastic di�erential equation (SDE)

dXt = ≠ 1
2 Xtdt + dBt, X0 ≥ p0.

Under mild conditions on p0, the time-reversed process (Ω≠Xt)tœ[0,T ] = (XT ≠t)tœ[0,T ] also satisfies an SDE
(Cattiaux et al., 2021; Haussmann & Pardoux, 1986) given by

dΩ≠
Xt = { 1

2
Ω≠
Xt + Ò log pT ≠t(

Ω≠
Xt)}dt + dBt,

Ω≠
X0 ≥ pT , (2)

where pt denotes the density of Xt. This construction allows direct sampling of the forward process and
leverages the Euler-Maruyama discretisation to facilitate sampling of the reverse process. Finally, the quantity
Ò log pt is referred as the Stein score and is unavailable in practice. It can be approximated with a score
network s◊(t, ·) trained by minimising a denoising score matching (dsm) loss

L(◊) = E[⁄t

..Ò log pt|0(Xt|X0) ≠ s◊(t, Xt)
..2], (3)

3We assume that M is orientable and therefore that a volume form exists.
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or an equivalent implicit score matching (ism) loss

L(◊) = E[⁄t{ 1
2 Îs◊(t, Xt)Î2 + div(s◊)(t, Xt)}] + C, (4)

where C Ø 0 and ⁄t > 0 is a weighting function, and the expectation is taken over t ≥ U([0, T ]) and (X0, Xt).
For an arbitrarily flexible score network, the global minimiser ◊ı = argmin◊L(◊) satisfies s◊ı(t, ·) = Ò log pt.

3 Inequality-Constrained Di�usion Models

We are now ready to introduce our methodology to deal with manifolds defined via inequality constraints (1).
In Section 3.1, we propose a Riemannian di�usion model endowed with a metric induced by a log-barrier
potential. In Section 3.2, we introduce a reflected di�usion model. While both models extend classical
di�usion models to inequality-constrained settings, they exhibit very di�erent behaviours. We discuss their
practical di�erences in Section 5.1.

3.1 Log-barrier di�usion models

dXt = 1
2div(g�1)(Xt)dt + g�1/2(Xt)dBt

Figure 3: Convergence of the Barrier Langevin dynam-
ics on the unit interval to the uniform distribution.

(N , h) (M, Ò2„)

Original space Constrained space

Figure 4: Illustrative diagram of the barrier method
and the change of metric.

Barrier Langevin dynamics. Barrier methods work by constructing a smooth potential „ : M æ R such
that it blows up on the boundary of a desired set, see Nesterov et al. (2018). Such potentials form the basis
of interior point methods in convex optimisation (Boyd et al., 2004). Of these functions, the logarithmic

barrier is the most popular among practitioners (Lee & Vempala, 2017). For a convex polytope M defined
by the constraints Ax < b, with A œ Rm◊d and b œ Rm, the logarithmic barrier „ : M æ R+ is given for
any x œ M by

„(x) = ≠
qm

i=1 log(ÈAi, xÍ ≠ bi). (5)

Assuming that ÎAiÎ = 1, we have that for any x œ M, „(x) = ≠
qm

i=1 log(d(x, ˆMi)), where ˆMi = {x œ
Rd : ÈAi, xÍ = b}. More generally we can define for any x œ M

„(x) = ≠
qm

i=1 log(d(x, ˆMi))

where d(x, ˆMi) computes the minimum geodesic distance from x to the boundary ˆM. In general this is a
highly non-trivial optimization problem, contrary to the polytope case which admits a simple closed form.

