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Abstract

Knowledge distillation from Large Language Models (LLMs) to locally hosted
Small Language Models (SLMs) provides advantages for Data Analysis Code
Generation (DACG) such as privacy protection. However, achieving effective
distillation without resource-intensive training is challenging. This paper investi-
gates whether LLMs can distill knowledge to SLMs through In-Context Learning
(ICL), a training-free method for rapid task adaptation. We present the DARGO:
Distillation and Adaptive Reasoning-Guided Orchestration framework, which
facilitates automatic knowledge distillation from LLMs to SLMs. DARGO con-
sists of three phases: exploration through an Model Orchestration Interface
(MOI), Memory Collection of successful trajectories, and Knoweldge-driven In-
ference. We evaluate DARGO on three challenging DACG benchmarks (WIKITQ,
TABMWP, and BIRD-SQL), each with in-domain training sets that enable de-
tailed analysis of knowledge distillation effectiveness. DARGO demonstrates a
substantial relative performance improvement of 27.5% on average for the student
SLMs. To further observe generalization capabilities, we evaluate the DARGO
across different teacher-student model combinations, knowledge transfer scenarios,
and unified memory approaches for more advanced, test-only data analysis tasks.
Our findings contribute a novel perspective on distillation methods that enhance
performance for SLMs while avoiding intensive fine-tuning. The source code is
available: https://github.com/accpatrick/DarGO.

1 Introduction

Data Analysis Code Generation (DACG) automates the conversion of natural language queries into
executable code, empowering information extraction and analysis from tabular data efficiently. This
process enhances productivity, reduces the technical barrier for data analysis, and allows data scientists
to focus on deriving insights, ultimately supporting more effective decision-making [24, 17, 14]. This
is a challenging task since it not only requires the capability of code generation but also understanding
complex tabular data.

Large Language Models (LLMs) have demonstrated remarkable performance across diverse, complex
tasks [49, 37, 8, 71, 11]. Leveraging LLMs or LLM agents for automatic code generation from user
queries offers an effective solution [65, 56]. However, the integration of LLMs in DACG faces two
primary challenges: 1) Privacy concerns arise when utilizing closed-source LLMs such as GPT-4
[2] or Claude-3.5-Sonnet [40]. 2) Deploying large open-source models like Llama-3.1-405B [13] or
DeepSeek-v3 (671B) [31] can be challenging due to their large number of parameters. Balancing
these benefits and challenges is crucial for effective data science applications.
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Figure 1: Overview of the orchestration system of DARGO for data science code generation. Left:
Model Orchestration Interface (MOI) with abstraction lifting, orchestrated coding, and plan opti-
mization. Center: Memory Database Construction, including trajectory collection and case study
integration. Right: Knowledge-driven Inference and Planning, featuring RAG-based meta instruction
generation, and knowledge-driven code generation. R: Referenced GT Code. F: Functional Plans. O:
Orchestrated Coding.

Small Language Models (SLMs), such as Phi-3-mini [1] and Llama-3.1-8B [13], have gained attention
for their In-Context Learning (ICL) capabilities and ability to be locally deployed. These models
offer computational efficiency and enhanced data privacy, crucial for resource-constrained or privacy-
sensitive applications [21]. While SLMs have shown competitive performance in some general tasks
including natural language understanding [39] and code completion [7], their effectiveness in data
science code generation tasks remains an open question.

Fine-tuning is a common strategy to enhance SLM capabilities for complex tasks [42]. However,
this approach encounters several challenges in the domain of data science DACG. One primary
issue is the limited availability of high-quality training data. Professional tabular datasets, such as
relational databases, are often small or proprietary, restricting access to substantial corpora for training.
Additionally, the dual expertise required in both coding syntax and data understanding for accurate
annotation further constrains dataset scalability [30, 28]. This is reflected in recent benchmarks
for data science code generation, which typically contain around or fewer than 1,000 samples,
highlighting the complexity and resource constraints in this field [20, 3, 26, 70, 66]. Recent research
has explored distillation from LLMs to SLMs through fine-tuning on synthetic data [52, 36, 22]. While
this approach shows promise, several challenges persist. For example, the performance improvements
obtained from fine-tuning approaches can fail to generalize across different programming languages
or dialects, requiring re-training for each package update or new task [46, 23]. However, In-Context
Learning (ICL) can adapt to new requirements or tasks by providing relevant instructions or examples,
reducing the effort required for re-training or continual training. This raises our central research
question in DS code generation: Can LLMs distill knowledge to SLMs through In-Context Learning
(ICL)?

In this paper, we explore the potential of knowledge distillation from LLMs to SLMs via ICL. We
propose a novel Distillation and Adaptive Reasoning-Guided Orchestration framework that enables
an LLM to serve as a Teacher model guiding SLMs (Student models) in complex DACG tasks.
DARGO operates in three phases: exploration, memory database collection, and knowledge-
driven inference. During exploration, we employ the Model Orchestration Interface (MOI) that
allows an LLM to probe and analyze SLM code knowledge by converting questions into step-wise
functional plans and asking SLMs to infill the code for each plan. Then, successful collaborated
cases are stored in a memory databases. In the knowledge-driven inference phase, DARGO utilizes a
retrieval-augmented generation (RAG) approach that dynamically distills knowledge at inference
time by presenting relevant prior successful cases in a case-study format to guide the generation
process, which proves friendly to SLMs to absorb (Section 2.3).

We evaluate DARGO on three challenging tabular analysis benchmarks requring code genera-
tion:TABMWP [34], BIRD-SQL [29], and WIKITQ [41], where each feature fixed, non-overlapping
train–test splits to closer show how effective of knowledge distillation that DARGO is. The exper-
imental results demonstrate that the DARGO framework significantly improves the performance
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Original Code Executable Plan

1 import pandas as pd
2 import numpy as np
3 df = pd.read_csv(…)
4 df[‘acts’] = df[‘acts’].str.extract(‘…’)
5 df[‘stages’] = df[‘acts’].str.extract(‘…’)
6 df[‘acts_zscore’] = (df[‘acts’] …) / .std()
7 df[‘stages_zscore’] = (df[‘…’]) / .std()
8 threshold = 3
9 outliers = df[(np.abs(df[‘acts_zscore’]..
10
11 # Answer the Question
12 if not outliers.empty:
13 print(“Yes”)
14 else:
15 print(“No”)

1 # Load the data
2 [Fill Your Code]
3 # clean the data for acts, and stages
4 [Fill Your Code]
5
6 # compute z scores
7 [Fill Your Code]
8
9            …
10 # Answer the Question
11 [Fill Your Code]
12         …
13
14
15

Harmonized Code

1 # Load the data
2 df = pd.read_csv(file, del)
3 # clean the data for acts, and stages
4 for col in columns:
5 df[col] = pd.to_numeric(…)
6 …
7
8   # compute z scores
9   df[‘acts_zscore’] = (df[‘acts’] …) / .std()
10 df[‘stages_zscore’] = (df[‘…’]) / .std()
11       …
12   # Answer the Question
13 print(“Yes”) if outliers else print (“No”)
14
15

What is the percentage of documentary films? Calculation = 
DIVIDE(SUM(name = 'Documentary'), COUNT(film_id)) * 100

Question: 

CREATE TABLE film_category
(
  film_id INTEGER  NOT NULL
  …
  primary key (film_id, category_id)
)

CREATE TABLE category
(
  category_id INTEGER  NOT NULL
  …
  name TEXT NOT NULL
)

Data Input: 

SELECT CAST(SUM(IIF(T2.name = 'Documentary', 1, 0)) AS REAL) 
* 100 / COUNT(T1.film_id) FROM film_category AS T1 INNER 
JOIN category AS T2 ON T1.category_id = T2.category_id

SQLite:

…

What is the percentage of documentary films? 
Hint: Calculation = DIVIDE(SUM(name = 
'Documentary'), COUNT(film_id)) * 100

Question: 

CREATE TABLE film_category
(
  film_id INTEGER  NOT NULL
  …
  primary key (film_id, category_id)
)

CREATE TABLE category
(
  category_id INTEGER  NOT NULL
  …
  name TEXT NOT NULL
)

Database Input: 

SELECT CAST(SUM(IIF(T2.name = 'Documentary', 1, 
0)) AS REAL) * 100 / COUNT(T1.film_id) FROM 
film_category AS T1 INNER JOIN category AS T2 ON 
T1.category_id = T2.category_id

SQLite:

-- Step 1: Count the total number of films
WITH Total_Films AS (
    [Fill Your Sub-Query]
),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
     [Fill Your Sub Query]
),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

[Fill Your Sub-Query]
)

-- Step 4: Select the final result
SELECT percentage
FROM Percentage_Documentary;

Functional Plan:

-- Step 1: Count the total number of films
WITH Total_Films AS (
    SELECT COUNT(film_id) AS total_films
    FROM film_category),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
    SELECT COUNT(fc.film_id) AS documentary_films
    FROM film_category fc
    JOIN category c ON fc.category_id = c.category_id
    WHERE c.name = 'Documentary’),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

SELECT (df.documentary_films * 100.0 / tf.total_films) AS      
    percentage
    FROM Documentary_Films df, Total_Films tf) …

Orchestrated Codes
-- Step 1: Count the total number of films
WITH Total_Films AS (
    [Fill Your Sub-Query]
),

-- Step 2a: Filter of the table to get documentary films
Filtered_Documentary_Films AS (
     [Fill Your Sub Query]
),

-- Step 2b: Count the number of documentary films
Count_Documentary AS (

[Fill Your Sub-Query]
)

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

[Fill Your Sub-Query]
) …

Functional Plan:

Figure 2: Main steps of MOI demonstrated with a text-to-SQL task example. Teacher model converts
referenced code to a functional plan for Student models to complete. Teacher model iteratively
optimizes the plan until the Student model produces correct code. A Python code MOI example is
provided in Appendix D.1.

of SLMs across all datasets, validating the potential of our knowledge distillation approach via
ICL. Importantly, the memory produced for one student can guide other students, demonstrating
model-agnostic transfer. Additional cross-dataset experiments on CRT-QA [70], QRDATA [32], and
Infi-Agent [20] confirm that the distilled knowledge generalizes beyond the original training distribu-
tion. Taken together, our results show that lightweight, privacy-preserving SLMs can inherit much of
an LLM’s analytic expertise through ICL alone, making DACG practical in resource-constrained or
privacy-sensitive environments.

