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Abstract

Recently, large language models (LLMs) have001
shown significant progress, approaching human002
perception levels. In this work, we demonstrate003
that despite these advances, LLMs still struggle004
to reason using molecular structural informa-005
tion. This gap is critical because many molecu-006
lar properties, including functional groups, de-007
pend heavily on such structural details. To ad-008
dress this limitation, we propose an approach009
that sketches molecular structures for reasoning.010
Specifically, we introduce Molecular Structural011
Reasoning (MSR) framework to enhance the012
understanding of LLMs by explicitly incorpo-013
rating the key structural features. We present014
two frameworks for scenarios where the target015
molecule is known or unknown. We verify that016
our MSR improves molecular understanding017
through extensive experiments.018

1 Introduction019

Large language models (LLMs; Touvron et al.,020

2023; OpenAI and et al., 2024; Raffel et al., 2020)021

have demonstrated remarkable performance across022

various tasks. To leverage their potential in chem-023

istry, several prior works (Edwards et al., 2022;024

Christofidellis et al., 2023a; Fang et al., 2024; Pei025

et al., 2023) have proposed chemical LLMs (i.e.,026

specialized LLMs pre-trained on both natural lan-027

guage and molecular representations) for molecu-028

lar tasks such as molecule captioning, description-029

based molecule generation (Edwards et al., 2022),030

and retrosynthesis (Fang et al., 2024).031

However, chemical LLMs still struggle to fully032

understand the molecular structure (Ganeeva et al.,033

2024; White et al., 2023). This is critical since034

structure-based reasoning plays an important role035

in many molecular tasks. For instance, chemists036

often consider a molecule toxic if it contains a037

phenol group, as phenoxyl radicals can form and038

interact with biological membranes (Hansch et al.,039

2000). This becomes even more evident in real-040

world applications of LLMs. As demonstrated in 041

Figure 1a, injecting accurate structural information 042

into the model can slightly improve its ability to 043

generate correct molecules. This highlights the 044

importance of explicitly incorporating structural 045

reasoning into LLMs. 046

To address this aspect, we consider a framework 047

for LLMs to first reason about the molecular struc- 048

ture for molecular tasks, similar to how LLMs im- 049

prove arithmetic and commonsense tasks through 050

intermediate reasoning steps (Wei et al., 2022; Ko- 051

jima et al., 2022). A naïve approach is to prompt 052

LLMs to infer the structural information before gen- 053

erating an answer. However, we find this to be inef- 054

fective since even the state-of-the-art LLMs (Ope- 055

nAI and et al., 2024; Touvron et al., 2023) struggle 056

to accurately capture essential molecular structures, 057

as described in Figure 1b and Section 2. 058

In this paper, we propose MSR, a simple yet gen- 059

eral framework for Molecular Structural Reasoning 060

that progressively sketches the structural features of 061

molecules to improve molecular task performance. 062

To this end, we identify key structural elements 063

crucial for the reasoning of LLMs to solve molec- 064

ular tasks. Moreover, we propose fine-tuning pro- 065

cedures that employ external tools to identify the 066

molecular structural information. 067

In particular, our frameworks to fine-tune LLMs 068

for molecular structural reasoning are designed for 069

both molecular and non-molecular inputs. A frame- 070

work consists of reasoning module and an answer- 071

ing module. The reasoning module generates struc- 072

tural information to enhance the understanding of 073

the molecule. The answering module generates 074

the final answer based on the original input and 075

the output of the reasoning module. The overall 076

frameworks are illustrated in Figure 4. 077

To be specific, we consider two types of rea- 078

soning framework, inspired by how humans gen- 079

erally form knowledge via analysis and synthe- 080

sis (Kant, 1899). On the one hand, analysis refers 081
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MSR
The molecular formula is
C6H6AsO3. The molecule

contains no carbon chain.
The molecule contains 1 

aromatic ring. It 
includes 1 benzene ring. 
The functional groups 
present in the molecule
include acid, aromatic, 
and organic groups. The 
molecule has no chiral 

center.

Description
Given the description of 
a molecule, your job is 
to predict the SMILES 
representation of the 

molecule.

Description: The molecule 
is the organoarsonic acid 
anion formed by loss of a 
single proton from the 
arsonic acid grouping in 
phenylarsonic acid. It is 
a conjugate base of a 
phenylarsonic acid.

🧑:Description + MSR 
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(a) Incorporating MSR improves GPT-4o in molecule generation.
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Figure 1: Overview of LLMs with structural information. (a) Each color in MSR represents a structural
component. The top molecule is incorrectly generated using only the description while the bottom is correctly
generated by incorporating the description and MSR. (b) Despite the importance of structural information, even
recent LLMs struggle to accurately infer key structural details from molecular representations such as SMILES
(Molecule-to-structure; M2S) or given descriptions (Text-to-structure; T2S).

to breaking down complex information into fun-082

damental components for better understanding. In083

molecular tasks, analytic reasoning applies when084

the molecule is provided as input, allowing the085

model to decompose its structure for meaningful086

insights. Specifically, we utilize external tools like087

RDKit (Landrum et al., 2024) as the reasoning mod-088

ule to precisely extract structural information from089

the molecule.090

On the other hand, synthesis constructs a whole091

from its constituent parts. This aligns with molec-092

ular tasks where the molecule must be generated093

from non-molecular input, e.g., textual description,094

requiring the model to infer structural information095

and reconstruct the entire molecule. In detail, for096

synthetic reasoning, we fine-tune the LLMs as the097

reasoning module that generates MSR (Ho et al.,098

2023; Fu et al., 2023; Magister et al., 2023) based099

on the given input. We additionally incorporate100

a novel matching-ratio-based rejection sampling101

into the answering module, to ensure that the gener-102

ated molecule aligns with MSR, using the external103

tools for validation.104

We empirically show that incorporating105

MSR into chemical LLMs (Edwards et al.,106

2022; Christofidellis et al., 2023a) and general107

LLMs (Touvron et al., 2023; OpenAI and et al.,108

2024) both lead to consistent performance improve-109

ments in three molecular tasks: molecule-to-text,110

retrosynthesis, and text-to-molecule. In particular,111

chemical LLMs outperform the considered base-112

lines when combined with our MSR framework.113

In summary, our contributions are as follows:114

• We identify and evaluate the limits of LLMs in115

inferring molecular structural information.116

• We propose MSR, a simple yet broadly appli- 117

cable molecular reasoning framework that pro- 118

gressively sketches molecular structures. 119

• We introduce an analytic reasoning for MSR 120

when the input molecule is given, leveraging 121

external tools for structural identification. 122

• We develop a synthetic reasoning for MSR 123

when the molecule is in the desired output, in- 124

corporating fine-tuning for the reasoning mod- 125

ule and a novel matching ratio-based rejection 126

sampling procedure for the answering module. 127

• We validate the effectiveness of MSR by 128

demonstrating consistent performance improve- 129

ments across chemical and general LLMs. 130

2 Recent large language models do not 131

understand structural information 132

Here, we demonstrate that even the recent LLMs, 133

i.e., GPT-4o (OpenAI and et al., 2024) and Llama3- 134

8B-Instruct (Touvron et al., 2023), fail to infer 135

important structural information from the given 136

inputs, such as molecular representations (e.g., 137

SMILES (Weininger, 1988)) and the text descrip- 138

tions (Edwards et al., 2021). Notably, such tasks 139

can be considered straightforward for individuals 140

with a bachelor’s degree in chemistry. 141

Our analysis is inspired by how chemists rea- 142

son about the structure to analyze a molecule. They 143

progressively identify the molecular structure, start- 144

ing with primary elements like rings and long car- 145

bon chains before identifying finer details such as 146

functional groups. Reflecting on this behavior, we 147

define six significant key structural elements for 148

chemical reasoning as illustrated in Figure 2. 149
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Longest carbon chain: 3

Aromatic rings: 2
Ring compounds: one 

cyclohexa-1,3-diene ring,
one 4H-pyran ring, two
benzene rings, one 3,4-
dihydro-2H-pyran ringFunctional groups: 

alcohol, alkene, 
aromatic, ester, ether, 
ketone, organic, phenol

Chirality: 
one with S configuration 
one with R configuration

Molecular formula: 
C30H32O6

Figure 2: The six key structural information: molec-
ular formula, longest carbon chain length, aromatic
rings, ring compounds, functional groups, and chiral-
ity. The same color indicates the structural information
and the corresponding component of the molecule.