While developed and most commonly used in optimisation, barrier methods can also be used for sampling
(Lee & Vempala, 2017). The core idea of barrier methods is to ‘warp the geometry’ of the constrained space,
stretching it as the process approaches the boundary so that it never hits it, hence bypassing the need to
explicitly deal with the boundary. Assuming „ to be strictly convex and smooth, its Hessian Ò2„ is positive
definite and thus defines a valid Riemannian metric on M. The formal approach to ’warping the geometry’
of the convex space with the boundary is to endow M with the Hessian as a Riemannian metric g = Ò2„,
making it into a Hessian Manifold, see Shima & Yagi (1997). In the special case where the barrier is given by
(5), we get for any x œ M

g(x) = A€S≠2(x)A with S(x) = diag(bi ≠ ÈAi, xÍ)i.
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Equipped with this Riemannian metric, we consider the following Langevin dynamics as a forward process

dXt = 1
2 div(g≠1)(Xt)dt + g(Xt)≠ 1

2 dBt, (6)

with div(F )(x) , (div(F1)(x), . . . , div(Fd)(x))€, for any smooth F : Rd æ Rd. Under mild assumptions on
M, div(g≠1) and g≠1 we get that (Xt)tØ0 is well-defined and for any t Ø 0, Xt œ M. In particular, for any
t Ø 0, Xt does not reach the boundary. This stochastic process was first proposed by Lee & Vempala (2017)
in the context of e�cient sampling from the uniform distribution over a polytope. Under similar conditions,
Xt admits a density pt w.r.t. the Lebesgue measure and we have that ˆtpt = 1

2 Tr(g≠1Ò2pt). In addition,
(Xt)tØ0 is irreducible. Hence, assuming that M is compact, the uniform distribution on M is the unique
invariant measure of the process (Xt)tØ0 and (Xt)tØ0 converges to the uniform distribution in some sense.
We refer the reader to Appendix C for a proof of these results.

Time-reversal. Assuming that g≠1 and its derivative are bounded on M, the time-reversal of (6) is given
by Cattiaux et al. (2021), in particular we have

dΩ≠
Xt = [≠ 1

2 div(g≠1) + div(g≠1)+g≠1Ò log pT ≠t](
Ω≠
Xt)dt + g(Ω≠Xt)≠ 1

2 dBt,

=
# 1

2 div(g≠1) + g≠1Ò log pT ≠t

$
(Ω≠Xt)dt + g(Ω≠Xt)≠ 1

2 dBt. (7)
Ω≠
X0 is initialised with the uniform distribution on M (which is close to the one of XT for large T ).

The estimation of the score term Ò log pt is done by minimising the ism loss function (4). We refer to
Section 3.3 for details on the training and parameterisation.

Sampling. Sampling from the forward (6) and backward (7) processes, once the score is learnt, requires
a discretisation scheme. We use Geodesic Random Walks (GRW) (Jørgensen, 1975) for this purpose, see
Algorithm 1. This discretisation is a generalisation of the Euler-Maruyama discretisation of SDE in Euclidean
spaces, where the + operator is replaced by the exponential mapping on the manifold, computing the
geodesics.

Algorithm 1 Geodesic Random Walk. Discretisation of the SDE dXt = d(t, Xt)dt + dBt.
Require: T (simulation time), N (number of steps), X“

0 (initial point), d (drift function)
“ = T/N
for k œ {0, . . . , N ≠ 1} do

Zk+1 ≥ N(0, Id)
Wk+1 = “d(k“, Xk) + Ô

“Zk+1
X“

k+1 = expXk
[Wk+1] ¥ projM(Xk + Wk+1)

return {Xk}N
k=0

However, contrary to De Bortoli et al. (2022), we will not have access explicitly to the exponential mapping
of the Hessian manifold. Instead, we rely on an approximation, using a retraction (see Absil & Malick (2012);
Boumal (2023) for a definition and alternative schemes).

3.2 Reflected di�usion models

Another approach to deal with the geometry of M is to use the standard metric h and forward dynamics
of N and constraining it to M by reflecting the process whenever it would encounter a boundary. We will
first assume that M is compact and convex. To simplify the presentation, we focus on the Euclidean case
N = Rd with smooth boundary ˆM4.

The key di�erence between this approach and the barrier approach is that in the reflected case we leave
the geometry unchanged, so all we need to do is show that the dynamics induced by reflecting the forward
process whenever it hits the boundary leads to an invariant distribution and admits a time-reversal.

4We refer to Appendix G for a definition of smooth boundary.
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dB̄t = dBt � dkt |k|t

Figure 5: Left: Convergence of the reflected Brownian motion on the unit interval to the uniform distribution.
Right: Value of |k|t for the trajectory samples on the left through time.