2 Methodology

2.1 Task Formulation

Given a natural language query qi ∈ Q, where Q = {q1, q2, . . . , qN} represents a set of N queries,
the corresponding tabular data or database schema information di ∈ D, where D = {d1, d2, . . . , dN},
then the Small Language Model (SLM) is tasked with generating an executable code snippet ci. This
code snippet must accurately answer the query qi with the associated data di. The function that maps
each query-data pair to its corresponding code snippet by SLMs is defined as fgen, and can be written
as:

ci = fgen(di, qi) for i = 1, 2, . . . , N. (1)

2.2 Model Orchestration Interface

The Model Orchestration Interface (MOI) is conducted between a Large Language Model (LLM),
a Teacher model, and a Student model, represented by the SLM. A Teacher LLM with superior
reasoning capabilities will often generate plans that are too abstract for a weaker Student SLM to
enact. These plans require decomposition and refinement to match the operational granularity of
the Student SLM. Through orchestrated mediation, the MOI dynamically adjusts plan granularity to
align with the SLM’s code capabilities whilst maintaining task conformance. The MOI is composed
of three key components: Abstraction Lifting, Orchestrated Coding, and Plan Optimization.

Abstraction Lifting (AL). In this phase, LLM generates a functional plan Pi = {si1, si2, . . . , siK}
based on a query qi, data input di, and the corresponding ground truth (gt) code c̃i. The ground truth
code c̃i can either be sourced from an existing dataset (BIRD-SQL) or generated by the Teacher
model when it is not directly available but a ground-truth answer string exists, such as WIKITQ and
TABMWP. This functional plan is defined as Lal(di, qi, c̃i), where Lal denotes the LLM performing
abstraction lifting. Each step sij in the plan corresponds to a key subtask derived from the query,
collectively forming a structured template outlining the solution process. These steps are annotated
by the LLM with descriptive comments and placeholders such as [Fill Your Code Here]
in Python or [Fill Your Sub-Query] in SQL, as shown in Figure 2, ensuring that the SLM
follows the logical flow of the entire plan and enables guided code generation. Unlike Chain-Of-
Thought [60] plans, which provide intermediate steps in continuous textual form, our approach
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Table 1: The 6 action types utilized by the LLM during the Model Orchestration Interface (MOI) to
optimize the plans for better understanding and code generation by SLMs

Action Type Expression Description

Decomposition step(x) → step(a),
step(b)

Split a complex step x into smaller, manage-
able steps such as step a and step b.

ALT step(x) → step(y) Replace a step x described by ambiguous or
incorrect messages with a clearer and correct
alternative step y.

ADD step(x) → step(x),
step(a)

Add a necessary step a to ensure the com-
pleteness of code logic.

DELETE step(x) → None Remove the unnecessary step x, which may
lead to misunderstanding by the SLM.

SIMPLIFY step(x) →
simple_step(x)

Replace a complex step x with a simpler
approach. For example, convert recursive
plans into iterative loops.

SWITCH packageA.step(x) →
packageB.step(x)

Use a simpler package to achieve the same
functionality. For example, conversion
from Package Linear Regression to
Correlation Coefficient to deter-
mine relationship between two variables.

bridges high-level problem understanding with low-level code implementation logic, allowing the
SLM to more effectively follow the plan for DACG.

Orchestrated Coding (OC). Once the functional plan Pi is provided, the Student SLM consid-
ers all context including the question and data input to generate the complete orchestrated code
ci = fgen(di, qi, Pi) in a single turn by filling all placeholders, ensuring the solution is correct and
executable. The results from executing this orchestrated code are then compared to those from a
reference solution (such as ground truth answer string or gt codes) to evaluate whether the SLM fully
understands both the data and the logic needed to answer the question. This comparison serves as
a key indicator of the problem-solving accuracy of SLM and alignment with the intended solution.
While the ground truth code may already be available from datasets or generated by the Teacher
model, orchestrated coding and abstraction lifting are crucial for a few reasons. First, AL breaks
down complex problem-solving tasks into manageable sub-tasks, with the potential to improve the
performance of the SLMs across a wide range of analytical queries by assisting them in understanding
modular structure. Additionally, error isolation can be grounded in the program structure, enabling
more precise identification of issues and contributing to optimized plans. This is supported by our
analysis in Section 3.6 that compares chain-of-thought with functional plans for exploration.

Plan Optimization (PO). The plan optimization process is an iterative procedure that unfolds
over multiple turns, denoted by t. During each iteration, the SLM refines the functional plan P t

i .
To formalize this interactive optimization process, we define an environment E = ⟨S,A,O, T ⟩,
following [72, 62, 16], where S represents the state space, A the action space (Table 1), and O the
observation space. In this context, the plan P t

i is embedded within the current state St
i , serving as a

structure that guides the SLM to generate code. The orchestrated code cti is the snippet produced by
performing the plan P t

i within the environment.

During each turn, the LLM observes oti, the outcome of executing orchestrated code cti generated by
the SLM, and selects an action ati from A to optimize the plan. For example, if a step stij contains an
error such as: "Step j: List players who was born before 1930 and after
1950", the LLM will apply an action ALT(·) to correct this, resulting in an updated plan P t+1

i

with the refined step st+1
ij as "Step j: List players who were born after 1930

and before 1950". This iterative process can be represented as:

P t+1
i = {sti1, sti2, . . . , st+1

ij , . . . , stiK},
st+1
ij = Lopt

(
stij , o

t
i, a

t
i

)
.

(2)
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Here, st+1
ij is updated by the optimization function Lopt of the LLM, which integrates the current

observation oti, action ati and sub-optimal step stij . The system transitions from state St
i to St+1

i

through T (St
i ,At

i), resulting in the updated plan P t+1
i . The SLM then generates the updated

orchestrated code ct+1
i = fgen(qi, di, P

t+1
i ) for the new plan. This process repeats until the output is

correct or the maximum number of iterations T is reached.

2.3 Memory Database Construction

After interactions between the LLM and SLM in MOI, the finalized states are stored in a memory
database. This database includes the correct orchestrated codes, along with the context of the
question and data input. This process ensures that the SLM can efficiently reference and apply related
knowledge to new, unseen queries.

### Case Study: Average Weight Calculation for Specific Players

### Question: 
What is the average weight of Jamarr Sanders and Robert Williams?

### Table Info: 
- **Columns**: Name, Height, Weight (lbs.), Position, Class, Hometown, Previous Team(s)
- **Sample Data**:
  - Jamarr Sanders: Weight 210 lbs.
  - Robert Williams: Weight 210 lbs.

### Objective:
To calculate the average weight of the players Jamarr Sanders and Robert Williams from the given dataset.

### Explanation:
1. **Load Data**: The data is loaded from a tab-separated values (TSV) file.
2. **Filter Data**: Rows corresponding to the names "Jamarr Sanders" and "Robert Williams" are filtered from the dataset.
3. **Calculate Average**: The average weight of the filtered rows is computed.
4. **Output**: The result is printed as an integer.

By following these steps, the student can understand how to filter specific rows in a dataset and perform calculations on the filtered data. This case 
demonstrates the practical application of data manipulation and analysis using pandas in Python.

-- Step 1: Count the total number of films
WITH Total_Films AS (
    SELECT COUNT(film_id) AS total_films
    FROM film_category),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
    SELECT COUNT(fc.film_id) AS documentary_films
    FROM film_category fc
    JOIN category c ON fc.category_id = c.category_id
    WHERE c.name = 'Documentary’),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

SELECT (df.documentary_films * 100.0 / tf.total_films) AS      
    percentage
    FROM Documentary_Films df, Total_Films tf) …

Orchestrated Codes

Figure 3: An example of a generated case study to enhance comprehension for SLMs.

Case Study Translation. Rather than only storing raw, heterogeneous cases that consist of a query,
plan, and orchestrated code in a simple stacked format, the LLM refines these into case study-like
representations. These representations distill the reasoning behind the success of each example, serv-
ing as an intermediate abstraction that emphasizes the underlying rationale for the chosen approach.
Each case study Gi contains a Case Name, Question, Schema / Value Information,
Objective, and an Explanation of how the solution code successfully addresses the query
using the provided data. An example of this structure is provided in Figure 3. As shown in Figure 1
(a)-(b), DARGO performs case study translation only for correct cases, because reflecting on incorrect
cases without supervision often introduces hallucinations.

