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Abstract

Language provides one of the primary examples of human’s ability to system-1

atically generalize — reasoning about new situations by combining aspects of2

previous experiences. Consequently modern machine learning has drawn much in-3

spiration from linguistics. A recent example is iterated learning, a procedure where4

generations of networks learn from the output of earlier learners. The result is5

a refinement of the network’s “language” or output labels for given inputs towards6

compositional structure. Yet, studies of iterated learning and its application to ma-7

chine learning have remained empirical. Here we theoretically study the emergence8

of compositional language, and the ability of simple neural networks to leverage9

this compositionality to systematically generalize. We build on prior theoretical10

work on linear networks, which mathematically defines systematic generalization,11

by extending the analysis of shallow and deep linear network learning dynamics12

to the iterated learning procedure by deriving exact dynamics to the learning over13

generations. Our results confirm a long standing conjecture: that multiple genera-14

tions of iterated learning are required for compositional structure to emerge, which15

can outperform a single generation network trained with optimal early-stopping.16

Finally, we show that IL requires depth in the network architecture to be effective17

and that IL is able to extract modules which systematically generalize.18

1 Introduction19

Deep learning techniques have made great strides in tasks like machine translation and language20

prediction, providing proof of principle that they can succeed in quasi-compositional domains. How-21

ever, these methods are typically data hungry and the same networks often fail to generalize in even22

simple settings when training data are scarce (Lake & Baroni, 2018; Lake et al., 2019). Systematically23

generalize, leveraging specific learning experiences in diverse new settings (Lazaridou et al., 2018;24

Lake et al., 2019; Ren et al., 2019), has been proposed as a key feature of intelligent learning agents25

which can efficiently generalize to novel stimuli in their environment (Hockett & Hockett, 1960;26

Fodor & Pylyshyn, 1988; Hadley, 1993; Kirby et al., 2015; Lake et al., 2017). Empirically, the degree27

of systematicity in deep networks is influenced by many factors. One possibility is that the learning28

dynamics in a deep network could impart an implicit inductive bias toward compositional structure29

(Hupkes et al., 2020); however, a number of studies have identified situations where depth alone is30

insufficient for structured generalization (Lake & Baroni, 2018; Niklasson & Sharkey, 1992; Pollack,31

1990; Phillips & Wiles, 1993; Jarvis et al., 2023). Another significant factor is architectural modularity,32

which can enable a system to generalize when modules are appropriately configured (Vani et al., 2021;33

Phillips, 1995; Andreas et al., 2016; Hu et al., 2017, 2018). However, identifying the right modularity34

through learning remains challenging (Bahdanau et al., 2019; Jarvis et al., 2023). A third possibility35

builds on iterated learning (IL), a method in which generations of agents train briefly on a language36

produced by their parent, and then generate a new language for their child (Kirby, 2001; Kalish et al.,37

2007; Kirby et al., 2015; Vani et al., 2021; Lu et al., 2020a,b). If compositional components are38

Submitted to NeurIPS 2024 Workshop on Compositional Learning: Perspectives, Methods, and Paths Forward.
Do not distribute.



 "
S
q
u
a
re

"
v
s 

"C
ir

cl
e
"

  
"R

e
d
"

v
s 

"B
lu

e
"

"D
a
x
"

"N
a
z"

"B
ic

"

"W
ox

"

"F
la

v
"

"T
o
q
"

"A
sp

"

"P
h
o
s"

0 0 0 020 0 0

0 0 0 000 0 2

0 2 0 000 0 0
2 0 0 000 0 0

0 0 0 002 0 0
0 0 2 000 0 0

0 0 0 200 0 0

1

1
-1

-1

-1

-1
1

1

0 0 0 000 2 0

0 1 2 3 4 5 6 7v
s

0 0 0 00 0 0

0 0 0 000 0

0 0 000 0 0

1

1 1 1

1
0 0 000 0 0

1 0 0 0 00 0 0
0 0 000 0 0

0 0 0 00 0 0

1
1

1
1 1

1
-1-1

-1
-1

-1
-1 -1

-1
-1 -1

-1
-1 0 0 0 000

2

2

2
2

2
2

2
2 0

Logical Form

v
s

v
s

1

1

1
1

-1
-1

-1
-1

Phonetic Form

Key
nx :Num Comp Inputs (=3)

nx :Num Comp Outputs (=2)

kx :Num Id Matrices Input (=1)

kx :Num Id Matrices Output (=1)
r :Scale of Id matrices (=2)