In detail, these six key structural components in-150

clude (1) molecular formula, (2) longest carbon151

chain length, (3) aromatic rings, (4) ring com-152

pounds, (5) functional groups, and (6) chirality.153

For instance, the molecular formula provides es-154

sential information about a molecule’s composition,155

specifying the number and type of atoms present.156

Additionally, functional group is a specific group of157

atoms within a molecule that determines its chem-158

ical properties and reactivity, such as hydroxyl (-159

OH) and carbonyl (C=O). We provide a detailed160

description of other components in Appendix A.161

To highlight their importance, we further illus-162

trate how small structural modifications can lead to163

significant changes in chemical or physical prop-164

erties in Figure 3. For instance, alcohols with a165

hydroxyl group (-OH) are prone to oxidize, while166

the molecules with an amino group (-NH2) are gen-167

erally resistant to oxidation. This distinction in168

reactivity influences a wide range of chemical pro-169

cesses, including drug metabolism, material stabil-170

ity, and catalytic reactions. Thus, a precise under-171

standing of these structural components is crucial172

for accurately predicting molecular behavior and173

designing compounds with desired properties.174

Despite their significance, we observe that even175

state-of-the-art LLMs often fail to accurately infer176

crucial structural details from the molecule or the177

text description of the molecule. Specifically, as178

shown in Figure 1b, both GPT-4o and LlaMA3-8B-179

Instruct fail to capture the structural information ac-180

curately when the molecule is provided (Molecule-181

to-structure; M2S) or the text description is pro-182

vided (Text-to-structure; T2S). Note that we pro-183

vide detailed experimental settings and prompts in184

Appendix B.1.185

First, when provided with a molecule (M2S),186

both GPT-4o and LlaMA3-8B-Instruct struggled187

to achieve high accuracy. Even in their best-188

performing case, counting the number of aromatic189

rings, their accuracies remained low, at approx-190

imately 50% and 75%, respectively. Similarly,191

Solubility à 
Lower

O Formula: C4H10O O

O Chain length: 4 O

O Aromatic ring: No O

O Ring: No O

O Functional group: hydroxyl O

O Chirality: S or R O

Stability à 
Higher

Ring-opening
Reaction à O

Oxid. resist. 
àHigher

Diff. 
Interact.

Boiling point
à 82.3◦C

Figure 3: Illustration of the importance of structural
information. This example shows how replacing each
structural information (dashed box) alters the molecule.
Colors correspond to the structural elements in Figure 2.

when given a detailed text description (T2S), both 192

models still failed to achieve high accuracy. This 193

implies that LLMs struggle to fully understand the 194

molecular structures, whether presented as molecu- 195

lar representations or text descriptions. These ob- 196

servations highlight the potential benefits of explic- 197

itly incorporating structural reasoning to enhance 198

molecular comprehension. 199

3 MSR: Molecular Structural Reasoning 200

Here, we present our framework for enhanc- 201

ing LLMs’ understanding of molecules through 202

Molecular Structural Reasoning (MSR). MSR in- 203

corporates six key structural elements as reasoning 204

for LLMs, following a two-stage process (Zhang 205

et al., 2024): a reasoning stage and an answering 206

stage. First, a reasoning module generates MSR, 207

providing supplementary structural information for 208

a better understanding of the molecule. Next, an 209

answering module generates the final output using 210

the input augmented with the generated MSR. The 211

framework is illustrated in Figure 4. 212

To address various tasks, we categorize the MSR 213

framework based on whether the molecule is pro- 214

vided as input (analytic reasoning) or must be in- 215

ferred as output (synthetic reasoning). In summary, 216

for analytic reasoning, one decomposes complex 217

molecules into fundamental structural components 218

to better understand their structure. For synthetic 219

reasoning, one constructs the entire molecule from 220

its constituent structural components. 221

3.1 Overview of MSR 222

Here, we introduce MSR, a molecular structural 223

reasoning framework that enhances language mod- 224

els’ understanding of molecules. Each component 225

of MSR corresponds to one of the six structural 226

elements introduced in Section 2. The expression 227

and corresponding description of the reasoning for 228

each structural component in MSR are provided in 229
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The longest carbon 
chain is 3 carbons long. 
The molecule contains 2 

aromatic rings. 
The molecule has 2
chiral centers.

The molecule is an 
organic

heterotetracyclic
compound that is ... It 

has a role as a 
metabolite and 

antineoplastic agent. 
... 

CC1=C(C2=C(C3=C1OC4=C([
C@@H]3C(C)C)C(=O)C(C(=C
4C)OC)(C)C)O[C@@H](CC2=

O)C5=CC=CC=C5)O

(a) Analytic reasoning

The molecule is an 
organic

heterotetracyclic
compound that is ... 

The longest carbon 
chain is 3 carbons long. 
The molecule contains 2

aromatic rings. 
The molecule has 2
chiral centers.

CC1=C(C2=C(C3=
C1OC4=C([C@@H]
3C(C)C)C(=O)C(
C(=C4C)OC)(C)C
)O[C@@H](CC2=O
)C5=CC=CC=C5)O

CC(=O)C[C@@H]1
CCCN1C

C1=CC2=C(C=C1C
(=O)O)OC(=N2)C
3=CC(=CC(=C3)C

l)Cl

Chain 
length: 1
Aromatic 
ring: 3
Chiral 

centers: 2

Chain 
length: 3
Aromatic 
ring: 0
Chiral 

centers: 1

⭕

⭕

Chain 
length: 3
Aromatic 
ring: 2
Chiral 

centers: 2 ⭕

❌

❌

❌

❌

⭕

❌

(b) Synthetic reasoning

Figure 4: Overview of MSR fine-tuning framework. Analytic reasoning applies when the input molecule is
available, while synthetic reasoning applies when it is not. Light gray boxes denote the molecules (SMILES); gray
boxes denote related description; colored boxes represent MSR. The yellow and the red modules perform reasoning
and answering, respectively. In (a), yellow module indicates an external tool. In (b), colors indicate MSR and the
corresponding structural elements; here, the third molecule is chosen after matching ratio-based rejection sampling
according to its highest matching ratio (3/3).

Table 1: The description of each component of MSR.

Component Expression Description

Molecular The molecular formula is Xm: m-th atom type
formula X1N1 · · ·XMNM . Nm: # of m-th atoms

Longest carbon The longest carbon chain N : the length of
chain length is N carbons long. the longest carbon chain

Aromatic The molecule contains N : # of
rings N aromatic rings. aromatic rings

Ring It includes N1 X1 rings, Nm: # of m-th ring
compounds · · · , NMXM ring(s). Xm: IUPAC name of m-th ring

Functional The functional groups include
Xm: the name of functional groupgroups X1, · · · , and XM group.