Correct Case Collection. The Correct Case Collection, denoted as M, consists of cases where
the SLM has generated correct orchestrated codes. Each case Mi in this collection contains the
natural language query qi, the corresponding data di, the correct orchestrated code ĉi, which contains
descriptive comments as shown in Figure 2 (right), and the case study Gi illustrating the solution.
The set M is the union of all such individual cases:

M =
⋃
i

Mi, Mi = (qi, di, ĉi, Gi) . (3)

2.4 Knowledge Distillation from Memory Database

This part presents a RAG-based method of knowledge distillation as a global instruction, termed as
meta-instruction. This instruction then guides the SLM in learning how to plan and generate code
more accurately for unseen queries.

RAG-based Knowledge Distillation for Meta Instruction Generation. We propose a Retrieval-
Augmented Generation (RAG) framework for localized instruction distillation. In the retrieval
phase, we identify the top relevant examples from a memory database M via an embedding model.
Relevance is measured via a function D, expressed as R(qi) = D(qi,M, k), where k is number of
most relevant cases.
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Model WIKITQ TABMWP BIRD-SQL

Accuracy Grad. 1-6 Grad. 7-8 Total Sim. Med. Chal. Total

CodeLlama-7B 11.80 26.55 13.11 20.50 43.92 18.00 11.76 24.40
CodeLlama-13B 34.90 37.27 24.22 31.40 45.27 19.60 17.65 26.80
StarCoder2-7B 20.70 34.00 27.56 31.10 41.22 21.60 17.65 26.60
StarCoder2-15B 36.60 39.09 33.14 36.50 43.92 29.20 14.71 30.60
Phi-3-Small-7B 27.00 46.36 38.00 42.60 52.03 28.40 10.78 31.80
Phi-3-Medium-14B 44.80 59.45 46.00 53.40 51.35 32.80 13.73 34.40

SLM Performance
Phi-3-Mini-3.8B 32.50 44.18 38.89 41.80 38.51 21.20 11.76 24.40
+ Chain-Of-Thought 27.70 46.36 35.33 41.40 34.46 22.00 12.75 23.80
+ Static Few-Shot 23.00 37.27 34.89 36.20 47.97 20.80 7.84 26.20
+ Dynamic Few-Shot 16.60 51.45 52.89 52.10 42.57 18.80 11.76 24.40
+ DSPy Distillation (Few Shot) 26.70 42.70 37.60 40.40 36.00 19.80 11.00 22.80
+ ReGAL Distillation 36.10 44.73 38.22 41.80 35.14 14.80 12.75 20.40
+ DARGO Meta Instruction (Ours) 41.10 61.27 56.44 59.10† 51.35 30.40 16.67 33.80

Table 2: Performance comparison of various SLMs on WIKITQ, TABMWP, and BIRD-SQL, with
results presented in accuracy percentages. Improvements of our DARGO methods over the End-to-
End Code Gen baseline are highlighted using different intensities of olive color. Bold indicates best
results for Phi-3-Mini, while underlines denote second-best results.[†] means a hybrid with dynamic
few-shot with DarGO. Detailed instructions of when to use few shot is in Appendix A.4.

Then, as shown in Figure 1 (d), the case studies of these retrieved examples are then fed into the SLM
to extrapolate plans for solutions, adhering them to the specific query. Here, SLM performs a sec-
ondary distillation, extracting shared knowledge patterns from these case studies, which have already
been distilled by the LLM (Teacher model), to generate instructions, noted as Meta-Instruction
(Im(qi)), precisely specific to the current query at hand. The process is formalized:

Im(qi) = fagg(qi,R(qi)) (4)

where fagg is an aggregation function applied by the SLM. By doing so, SLMs can generate more
relevant and contextually appropriate instructions, effectively bridging the gap between general
knowledge and query-specific requirements.

Knowledge-Driven Inference. Harnessing the distilled instructions I = Im(qi) from the memory
database, the SLM initially formulates a structured plan pgen, which it subsequently employs to
generate code for new queries (Figure 1 (e)). For a given query qi and its associated data di, this
process unfolds as follows:

Pgen = fplan(I, di, qi), ci = fgen(di, qi, Pgen), (5)

where fplan denotes the planning function executed by the SLM. This plan serves as a blueprint,
guiding the following code generation phase. The SLM then employs the function fgen, which takes
Pgen along with the original query qi and data di to generate the final code ci.

3 Experiments

In this section, we first describe datasets and evaluation metrics in Section 3.1, followed by imple-
mentation details in Section 3.2. We then present a comprehensive experiments aimed at addressing
three key research questions:

• RQ1 (Section 3.3): How effective is DARGO for DACG?
• RQ2 (Section 3.4): Does DARGO and the knowledge it distills generalize across models?
• RQ3 (Section 3.5): How does DARGO compare to popular Lora fine-tuning?
• RQ4 (Section 3.6): Are all components of DARGO necessary?

3.1 Datasets and Metrics

We evaluate our approach on the DACG datasets WIKITQ [41], TABMWP [34], and BIRD-SQL [29].
These datasets vary in data complexity and task requirements. Full dataset statistics are provided in
Appendix B.1. WIKITQ features operations such as counting, comparison, and aggregation, and we

6



Table 3: Zero-shot performance of DARGO on
different SLMs.Improvements (in parentheses)
show gains over the Baseline.

Model WIKITQ TABMWP BIRD-SQL
StarCoder-15B as Student

Baseline 36.60 36.50 30.60
+ DARGO-MI 45.70 (↑9.10) 43.93 (↑7.43) 38.40 (↑7.80)

Llama-3.1-8B as Student
Baseline 34.30 42.90 40.20

+ DARGO-MI 39.80 (↑5.50) 49.10 (↑6.20) 44.20 (↑4.00)

Table 4: Zero-shot performance of DARGO on
different teacher LLMs. → means distill knowl-
edge from teacher LLMs to student SLMs.

Model WIKITQ TABMWP BIRD-SQL
Llama-3.3-70B → Phi-3-mini

Baseline 41.80 32.50 24.40
+ DARGO-MI 48.80 (↑7.00) 42.60 (↑10.10) 36.20 (↑11.80)

Llama-3.3-70B → Llama-3.1-8B
Baseline 42.90 34.30 40.20

+ DARGO-MI 50.40 (↑7.50) 42.00 (↑7.70) 47.00 (↑6.80)

select 1,000 test and 2,000 training examples. Accuracy is measured using the official scripts from
Pasupat and Liang [41]. TABMWP involves mathematical word problems in tabular data, with 1,000
questions used for memory construction and a separate 1,000 test set. Performance is evaluated by
comparing answers to ground truth. BIRD-SQL presents relational databases with both semantic
parsing and analytical tasks. We adopt the 1,000-example mini-train set from Qu et al. [44] and
evaluate on a 500-example mini-dev set using execution accuracy (EX).

3.2 Implementations

Setup. We conduct experiments in two settings. For TABMWP and WIKITQ, we follow Stengel-
Eskin et al. [50] to first have a Teacher LLM (GPT-4o) generate silver programs during exploration.
At inference, an SLM produces Python code, which is executed to obtain a final answer string for
comparison with the ground truth answer. For BIRD-SQL, no silver code is required because the
dataset already contains ground-truth SQL. RAG-based Meta Instructions employ k = 3 nearest
neighbors (via CodeT5+ [59]). Further implementation details appear in Appendix B.

Baselines Models. We consider an SLM suitable if it can perform in-context learning and has
under 15B parameters for one A100 80G GPU inference. For closed-source models, we choose
GPT-35-Turbo as SLM since it has faster inference speed and its performance falls behind advanced
models (e.g., GPT-4). We classify them into three categories: Orchestration Models, where GPT-4o
is the Teacher, and Phi-3-mini-128k [1], Llama-3.1-8B [13] serve as Students for verifying the
generalization of our approach. Evaluation Models, including Phi-3, CodeLlama, and StarCoder2
families. Knowledge-Transmission Models, containing GPT-35-Turbo and Llama-3.1-8B, used to test
knowledge transmission in Section 3.4.

Baseline Methods Implementation. Baseline methods include zero-shot end-to-end, Chain-of-
Thought [60], static few-shot [6], and dynamic RAG-based few-shot [15] with memory database by
DARGO since python tasks do not have GT codes but answer string, each with three examples. We
also compare two distillation frameworks, DSPy [25] and ReGAL [51], both using GPT-4o as the
teacher.

3.3 Overall Results

Table 2 highlights three key aspects:

1) Effectiveness of DARGO: Distilling knowledge via DARGO propels Phi-3-mini to outperform
both End-to-End Code Generation and Chain-of-Thought on all SLM datasets, achieving relative gains
of 17.5% on TABMWP to 38.5% on BIRD-SQL. Moreover, Phi-3-mini with DARGO often surpasses
larger models (2–3× parameters), outperforming CodeLlama-13B by 7.0% and StarCoder2-15B by
3.2% on BIRD-SQL, and rivaling Phi-3-Medium (4× parameters) across all benchmarks.

2) Comparison with Advanced Distillation Strategies. We implement two advanced distillation
pipelines, DSPY and REGAL, on GPT-4o and Phi-3-mini for fair comparison, reporting the best
performance of REGAL across different numbers of reusable helper functions (1–10) to minimize
bias. As shown in Table 2, DARGO outperforms both approaches on all three datasets and difficulty
levels.
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Figure 4: Knowledge transmission for from the memory database between GPT-4o and Phi-3-mini
across three datasets.