It is worth noting that while barrier approaches have received considerable theoretical attention in the
sampling literature (Lee & Vempala, 2017; Noble et al., 2022), reflected methods have remained comparatively
undeveloped from the methodological and practical point of view. In the next section, we recall the basics of
reflected stochastic processes.

Skorokhod problem. The reflected Brownian motion is defined as the solution to the Skorokhod problem.
Roughly speaking a solution to the Skorokhod problem consists of two coupled processes, (B̄t, kt)tØ0, such
that (B̄t)tØ0 acts locally as a Euclidean Brownian motion (Bt)tØ0 and kt compensates for the excursion
of (Bt)tØ0 so that (B̄t)tØ0 remains in M. We say that (B̄t, kt)tØ0 is a solution to the Skorokhod problem

(Skorokhod, 1961) if (kt)tØ0 and (B̄t)tØ0 are two processes satisfying mild conditions, see Appendix D for a
rigorous introduction, such that for any t Ø 0,

B̄t = B̄0 + Bt ≠ kt œ M, (8)

and |k|t =
s t

0 1B̄sœˆMd|k|s, kt =
s t

0 n(B̄s)d|k|s, where (|k|t)tØ0 is the total variation of (kt)tØ0 and we recall
that n is the outward normal to M5. When (B̄t)tØ0 hits the boundary, the condition kt =

s t
0 n(B̄s)d|k|s,

tells us that ≠kt “compensates” for B̄t by pushing the process back into M along the inward normal ≠n,
while the condition |k|t =

s t
0 1B̄sœˆMd|k|s can be interpreted as kt being constant when (B̄t)tØ0 does not

hit the boundary. As a result (B̄t)tØ0 can be understood as the continuous-time counterpart to the reflected
Gaussian random walk. The process (kt)tØ0 can be related to the notion of local time (Revuz & Yor, 2013)
and quantifies the amount of time (B̄t)tØ0 spends at the boundary ˆM. Lions & Sznitman (1984, Theorem
2.1) ensure the existence and uniqueness of a solution to the Skorokhod problem. One key observation is
that the event {B̄t œ ˆM} has probability zero (Harrison & Williams, 1987, Section 7, Lemma 7). As in the
unconstrained setting, one can describe the dynamics of the density of B̄t.
Proposition 3.1 (Burdzy et al. (2004)). For any t > 0, the distribution of B̄t admits a density w.r.t. the

Lebesgue measure denoted pt. In addition, we have for any x œ int(M) and x0 œ ˆM

ˆtpt(x) = 1
2 �pt(x), ˆnpt(x0) = 0, (9)

where we recall that n is the outward normal to M.

Note that contrary to the unconstrained setting, the heat equation has Neumann boundary conditions.
Similarly to the compact Riemannian setting (Salo�-Coste, 1994) it can be shown that the reflected Brownian
motion converges to the uniform distribution on M exponentially fast (Loper, 2020; Burdzy et al., 2006), see
Section 3.2. Hence, (B̄t)tØ0 is a candidate for a forward noising process in the context of di�usion models.

Time-reversal. In order to extend the di�usion model approach to the reflected setting, we need to derive
a time-reversal for (B̄t)tœ[0,T ]. Namely, we need to characterise the evolution of (Ω≠Xt)tœ[0,T ] = (B̄T ≠t)tœ[0,T ].
It can be shown that the time-reversal of (B̄t)tœ[0,T ] is also the solution to a Skorokhod problem.

5We extend the normal n to the whole space by letting n(x) = 0 if x ”œ ˆM.
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Algorithm 2 Reflected step algorithm. The algorithm operates by repeatedly taking geodesic steps until one
of the constraints is violated, or the step is fully taken. Upon hitting the boundary we parallel transport the
tangent vector to the boundary and then reflect it against the boundary. We then start a new geodesic from
this point in the new direction. The arg intersectt function computes the distance one must travel along a
geodesic in direction s til constraint fi is intersected. For a discussion of paralleltransport, expg and reflect
please see Appendix A.
Input: x œ M, v œ TxM, {fi}iœI