Chirality
The molecule has N chiral NS : # of chiral centers of S config.

centers: NS with S configuration NR: # of chiral centers of R config.
and NR with R configuration. N = NS +NR

Table 1. Additionally, a concrete example illustrat-230

ing MSR is shown in Figure 2.231

3.2 Analytic reasoning232

In MSR, analytic reasoning refers to decomposing233

a given input molecule into smaller structural com-234

ponents for enhanced comprehension. When the235

input molecule is available, one can utilize a deter-236

ministic reasoning module for its decomposition.237

Our approach integrates MSR by (1) employing238

external tools like RDKit (Landrum et al., 2024)239

to extract precise structural information as a rea-240

soning module, and (2) fine-tuning the answering241

module LLM with the generated rationale as an242

additional input. The overall workflow is described243

in Figure 4a.244

Reasoning module. In the analytic reason-245

ing scenario, we employ external tools to ex-246

tract precise structural information from the in-247

put molecule. This process eliminates uncertainty,248

as the structural information is deterministic for a249

given molecule. Next, this information serves as250

MSR, which guides the answering module.251

Answering module. With the molecule and252

its corresponding MSR as input, we fine-tune 253

the chemical LLMs to generate the desired out- 254

put of the molecule. In our experiments, we 255

mainly consider MolT5 (Edwards et al., 2022) and 256

ChemT5 (Christofidellis et al., 2023a), as the an- 257

swering module. 258

3.3 Synthetic reasoning 259

Synthetic reasoning refers to composing structural 260

information to construct an entire molecule. When 261

the input molecule is unavailable, the relevant struc- 262

tural information must first be inferred before gen- 263

erating the final molecule. To address this, we fine- 264

tune a reasoning module to generate MSR, which 265

is then attached to the input and utilized by the 266

answering module to generate the final molecule, 267

as illustrated in Figure 4b. 268

Reasoning module. We fine-tune the chemical 269

LLMs to generate MSR similar to prior works that 270

fine-tune LLMs to generate chain-of-thoughts (Ho 271

et al., 2023; Fu et al., 2023; Magister et al., 2023). 272

Unlike analytic reasoning, where external tools can 273

precisely extract structural information, the reason- 274

ing module in synthetic reasoning must infer this 275

information from the input. 276

Notably, we selectively retain only reliable struc- 277

tural components before incorporating them into 278

the answering module. One considers the compo- 279

nent to be reliable if it achieves sufficiently high 280

reasoning accuracy across the entire dataset. This 281

selection process also leverages the deterministic 282

nature of structural information, allowing a quan- 283

titative evaluation of the reasoning module’s ca- 284

pability in generating each type of rationale, as 285

presented in Section 4.3. 286
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Table 2: Molecule-to-text performance for L+M val.
dataset. BL., RO., and ME. stand for BLEU, ROUGE,
and METEOR, respectively.

BL.2 BL.4 RO.1 RO.2 RO.L ME.

Baselines (without reasoning)

Meditron-7B 0.792 0.576 0.797 0.602 0.575 0.757

Mol2Lang-VLM 0.777 0.563 0.786 0.591 0.565 0.741

BioT5+ 0.798 0.579 0.812 0.617 0.584 0.777

Chemical LLMs (fine-tuning)

MolT5-small 0.709 0.512 0.745 0.558 0.544 0.701
+MSR 0.780 0.565 0.807 0.613 0.585 0.757

MolT5-base 0.738 0.535 0.750 0.559 0.539 0.718
+MSR 0.805 0.592 0.864 0.677 0.642 0.822

MolT5-large 0.769 0.556 0.777 0.580 0.557 0.743
+MSR 0.832 0.622 0.914 0.743 0.691 0.878

Answering module. Similar to the analytic287

reasoning scenario, we fine-tune chemical LLMs288

to generate an appropriate molecule from the in-289

put and its corresponding MSR. To further en-290

hance structural consistency between the generated291

molecule and MSR, we propose a matching ratio-292

based rejection sampling method.293

Specifically, the model first generates k can-294

didate molecules using beam search. Then, for295

each candidate, one computes the matching ratio,296

which quantifies the consistency between the gen-297

erated molecule’s structural components and those298

in MSR. Finally, the molecule with the highest299

matching ratio is selected as the final output, ensur-300

ing the consistency between the rationale and the301

generated answer.302

Again, this approach leverages the determinis-303

tic nature of the molecular structural information,304

allowing us to easily obtain the information with305

external tools and compare them between the ra-306

tionale and the generated molecule. Notably, the307

search process differs from prior works (Wang308

et al., 2023; Xi et al., 2023; Sun et al., 2024)309

that search over rationale-answer pairs since our310

method focuses on searching the answer that coin-311

cides with a given rationale.312

4 Experiments313

In this section, we present our experiments on two314

frameworks: analytic reasoning and synthetic rea-315

soning. For the analytic reasoning framework, we316

consider molecule-to-text and retrosynthesis tasks.317

For the synthetic reasoning framework, we address318

the text-to-molecule task. For clarity, in all ta-319

bles, the teal color indicates improvements over the320

vanilla model, and the best results are highlighted321

in bold.322

Table 3: Molecule-to-text performance for ChEBI-20
dataset.

BL.2 BL.4 RO.1 RO.2 RO.L ME.

Baselines (without reasoning)

T5-base 0.511 0.423 0.607 0.451 0.550 0.539

MolXPT 0.594 0.505 0.660 0.511 0.597 0.626

BioT5 0.635 0.556 0.692 0.559 0.633 0.656

Chemical LLMs (fine-tuning)

MolT5-base 0.540 0.457 0.634 0.485 0.578 0.569
+MSR 0.592 0.507 0.667 0.523 0.606 0.619

MolT5-large 0.594 0.508 0.654 0.510 0.594 0.614
+MSR 0.645 0.567 0.699 0.568 0.639 0.666

ChemT5-small 0.553 0.462 0.633 0.481 0.574 0.583
+MSR 0.601 0.513 0.664 0.519 0.603 0.624

ChemT5-base 0.580 0.490 0.647 0.498 0.586 0.604
+MSR 0.639 0.560 0.687 0.553 0.626 0.657

General LLMs (without fine-tuning)

Llama3 0.211 0.117 0.367 0.183 0.308 0.257
+MSR 0.259 0.158 0.401 0.208 0.324 0.341

GPT-4o 0.232 0.128 0.389 0.183 0.307 0.291
+MSR 0.286 0.174 0.405 0.199 0.313 0.341

Table 4: Molecule-to-text performance for Mol-
Instructions dataset.

BL.2 BL.4 RO.1 RO.2 RO.L ME.

General LLM (without fine-tuning)

Mol-Instruct. 0.217 0.143 0.337 0.196 0.291 0.254
+MSR 0.347 0.275 0.601 0.518 0.593 0.520

4.1 Analytic reasoning: Molecule-to-text 323

The molecule-to-text task aims to generate a pre- 324

cise and informative textual description that accu- 325

rately represents the given molecule. 326

Dataset. We employ three datasets for the 327

molecule-to-text task: (1) the recent L+M dataset 328

(Edwards et al., 2024), (2) the widely used ChEBI- 329

20 dataset (Edwards et al., 2021), and the (3) 330

Mol-instructions dataset (Fang et al., 2024). Each 331

dataset consists of 182,331, 33,010, and 298,319 332

pairs of SMILES (or SELFIES) and their text de- 333

scriptions, respectively. We use the same splits 334

used in prior works. 335

Baselines. We evaluate the performance of 336

MSR with chemical and general LLMs. On 337

the one hand, we employed two chemical LLMs: 338

MolT5 (Edwards et al., 2022) and Text+Chem 339

T5 (ChemT5; Christofidellis et al., 2023a). On 340

the other hand, we employed three general 341

LLMs: Llama3-8B-Instruct (Touvron et al., 2023), 342

GPT-4o (OpenAI and et al., 2024)1, and Mol- 343

Instructions (Fang et al., 2024). Additionally, we 344

include T5 (Raffel et al., 2020), MolXPT (Liu et al., 345

2023), BioT5 (Pei et al., 2023), Meditron-7B (Chen 346

1We used gpt-4o-2024-05-13.
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Ground TruthChemT5-base + MSRChemT5-baseInput

The molecule is an 
organosulfonate oxoanion
resulting from the removal of 
a proton from both of the 
sulfo groups of 5-[(4-
acetamido-2-
sulfophenyl)diazenyl]-6-
amino-4-
hydroxynaphthalene-2-
sulfonic acid. It is a 
conjugate base of a 
lissamine fast red (acid
form).

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of 
the sulfo groups of 5-[(4-
acetamido-2-
sulfophenyl)diazenyl]-6-
amino-4-
hydroxynaphthalene-2-
sulfonic acid. It is a 
conjugate base of a p-
acetamido-2-sulfobenzene-
1-sulfonic acid.

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of 
the sulfo groups of 7-
amino-4-[(4-acetamido-2-
sulfophenyl)diazenyl]-6-
amino-4-
hydroxynaphthalene-2-
sulfonic acid. It is a 
conjugate base of a 7-
amino-4-[(4-acetamido-2-
sulfophenyl)diazenyl]-6-
amino-4-
hydroxynaphthalene-2-
sulfonic acid.