DSPY is robust for general QA but struggles in execution-based DACG settings because its exact-
match metric does not account for valid alternative program solutions. Moreover, DSPY relies on
few-shot demonstrations rather than comprehensive knowledge distillation, reflecting the broader
challenges of demonstration-based methods for complex DACG. By contrast, DARGO prioritizes
task-specific instructions to guide complex operations, shifting focus from prompt optimization to
experience summarization.

We also evaluate REGAL, which provides Reusable Python Helper Functions from the memory
database. Although promising for tightly scoped, domain-specific tasks, REGAL proves less ef-
fective for cross-domain DACG (see Table 2). Error analysis shows it often produces narrowly
tailored functions (e.g., get_least_points_team, filter_senator_by_year), which
often directly reference the data schema and are therefore irrelevant on new tasks. In contrast, the
distilled knowledge of DARGO is textual, focusing on reasoning-level challenges, and is therefore
not syntactically fixed to a specific domain or input.

3.4 Generalization

Here, we conduct experiments to test generalization of DARGO framework:

Is DARGO model-agnostic to SLMs? To investigate the breadth of the DARGO pipeline beyond a
single teacher–student configuration, we perform two complementary experiments. (1) We apply the
complete workflow to two additional student models: StarCoder2-15B and Llama-3.1-8B
while keeping GPT-4o as the teacher. As summarized in Table 3, both students outperform their
respective baselines on all three datasets, indicating that DARGO consistently improves a variety of
SLM architectures. (2) To examine robustness with respect to the teacher LLM, we replace GPT-4o
with Llama-3.3-70B. The results in Table 4 replicate the earlier gains, demonstrating that gains
of DARGO are not confined to a specific teacher model.

Is the distilled knowledge only useful to the student model participating in Orchestration?
Next, we examine whether the knowledge distilled through DARGO is only beneficial to the student
model involved in the orchestration phase. Even though this has been proven effective, it would be
costly if exploration phase is repeated for new SLMs. Therefore, we test the distilled instructions on
two new SLMs, Llama-3.1-8B and GPT-35-Turbo, both of which have not participated in the
exploration between GPT-4o and Phi-3-mini.

Figure 4 shows that meta instructions (MI) derived from our memory database (jointly updated
by GPT-4o and Phi-3-mini) produce siginificant improvements over baselines. Specifically,
Llama-3.1-8B achieves an average relative improvement of 14.3%, while GPT-35-Turbo sees
a 30.9% gain. These results indicate that the distilled knowledge is not tied to a specific student
model; it can effectively transfer to new models without additional fine-tuning, offering a scalable
means of augmenting emerging SLMs.
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Table 5: Performance of DARGO on different
SLMs. Improvements (in parentheses) are over
the Baseline.

Model CRTQA QRDATA INFI-AGENT
Phi-3-mini as Student

Baseline 26.51 31.14 42.80
+ DARGO-MI 32.12 (↑5.61) 38.99 (↑7.85) 46.69 (↑3.89)

Llama-3.1-8B as Student
Baseline 35.44 34.43 49.81

+ DARGO-MI 45.88 (↑10.44) 44.81 (↑10.38) 54.18 (↑4.37)

Table 6: Ablation study of exploration in
DARGO on BIRD-SQL.

METHOD BIRD-SQL (MI)
DARGO w/ Phi-3-mini 33.80
(a) w/o MOI 21.70 (↓12.10)

(b) w/o Case Study Trans. 22.80 (↓11.00)

(c) w/o Functional Plan 23.60 (↓10.20)

Out-of-Distribution Evaluation of DARGO Current tabular-reasoning benchmarks frequently
provide test-only splits due to large costs of more complex tasks annotation, prompting us to evaluate
how well DARGO generalizes when no in-domain training data are available. Following the [55], we
first construct a unified memory from our exploration corpus and evaluate its performance on those
test-only sets via DARGO. To be specific, exploration set B contains: WikiTQ [41], TabMWP [34],
BIRD-Pandas [29], and Juice [3]. The distributions of B are shown in Appendix B.4. The test-only
datasets form the set E , which includes CRT-QA [70], QR-DATA [32], and Infi-Agent [20].

During evaluation, when we test DARGO on benchmark Ei ∈ E , its corresponding exploration corpus
is B ∪ E\i. This strict partition guarantees zero overlap between examples used for distillation and
those reserved for evaluation. As summarized in Table 5, DARGO presents huge OOD improvements
across all student models, demonstrating that it distills transferrable reasoning patterns rather than
memorizing dataset-specific artifacts.

3.5 Fine-Tuning v.s. DARGO Knowledge Distillation

With the Same Seed Data. We compare DARGO with LoRA fine-tuning [19] using the same
1,000 training samples on BIRD-SQL for Phi-3-mini. Figure 5 and Table 9 in Appendix shows that
fine-tuning on limited data even degrades SLM performance, while DARGO achieves significant
improvements. We attribute this to two factors: 1) small training sets introduce bias that limits
generalization; and 2) LoRA struggles to teach complex reasoning capabilities in an end-to-end
regime. In contrast, DARGO leverages LLMs to decompose difficult questions into interpretable
steps and distill planning knowledge, enabling better generalization. This makes DARGO particularly
effective for DACG domains with limited annotations.
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Figure 5: Comparison of
DarGO with Lora fine-tuning
across varying data size.

Comparison with Incremental Lora Fine-Tuning. For a more
comprehensive comparison, we conduct additional experiments fine-
tuning Phi-3-mini on varying proportions (10%, 20%, 50%, 70%,
100%) of the full BIRD-SQL training set. Each configuration is
repeated 5 times, with average results presented in Figure 5. Our
findings reveal several notable patterns: First, performance peaks
at 70% of the data, suggesting that fine-tuning on more data does
not always lead to better results, which maybe due to the inclusion
of lower-quality or biased examples in the full dataset. Second,
while fine-tuning with 70-100% of the data marginally outperforms
DARGO, it requires 7-9× more training examples to achieve this
performance. Notably, DARGO outperforms fine-tuning on 50% of
the data, demonstrating 5× greater data efficiency.

3.6 Ablation Study

In Table 6, to better validate the function of each component of DARGO, ablation studies are
performed in both Exploration and Inference (More details in Appendix E):

(a) MOI. For the “w/o MOI" scenario, we construct the memory by employing GPT-4o to convert
ground-truth code to plans directly, excluding the participation of SLM. This resulted in a significant
final performance drop for Phi-3-mini. One explanation is that GPT-4o tends to produce relatively
coarse-grained plans (e.g., "compute percentage of winning"), whereas SLMs require

9



more fine-grained steps (e.g., "compute total number of games", "divide winning
games by total wins"). These higher-level plans can induce hallucinations to SLMs, as they
frequently entail additional intermediate steps that increase the risk of errors. Furthermore, without
execution-based refinement and calibration through the Plan Optimization (PO) component in MOI,
plans generated by GPT-4o often contain inaccuracies that can mislead the SLM, as illustrated in
Section 2.2.

(a) Case Study Translation. As elaborated in Section 2.3, case study translation systematically
consolidates and refines heterogeneous inputs, including tabular data, user queries, and code samples,
into a structured, context-rich representation that SLMs can more effectively process. In the absence
of this translation component, the model frequently defaults to errorous or incomplete outputs
(e.g., “SELECT \n\n\n\n...”), underscoring the difficulty SLMs encounter in performing
generalized reasoning when confronted with raw, unprocessed data in DACG.

(c) Functional Plan. A key contribution of our work is the MOI and the use of functional plans
to structure and improve the interaction between teacher and student. We evaluate performance by
replacing functional plans with textual plans like Chain-of-Thought. The result can prove that our
designed functional plans are better orchestration media type compared to general COT plans in data
science code generation task.

4 Related Work

Data Analysis Code Generation (DACG). DACG automates code generation for data-centric tasks
in formats such as CSV, TSV, and relational databases (RDB) [7, 35]. It requires code that accurately
handles schemas, formats, and data semantics, whether in Python for tabular data [9, 10, 47] or SQL
for databases [68, 27, 29]. Spreadsheet-based code generation further extends DACG to formula
generation in tools [54, 5]. Although large language models have shown promise, privacy remains a
challenge in cloud-based environments [35].

Knowledge Distillation. Knowledge distillation can mitigate this problem by transferring LLM
capabilities to smaller models, enabling efficient deployment in resource-constrained environments
[63]. The field has evolved from early work on softened output training [18] to advanced techniques
like task-specific fine-tuning [45], zero-shot learning [57], and instruction-following datasets [58, 57].
Progressive distillation techniques, such as the Orca framework [38], demonstrate the potential
for guiding the development of efficient open-source models. Self-distillation approaches have
explored autonomous training data generation [58]. Recent advancements have focused on improving
the performance and privacy aspects of DACG by knowledge distillation [35]. At the same time,
synthetic data has been leveraged to enhance the generalization of SQL generation across different
schemas [64]. Even though these techniques are effective, most still require training efforts to transfer
knowledge. Our DARGO framework introduces distillation through in-context learning, eliminating
the need for task-specific fine-tuning.

Memory for Large Language Models. Memory can enhance LLMs by retaining long-term context
and knowledge [69], as in reflection-based frameworks [48], subroutine reuse [50], and self-correction
[4]. Complex tasks may require repository-level memory [65, 56, 55]. Typically, memory remains
confined to a single model. Our work introduces multi-model memory orchestration (via GPT-4o),
enabling smaller models to tap into broader knowledge sources for DACG.