¸ Ω ÎvÎg
s Ω v/ÎvÎg
while ¸ Ø 0 do

di = arg intersectt

#
expg(x, ts), fi

$

i Ω arg mini di s.t. di > 0
– Ω min(di, ¸)
xÕ Ω expg(x, –s)
s Ω paralleltransportg(x, s, xÕ)
s Ω reflect(s, fi)
¸ Ω ¸ ≠ –
x Ω xÕ

return x

Algorithm 3 Reflected Random Walk. Discretisation of the SDE dXt = b(t, Xt)dt + dBt ≠ dkt.
Require: T (simulation time), N (number of steps), X“

0 (initial point), {fi}iœI (boundary functions)
“ = T/N
for k œ {0, . . . , N ≠ 1} do

Zk+1 ≥ N(0, Id)
X“

k+1 = ReflectedStep[X“
k ,

Ô
“Zk+1, {fi}iœI ]

return {X“
k }N

k=0

Theorem 3.2. There exist (Ω≠k t)tØ0 a bounded variation process and a Brownian motion (Bt)tØ0 such that

Ω≠
Xt = Ω≠

X0 + Bt +
s t

0 Ò log pT ≠s(Ω≠Xs)ds ≠ Ω≠
k t.

In addition, for any t œ [0, T ] we have

Ω≠
|k|t =

s t
0 1Ω≠XsœˆMd

Ω≠
|k|s,

Ω≠
k t =

s t
0 n(Ω≠Xs)d

Ω≠
|k|s.

The proof, see Appendix G, follows Petit (1997) which provides a time-reversal in the case where M is the
positive orthant. It is based on an extension of Haussmann & Pardoux (1986) to the reflected setting, with a
careful handling of the boundary conditions. In particular, contrary to Petit (1997), we do not rely on an
explicit expression of pt but instead use the intrinsic properties of (kt)tØ0. Informally, Theorem 3.2 means
that the process (Ω≠Xt)tœ[0,T ] satisfies

dΩ≠
Xt = Ò log pT ≠t(

Ω≠
Xt)dt + dBt ≠ dΩ≠

k t, (10)

which echoes the usual time-reversal formula (2). In practice, in order to sample from (Ω≠Xt)tœ[0,T ], one needs
to consider the reflected version of the unconstrained dynamics dΩ≠

Xt = Ò log pT ≠t(
Ω≠
Xt)dt + dBt.

Sampling. In practice, we approximately sample the reflected dynamics by considering the Markov chain
given by Algorithm 3. We refer to Pacchiarotti et al. (1998) and Bossy et al. (2004) for weak convergence
results on this numerical scheme in the Euclidean setting.

7
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Figure 6: Reflection against a linear boundary. For a step s with magnitude
|s| and direction ŝ the distance to the boundary described by the normal n̂ and
o�set b is d = Èŝ,xtÍ≠b

Èŝ,n̂Í . The reflected direction is given by ŝÕ = ŝ ≠ 2Èŝ, n̂Ín̂.

Figure 7: Reflection against a spherical boundary. For a sphere of radius
r, the distance to the boundary from xt in direction s is given by d =
1
2 (Èŝ, xtÍ2 + 4(r2 ≠ ÎxtÎ2))1/2 ≠ 1

2 Èŝ, xtÍ. The normal at the intersection can
be computed as the unit vector in the direction ≠2(dŝ + xt), and then ŝÕ as
above.

Likelihood evaluation. In the case of a reflected Brownian motion, it is possible to compute an equivalent
ODE in order to perform likelihood evaluation. The associated ODE was first derived in Lou & Ermon (2023).
The form of the ODE and the proof that it remains in M are postponed to Appendix F.

3.3 Loss and score network parameterisation

In order to train log-barrier and reflected di�usion models we prove that we can use a tractable score matching
loss in constrained manifolds. We will prove that the implicit score-matching loss leads to the recovery of
the correct score when we have a boundary, so long as we enforce that the score is zero on the boundary
(see Appendix E.1). This proof holds for both the log-barrier and the reflected process.