MSR

The molecular formula is C18H14N4O8S2-2. The longest carbon
chain is 2 carbons long. The molecule contains 3 aromatic rings. It 

includes 3 rings of size 6. The functional groups present in the 
molecule include alcohol, amide, amine, aromatic, azo, organic, 
phenol, primary, and sulfone groups. The molecule has 0 chiral 

centers: 0 with S configuration and 0 with R configuration.

Figure 5: An example of generated samples for molecule-to-text. We observe that MSR improves the accuracy
of detailed molecular information (highlighted in yellow). We provide more examples in Appendix C.
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et al., 2023b), Mol2Lang-VLM (Tran et al., 2024),347

and BioT5+ (Pei et al., 2024) as baselines to com-348

pare absolute performance.349

Experimental setup and metrics. Chemical350

LLMs are trained following the process described351

in Section 3.2. For general LLMs without any352

domain-specific instruction tuning (Llama3 and353

GPT-4o), we cannot guarantee that the generated354

descriptions align with our training data. Therefore,355

we apply 10-shot in-context learning by attaching356

MSR in the same manner as for chemical LLMs.357

Additionally, for Mol-Instructions, we prompt with358

instructions enriched with MSR. Note that we addi-359

tionally consider the molecular weight and IUPAC360

name components used by M. Bran et al. (2024),361

as they slightly improved the performance.362

We evaluate the performance by comparing the363

generated description with the ground truth us-364

ing six metrics: BLEU2, BLEU4 (Papineni et al.,365

2002), ROUGE1, ROUGE2, ROUGEL (Banerjee366

and Lavie, 2005), and METEOR (Banerjee and367

Lavie, 2005). We provide detailed experimental368

settings and prompts in Appendix B.2.369

Results. We report the results in Table 2, Ta-370

ble 3, and Table 4. We observe that adding MSR371

consistently improves performance across both372

chemical and general LLMs. Notably, in Table 3,373

ChemT5-base+MSR achieves performance com-374

parable to BioT5 (without MSR), despite BioT5375

being pretrained on a larger dataset. Furthermore,376

Table 2 shows that integrating MSR with MolT5-377

Table 5: Retrosynthesis performance for Mol-
Instructions dataset. BL., Ex., and Le. indicate BLEU,
Exact, and Levenshtein distance. MA., RDK, and Mo.
indicate MACCS, RDK, and Morgan fingerprint metrics.
Val. indicates the validity.

Models BL. Ex. Le. ↓ MA. RDK Mo. Val.

General LLM (without fine-tuning)

Mol-Instruct. 0.705 0.009 31.23 0.283 0.487 0.230 1.000
+ MSR 0.502 0.016 31.21 0.315 0.493 0.273 1.000

base or MolT5-large yields superior performance 378

compared to baseline models. We provide exam- 379

ples of generated samples in Figure 5 and Figure 9. 380

In addition, our method exhibits faster performance 381

improvement, as illustrated in Figure 6. 382

4.2 Analytic reasoning: Retrosynthesis 383

The retrosynthesis task aims to generate the corre- 384

sponding set of reactant molecular representations 385

based on a given product molecular representation. 386

Dataset and baselines. We employ the dataset 387

and the model used by Mol-instructions (Fang 388

et al., 2024). The dataset consists of 129,684 prod- 389

uct and reactant pairs. 390

Experimental setup and metrics. As the in- 391

put molecule (i.e., product) is given for the ret- 392

rosynthesis task, we follow the framework pro- 393

posed in Section 3.2. The performance is evalu- 394

ated by comparing the generated molecules with 395

the ground truth with eight metrics: SMILES com- 396

parison metrics (BLEU, Exact, and Levenshtein 397

distance (Miller et al., 2009)), fingerprint similarity 398

metrics (MACCS FTS (Durant et al., 2002), RDK 399

FTS (Schneider et al., 2015), and Morgan FTS 400

(Rogers and Hahn, 2010)), a molecular distribution 401

metric (Fréchet ChemNet Distance (FCD) (Preuer 402

et al., 2018)), and the validity of the molecule. 403

Results. We report the results in Table 5, show- 404

ing that incorporating MSR improves performance 405

across all metrics except BLEU. This highlights its 406
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Table 6: Reasoning accuracy for each structural in-
formation. Fo., Ch., Ar., Ri., Fu., Ch., We., Na., stand
for molecular formula, longest carbon chain length, aro-
matic rings, ring compounds, functional groups, chiar-
lity, molecular weight, and IUPAC name, respectively.

Models Fo. Ch. Ar. Ri. Fu. Ch. We. Na.

Chemical LLMs (MSR fine-tuning) - L+M

MolT5-small 0.048 0.235 0.783 0.781 0.849 0.647 0.418 0.248

MolT5-base 0.426 0.527 0.825 0.813 0.889 0.807 0.615 0.309

MolT5-large 0.221 0.317 0.820 0.809 0.872 0.691 0.529 0.576

Chemical LLMs (MSR fine-tuning) - MolT5

MolT5-base 0.458 0.922 0.926 0.930 0.957 0.798 0.606 0.512

ChemT5-small 0.447 0.920 0.930 0.926 0.954 0.788 0.634 0.495

ChemT5-base 0.475 0.925 0.931 0.930 0.960 0.799 0.641 0.525

General LLMs (MSR few-shot learning) - MolT5

Llama3 0.084 0.174 0.593 0.362 0.137 0.450 0.435 0.015

GPT-4o 0.298 0.235 0.718 0.464 0.298 0.485 0.728 0.040

effectiveness in enhancing complex tasks. Notably,407

while we report BLEU for consistency with prior408

work, it is less critical than other metrics, as it eval-409

uates string-based accuracy rather than molecular410

structure alignment.411

4.3 Synthetic reasoning: Text-to-molecule412

The text-to-molecule task is the inverse of413

molecule-to-text, aiming to generate a molecular414

representation based on a given textual description.415

Dataset. We employ two datasets for the text-to-416

molecule task: (1) L+M (Edwards et al., 2024) and417

(2) ChEBI-20 (Edwards et al., 2021). We followed418

the same settings used in Section 4.1.419

Baselines. Two popular chemical LLMs,420

including MolT5 (Edwards et al., 2022) and421

ChemT5 (Christofidellis et al., 2023a), serve as422

our baselines. Notably, we exclude general LLMs423

from this evaluation due to their insufficient reason-424

ing accuracy as shown in Table 6. In detail, their425

low accuracy implies that their reasoning cannot426

guide the answer appropriately, even in a few-shot427

learning setting. For completeness, we provide the428

results for general LLMs in Appendix C.3. Addi-429

tional baselines are consistent with those in Sec-430

tion 4.1 other than Lang2Mol-Diff (Nguyen et al.,431

2024).432

Experimental setup and metrics. We follow433

the framework proposed in Section 3.3. We pro-434

vide detailed experimental settings and prompts in435

Appendix B.3. The performance is evaluated using436

the same metrics described in Section 4.2.437

Reasoning accuracy. We first measure the rea-438

soning accuracy to filter out low-accuracy compo-439

nents that may misguide the answer. The detailed440

computation process is in Appendix B.3. The rea-441

Table 7: Text-to-molecule performance for L+M val.
dataset.

BL. Ex. Le. ↓ MA. RDK Mo. FCD↓ Val.

Baselines (without reasoning)

Meditron-7B 0.694 0.010 46.49 0.772 0.693 0.501 2.46 0.996

Lang2Mol-Diff 0.543 0.000 55.87 0.606 0.332 0.328 38.09 1.000

BioT5+ 0.731 0.010 41.47 0.781 0.709 0.515 3.29 1.000

Chemical LLMs (fine-tuning)

MolT5-small 0.566 0.000 56.34 0.642 0.581 0.374 NaN 0.805
+MSR 0.730 0.002 41.15 0.798 0.712 0.514 2.82 0.995

MolT5-base 0.684 0.000 44.79 0.760 0.652 0.475 NaN 1.000
+MSR 0.706 0.052 40.18 0.825 0.762 0.548 1.45 0.997

MolT5-large 0.564 0.000 55.40 0.757 0.650 0.395 17.50 0.994
+MSR 0.710 0.111 39.54 0.837 0.783 0.560 1.54 0.999

Table 8: Text-to-molecule performance for ChEBI-20
dataset.