XΩ :Comp Input Matrix

XΩ :Comp Output Matrix
XΓ :Non-comp Input Matrix

XΓ :Non-comp Output Matrix

XΩ YΩXΓ YΓ
Rank =

Generation 1 Generation 5 Generation 10

Rank = Rank =

T
ra

in

Relabel Relabel

T
ra

in

T
ra

in

Output Systematic Mapping Output Non-systematic Mapping

XΩXΓ XΩXΓ XΩXΓ

YΩYΓ YΩYΓ YΩYΓ

Figure 1: (Left) We schematize the setting with a space of datasets containing compositional (XΩ) and
non-compositional (XΓ) features in the input (left panel). The task then is to map from these features
to a phonetic form for each object which could be by the composition of descriptive words (YΩ) for
example "the small red square" or by memorizing a name for each objects (YΓ) for example "the bic".
(Right) The iterated learning procedure: Generations of agents learn from languages generated by their
parent, and pass on their acquired language to their children. The portions of the language which are
easier to learn are maintained over generations, while difficult language is lost. We demonstrates this
process on a linear neural network and prove that IL is able to refine the language to depend on a min-
imal set of necessary singular values (π1). This figure also summarizes the notation, structure and sin-
gular value decomposition of our space of datasets which is key for the theoretical results which follow.

easier to learn than non-compositional ones, this process can successively refine a language towards39

compositional structure, which has been hypothesized to be the cause of the compositional nature of40

natural language (Kirby, 2001; Kirby et al., 2008). In this work we aim to expand on the deep linear41

network framework of Saxe et al. (2019) (Saxe et al., 2019) and the formal analysis of systematicity of42

Jarvis et al. (2023) (Jarvis et al., 2023) to analyse the ability of IL to produce compositional language.43

2 Iterated Learning Dynamics44

The generalization abilities of deep networks depends on a complex interplay of learning dynamics45

(Saxe et al., 2014), architecture (Lake & Baroni, 2018), initialization (Geiger et al., 2020), and dataset46

structure (Jarvis et al., 2023). Prior work has demonstrated that gradient descent dynamics alone47

do not implicitly favour systematicity (Jarvis et al., 2023) for all but the most compositional of48

datasets. To establish whether generations of gradient descent learners have an implicit bias towards49

systematicity we obtain closed-form learning dynamics for neural networks in the IL procedure. We50

build on known exact solutions to the dynamics of learning from small random weights in deep linear51

networks (Saxe et al., 2014, 2019) to describe the full learning trajectory analytically.52

In particular, consider a single hidden layer network computing output ŷ = W 2W 1x in response53

to an input x, trained to minimize the quadratic loss L(W 1,W 2) = 1
2 ||Y −W 2W 1X||22 using full54

batch gradient descent. We review the derivation of the linear network dynamics in Appendix A.55

However, the main idea is to perform a change of variables so that we track the dynamics of the56

network’s singular values rather than the individual weights. This does assume the network is feature57

learning such that its singular vectors align to those prescribed by the dataset statistics. This is a58

reasonable assumption from small initial weights (Saxe et al., 2019) and the singular vectors can59

be thought of conceptually as the features learned by the network. The trajectory of each network60

effective singular value (πα(t)) is described as61

πα(t) =
λα/δα

1−
(
1− λα

δαπ0

)
exp

(−2λα

τ t
) . (1)