Proposition 3.3. Let s œ CŒ([0, T ] ◊ Rd,Rd) such that for any x œ ˆM and t Ø 0, st(x) = 0. Then, there

exists C > 0 such that

E[ÎÒ log pt ≠ stÎ2] = E[ÎstÎ2 + 2 div(st)] + C,

where E is taken over Xt ≥ pt and t ≥ U([0, T ]).

This result immediately implies we can optimise the score network using the ism loss function so long as we
enforce a Neumann boundary condition. The estimation of the score term Ò log pt is also done by minimising
the ism loss function (4).

The score term Ò log pT ≠t appearing in both time-reversal processes (7) and (10) is intractable. It is thus
approximated with a score network s◊(t, ·) ¥ Ò log pt. We use a multi-layer perceptron architecture with sin
activation functions, see Appendix J for more details on the experimental setup. Due to boundary condition
(9), the normal component of the score is zero at the boundary in the reflected case. A similar result holds in
the log-barrier setting. This is additionally required for our proof of the ism loss.

Following Liu et al. (2022), we can accommodate this in our score parameterisation by additionally scaling the
score output of the neural network by a monotone function h(d(x, ˆM)) where d is the distance from x to the
boundary and h(0) = 0. In particular, we use a clipped ReLU function: s◊(t, x) = min(1, ReLU(d(x, ˆM) ≠
”)) · NN◊(t, x) with ” > 0 a threshold so the model is forced to be zero “close” to the boundary as well as
exactly on the boundary, see Appendix J for an illustration. The inclusion of this scaling function is necessary
to produce reasonable results as we show in Appendix E.2. The weighting function in (4) is set to ⁄t = (t + 1).

The forward processes (6) and (8) for the barrier and reflected methods cannot be sampled in closed form, so
at training time samples from the conditional marginals p(Xt|X0) are obtained by discretising these processes.
As to take the most of this computational overhead, we use several samples from the discretised forward
trajectory (Xt1 , · · · , Xtk |X0) instead of only using the last sample.

8
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4 Related Work

Sampling on constrained manifolds. Sampling from a distribution on a space defined by a set of
constraints is an important ingredient in several computational tasks, such as computing the volume of a
polytope (Lee & Vempala, 2017). Incorporating such constraints within MCMC algorithms while preserving
fast convergence properties is an active field of research (Kook et al., 2022; Lee & Vempala, 2017; Noble et al.,
2022). In this work, we are interested in sampling from the uniform distribution defined on the constrained
set in order to define a proper forward process for our di�usion model. Log-barrier methods such as the
Dikin walk or Riemannian Hamiltonian Monte Carlo (Kannan & Narayanan, 2009; Lee & Vempala, 2017;
Noble et al., 2022) change the geometry of the underlying space and define stochastic processes which never
violate the constraints, see Kannan & Narayanan (2009) and Noble et al. (2022) for instance. If we keep the
Euclidean metric, then unconstrained stochastic processes might not be well-defined for all times. To counter
this e�ect, it has been proposed to reflect the Brownian motion (Williams, 1987; Petit, 1997; Shkolnikov &
Karatzas, 2013). Finally, we also highlight hit-and-run approaches (Smith, 1984; Lovász & Vempala, 2006),
which generalise Gibbs’ algorithm and enjoy fast convergence properties provided that one knows how to
sample from the one-dimensional marginals.

Di�usion models on manifolds. De Bortoli et al. (2022) extended the work of Song et al. (2021) to
Riemannian manifolds by defining forward and backward stochastic processes in this setting. Concurrently, a
similar framework was introduced by Huang et al. (2022), extending the maximum likelihood approach of
Huang et al. (2021). Existing applications of denoising di�usion models on Riemannian manifolds have been
focused on well-known manifolds for which one can find metrics so that the framework of De Bortoli et al.
(2022) applies. In particular, on compact Lie groups, geodesics and Brownian motions can be defined in a
canonical manner. Their specific structure can be leveraged to define e�cient di�usion models (Yim et al.,
2023). Leach et al. (2022) define di�usion models on SO(3) for rotational alignment, while Jing et al. (2022)
consider the product of tori for molecular conformer generation. Corso et al. (2022) use di�usion models on
R3 ◊ SO(3) ◊ SO(2) for protein docking applications. RFDi�usion (Watson et al., 2022) and FrameDi� also
incorporate SE(3) di�usion models. Finally, Urain et al. (2022) introduce a methodology for SE(3) di�usion
models with applications to robotics.