BL. Ex. Le. ↓ MA. RDK Mo. FCD↓ Val.

Baselines (without reasoning)

T5-base 0.762 0.069 24.95 0.731 0.605 0.545 2.48 0.660

MolXPT - 0.215 - 0.859 0.757 0.667 0.45 0.983

BioT5 0.867 0.413 15.10 0.886 0.801 0.734 0.43 1.000

Chemical LLMs (fine-tuning)

MolT5-base 0.769 0.081 24.46 0.721 0.588 0.529 2.18 0.772
+MSR 0.863 0.385 13.91 0.918 0.843 0.783 0.29 0.983

MolT5-large 0.854 0.311 16.07 0.834 0.746 0.684 1.20 0.905
+MSR 0.886 0.391 12.98 0.906 0.822 0.765 0.35 0.947

ChemT5-small 0.739 0.157 28.54 0.859 0.736 0.660 0.07 0.776
+MSR 0.874 0.381 13.22 0.918 0.845 0.787 0.29 0.976

ChemT5-base 0.750 0.212 27.39 0.874 0.767 0.697 0.06 0.792
+MSR 0.878 0.421 12.76 0.924 0.856 0.804 0.26 0.982

soning accuracies are provided in Table 6. Our 442

results show that our fine-tuned reasoning mod- 443

ules exhibit superior accuracy compared to larger 444

general LLMs, underscoring their ability to under- 445

stand molecular structures effectively. However, 446

they still struggle with certain structural elements, 447

such as molecular formula, molecular weight, and 448

IUPAC name, with additional challenges in car- 449

bon chain length and chirality in the L+M dataset. 450

Consequently, we exclude these components. 451

Results. The results are reported in Table 7 and 452

Table 8. Incorporating MSR into the molecular 453

description always improved performance. In par- 454

ticular, integrating MSR into the ChemT5-base 455

achieves state-of-the-art performance compared to 456

the recent baselines, validating its efficacy. Surpris- 457

ingly, our MSR even improves the performance of 458

smaller models beyond that of the vanilla larger 459

models, e.g., MolT5-base+MSR showed superior 460

performance to MolT5-large. We provide examples 461

of generated samples in Appendix C.1. 462

4.4 Ablation study 463

We perform ablation studies on matching ratio- 464

based rejection sampling and each structural com- 465

ponent. Here, we utilize ChemT5-small on the 466

ChEBI-20 dataset. Due to limited space, additional 467

7



1250.2

0.3

0.4 Exact

125
Epochs

0.86

0.93

1.0 Validity

1250.88

0.9

0.92
MACCS FTS

W/o rej. samp. (k = 1) k = 2 k = 5

Figure 7: Impact of k in rejection sampling. Dotted
lines indicate the initial performance of k = 5.

ablation study results, including a comparison with468

ChemCrow (M. Bran et al., 2024), prior work on469

the reasoning for chemistry tasks, and extra struc-470

tural component, are provided in Appendix C.4.471

Matching ratio-based rejection sampling. We472

discuss the efficacy of matching ratio-based rejec-473

tion sampling and the impact of the number of sam-474

ples k in text-to-molecule. We compare the results475

of without (k = 1) and with the rejection sampling476

(k ∈ {2, 5}). As demonstrated in Figure 7, the477

rejection sampling improves performance by en-478

couraging the output to follow the MSR. Notably,479

increasing k beyond 5 does not further improve480

performance, implying that k = 5 is sufficient.481

Structural component. To verify the effective-482

ness of each component, we evaluated the perfor-483

mance of molecule-to-text using each structural484

information component individually. We provide485

the results in Figure 8. Incorporating each sin-486

gle component resulted in better performance com-487

pared to the baseline model without any reason-488

ing. Notably, combining all the proposed structural489

elements yielded the best results, validating the490

effectiveness of our comprehensive approach.491

5 Related work492

Large language models for chemistry. General493

LLMs often struggle to solve basic chemistry prob-494

lems and molecular tasks (White et al., 2023; Cas-495

tro Nascimento and Pimentel, 2023; Guo et al.,496

2023). To address this issue, prior works have in-497

troduced chemical LLMs by pre-training models498

on molecule-related texts (Edwards et al., 2022;499

Christofidellis et al., 2023b; Liu et al., 2023; Pei500

et al., 2023), through instruction tuning (Fang et al.,501

2024; Cao et al., 2023), and using retrieval-based502

in-context learning (Li et al., 2024). Our work503

focuses on reasoning processes that are broadly504

applicable to these chemical and general LLMs.505

Reasoning of LLMs. Generating intermediate506

reasoning before arriving at a final answer (Wei507

et al., 2022; Kojima et al., 2022) improves the over-508

all quality of generated answers. However, the abil-509

ity to perform complex reasoning remains limited510

0.45

0.5

0.55 BLEU4

0.45

0.5

0.55 ROUGE2

0.55

0.6

0.65 METEOR

W/o MSR
Arom.
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Chiral.

Formula
All

Figure 8: Impact of each structural component.

to huge models (>100B parameters). 511

To address this challenge, various approaches 512

have been introduced to distill knowledge from 513

larger language models to smaller ones (<10B). 514

Specifically, Ho et al. (2023); Fu et al. (2023); 515

Magister et al. (2023) employed the larger mod- 516

els as teacher models to generate rationales for 517

fine-tuning smaller student models. Nevertheless, 518

even recent LLMs struggle to generate appropriate 519

rationales that demonstrate a correct understanding 520

of molecular structures (as described in Figure 1a 521

and Section 2), restricting the efficacy of LLMs in 522

generating rationales for molecular tasks. 523

Reasoning for chemistry. Recently, a few 524

works have extended the reasoning of LLMs to 525

address chemistry problems. For instance, Ouyang 526

et al. (2024) proposed employing the program-of- 527

thoughts (PoT; Chen et al., 2023a) to handle chem- 528

ical question-answering tasks. Additionally, Jin 529

et al. (2024) presented the protein chain-of-thought 530

(ProCoT) to replicate the signaling pathways in the 531

protein-protein interaction (PPI) problem. Despite 532

these advances, none of these works are generally 533

applicable to various molecular tasks. We note 534

that M. Bran et al. (2024) provided a reasoning 535

approach comparable to ours, but their rationales 536

are less focused on molecular structures, e.g., ra- 537

tionales based on tools like LitSearch/WebSearch, 538

PatentCheck, ReactionPlanner, and SMILES2Price. 539

Moreover, it shows limited performance improve- 540

ment in molecule generation and molecule caption- 541

ing tasks, as observed in Appendix C.4. 542

6 Conclusion 543

We introduced MSR, a molecular structural reason- 544

ing framework that enhances LLMs’ understanding 545

of molecules by explicitly incorporating key struc- 546

tural features. Our investigation revealed recent 547

LLMs’ limitations in inferring structural informa- 548

tion, emphasizing the need for explicit reasoning. 549

Fine-tuning chemical LLMs with MSR led to con- 550

sistent improvements across three molecular tasks, 551

highlighting the effectiveness of domain-specific 552

models for molecular reasoning. 553
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7 Broader impacts554

Our work contributes to the development of more555

interpretable and reliable models for molecular ap-556

plications. By incorporating explicit molecular rea-557

soning, our framework has the potential to enhance558

molecular understanding and improve decision-559

making in areas such as drug discovery, materi-560

als science, and chemical synthesis. However, as561

with any AI-driven molecular generation system,562

there are potential risks and ethical concerns. For563

instance, the generation of harmful or toxic com-564

pounds poses significant safety challenges. Addi-565

tionally, over-reliance on AI-generated molecular566

reasoning without expert validation could lead to567

unintended consequences in scientific and indus-568

trial applications.569

8 Limitations570

One limitation of MSR is its reliance on the accu-571

racy of structural information in synthetic reason-572

ing. While external tools like RDKit provide pre-573

cise structural information for molecule-forward574

reasoning, errors in molecule-backward reasoning575

(where structural features must be inferred) could576

degrade performance. However, appropriate filter-577

ing based on reasoning accuracy can prevent this578

to some extent. Additionally, we assume that the579

given molecular representations are accurate when580

we extract the structural information. However,581

real-world data can be noisy or incomplete. Ex-582

tending MSR to handle uncertain molecular inputs583

via self-correction remains an open challenge.584
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Reproducibility585