These dynamics describe the singular value’s trajectory which begins at the initial value π0 when62

t = 0 and increases to λα/δα as t → ∞. From these dynamics it is helpful to note that the time-63

course of the trajectory is only dependent on the input-output covariance matrix (Σyx) singular values64

(λα). Thus, the input covariance (Σx) (and its singular values δα), affects the stable point of the65

network singular values but not the rate of learning.66

With IL each generation learns from the “language” acquired by the previous generation (Figure 1).67

To instantiate this setting, we start from a particular dataset, but halt training before full convergence68

after a pre-defined number of training steps. We then use the network’s output (logits) as the target69

outputs for the next generation. From very early on in training, learning occurs along the modes70
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of variation determined by the dataset statistics. Consequently, the dataset’s singular vectors, and71

the features learned by the network, will be maintained for all generations. It is merely the singular72

values or salience of the features which changes. Noting this fact permits straightforward analysis73

of iterated learning dynamics. Thus, for generation G > 0 of learning the asymptote of the network’s74

mapping (λG
α /δα) is equal to the effective singular value of the network at the end of the previous75

generation of training (πG−1
α ). Here λ0

α and δ0α are the singular values from the original dataset.76

Thus, by a recursive application of Equation 1 we can model the full dynamics of iterated learning:77

πG
α (t) =

λG
α /δα

1−
(
1− λG

α

δαπ0

)
exp

(
−2λG

α

τ t
) =

πG−1
α

1−
(
1− πG−1

α

π0

)
exp

(
−2λG

α

τ t
) (2)

78

3 Theoretical Results79

3.1 The Requirement of Multiple Generations80

By ending a generation of training before the convergence of some effective singular values we will81

be decreasing the input-output singular values (λα) for the next generation. However, since these82

singular values also determine how quickly the mode is learned, this also means it will be learned83

slower for subsequent generations. The result is that it is eroded until it is removed from the “language”84

(has a singular value of 0). Since our analysis in this work relies on the relative speed at which modes85

start and finish learning it is helpful to introduce two new terminology. Firstly, by “escaping time”86

(denoted by t̂α) we refer to the time taken for a mode (indexed by α) to grow meaningfully larger than87

0: πα > ρ for a small value of ρ. Secondly, “hitting time” (denoted by t∗α) refers to the time taken for88

a mode (indexed by α) to converge to its final value: πα− (λα/δα) < ρ. We derive explicit equations89

for t̂α and t∗α in terms of the dataset singular values using Equation 2 in Appendix B. The equations90

themselves do not offer immediate insight beyond the concept they represent and so are omitted here.91

They are, however necessary for the proves of the theorem and observations which follow.92

A lingering question in the use of IL has been whether multiple generations of learning is actually93

necessary. This is in contrast to a hypothetical optimal early stopping point which would provide all94

the same benefits as IL but within a single generation. It is important to note that IL must maintain95

all information which we do not wish to remove (maintained modes). There is naturally a trivial96

early-stopping time which removes all modes. To answer this question we present Theorem 3.1:97

Theorem 3.1. Given a dataset (X,Y ), and assuming small random initial network parameters, a98

small learning rate ϵ and that removable modes have smaller singular values than maintained modes,99

G > 0 (having multiple generations of learners) is a necessary condition for guaranteed removal of100

only the desired modes of variation.101

Proof Sketch: To prove this result we are required to show that the escaping time for the removable102

modes is greater than the hitting time of the maintained modes. We show that this is not true in general103

for one generation (G=0) using a contradicting example. Secondly, we show that after some number104

of generations G the removable mode escaping time is guaranteed to be larger than the maintained105

mode’s hitting time. The key step towards this is showing that the hitting time of the removable mode106

is larger than the hitting time of the maintained mode - a significantly easier condition than comparing107

hitting time and escaping time but which is enough for IL to be applicable. Once IL is applicable108

then as G → ∞ the removable mode escaping time will become larger than the maintained mode109

hitting time, proving the theorem. The full proof is shown in Section B.110

By assuming that the modes we aim to maintain are learned faster than removable modes we have111

imparted a preference in which modes of variation are learned and their relative ordering. This112

may appear to be a strong assumption, however, to maintain the slower learning modes would be113

a fundamental disagreement with IL as an algorithm. IL assumes that the fastest learning modes are114

systematic and provide the best generalization. Thus, for Theorem 3.1 our assumption of the ordering115

of the SVs is no more strict than assuming that IL is a valid algorithm for the dataset. We analyse116

the validity and limitations of the IL assumption that the quicker modes are systematic in Section 3.3.117