5 Conclusion

In this paper, we presented DARGO, an automatic framework for knowledge distillation from Large
Language Models to Small Language Models in Data Science Code Generation. DARGO leverages
In-Context Learning to enhance SLM performance without fine-tuning, using model orchestration
and memory-based distillation to improve task accuracy. Evaluations on three challenging tabular
data analysis datasets that require code generation show a 27.5% relative performance increase for
Phi-3-mini. We also show model-agnostic effectiveness, benefiting other SLMS, even they did not
participate in the orchestration. These results highlight the potential of DARGO for developing
intelligent applications with a focus on privacy and computational efficiency.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that we are the first work to discuss how well training-free knowledge
distillation can achieve.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitation and future work in Appendix G
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We show instructions of reproducibility in Appendix K
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the codebase in supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide implementation details in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For each inference result, we run experiments 5 times and present average
results, which can prove that the performance show statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We stated that all SLM inference based on one NVIDIA A100 80GB GPU
card and how much cost for distillation in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Detailed in Appendix J.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Model Implementation

We implement models for three main categories of purpose:

A.1 Orchestration Models

gpt-4o: The Teacher model (gpt-4o) is responsible for several key tasks, including Abstraction
Lifting (see Section 2.2) and Plan Optimization (see Section 2.2), which are performed while
monitoring the performance of the Student model. Additionally, the Teacher model handles the
conversion of complex, heterogeneous cases into more readable case studies for Student Learning
Models (SLMs), as detailed in Section 2.3.

Llama-3.3-70B-Instruct: we use this powerful open-source model as teacher to prove the
generalization of DARGO workflow.

phi-3-mini-128k-instruct: For the orchestration process, we select this 3.8B parameter
SLM as the Student model due to its strong generalization abilities and efficient deployment.

llama-3.1-8b-instruct

A.2 Baseline Models

Within the orchestration mode, several families of Student Learning Models (SLMs) are evaluated.
These include models from the Phi-3, Starcoder 2, and LlDARGO families:

Phi-3 Family [1]

phi-3-mini-128k-instruct (3.8B)

phi-3-small-128k-instruct (7B)

phi-3-medium-128k-instruct (14B)

Starcoder 2 Family [33]

starcoder2-7b-instruct

starcoder2-15b-instruct

Llama Family [13]

codellama-7b-instruct-hf

codellama-13b-instruct-hf

A.3 Models in Knowledge Transmission

In Section 3.4, we explore the knowledge distilled from DARGO to newly developed models,
particularly in terms of their ability to generalize knowledge. For this evaluation, we select the
following models:

llama-3.1-8b-instruct: This model is broad new, yet it shows significant performance
improvements when leveraging the distilled knowledge.

gpt-35-turbo-16k: We also include a closed-source model in our experiments to demonstrate
the effectiveness of our approach across both GPU-deployed and API-based models. Despite its
number of parameters is unknown, we consider it as one of SLMs since its performance falls behind
of its more advanced versions such as GPT-4.

A.4 Demonstration V.S. Distillation

Given the memory database, we compare the effectiveness of our knowledge distillation techniques,
with conventional demonstration-based strategies. In our approach, distillation involves transferring
knowledge from the memory database to SLMs through task-specific instructions. On the other hand,
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demonstration-based methods guide SLMs by presenting explicit task examples to facilitate analog
reasoning [67]. We implemented two variants of few-shot demonstrations: Static: Human experts
select three representative examples from the memory database, which remain constant across all
cases. Dynamic RAG-based: Examples are selected from memory database based on similarity to
the current query. For fair comparison, we also implement the same RAG system as DarGO-MI,
described in Section 3.2.

Our findings show that few-shot demonstration generally underperforms DarGO across datasets.
However, RAG-based few-shot demonstration outperforms both our designed knowledge distillation
and other baselines on TABMWP. This success appears linked to the simplicity of TABMWP’s
input data, which averages 2.22 columns and 6.13 rows per data point, with clean numeric or
processed string values (Table 7). In contrast, for WIKITQ with irregular value types, and BIRD-SQL
with complex schemas, SLMs struggle, generating 38.2% more invalid outputs, such as erroneous
SQL queries, in BIRD-SQL. Based on these observations, we conclude that dynamic few-shot
demonstration is more convenient and effective for leveraging the memory database when the input
data is less complex. On the contrary, for complex data such as tables with dirty values or relational
databases, our designed knowledge distillation enables SLMs to better utilize knowledge and perform
tasks more effectively.

B Dataset Implementation Details

B.1 Train-Test Distillation Data Statistics

Table 7 summarizes the distributions of the datasets used in this study. These datasets in-
clude both single-table and multi-table relational structures, offering a comprehensive aspects
for evaluation. The question types range from standard semantic parsing queries to more
complex analytical questions involving aggregations and nested operations. This diversity
enables a thorough assessment of the model’s performance across various query paradigms.

Table 7: Statistics for three datasets. The term
Analysis indicates that the dataset mainly con-
sists of analytical questions, while SP refers to
semantic parsing tasks.

STATISTIC TABMWP WIKITQ BIRD-SQL
Dataset Features

# train examples 1,000 2,000 1,000
# eval examples 1,000 1,000 500
question type Analysis SP SP + Analysis
# toks / Q 26.5 12.6 20.0

Data Structure
data input type Single Single RDB
# rows / data 6.13 28.5 354k
# columns / data 2.22 6.36 73.3

Code Features
code type Python Python SQL
answer type String String Code
# toks / code N/A N/A 61.15

B.2 Data File Content

For convenient reproduction and following, we
preprocess all dataset into more unified data
format of jsonl. In python task (TABMWP,
WIKITQ), each line of data contains
question_id, question, data_path,
data_overview, answer_type,
answer. In SQL task (BIRD-SQL), each line
of data contains question_id, question,
evidence, data_path, db_id, sql.

B.3 Data Input Content

The main goal of this work is to evaluate the
code generation capabilities of models in un-
derstanding data schemas and structures across
multiple datasets. Given the impracticality of providing all data values in real-world scenarios in
which datasets may consist of millions or even billions of rows, we sample values for the part of data
input to simulate realistic code generation tasks. We feed the markdown format of schemas with data
samples as data_overview.

For TABMWP, we provide only the column names and the first three rows of values. This enables
models to infer the data structure and value types necessary for Python Pandas code generation
without exposing all the data.

For WIKITQ, which contains more complex and varied value types, we provide the first 10 rows of
values and column names to help models navigate the dataset’s intricacies.

In the case of BIRD-SQL, which contains relational databases with complex schemas and diverse
value types, more advanced schema-linking techniques are often required to retrieve relevant tables
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or columns before answering queries [53, 43]. While we consider this advanced schema-linking
process as future work for DARGO, our current focus is on the code generation aspect. Therefore, we
provide:

• Ground truth retrieved tables, reducing input complexity and simulating realistic human-
machine interactions where users might supply potentially relevant tables.

• Full columns with column meaning description files.
• The first three rows of values for each table.

Although the retrieved tables are given, the models must still consider constraints and generate correct
SQL queries. As shown in Table 2, performance on Bird-SQL remains relatively low, even with
simplified table retrieval, highlighting the challenges of generating accurate SQL queries in complex
database environments. This methodology allows us to evaluate code generation capabilities while
approximating the real-world challenges of data analysis.

B.4 OOD Cross-Dataset Evaluation Set Statistics.

Table 8 show the data statistics of basic set of unified memory for evaluating DARGO on OOD
cross-dataset distillation.

Table 8: Statistics for Basic Set of Unified Memory.
Dataset # Items

wikitq 1 000
TabMwp 1 000
BIRD-Pandas 300
Juice 1 000

C Action Types

Decomposition. The Decomposition action type divides a large, multifaceted step x into
multiple simpler steps a and b. By breaking complex workflows into smaller components, the Model
Orchestration Interface (MOI) ensures that the resulting plan is both clearly understood and more
straightforward for an SLM to execute. This approach clarifies the logic behind each sub-step and
allows finer-grained control over how tasks are performed or combined, thereby reducing confusion
and facilitating future refinements.

ALT. Sometimes, the instructions for a step can be ambiguous, incorrect, or unnecessarily complex.
The ALT action type replaces such a problematic step x with a newly clarified step y. By substituting
erroneous or unclear instructions, the MOI ensures that the plan adheres to more accurate logic,
minimizing the likelihood of misinterpretation and promoting consistency throughout the workflow.

ADD. When a critical operation is missing or an additional step is required for completeness, the
ADD action type introduces a new step a into the existing plan. Adding steps proves valuable when
the plan overlooks essential checks, transformations, or other auxiliary procedures. This mechanism
ensures more thorough and dependable solutions.

DELETE. Certain steps can be redundant or risk causing confusion for subsequent code generation.
The DELETE action type removes any unnecessary step x, thereby streamlining the plan. By
eliminating irrelevant instructions, the MOI reduces cognitive load on the SLM and maintains a
logically consistent sequence of steps that aligns directly with the overarching goal.

SIMPLIFY. Whenever possible, it can be advantageous to simplify complex steps. The SIMPLIFY
action type replaces a complicated step x with a more direct version, simple_step(x). For
example, it may transform a solution relying on recursion into an iterative, loop-based approach.
Simplification improves both computational efficiency and interpretability, since SLMs often perform
better with concise instructions.
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Table 9: Performance evaluation of Zero-Shot End-to-End Code Generation, LoRA fine-tuning, and
our proposed knowledge distillation techniques on BIRD-SQL. Deeper red shading indicates a larger
performance drop compared to the original pre-trained model, while green indicates no decline or
improvement.