All experimental code related to this paper is avail-586

able at https://anonymous.4open.science/r/587

MolStructCoT. Detailed insights regarding the588

experiments, encompassing dataset and model589

specifics, are available in Section 4. For intricate590

details like hyperparameters, consult Appendix B.591
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Appendix 859

Organization The appendix is organized as follows: We first present the experimental details such 860

as hyperparameters and prompts in Appendix B. Then we provide the additional experimental results 861

including the generated samples and additional ablation studies in Appendix C. 862

A Examples of important structural information 863

Here, we provide the types of important structural information and their impact to molecular properties. 864

Molecular formula. The molecular formula provides essential information about a molecule’s compo- 865

sition, specifying the number and type of atoms present. This information is critical because, for example, 866

it directly determines the molecular weight. To illustrate, although 2-Butanol (C4H10O) and 2-Propanol 867

(C3H8O) are composed of the same type of atoms, i.e., carbon, hydrogen, and oxygen, their differing 868

molecular formulas result in distinct molecular weights (74.1g/mol for 2-Butanol and 60.1g/mol for 869

2-Propanol). These differences lead to the change in boiling points, 99.4◦C and 82.3◦C, respectively, as 870

shown in the gray part of Figure 3. 871

Longest carbon chain. The longest carbon chain (excluding atoms in ring systems) forms the molecular 872

backbone where functional groups are attached. The length of this chain significantly influences properties 873

like solubility. For example, extending the carbon chain of 2-Butanol from four to six carbons creates 874

2-Hexanol, which exhibits reduced solubility. This is illustrated in the green section of Figure 3. 875

Aromatic rings. Aromatic rings (e.g., benzene and pyridine) play a critical role in determining the 876

stability and electronic properties. For instance, adding a benzene ring to 2-Butanol yields 1-Phenyl-2- 877

Propanol, which has enhanced stability and greater oxidation resistance. This transformation is shown in 878

the blue section of Figure 3. 879

Ring compounds. Similar to the longest carbon chain, ring structures often serve as the backbone 880

where functional groups are attached. The ring system significantly affects molecular behavior and 881

reactions. For example, although 2-Butanol and Cyclobutanol share the same number of carbons and 882

oxygen, the ring in Cyclobutanol introduces a tendency toward ring-opening reactions, as depicted in the 883

yellow section of Figure 3. 884

Functional groups. Functional groups, e.g., hydroxyl, amino, ester, etc., play a pivotal role in 885

determining the chemical reactivity. For example, alcohols with a hydroxyl group (-OH) are prone to 886

oxidize more while the molecules with an amino group (-NH2) are generally resistant to oxidation under 887

mild conditions. A single replacement of a hydroxyl (-OH) group in 2-Butanol with an amino (-NH2) 888

group leads to 2-Butanamine, which has increased oxidation resistance, as described in the red part of 889

Figure 3. 890

Chiral centers. Chirality refers to the stereochemical property of a molecule that makes it non- 891

superimposable on its mirror image, leading to different chemical behaviors. The chirality is determined 892

by the chiral centers and their configurations, i.e., R- and S-configuration 2, which describe the spatial 893

arrangement of the groups around the chiral centers. This leads to different interactions between other 894

molecules with chirality. For instance, (R)-2-Butanol and (S)-2-Butanol may interact differently with 895

other chiral substances. This is described in the purple part of Figure 3. 896

2The names of R and S come from the Latin word Rectus and Sinister, which means right and left, respectively.
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B Experimental details897

In this section, we provide the details of the experiments. All experimental code related to this paper is898

available at https://anonymous.4open.science/r/MolStructCoT and our experiments are based on899

a single run. Additionally, we used the packages including rouge-score==0.1.2 and nltk==3.8.1.900

B.1 Structure information analysis901

Here, we describe the detailed settings for the analysis in Appendix A. To evaluate the understanding of902

two recent LLMs: Llama3-8B-Instruct (Touvron et al., 2023) and GPT-4o (OpenAI and et al., 2024), we903

prompt the LLMs to infer the structural information from the given molecular SMILES string and text904

description of the molecule.905

Prompts given SMILES string. First, we asked LLMs to infer the structural information from the906

SMILES string, with the prompt described in Table 10.907

Table 9: Prompts for structure information analysis given SMILES string.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery.
Given the SMILES representation of a molecule, your job is to predict the structural information of the
molecule.
The structural information of the molecule caption includes the molecular formula, the length of the
longest carbon chain, the number of aromatic rings, the IUPAC name of all the rings, all the functional
groups, the number of chiral centers with S and R configurations each, the molecular weight, the
IUPAC name of the molecule.
The functional group and ring IUPAC names should be on the list. The number of chiral centers should
also be format {"S": , "R": }.
Your response should only be in the JSON format following {"molecular formula": , "functional group":
, "longest carbon chain length": , "aromatic ring": , "ring IUPAC name":, "chiral": {"S": , "R": },
"weight": , "IUPAC name": }.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE. DO NOT
CHANGE THE JSON KEY NAMES.

Input prompt: Input: <SMILES>

Prompts given text description of molecules. Next, we asked LLMs to infer the structural information908

from the text description of the molecule, with the prompt described in Table 9.909
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Table 10: Prompts for structure information analysis given text description.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery.
Given the caption of a molecule, your job is to predict the structural information of the molecule.
The molecule caption is a sentence that describes the molecule, which mainly describes the moleculeś
structures, properties, and production.
The structural information of the molecule caption includes the molecular formula, the length of the
longest carbon chain, the number of aromatic rings, the IUPAC name of all the rings, all the functional
groups, the number of chiral centers with S and R configurations each, the molecular weight, the
IUPAC name of the molecule.
The functional group and ring IUPAC names should be on the list. The number of chiral centers should
also be format {"S": , "R": }.
Your response should only be in the JSON format following {"molecular formula": , "functional group":
, "longest carbon chain length": , "aromatic ring": , "ring IUPAC name":, "chiral": {"S": , "R": },
"weight": , "IUPAC name": }.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE. DO NOT
CHANGE THE JSON KEY NAMES.

Input prompt: Input: <Description>
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B.2 Molecule-to-text910

Here, we describe the detailed settings for the experiments of molecule-to-text in Section 4.1. Note that911

we used four A100-80GB GPUs for fine-tuning.912

Hyperparameters. The hyperparameters for the specialist models are provided in Table 11. Note913

that MolT5-large was not trained for the same number of epochs as the other models due to limited time914

constraints.
Table 11: Hyperparameters for molecule captioning.

Hyperparameter MolT5-base MolT5-large ChemT5-small ChemT5-base

Batch size 8 4 8 8
Learning rate 2e−4 2e−4 6e−4 6e−4

Epochs 250 220 250 250
Warmup ratio 0 0 0.1 0.1
Weight decay 0.01 0.01 0 0
Lr scheduler linear linear linear linear

915

Prompts. The prompts used for the generalist models are described in Table 15. We primarily followed916

the prompt presented by (Li et al., 2024).917

Table 12: Prompts for generalist models in text-based molecule generation task.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery.
Given the SMILES representation of a molecule and structural description of the molecule, your job is
to predict the caption of the molecule.
The molecule caption is a sentence that describes the molecule, which mainly describes the molecule’s
structures, properties, and production.

Example 1:
Instruction: Given the SMILES representation of a molecule, predict the caption of the molecule.
Input: <SMILES><MSR >
Your output should be: {"caption": <Description>}
. . .
Example k:
Instruction: Given the SMILES representation of a molecule, predict the caption of the molecule.
Input: <SMILES><MSR >
Your output should be: {"caption": <Description>}

Your response should only be in the JSON format above; THERE SHOULD BE NO OTHER CON-
TENT INCLUDED IN YOUR RESPONSE.