3.2 The Requirement of Depth118

A similar derivation of the IL learning dynamics can be done for a shallow network (no hidden layer).119

In this case the singular values of the model’s mapping follow the trajectory:120

πG
α (t) = πG−1

α (1− exp (−δαt/τ)) + π0 exp (−δαt/τ) , (3)

3



such that the time course depends on the singular values of the input covariance matrix, δα (Saxe121

et al., 2019). While deep networks show stage-like transitions which allow for one mode to be122

learned while another remains near 0; in shallow networks the modes show an exponential approach123

to their asymptote and all modes are learned at once. Thus, there will never be an opportunity for124

IL to remove a mode without also losing information on modes which we aim to maintain. See the125

simulated runs in Figure 2 for a visual depiction of this fact. This mean that for IL to be an effective126

procedure for the refinement of language, depth is required in the network architecture.127

3.3 IL Uncovers Systematic Modules128

To establish whether IL has a benefit for systematicity we must formalize a space of datasets129

which display the inductive biases of learning. We build on prior work which aimed to formalize130

systematicity (Jarvis et al., 2023) and provides such a space of datasets. To be applicable to the131

linguistic background of IL we phrase the space of datasets in terms of the mapping from logical132

forms (our internal, potentially semantic, representation of the world) to phonetic forms (words or133

sentences) commonly discussed in linguistics (Brighton & Kirby, 2006). The fundamental aspect134

of the analysis, however, remains the same: we use a space of datasets parametrized by the degree135

of compositional and non-compositional structure. We then use the closed-form SVD for all datasets136

in the space (written in terms of the dataset parameters) to establish how dataset structure affects137

the inductive bias of the neural network learning dynamics.138

To formalize this setting Jarvis et al. (2023) define a parametric space of datasets with input and output139

matrices X = [XΩ XΓ]
T and Y = [YΩ YΓ]

T respectively, where nx, ny, kx, ky, r ∈ Z+ are the pa-140

rameters that define a specific dataset. The compositional input feature matrix XΩ ∈ {−1, 1}2nx×nx141

consists of all binary patterns with nx bits. Here nx is a key parameter determining the number142

of bits in the compositional input structure. Overall, the dataset contains 2nx examples. The143

non-compositional input feature matrix XΓ = [rI1 ... rIkx ] consists of kx scaled identity matrices,144

Ii ∈ {0, 1}2nx×2nx giving each datapoint a unique non-compositional identifying feature. Similar145

matrices are then defined for the output space. As described above, the network’s total input-output146

mapping at all times in training is a function of the singular value decomposition of the dataset147

statistics. For all datasets in the space there are three distinct input-output covariance (Σyx) singular148

values λ1, λ2 and λ3:149

λ1 =

(
(kxr

2 + 2nx)(kyr
2 + 2nx)

22nx

) 1
2

λ2 =

(
(kxr

2 + 2nx)(kyr
2)

22nx

) 1
2

λ3 =

(
kxkyr

4

22nx

) 1
2

Note that the singular values are written in terms of the five dataset parameters, which allows for an150

analysis of how dataset structure influences the network training dynamics (Jarvis et al., 2023) and151

inductive bias of IL. Substituting these expressions into the dynamics equations we obtain equations152

for the networks mapping and full learning trajectories across all generations, at all times in training153

and for all datasets in the space. Appendix D depicts simulation to verify our theoretical results and154

we see exact agreement between the predicted and simulated dynamics. From this we can prove that155

for all datasets in the space the singular values will begin to learn in order. This means that IL can156

extract earlier singular values and remove later one. Since for the space of datasets the compositional157

input and output structure is only connected to the first mode π1 (see Figure 1) IL is able to extract158

compositional, low-rank structure from the dataset. By the definition of systematicity in Jarvis et al.159