Comparison with Lou & Ermon (2023). We now discuss a few key di�erences between our work
and the reflected di�usion models presented in Lou & Ermon (2023). First, in the hypercube setting, our
methodologies are identical from a theoretical viewpoint. The main di�erence is that Lou & Ermon (2023)
use an approxiamted version of the DSM loss (3), whereas we rely on the ISM loss (4). Lou & Ermon (2023)
exploit the specific factorised structure of the hypercube to make the DSM loss tractable, leading to significant
practical advantages. These can however be directly employed in our framework for reflected models, and
also in the log-barrier setting. Second, in our work, we target scientific applications where the underlying
geometry is not Euclidean, whereas Lou & Ermon (2023) focus on the case where the constrained domain of
interest is the hypercube (a subset of Euclidean space) with image applications, or where the domain can be
easily projected into the hypercube, such as the simplex. Our approach is designed to handle a wider range
of settings, such as non-convex polytopes in Euclidean space, or non-Euclidean geometries.

5 Experimental results

To demonstrate the practical utility of the constrained di�usion models introduced in Section 3, we evaluate
them on a series of increasingly di�cult synthetic tasks on convex polytopes, including the hypercube and
the simplex, in Section 5.1. We then highlight their applicability to real-world settings by considering
two problems from robotics and protein design. In particular, we show that our models are able to learn
distributions over the space of d ◊ d symmetric positive definite (SPD) matrices Sd

++ under trace constraints
in Section 5.2—a setting that is essential to describing and controlling the motions and exerted forces of
robotic platforms (Jaquier et al., 2021). In Section 5.3, we use the parametrisation introduced in Han &
Rudolph (2006) to map the problem of modelling the conformational ensembles of proteins under positional
constraints on their endpoints to the product manifold of a convex polytope and a torus. The code is available
here. We refer the reader to Appendix J for more details on the experimental setup.
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Table 1: MMD metrics between samples from synthetic distributions and trained constrained and unconstrained
(Euclidean) di�usion models. Means and confidence intervals are computed over 5 di�erent runs.

Space d
Log-barrier Reflected Euclidean

MMD % in M MMD % in M MMD % in M

[≠1, 1]d
2 .066±.006 100.0 .055±.015 100.0 .062±.011 98.8
3 .209±.077 100.0 .080±.004 100.0 .076±.004 98.5
10 .330±.004 100.0 .313±.048 100.0 .081±.005 96.4

�d
2 .050±.012 100.0 .043±.002 100.0 .055±.013 96.4
3 .238±.009 100.0 .181±.007 100.0 .068±.014 96.3
10 .275±.015 100.0 .290±.009 100.0 .060±.003 92.6

Data Log-barrier Reflected
(a) 2D square data.

Data Log-barrier Reflected
(b) 2D Dirichlet data.

Figure 8: Histograms of samples from the data distribution and from trained constrained di�usion models.

5.1 Method characterisation on convex polytopes

First, we aim to assess the empirical performance of our methods on constrained manifolds of increasing
dimensionality. For this, we focus on polytopes and construct synthetic datasets that represent bimodal
distributions. In particular, we investigate two specific instances of polytopes: hypercubes and simplices. In
Appendix J.1 we also present results on the Birkho� polytope. We quantify the performance of each model
via the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), which is a kernel-based metric between
distributions. We present a qualitative comparison of the logarithmic barrier and reflected Brownian motion
models in Figure 8, and observe that both methods recover the data distribution on the two-dimensional
hypercube and simplex, although the reflected method seems to produce a better fit. In Table 1, we report
the MMD between the data distribution and the learnt di�usion models. Here, we similarly observe that the
reflected method consistently yields better results than the log-barrier one.