Input prompt: Input: <SMILES><MSR >
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B.3 Text-to-molecule 918

Here, we described the detailed settings for the experiments of text-to-molecule in Section 3.3. Note that 919

we also used four A100-80GB GPUs for fine-tuning. 920

Hyperparameters. The hyperparameters for the reasoning and answering module for the specialist 921

models are provided in Table 13 and Table 14, respectively. Note that MolT5-large was not trained for the 922

same number of epochs as the other models due to limited time constraints. 923

Table 13: Hyperparameters for the reasoning module of text-based molecule generation.

Hyperparameter MolT5-base ChemT5-small ChemT5-base

Batch size 8 8 8
Learning rate 1e−3 6e−4 6e−4

Epochs 250 250 250
Warmup ratio 0.1 0 0
Weight decay 0 0 0
Lr scheduler cosine linear linear

Table 14: Hyperparameters for the answering module of text-based molecule generation.

Hyperparameter MolT5-base MolT5-large ChemT5-small ChemT5-base

Batch size 8 4 8 8
Learning rate 1e−3 1e−3 6e−4 6e−4

Epochs 250 140 250 250
Warmup ratio 0.1 0.1 0 0
Weight decay 0 0 0 0
Lr scheduler cosine cosine linear linear

Reasoning accuracy The accuracies for molecular formula, longest carbon chain length, number 924

of aromatic rings, chirality, and IUPAC names are computed by exact match. The accuracies for ring 925

compounds and functional groups are computed by the ratio of intersection between the set of true and 926

generated CoTs. Lastly, the accuracy for molecular weight is considered correct if the generated weight is 927

within 95% to 105% of the true weight. 928
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Prompts. The prompts used for the generalist models are described in Table 12. We also primarily929

followed the prompt presented by (Li et al., 2024).930

Table 15: Prompts for the generalist models in molecule captioning task.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery.
Given the caption of a molecule, your job is to predict the SMILES representation of the molecule.
The molecule caption is a sentence that describes the molecule, which mainly describes the molecule’s
structures, properties, and production.
You can infer the molecule SMILES representation from the caption.
Before you infer the molecule SMILES representation, YOU SHOULD FIRST GENERATE the
molecular formula, the length of the longest carbon chain, the number of aromatic rings, the IUPAC
name of all the rings, all the functional groups, the number of chiral centers with S and R configurations
each, the molecular weight, the IUPAC name of the molecule.

Example 1: Instruction: Given the caption of a molecule, predict the SMILES representation of the
molecule.
Input: <Description><MSR >
Your output should be: {"molecule": <SMILES>}
. . .
Example k: Instruction: Given the caption of a molecule, predict the SMILES representation of the
molecule.
Input: <Description><MSR >
Your output should be: {"molecule": <SMILES>}

You should FIRST generate the structural information following the examples above, and then provide
the JSON format of the molecule SMILES based on that.
NOTE THAT THE SMILES REPRESENTATION MUST BE IN THE JSON format above {"molecule":
}. THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR JSON. DO NOT CHANGE
THE JSON KEY NAME.

Input prompt: Input: <Description>
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B.4 Ablation study 931

Here, we describe the detailed settings for the ablation study. 932

Prompts for ChemCrow. The prompts used for ChemCrow (M. Bran et al., 2024) are described in 933

Table 16 and Table 17. Notably, it was not able to apply few-shot learning for ChemCrow as it was not 934

applicable as the original prompt proposed in ChemCrow does not include any few-shot setting. 935

Table 16: Prompts for molecule captioning with ChemCrow.

Head prompt: Given the SMILES representation of a molecule and structural description of the
molecule, your job is to predict the caption of the molecule.
"Final Answer" follows the format: Final Answer: {"caption": }

Input prompt: The SMILES representation of the molecule is as follows: : <SMILES>

Table 17: Prompts for text-based molecule generation with ChemCrow.

Head prompt: Given the caption of a molecule, your job is to predict the SMILES representation of
the molecule.
The molecule caption is a sentence that describes the molecule, which mainly describes the molecule’s
structures, properties, and production.
You can infer the molecule SMILES representation from the caption.
"Final Answer" follows the format: Final Answer: {"molecule": }

Input prompt: The caption is as follows: <Description>
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C Additional experimental results936

In this section, we provide additional experimental results including several concrete examples of generated937

samples.938

C.1 Molecule-to-text939

Here, we show the samples of molecule captioning, i.e., generated text descriptions of given molecules in940

Figure 9. Notably, we show the generated samples from base-sized models for fair comparison.941

Ground TruthChemT5-base + OursChemT5-baseMolT5-base + OursMolT5-baseInput
The molecule is a 1,3,4-
oxadiazole substituted by a 2-
chlorophenyl group at position 2 
and a 5-methyl-2-thienyl group at 
position 5. It is a member of 
thiophenes, a member of 1,3,4-
oxadiazoles and a member of 
monochlorobenzenes.

The molecule is a member of the 
class of 1,3,4-oxadiazoles that is
1,3,4-oxadiazole which is
substituted at positions 2 and 5 by 
2-chlorophenyl and 5-methyl-2-
(thiophen-2-yl)-1,3,4-oxadiazol-5-yl 
groups, respectively. It is a 
member of 1,3,4-oxadiazoles, a 
member of monochlorobenzenes
and a member of thiophenes.

The molecule is a 2,2'-bithiophene 
that is 1,3,4-oxadiazole bearing
2,2'-bithiophen-5-yl and 5-methyl-
2-chlorophenyl groups at positions 
2 and 5 respectively. It is a 
member of 1,3,4-oxadiazoles and 
a member of monochlorobenzenes.

The molecule is a 1,3,4-
oxadiazole that is 1,3,4-
oxadiazole substituted by a 2-
chlorophenyl group at position 2, a 
5-methylthiophen-2-yl group at 
position 5 and a 2-chlorophenyl 
group at position 2. It is a member
of 1,3,4-oxadiazoles and a 
member of monochlorobenzenes.

The molecule is a member of the 
class of 1,2,4-thiazoles that is
1,2,4-thiazole which is substituted
at positions 3 and 5 by 4-
chlorophenyl and 4-methylphenyl 
groups, respectively. It is a 
member of 1,2,4-thiazoles, a 
member of monochlorobenzenes
and a member of 
monochlorobenzenes.

The molecule is an 
organosulfonate oxoanion resulting
from the removal of a proton from
both of the sulfo groups of 5-[(4-
acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid. It is a conjugate base of a 
lissamine fast red (acid form).

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of the 
sulfo groups of 5-[(4-acetamido-
2-sulfophenyl)diazenyl]-6-amino-
4-hydroxynaphthalene-2-
sulfonic acid. It is a conjugate
base of a p-acetamido-2-
sulfobenzene-1-sulfonic acid.

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of the 
sulfo groups of 7-amino-4-[(4-
acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid. It is a conjugate base of a 7-
amino-4-[(4-acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid.

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of the 
sulfo groups of 5-[(4-acetamido-
2-sulfophenyl)diazenyl]-6-amino-
4-hydroxynaphthalene-2-
sulfonic acid. It is a conjugate
base of a 5-[(4-acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid.

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of the 
sulfo groups of 4-amino-5-[(4-
acetamido-5-
sulfophenyl)diazenyl]naphthalen
e-2,7-disulfonic acid. It is a 
conjugate base of a 4-amino-5-[(4-
acetamido-5-
sulfophenyl)diazenyl]naphthalene-
2,7-disulfonic acid.

The molecule is a palmitate ester 
resulting from the formal
condensation of the carboxy group 
of palmitic acid with the hydroxy 
group of tetradecan-1-ol. It has a role
as a bacterial metabolite and a fungal
xenobiotic metabolite. It is a 
hexadecanoate ester and a wax ester. 
It derives from a tetradecan-1-ol.