Model SIMPLE MEDIUM CHALLENGING OVERALL

Zero-Shot End-to-End Code Gen.
Original Checkpoint 38.51 21.20 11.76 24.40
LoRA Fine-Tuned 39.86 19.20 10.78 23.60

DARGO Knowledge Distillation
Meta Instruction 51.35 30.40 16.67 33.80

SWITCH. Selecting an appropriate library or tool is critical for achieving both correctness and
simplicity. The SWITCH action type replaces a step implemented with packageA by an equiv-
alent (or more suitable) operation from packageB. For instance, one might switch from using
LinearRegression to CorrelationCoefficient when the task is simply to determine
the relationship between two variables. This approach avoids unnecessary overhead and preserves
clarity in the plan.

By employing these six action types, Decomposition, ALT, ADD, DELETE, SIMPLIFY, and
SWITCH, the MOI systematically refines high-level plans. This process results in efficient and easily
interpretable workflows, ensuring consistency from the design of the plan to its final implementation
by SLMs.

D DARGO Functionality

D.1 MOI Generalization

GT Codes Functional Plan

1 import pandas as pd
2 import numpy as np
3 df = pd.read_csv(…)
4 df[‘acts’] = df[‘acts’].str.extract(‘…’)
5 df[‘stages’] = df[‘acts’].str.extract(‘…’)
6 df[‘acts_zscore’] = (df[‘acts’] …) / .std()
7 df[‘stages_zscore’] = (df[‘…’]) / .std()
8 threshold = 3
9 outliers = df[(np.abs(df[‘acts_zscore’]..
10
11 # Answer the Question
12 if not outliers.empty:
13 print(“Yes”)
14 else:
15 print(“No”)

1 # Load the data
2 [Fill Your Code]
3 # Clean the data for acts
4 [Fill Your Code]
5
6 # Clean the data for stages
7 [Fill Your Code]
8
9            …
10 # Compute z scores
11 [Fill Your Code]
12         …
13 # Answer the Question
14 [Fill Your Code]
15

Orchestrated Codes

1 # Load the data
2 df = pd.read_csv(file, del)
3 # clean the data for acts, and stages
4 for col in columns:
5 df[col] = pd.to_numeric(…)
6 …
7
8   # compute z scores
9   df[‘acts_zscore’] = (df[‘acts’] …) / .std()
10 df[‘stages_zscore’] = (df[‘…’]) / .std()
11       …
12   # Answer the Question
13 print(“Yes”) if outliers else print (“No”)
14
15

Figure 6: Illustration of how MOI is conducted in Python for Tabular data analysis.

Our Model Orchestration Interface (MOI) is adaptable to different programming languages with
different data input settings. Figure 2 shows how MOI is conducted in RDB settings with SQLite,
and Figure 6 shows how it’s undertaken in Single-tabular data with Python.

D.2 Fine-Tuning v.s. DARGO Knowledge Distillation

E Ablation Study for Inference

We conducted a comprehensive ablation study of DARGO-MI, as shown in Table 10. Code-T5+ is a
code embedding model [59], while BGE-Large [61] represents one of the state-of-the-art (SOTA) text
embedding models. The study examines two types of RAG Index: one where distance is computed
using question embeddings alone, and another where both question and schema embeddings are
used. The“Plan + Gen" approach involves first constructing a plan with distilled knowledge, followed
by generation using knowledge-driven planning. In contrast, the "Gen" approach involves direct
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generation without prior planning. The instruction type labeled w/ examples refers to cases where
a specific example is provided by the Teacher model. We evaluate performance with 1, 3, and 5
examples to assess the impact of varying numbers of RAG examples. The results of the ablation
study reveal several key insights:

Code embeddings outperform text embeddings. The superior performance of Code-T5+ over
BGE-Large-en can be attributed to the nature of the task. While text embeddings emphasize on
semantic and domain knowledge, code embeddings capture the syntactic and logical structure of
coding problems, which is crucial for DACG tasks. Even when presented with identical questions,
the code solutions can vary significantly depending on the data input. Code-T5+ is able to effectively
embed questions from a programming perspective, benefiting from its pre-trained corpus, whereas
text embeddings are less suited for the task.

Embedding only the question is more effective than embedding both the question and schema.
The study demonstrates that question-only embeddings lead to better results. This suggests that the
inclusion of schema in the embedding may introduce unnecessary complexity, which may hinder
performance on the DACG task.

Planning is essential for more complex tasks. The results stress on the importance of planning in
a knowledge-driven generation. For tasks requiring complex reasoning, the “Plan + Gen" approach
outperforms direct generation (Gen), indicating that structured planning significantly improves task
performance.

One example may bias the SLM. Involving a single example in the instruction can introduce bias
in Small Lanuguage Models (SLMs). A specific example might cause the SLM to over-follow to
certain information, leading to hallucinations. For instance, if the example includes a reference to
"singer", the SLM may generate plans that include "singer" even when the question pertains to
an unrelated topic, such as "cars". This observation highlights the lack of robustness in SLMs when
exposed to overly specific examples. Consequently, it is better to provide more general, transferable
knowledge in instructions. The degraded performance observed with 1 RAG example supports this
conclusion, as the model becomes overly reliant on the provided information.

More examples do not always improve performance. Interestingly, increasing the number of
RAG examples (from 1 to 5) results in a performance drop. This suggests that longer input sequences
may confuse the SLM, making it more difficult to distill relevant knowledge. Based on these findings,
we recommend using 3 RAG examples as the optimal balance for complex DACG tasks since it
avoids both the biases of a single example and the confusion caused by too many examples.

Table 10: Ablation Study Results of DARGO-MI of Phi-3-mini on BIRD-SQL. The table compares
different embedding models, RAG index (with or without schema), reasoning approaches (planning
or direct generation), and varying numbers of RAG examples.

Embedding Model RAG Index Reasoning Type Instruction Type # RAG Examples Performance
code-t5+ question plan + gen no examples 3 33.80
code-t5+ question gen no examples 3 31.40 (↓2.40)
bge-large question plan + gen no examples 3 30.00 (↓3.80)
code-t5+ question plan + gen w/ examples 3 28.00 (↓5.80)
code-t5+ question+schema plan + gen no examples 3 32.40 (↓1.40)
code-t5+ question plan + gen no examples 5 31.80 (↓2.00)
code-t5+ question plan + gen no examples 1 29.80 (↓4.00)

F Error Analysis

We conducted an error analysis by sampling 50 incorrect cases for both DARGO-MI across three
datasets. Although DARGO substantially improves the overall performance of SLMs, we found that
54% of the errors were caused by over-reasoning. This issue tends to emerge even in relatively simple
cases. As discussed earlier, SLMs can overly adhere to the instructions derived from planning and
guidance, which is problematic when the task is enough simple and does not require decomposition or
reasoning. In these cases, direct code generation would lead to more accurate results. The remaining
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Figure 7: The scaling performance of DARGO on three main DACG datasets.

errors stem from common issues in code generation tasks, such as incorrect string handling, incorrect
column selection, database constrain understanding.

G Limitations and Future Work

A key limitation of our current approach with DARGO is the reliance on initial training examples
for both LLMs and SLMs to facilitate orchestration. This is why we selected datasets that include a
training corpus suitable for distilling knowledge. However, an important avenue for future work is to
explore how to generate such training data in a fully zero-shot manner, without relying on human-
annotated or enumerated examples. Additionally, as highlighted in the error analysis, over-reasoning
negatively impacts performance on simpler tasks, where additional reasoning or decomposition is
unnecessary. To address this, future work could focus on developing or prompting smaller models to
act as routers, as proposed by Ding et al. [12], to classify questions based on whether they require
planning. This would help avoid over-reasoning in straightforward cases and improve the overall
efficiency of DARGO.

H Scaling Analysis of DARGO

Figure 7 shows that DARGO scales reliably with increasing data volume. Although its performance
is somewhat unstable on very small memory, stability improves rapidly, and accuracy surpasses the
baseline once more than 60% of the exploration data are available which proves that the distilled
knowledge is being exploited effectively.

I Cost Analysis

We compare the cost of DARGO with other distillation methods shown in Table 12, Table 16 and
Table 14. And Table 11, Table 15, Table 13 show the inference cost of DARGO and its comparison
with other baselines. We can conclude that: first, it shows DarGO now is the most efficient Distillation
work for this task. Second, since inference is conducted by SLMs, the additional token usage is
acceptable when considering its significant improvement.

Table 11: BIRD-SQL: Infer (Tab. 16)
Method SLM InToks ↓ SLM OutToks ↓ EX ↑
End2End (baseline) 358,277 16,751 24.40
Chain-Of-Thought 369,433 19,317 23.80
Static Few-Shot 794,342 17,306 26.20
Dynamic Few-Shot 836,678 26,291 24.40
DSPy 637,146 60,748 22.80
ReGAL 1,602,698 16,045 20.40
DarGO-MI 647,799 64,836 33.80

J Broader Impact

Given DARGO is designed for automating code generation for better and efficient data analysis, it can
help data scientists explore the potential risks of financial market, earthquake, which are beneficial to
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Table 12: BIRD-SQL: Exploration (Tab. 17)
Method LLM InToks LLM OutToks ↓ Cost ↓
DSPy 18,129,504 2,689,076 $108.32
ReGAL 13,259,759 2,381,368 $85.44
DarGO 11,086,194 1,372,421 $62.16

Table 13: WikiTQ: Infer (Tab. 18)
Method SLM InToks ↓ SLM OutToks ↓ Acc. ↑
End2End (baseline) 235,122 44,033 32.50
Chain-Of-Thought 242,443 149,246 27.70
Static Few-Shot 521,292 45,161 23.00
Dynamic Few-Shot 549,075 93,415 16.60
DSPy 418,131 123,422 26.70
ReGAL 2,082,898 162,949 36.10
DarGO-MI 495,493 168,311 41.10

the society. Also, our study only focuses on code generation, a programming-level language rather
than natural language, it will not impact society negatively.