(2023), the reliance on low-rank structure here means that this module is generalizing systematically.160

This is a promising result and we hope that this will motivate more uses of IL in practical ML161

algorithms, for example like in the recent work of Ren et al. (2024).162

Observation 3.2. For all points in the space of datasets: nx, ny, kx, ky, r ∈ Z+ the input-output163

covariance matrix Σyx singular values will be ordered as: λ1 > λ2 > λ3.164

Proof Sketch: The proof of this observation shows that there is no configuration of dataset parameters165

such that Equation λ1 is not the largest value and λ3 is not the smallest. We begin by assuming166

that this ordering holds and then simplify the expressions until we arrive at the requirement that167

nx, ny, kx, ky, r ∈ Z+ which is true by definition. The full proof is shown in Section C.168
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A Linear Dynamics Review266

While deep linear networks can only represent linear input-output mappings, the dynamics of learning267

change dramatically with the introduction of one or more hidden layers (Fukumizu, 1998; Saxe et al.,268

2014, 2019; Arora et al., 2018; Lampinen & Ganguli, 2019), and the learning problem becomes269

non-convex (Baldi & Hornik, 1989). They therefore serve as a tractable model of the influence of270

depth specifically on learning dynamics, which prior work has shown to impart a low-rank inductive271

bias on the linear mapping (Huh et al., 2021).272

Consider a single hidden layer network computing output ŷ = W 2W 1x in response to an input x,273

trained to minimize the quadratic loss L(W 1,W 2) = 1
2 ||Y −W 2W 1X||22 using full batch gradient274

descent. This gives the learning rules for each layer as E[∆W 1] = ϵW 2T (Y −W 2W 1X)XT and275

E[∆W 2] = ϵ(Y −W 2W 1X)(W 1X)T . By using a small learning rate ϵ and taking the continuous276

time limit, the mean change in weights is given by τ d
dtW

1 = W 2T (Σyx−W 2W 1Σx) and τ d
dtW

2 =277

(Σyx −W 2W 1Σx)W 1T where Σx = E[XXT ] is the input correlation matrix, Σyx = E[Y XT ] is278

the input-output correlation matrix and τ = 1
Pϵ is the learning time constant for P inputs. Here, t279

measures units of learning epochs. It is helpful to note that since we are using a small learning rate280

the full batch gradient descent and stochastic gradient descent dynamics will be the same. Saxe et281

al. (2019) Saxe et al. (2019) has shown that the learning dynamics depend on the singular value282

decomposition of283

Σx = V DV T =

|X|∑
α=1

δαu
αvα

T

;

Σyx = USV T =

min(|X|,|Y |)∑
α=1

λαu
αvα

T

(4)

where U and V are orthogonal matrices of singular vectors and S,D are diagonal matrices of singular284

values/eigenvalues. To solve for the dynamics we require that the right singular vectors V of Σyx are285

also the singular vectors of Σx. We also assume that nh > min(|X|, |Y |) where nh is the number of286

hidden neurons. If this is not the case then the model will only learn the top nh singular values of287

the input-output mapping (Saxe et al., 2014). Given the SVDs of the two correlation matrices the288

learning dynamics can be described explicitly as289

W 2(t)W 1(t) = UA(t)V T =

2nx∑
α=1

πα(t)u
αvαT (5)

where A(t) is the effective singular value matrix of the network’s mapping.290
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B Derivation of Escaping and Hitting Time291

We will begin by using the definition of escaping time and substituting the mode dynamics (Equation292