The molecule is a palmitate ester 
resulting from the formal
condensation of the carboxy group 
of palmitic acid with the hydroxy 
group of tetradecan-1-ol. It is a wax 
ester and a hexadecanoate ester. It 
derives from a tetradecan-1-ol.

The molecule is a wax ester obtained
by the formal condensation of 
palmityl alcohol with dodecan-1-ol. 
It is a wax ester and an octadecanoate
ester. It derives from a dodecan-1-ol.

The molecule is a palmitate ester 
resulting from the formal
condensation of palmitic acid with
tetradecan-1-ol. It is a hexadecanoate
ester and a wax ester. It derives from a 
hexadecanoic acid.

The molecule is a palmitate ester 
resulting from the formal
condensation of palmitic acid with
palmityl alcohol. It has a role as a 
bacterial metabolite. It is a wax ester 
and a wax ester. It derives from a 
hexadecan-1-ol.

Figure 9: The generated samples of molecule captioning.
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C.2 Retrosynthesis 942

Here, we show the samples of retrosynthesis, i.e., generated reactants of given product in Figure 10. 943

Ground TruthMol-Instructions+MSRMol-InstructionsProduct

Figure 10: The generated samples of retrosynthesis.
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C.3 Text-to-molecule944

Here, we show the samples of text-based molecule generation, i.e., generated molecules for the given945

text description in Figure 11. Notably, we show the generated samples from base-sized models for fair946

comparison.947

Ground TruthChemT5-base + OursChemT5-baseMolT5-base + OursMolT5-baseInput
The molecule is an ammonium ion 
resulting from the protonation of 
the nitrogen of alvarine. It is a 
conjugate acid of an alverine.

The molecule is a quinolone 
consisting of quinolin-4(1H)-one 
carrying a heptyl substituent at 
position 2 and a hydroxy group at 
position 3. It has a role as a 
signalling molecule.

The molecule is a benzodioxole
that consists of piperidine bearing
1,3-benzodioxol-5-yloxy)methyl
and 4-fluorophenyl substituents at 
positions 3 and 4 respectively; the 
(3S,4R)-diastereomer. Highly
potent and selective 5-HT uptake
inhibitor that binds with high affinity
to the serotonin transporter (Ki = 
0.05 nM). Ki values are 1.1, 350 
and 1100 nM for inhibition of [3H]-
5-HT, [3H]-l-NA and [3H]-DA 
uptake respectively. Displays 
minimal affinity for alpha1-, alpha2-
or beta-adrenoceptors, 5-HT2A, 5-
HT1A, D2 or H1 receptors at 
concentrations below 1000 nM, 
however displays weak affinity for 
muscarinic ACh receptors (Ki = 42 
nM). Antidepressant and anxiolytic
in vivo. It has a role as an 
antidepressant, an anxiolytic drug, 
a serotonin uptake inhibitor, a 
hepatotoxic agent and a P450 
inhibitor. It is a member of 
piperidines, a member of 
benzodioxoles, an organofluorine
compound and an aromatic ether. 
It derives from a 
monofluorobenzene. It is a 
conjugate base of a 
paroxetinium(1+).

Figure 11: The generated samples of text-based molecule generation.

Additionally, we provide the results of generalist models in Table 18. Note that it is natural to show no948

consistent enhancement for generalist models as they lack reasoning ability as shown in Table 6.949

Table 18: Text-based Molecule Generation Performance for generalist models. The teal color indicates the
improvement while the red color indicates the reduction.

BLEU Exact Levenshtein ↓ MACCS FTS RDK FTS Morgan FTS FCD↓ Validity

Models Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆

Generalists (10-shot learning)

Llama3 0.251 - 0.007 - 117.30 - 0.586 - 0.352 - 0.276 - 13.11 - 0.629 -
+MSR 0.259 0.008 0.008 0.001 109.77 7.53 0.579 0.007 0.279 0.073 0.344 0.068 4.47 8.64 0.669 0.040

GPT-4o 0.521 - 0.079 - 40.87 - 0.797 - 0.496 - 0.583 - 3.67 - 0.881 -
+MSR 0.509 0.012 0.088 0.009 41.68 0.081 0.783 0.014 0.498 0.002 0.571 0.012 1.57 2.10 0.846 0.035
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C.4 Ablation study 950

Comparison to ChemCrow. To validate the efficacy of our MSR, we compare our method with 951

ChemCrow (M. Bran et al., 2024), which has employed CoTs for various chemical tasks. The comparative 952

results are provided in Table 19 and Table 20. One can observe that ChemCrow shows limited performance 953

in both molecule captioning and text-based molecule generation tasks. It is notable that the comparison 954

may not be entirely appropriate, as ChemCrow is primarily designed for practical synthesis tasks, as 955

the reviewer mentioned. Nevertheless, we included comparisons with ChemCrow to provide additional 956

insights, as they share a similar motivation: enriching large language models (LLMs) with a chemistry- 957

aware chain-of-thoughts. 958

Table 19: Comparison to ChemCrow in molecule captioning. The specialist model indicates our results from
MolT5-large while the generalist model indicates the one from GPT-4o.

Models BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

ChemCrow (GPT-4o) 0.162 0.078 0.299 0.097 0.211 0.225
Ours (GPT-4o) 0.249 0.139 0.386 0.179 0.300 0.303

Ours (ChemT5-base) 0.639 0.560 0.687 0.553 0.626 0.657

Table 20: Comparison to ChemCrow in text-based molecule generation. The specialist model indicates our
results from GPT-4o while the generalist model indicates the one from .

Models BLEU Exact Levenshtein ↓ MACCS FTS RDK FTS Morgan FTS FCD ↓ Validity

ChemCrow (GPT-4o) 0.306 0.194 56.46 0.772 0.632 0.555 2.31 0.851
Ours (GPT-4o) 0.509 0.088 41.68 0.783 0.498 0.571 1.57 0.846

Ours (ChemT5-base) 0.878 0.421 12.76 0.924 0.856 0.804 0.26 0.982

Additional molecular descriptors. In addition to the proposed six structural components, we conducted 959

experiments using three more advanced molecular descriptors: the Morgan fingerprint and two electronic 960

properties—topological polar surface area (TPSA) and molar refractivity (MR). Specifically, the Morgan 961

fingerprint encodes local substructures within a specified radius; TPSA represents the sum of the surface 962

areas of all polar atoms and their attached hydrogen atoms; and MR quantifies the total polarizability of a 963

molecule. 964

To verify the effectiveness of each additional descriptor, we evaluated the performance of molecule 965

captioning using ChemT5-small. We provide the results in Figure 12. We observed that incorporating all 966

three additional descriptors together did not further improve the performance of MSR, although applying 967

each additional descriptor individually improved performance. This validates the importance of structural 968

information and the sufficiency of our proposed structural components. 969
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0.50

0.55
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Ours+F+T+M
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Figure 12: The impact of additional molecular descriptors.
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D Usage of AI assistants970

In preparing this work, we utilized AI-based writing assistants to refine sentence structure, correct971

grammatical errors, and enhance readability. These tools were employed only for rephrasing and language972

improvements, ensuring that the technical content, methodology, and experimental findings remained973

entirely authored by the researchers. The use of AI assistance was limited to editorial enhancements974

without influencing the originality or scientific contributions of the paper.975

24



E Scientific Artifacts 976

The License for artifacts. All datasets and software tools used in this work adhere to their respective 977

licenses. Specifically, we employed publicly available datasets such as ChEBI-20 and L+M under 978

their permitted usage terms. Additionally, external tools like RDKit were used following their open- 979

source license. We release our trained models and code in https://anonymous.4open.science/r/ 980

MolStructCoT under an appropriate open-source license to facilitate reproducibility. 981

Artifact use consistency with intended use. The datasets and tools utilized in our study were used 982

in accordance with their intended purpose. For example, ChEBI-20 and L+M datasets were originally 983

developed for molecule captioning and generation tasks, aligning with our research objectives. Similarly, 984

RDKit was employed for molecular structure analysis as intended by its developers. 985

Documentation of artifacts. We provide details in https://anonymous.4open.science/r/ 986

MolStructCoT. 987
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