We additionally compare both of these models to a set of unconstrained Euclidean di�usion models, noting
that they are outperformed by the constrained models in lower dimensions, but generate better results in
higher dimensions. There are a number of potential explanations for this: First, we note that the mixture
of Normal distributions we use as a synthetic data-generating process places significantly less probability
mass near the boundary as its dimensionality increases, more closely resembling an unconstrained mixture
distribution that is easier for the Euclidean di�usion models to learn, while posing a challenge to the log-barrier
and reflected di�usion models that initialise at the uniform distribution within the constraints. Additionally,
we note that the design space and hyperparameters used for all experiments were informed by best practices
for Euclidean models that may be suboptimal for the more complex dynamics of constrained di�usion models.

5.2 Modelling robotic arms under force and velocity constraints

Accurately determining and controlling the movement and exerted forces of robotic platforms is a fundamental
problem in many real-world robotics applications. A kinetostatic descriptor that is commonly used to quantify
the ability of a robotic arm to move and apply forces along certain dimensions is the so-called manipulability
ellipsoid E œ Rd (Yoshikawa, 1985), which is naturally described as a symmetric positive definite (SPD)
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(a) Samples from the data
distribution.

(b) Samples from our log-
barrier di�usion model.

(c) Samples from our re-
flected di�usion model.

(d) Samples from the uni-
form distribution.

Figure 9: Samples in S2
++ ◊ R2 from (a) the data distribution, (b) our log-barrier di�usion model, (c) our

reflected di�usion model and (d) the uniform distribution. Each sample is visualised as the manipulability
ellipsoid encoded by the SPD matrix M œ S2

++ placed at the corresponding location in R2. Additional results
and full correlation plots are postponed to Appendix J.2.

matrix M œ Rd◊d (Jaquier et al., 2021). The manifold of such d ◊ d SPD matrices, denoted as Sd
++, is

defined as the set of matrices {x€Mx Ø 0, x œ Rd : M œ Rd◊d}. In many practical settings, it may be
desirable to constrain the volume of E to retain flexibility or limit the magnitude of an exerted force, which
can be expressed as an upper bound on the trace of M, i.e. as the inequality constraint

qd
i=1 Mii < C with

C > 0. Constraining the rest of the entries of the matrix to ensure it is SPD is non-trivial. Alternatively,
we can parameterise the SPD matrices via their Cholesky decomposition. Each SPD matrix has a unique
decomposition of the form M = LL€, where L is a lower triangular matrix with strictly positive diagonal
(Golub & Van Loan, 2013, p.143). Constraining the entries of this matrix simply requires ensuring the
diagonal is positive. The trace of the SPD matrix is given by Tr(M) = Tr(LL€) =

q
ij L2

ij , and results in
the constraint on the entries of L to live in a ball of radius C. We additionally model the two-dimensional
position of the arm. In summary, the space over which we parameterise the di�usion models is defined as
{L œ Rd(d+1)/2 : Li,i > 0,

q
i,j L2

i,j < C} ◊R2. Under the Euclidean metric, we can apply both our log-barrier
and reflected approaches. The positive diagonal (linear) constraint is handled similarly to the polytope
setting. The reflection on the ball boundary is defined and illustrated on Figures 6 and 7.

Using this framework, we model the datasets presented in Jaquier et al. (2021) (see Appendix H for full
experimental details). The joint distribution over the SPD matrices (represented as ellipsoids) and their
positions is presented in Figure 9. We qualitatively observe that the reflected method is able to model the
joint data distribution better than the log-barrier one. This is reflected by an MMD of 0.161 and 0.247,
respectively.

5.3 Modelling protein loops with anchored endpoints

Modelling the conformational ensembles of proteins is an important task in the field of molecular biology,
particularly in the context of bioengineering and drug discovery. In many data-scarce practical settings
such as antibody or enzyme design, it is often unnecessary or even undesirable to model the structure of an
entire protein, as researchers are primarily interested in specific functional sites with distinct biochemical
properties. However, generating conformational ensembles for such substructural elements necessitates
positional constraints on their endpoints to ensure that they can be accommodated by the remaining sca�old.