4) into this expression to obtain an expression for t:293

πG
α =ρ

λG
α /δα

1−
(
1− λG

α

δαπ0

)
exp

(
−2λG

α

τ t
) =ρ

λG
α /δα
ρ

=1−
(
1− λG

α

δαπ0

)
exp

(
−2λG

α

τ
t

)
ρ− λG

α /δα
ρ

=

(
1− λG

α

δαπ0

)
exp

(
−2λG

α

τ
t

)
ρ− λG

α /δα

ρ
(
1− λG

α

δαπ0

) =exp

(
−2λG

α

τ
t

)

log

 ρ− λG
α /δα

ρ
(
1− λG

α

δαπ0

)
 =

−2λG
α

τ
t

−τ

2λG
α

log

 ρ− λG
α /δα

ρ
(
1− λG

α

δαπ0

)
 =t

−τ

2λG
α

log

 ρ
(
1− λG

α

δαρ

)
ρ
(
1− λG

α

δαπ0

)
 =t

τ

2λG
α

log

1− λG
α

δαπ0

1− λG
α

δαρ

 =t

τ

2λG
α

log

 λG
α

δαπ0
− 1

λG
α

δαρ − 1

 =t

τ

2λG
α

log

 λG
α−δαπ0

δαπ0

λG
α−δαρ
δαρ

 =t

τ

2λG
α

log

(
λG
α δαρ− δ2απ0ρ

λG
α δαπ0 − δ2απ0ρ

)
=t

τ

2λG
α

log

(
λG
αρ− δαπ0ρ

λG
απ0 − δαπ0ρ

)
=t

The term inside of the log is always going to be greater than 1 as ρ ≥ π0. Thus the log is positive. In294

the extreme case where ρ = π0 then the log evaluates to 0 as the internal fraction is 1, which makes295

sense as in this case the escaping time will be reached at initialization. We can perform a similar296
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computation for a modes hitting time.297

(λG
α /δα)− πG

α =ρ

(λG
α /δα)−

λG
α /δα

1−
(
1− λG

α

δαπ0

)
exp

(
−2λG

α

τ t
) =ρ

− λG
α /δα

1−
(
1− λG

α

δαπ0

)
exp

(
−2λG

α

τ t
) =ρ− (λG

α /δα)

− λG
α /δα

ρ− (λG
α /δα)

=1−
(
1− λG

α

δαπ0

)
exp

(
−2λG

α

τ
t

)
− λG

α /δα
ρ− (λG

α /δα)
− ρ− (λG

α /δα)

ρ− (λG
α /δα)

=−
(
1− λG

α

δαπ0

)
exp

(
−2λG

α

τ
t

)
ρ

ρ− (λG
α /δα)

=

(
1− λG

α

δαπ0

)
exp

(
−2λG

α

τ
t

)
ρ

(ρ− (λG
α /δα))

(
1− λG

α

δαπ0

) =exp

(
−2λG

α

τ
t

)

log

 ρ

(ρ− (λG
α /δα))

(
1− λG

α

δαπ0

)
 =

−2λG
α

τ
t

−τ

2λG
α

log

 ρ

((λG
α /δα)− ρ)

(
λG
α

δαπ0
− 1
)
 =t

τ

2λG
α

log

((λG
α /δα)− ρ

) ( λG
α

δαπ0
− 1
)

ρ

 =t

τ

2λG
α

log

(
λG2

α

δ2απ0ρ
− λG

α

δαρ
− λG

α

δαπ0
+ 1

)
=t

τ

2λG
α

log

(
λG2

α − δαλ
G
απ0 − δαλ

G
αρ+ δ2απ0ρ

δ2απ0ρ

)
=t

Thus we can summarize the escaping time and hitting time for mode α as follows:298

t̂α =
τ

2λG
α

log

(
λG
αρ− δαπ0ρ

λG
απ0 − δαπ0ρ

)
; t∗α =

τ

2λG
α

log

(
λG2

α − δαλ
G
απ0 − δαλ

G
αρ+ δ2απ0ρ

δ2απ0ρ

)

Proof of Theorem 3.1299

Theorem 3.1. Given a dataset (X,Y ), and assuming small random initial network parameters, a300

small learning rate ϵ and that removable modes have smaller singular values than maintained modes,301