K Reproducibility

We provide codebase in the supplementary files and we list all implementation details in Appendix B
And we deliver prompts for each stage and baselines in Appendix L for fully reproducibility.

L Main Prompts

The zero-shot End-to-End Code Generation prompt is shown in Figure 8, Figure 16 and 18 show
the zero-shot Chain-Of-Thought reasoning. Figure 19 shows few-shot demonstration prompting.
The few_shot_examples can be selected by human experts as Static Few-Shot Demonstra-
tion, and can be retrieved from DARGO memory database by RAG system as Dynamic Few-Shot
Demonstration.

The Figure 8, 9, 10, 11 show prompts for Orchestration between LLMs and SLMs. Figure 12
presents how LLM convert orchestrated successful cases to more understandable case studies to
SLMs. LLMs can go through correct cases from memory databases and distill knowledge to an offline
and plug-and-plan General Instruction for SLMs to used for new and unseen queries performed by
prompts shown in Figure 13 and 14. During inference, SLMs can produce Meta Instructions by
prompts in Figure 15. Given distilled knowledge (instructions), SLMs will plan first as shown in
Figure 17, and generate codes finally with their knowledge-driven planning, which shows in Figure
18.

M Knowledge Distillation Examples

M.1 Case Study Example

The Figure 20 shows the example of case studies on Python task. Figure 22 present examples of
DARGO-MI respectively.

30



Table 14: WikiTQ: Exploration (Tab. 19)
Method LLM InToks LLM OutToks ↓ Cost ↓
DSPy 10,893,180 1,616,141 $65.09
ReGAL 7,967,176 1,431,207 $51.34
DarGO 6,661,181 824,828 $37.35

Table 15: TabMWP: Infer (Tab. 20)
Method SLM InToks SLM OutToks Acc. Score
End2End (baseline) 171,480 38,016 41.80
Chain-Of-Thought 176,764 39,244 41.40
Static Few-Shot 380,177 38,283 36.20
Dynamic Few-Shot 400,358 52,578 52.10
DSPy 304,898 49,073 40.40
ReGAL 767,114 37,679 41.80
DarGO-MI 314,817 125,230 45.70

Table 16: TabMWP: Exploration (Tab. 21)
Method LLM InToks ↓ LLM OutToks ↓ Cost ↓
DSPy 9,426,638 893,604 $48.75
ReGAL 7,790,084 751,736 $40.49
DarGO 5,330,507 659,862 $29.89

You are a data analyst. Given the data, you need to generate the code first to answer the question:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except 

final result. More other information lead to be distracted.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate remaining code to answer this question:
# Code:
```python
import pandas as pd

You are a data analyst trainer. You are educating your student to generate right code to answer 
tabular data analysis questions. In order to do so, you need to convert your code to code_plan and 
let your students to fill to understand plans and analysis. So you cannot generate code by your 
own, only generate plans.

# Data Overview at the path {data_path} (first ten rows):
{data_overview}
...

# Question: {question}
# Original Code:
```python
{ground_truth code}
``` 

You should convert the code into the code_plan format with the placeholder `[FILL YOUR CODE HERE]`:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

Generate your code_plan for your student. DO NOT generate any code by your own. Also ignore and 
remove steps of inspecting the data which leads to student cheating.
Please note it's hard for your student to write long code. You will get 1,000 dollars if you have 
a good job:

You are a data analyst. Given the data, expert customized functional plan, complete 
each line of code to answer questions correctly:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` 
since this is cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other 
things except final result. More other information lead to be distracted.

# Question: {question}
# Function Plan:
```python
[[functional plan]]
```
# Your entire completion code for function plan executable and correct:

# Code:
```python
import pandas as pd

Figure 8: Prompt of baseline end-to-end generation for tasks requiring Python.
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You are a data analyst. Given the data, you need to generate the code first to answer the question:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except 

final result. More other information lead to be distracted.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate remaining code to answer this question:
# Code:
```python
import pandas as pd

You are a data analyst trainer. You are educating your student to generate right code to answer 
tabular data analysis questions. In order to do so, you need to convert your code to code_plan and 
let your students to fill to understand plans and analysis. So you cannot generate code by your 
own, only generate plans.

# Data Overview at the path {data_path} (first ten rows):
{data_overview}
...

# Question: {question}
# Original Code:
```python
{ground_truth code}
``` 

You should convert the code into the code_plan format with the placeholder `[FILL YOUR CODE HERE]`:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

Generate your code_plan for your student. DO NOT generate any code by your own. Also ignore and 
remove steps of inspecting the data which leads to student cheating.
Please note it's hard for your student to write long code. You will get 1,000 dollars if you have 
a good job:

You are a data analyst. Given the data, expert customized functional plan, complete 
each line of code to answer questions correctly:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` 
since this is cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other 
things except final result. More other information lead to be distracted.

# Question: {question}
# Function Plan:
```python
[[functional plan]]
```
# Your entire completion code for function plan executable and correct:

# Code:
```python
import pandas as pd

Figure 9: Prompt converting ground-truth code to functional plan for python task as example. This is
conducted by LLM Teacher model.

You are a data analyst. Given the data, you need to generate the code first to answer the question:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except 

final result. More other information lead to be distracted.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate remaining code to answer this question:
# Code:
```python
import pandas as pd

You are a data analyst trainer. You are educating your student to generate right code to answer 
tabular data analysis questions. In order to do so, you need to convert your code to code_plan and 
let your students to fill to understand plans and analysis. So you cannot generate code by your 
own, only generate plans.

# Data Overview at the path {data_path} (first ten rows):
{data_overview}
...

# Question: {question}
# Original Code:
```python
{ground_truth code}
``` 

You should convert the code into the code_plan format with the placeholder `[FILL YOUR CODE HERE]`:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

Generate your code_plan for your student. DO NOT generate any code by your own. Also ignore and 
remove steps of inspecting the data which leads to student cheating.
Please note it's hard for your student to write long code. You will get 1,000 dollars if you have 
a good job:

You are a data analyst. Given the data, expert customized functional plan, complete 
each line of code to answer questions correctly:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` 
since this is cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other 
things except final result. More other information lead to be distracted.

# Question: {question}
# Function Plan:
```python
{functional plan}
```
# Your entire completion code for function plan executable and correct:

# Code:
```python
import pandas as pd

Figure 10: Prompt of orchestration coding. This is conducted by SLM Student model.
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You are an expert in error analysis and code planning. Your task is to guide your intern in filling out the code for your logic. You need to generate textual plans 
as comments that include essential import statements, logics. Currently, the mixed code filled by your intern is incorrect. Then you should analyze and help him.

------------------------------------------- case begin: -----------------------------------------------
{last turn case}
--------------------------------------- end --------------------------------------------

You are experienced data analysis programmer responsible for checking the errors, analyzing the reasons, and helping them correct the code. Note that you cannot 
fill the code for them directly. You have four options for actions:
1. **Decomposition(Step Number, new sub steps**: If a step is too complicated and exceeds the intern's capability, decompose this step into multiple smaller steps 
for them to fill step by step. 
    Actually, you have to decompose steps if there are multiple functions or multiple lines of code in one step since they are not capable!
    step a -> step b, step c
2. **ALT(Step Number, what do you want to alt in detials**: If a step is ambiguous or requires additional information or options, provide an alternative approach 
or clarification. But this is a closed-book education, you cannot teach them to use external information aside code and data samples.
    step a -> step b
3. **ADD(Step Number, what do you want to add in details**: If the original step lacks important operations, add a supplementary step to ensure the main code logic 
is smooth. But this is a closed-book education, you cannot teach them to use external information aside code and data samples.
   Also all available data are shown, you cannot add or teach them to use `df.head()` to overview data again.
    step a, step c -> step a, step b, step c
4. **DELETE(Step Number, what do you want to delete in details**: If some steps are unnecessary and hinder the intern's understanding of the overall logic, delete 
them.
    step a, step b -> step b (deleted step a)
5. **SIMPLIFY(Step Number, simplify specific steps)**: If a step is implemented using recursion and this approach is too complex for the intern to understand or 
debug, suggest a non-recursive approach that achieves the same result. 
This might involve using iterative methods or other strategies to simplify the logic. If you find code fails due to this, simplify the functions.
step a (recursive) -> step a (iterative)
6. **SWITCH(Step Name, packages to SWITHC)**: If a function relies heavily on a specific package that is known to be complex or not beginner-friendly, suggest 
switching to a more intuitive or simpler package that achieves similar functionality. This can help the intern understand the underlying logic without getting 
bogged down by the complexities of the original package.
    step a (uses ComplexPackage) -> step a (uses SimplePackage)  

You have to provide reasons based on analysis of errors for choosing this action and show your action in <action></action>, then. Finally, you must execute your 
chosen action to change original code and fill in the following format:

# format:
Reason:
<reason>...</reason>
Act:
<action>...</action>

# Updated code plan:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

## Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More other information would cause student to 
be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

OK, now change your codes according to your actions. 
If you don't follow rules, then you will lose 1 million dollars:

Figure 11: Prompt of plan optimization. This is conducted by LLM Teacher model.