This problem can be reformulated as modelling a spatial chain with spherical joints and fixed end points.
Following the framework outlined in Han & Rudolph (2006), we parametrise the conformations of such chains
with d fixed-length links and arbitrary end-point constraints as the product of a convex polytope P and torus
T: P(d≠3) ◊ T(d≠2). The essential idea of this parameterisation is to fix one end point as an “anchor” and
model the chain as the series of triangles formed by the anchor and each pair of adjacent joints in the chain.
A point in the polytope corresponds to the lengths of the diagonals of these triangles, and a point in the torus
to the angles between each pair of subsequent triangles. See Figure 10 for an illustration and Appendix I.1
for a full description.
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(a) An illustrative diagram of the parameterisation
used for the conformational modelling of the C– trace
of a cyclic peptide, introduced in Han & Rudolph
(2006).

(b) The convex polytope constraining the diagonals
of the triangles for the given bond lengths in the
illustrated molecule. The total design space is the
product of this polytope with the 4D flat torus.

Figure 10: Illustrations of the parametrisation used to model distribution of polypeptide backbone conforma-
tions under anchor point distance constraints as the product of a convex polytope P and torus T: P3 ◊ T4.

(a) Samples from the data
distribution.

(b) Samples from our log-
barrier di�usion model.

(c) Samples from our re-
flected di�usion model.

(d) Samples from the uni-
form distribution.

Figure 11: Planar projection of the modelled C– chains from (a) the training dataset, (b) our log-barrier
di�usion model, (c) our reflected di�usion model and (d) the uniform distribution. Additional results and full
correlation plots are postponed to Appendix J.3.

Using this framework, we model the conformational landscape of the cyclic peptide c-AAGAGG, consisting
of a circular polypeptide chain with coinciding endpoints. We generate 106 backbone conformations using
tools from molecular dynamics (Eastman et al., 2017; Hornak et al., 2006) and divide them into training and
evaluation datasets, (see Appendix I.2 for full experimental details). Drawing on the definition above, the
space on which we e�ectively parameterise our constrained di�usion models for a circular polypeptide chain
of length d = 6 is given by the product manifold P3 ◊ T4.

To learn a distribution over this space, we leverage the methodology introduced in Section 3 for the polytope
component P3 and in De Bortoli et al. (2022) for the torus component T4. A qualitative comparison of
samples from the data distribution, our log-barrier and reflected di�usion models, and the uniform distribution
is presented in Figures 11a to 11d. For enhanced visual clarity, we project the modelled spatial chain onto
the 2D plane by removing the (unconstrained) torus component of the product manifold and only plotting
the planar chains encoded by the (constrained) polytope component (a correlation plot of the full product
manifold is presented in Figure 25).

It is apparent that the data distribution is highly multimodal, encompassing a large number of locally optimal
conformational clusters. Nevertheless, our reflected and log-barrier di�usion models are able to robustly
approximate this energetic landscape, producing samples that reflect key conformational states and producing
comparable MMD metrics of 0.032±0.021 and 0.032±0.001, respectively. As a point of comparison, the uniform
distribution on the polytope-torus product has an MMD of 0.112±0.001.
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6 Discussion

Learning complex distributions whose support is confined to constrained spaces is a crucial task with many
applications in the natural and engineering sciences, including computational statistics (Morris, 2002), robotics
(Han & Rudolph, 2006), quantum physics (Lukens et al., 2020) and computational biology (Thiele et al.,
2013). In this work we extend continuous di�usion models to this setting, proposing two complementary
approaches—one based on log-barrier methods and the other on the reflected Brownian motion. For both
methods, we derive the time-reversal formula, propose discretisation schemes and extend the score-matching
toolbox. We demonstrate the utility of our methods on a range of synthetic and real-world tasks, including
the constrained conformational modelling of proteins and robotic arms, and find that reflected methods, while
enjoying fewer theoretical guarantees than their log-barrier counterparts, often yield preferable results.

We conclude by highlighting important directions of future research. First, the computational cost of
performing the reflection when discretising the reflected Brownian motion is high. Finding numerically
e�cient approximations of the reflected process is therefore necessary to extend this methodology to very
high dimensional settings. Second, the retraction used in place of the exponential map for the barrier method
leads to a high number of discretisation steps to ensure a good approximation. Designing a faster forward
process for the log-barrier method is key to targeting more complex distributions.
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