You are a data analyst trainer. You are educating your student to generate pythyon code to answer tabular data analysis questions.

This is a successful case of your code, perform a case study on this:
------------------------------------------- case begin: -----------------------------------------------
# Question: {question}

# Data Overview at the path {data_path} (first 10 rows):
{data_overview}
...

# Code:
```python
{final orchestrated code}
``` 
------------------------------------------- case end: -----------------------------------------------

perform a concise case study! Your case study should only contain

### Case Study: [Case Name]
### Question: [Question]
### Table Info: [Summarized Useful information about Tabular Data]
### Objective:
### Explanation:

Please note your case study should make your student understand. You don't have to include code again. You will get 1000 dollars if 
you have a good job:

Figure 12: Prompt of case study conversion. This is conducted by LLM Teacher model.

You are a data analyst trainer. You are educating your student to generate correct python pandas code to answer tabular 
data analysis questions. To test and elicit their knowledge of python pandas code, you generate step-by-step plans that 
allow them to fill in code until they succeed.

# These are case studies where they fill the correct code:
------------------------------------------- case begin: -----------------------------------------------
{case_study_batch}
------------------------------------------- case end: -----------------------------------------------

# Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More 
other information would cause student to be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

According to the previous case studies, analyze and reflect how to generate plans which can make your student fill the 
correct code. Summarize 5-7 key points.

Figure 13: Prompt of aggregation prompt of each batch of case studies. This is conducted by LLM
Teacher model.
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You are a data analyst trainer. You are educating your student to generate correct python pandas code to answer tabular 
data analysis questions. To test and elicit their knowledge of python pandas code, you generate step-by-step plans that 
allow them to fill in code until they succeed.

# These are case studies where they fill the correct code:
------------------------------------------- case begin: -----------------------------------------------
{case_study_batch}
------------------------------------------- case end: -----------------------------------------------

# Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More 
other information would cause student to be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

According to the previous case studies, analyze and reflect how to generate plans which can make your student fill the 
correct code. Summarize 5-7 key points.

You are a data analyst trainer. You are educating your student to generate correct python pandas code to answer tabular 
data analysis questions. To test and elicit their knowledge of code, you generate step-by-step plans that allow them to 
fill in subqueries until they succeed.

# These are case studies where they fill the correct code:
------------------------------------------- case begin: -----------------------------------------------
{last layer of case studies}
------------------------------------------- case end: -----------------------------------------------

# Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More 
other information would cause student to be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

Following case studies, please summarize 5-7 key points about how to plan and generate correct code to answer the tabular 
data analysis questions accurately.
Students will take your notes directly.

# You need to start with:
```1. You should

Figure 14: Prompt of summarization prompt of batch of case studies in the last layer. This is
conducted by LLM Teacher model.

You are a data analysis trainer. Your are teaching your student to plan and generate python code 
accurately. You find some case study for reference.

# There are case studies:
------------------------------------------- case begin: -----------------------------------------------
{case_studies}
------------------------------------------- case end: -----------------------------------------------

Following case studies, please summarize key 5-7 points about how to plan and generate correct python 
code to answer the data analysis questions accurately.

# You will use them to educate your student:
```successful plan suggestions:
1. You Should

Figure 15: Prompt of in-time summarization for meta-instructions. This is conducted by SLM
Student model.

You are a data engineer. Given the sample data, generate python code plan to answer the question 
accurately.

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except final 

result. More other information lead to be distracted.
```

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I should have a step-by-step text plan for generating this code first. I will fill my plan 
into the template in details:
```code_plan
Step 1: ...
Step 2: ...
...
Final Step: ...
```

Generate your plan step by step for the question:

# Let's think step by step:
```code_plan
Step 1:

Figure 16: Prompt of generating Chain-Of-Thought. This is conducted by SLM Student model.
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You are a data engineer. Given the sample data, generate python code plan to answer the question

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except final 

result. More other information lead to be distracted.

# There are some important successful plan suggestions from experts:

```successful plan suggestions:
{successful_plan_suggestions}
```

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: Referring to [successful plan suggestions], I should have a step-by-step text plan for 
generating this code first. I will fill my plan into the template in details:
```code_plan
Step 1: ...
Step 2: ...
...
Final Step: ...
```

Generate your plan step by step for the question:

# Let's think step by step:
```code_plan
Step 1:

You are a data engineer. Given the sample data, generate python code to answer the question accurately.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate code to answer this question and print the result. I will fill my code in the 
template:
```python
[Your Code]
```

Let's think step by step for the question:
{step-wise plans}

# Code:
```python
import pandas as pd

Figure 17: Prompt of knowledge-driven planning. This is conducted by SLM Student model.

You are a data engineer. Given the sample data, generate python code plan to answer the question

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except final 

result. More other information lead to be distracted.

# There are some important successful plan suggestions from experts:

```successful plan suggestions:
{successful_plan_suggestions}
```

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: Referring to [successful plan suggestions], I should have a step-by-step text plan for 
generating this code first. I will fill my plan into the template in details:
```code_plan
Step 1: ...
Step 2: ...
...
Final Step: ...
```

Generate your plan step by step for the question:

# Let's think step by step:
```code_plan
Step 1:

You are a data engineer. Given the sample data, generate python code to answer the question accurately.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate code to answer this question and print the result. I will fill my code in the 
template:
```python
[Your Code]
```

Let's think step by step for the question:
{step-wise plans}

# Code:
```python
import pandas as pd

Figure 18: Prompt of code generation given step-wise planning. This is conducted by SLM Student
model.
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You are a data analyst. Given data sample, you need to generate pandas code first to answer the question.

Generate your pandas code to answer the question, and print the result for your to understand. Fill your 
code in 
```python
[Your Code]
``` 

# Please follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except the final 
result. More other information would cause sutdent to be distracted.

There are some examples:
---------------------------- Examples Start ----------------------------
{few_shot_examples}
---------------------------- Examples END ----------------------------

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate code to answer this question:

# Code:
```python
import pandas as pd

Figure 19: Prompt of few-shot demonstration. This is conducted by SLM Student model.

### Case Study: Average Weight Calculation for Specific Players

### Question: 
What is the average weight of Jamarr Sanders and Robert Williams?

### Table Info: 
- **Columns**: Name, Height, Weight (lbs.), Position, Class, Hometown, Previous Team(s)
- **Sample Data**:
  - Jamarr Sanders: Weight 210 lbs.
  - Robert Williams: Weight 210 lbs.

### Objective:
To calculate the average weight of the players Jamarr Sanders and Robert Williams from the given dataset.

### Explanation:
1. **Load Data**: The data is loaded from a tab-separated values (TSV) file.
2. **Filter Data**: Rows corresponding to the names "Jamarr Sanders" and "Robert Williams" are filtered from the dataset.
3. **Calculate Average**: The average weight of the filtered rows is computed.
4. **Output**: The result is printed as an integer.

By following these steps, the student can understand how to filter specific rows in a dataset and perform calculations on the filtered data. This case 
demonstrates the practical application of data manipulation and analysis using pandas in Python.

-- Step 1: Count the total number of films
WITH Total_Films AS (
    SELECT COUNT(film_id) AS total_films
    FROM film_category),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
    SELECT COUNT(fc.film_id) AS documentary_films
    FROM film_category fc
    JOIN category c ON fc.category_id = c.category_id
    WHERE c.name = 'Documentary’),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

SELECT (df.documentary_films * 100.0 / tf.total_films) AS      
    percentage
    FROM Documentary_Films df, Total_Films tf) …

Orchestrated Codes

Figure 20: Example of case studies for tasks requiring Python. This is conducted by LLM Teacher
model.

1. You should **break down the task into manageable steps**. Each step should build on the previous one, guiding you through the process 
logically. 

2. You should **emphasize data handling and cleaning**. This includes handling missing values, normalizing case, and ensuring data consistency."

3. You should **focus on filtering and extraction**. Guide yourself on how to filter and extract relevant data based on specific criteria. This is often 
the core of the analysis."

4. You should **perform aggregation and counting**. Learn how to perform aggregation operations like counting, summing, or finding 
minimum/maximum values to derive insights from the data."

5. You should **present the result clearly**. Ensure that the final step involves presenting the result in a clear and concise manner. This reinforces 
the importance of communicating findings effectively."

6. You should **avoid distractions**. Keep the instructions focused on the end-to-end process without encouraging unnecessary intermediate 
outputs or external information. This helps maintain your focus on the task at hand."""

Figure 21: Example of General Instruction for tasks requiring Python. This is conducted by LLM
Teacher model.
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"question": "which country rank last?"

1. Understand the problem statement and the data structure.

2. Load the data using appropriate libraries (e.g., pandas).

3. Perform necessary data manipulation and cleaning.

4. Identify the relevant columns and values for the analysis.

5. Use appropriate functions and methods to filter, sort, and extract the 
required information.

6. Output the result in a clear and concise manner.

Figure 22: Example of General Instruction for tasks requiring Python. This is conducted by SLM
Student model in time.
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