G > 0 (having multiple generations of learners) is a necessary condition for guaranteed removal of302

only the desired modes of variation.303

We note that for now we make no assumptions on the dataset or singular values aside from their304

usual ordering. In subsequent sections we will make reference to the particular space of datasets.305

We now aim to show that there will always be a G ≥ 0 for which the removable mode’s hitting306

time will be larger than the maintained modes convergence time. To begin we need to show that307

the convergence time of the maintained mode is larger than the convergence time of the removable308

mode for all generations. This means that it is possible to find a time where the maintained mode has309

converged but the removable mode has not and IL is a valid algorithm for removing the removable310

mode. We may keep G general here as the generation does not change the proof since a removable311
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mode can only decrease in size. Thus, we begin by determining under what conditions the maintained312

mode will have an earlier convergence time than the removable modes:313

t∗α−1 >t∗α

τ

2λG
α−1

log

(
λG2

α−1 − δα−1λ
G
α−1π0 − δα−1λ

G
α−1ρ+ δ2α−1π0ρ

δ2α−1π0ρ

)
>

τ

2λG
α

log

(
λG2

α − δαλ
G
απ0 − δαλ

G
αρ+ δ2απ0ρ

δ2απ0ρ

)

We next substitute in the fact that π0 → 0 and ρ → 0. However, we need to consider first that λG
α−1314

may be small (especially when IL is being applied). The above inequality will only hold when the315

log on the left of the inequality is positive. Thus, we first consider when the argument to the log is316

greater than 1:317

λG2

α−1 − δα−1λ
G
α−1π0 − δα−1λ

G
α−1ρ+ δ2α−1π0ρ

δ2α−1π0ρ
> 1

λG2

α−1 − δα−1λ
G
α−1π0 − δα−1λ

G
α−1ρ

δ2α−1π0ρ
+ 1 > 1

λG2

α−1 − δα−1λ
G
α−1π0 − δα−1λ

G
α−1ρ

δ2α−1π0ρ
> 0

λG
α−1 − δα−1π0 − δα−1ρ > 0

λG
α−1

δα−1
> π0 + ρ

Thus, for the log to be positive the final value of the mode must be larger than π0 + ρ. This is a very318

easy constraint to meet and any mode with a final value less than π0 + ρ will have no real bearing on319

the output language. Additionally, in the limits of π0 → 0 and ρ → 0 this just means that the final320

mode must be greater than 0 which is true by definition. We are free to substitute in π0 → 0 and321

ρ → 0 to the original expression and it simplifies to the following where c = 1
π0ρ

.322

1

2λG
α−1

log

(
c
λG2

α−1

δ2α−1

)
>

1

2λG
α

log

(
c
λG2

α

δ2α

)
1

λG
α−1

log

(√
c
λG
α−1

δα−1

)
>

1

λG
α

log

(√
c
λG
α

δα

)
What this demonstrates is that, with small initial mode values and a high precision, the convergence323

time is inversely related to the size of the input-output covariance of the mode and proportional to the324

log of the final value of the mode itself. In essence, how long it takes learning to converge depends325

on how quickly learning happens and how much there is to learn. Noting that we can set c inside326

of the log and know that it is a very large value (c → ∞) we can put the expression in a regime327

where the log derivative is near 0 and we can treat the two log expressions as constant and equal. We328

note that this is only valid where the log is positive which we have demonstrated is the case. How329

large we need to set c in practice depends entirely on the relative scale of λG
α−1/δα−1 and λG

α /δα.330

If λG
α−1/δα−1 and λG

α /δα are of roughly the same magnitude then it may not even be necessary to331

set a large c for the inequality to hold, but this then depends on the relative scale of λG
α−1 and λG

α332

in isolation too. What we are accounting for here is the case where a slower mode also has a much333

smaller final value, in which case it may still converge as quickly as the faster learning mode. The334

way to ensure these modes maintain their ordering is to set a smaller initial parameters and a smaller335

precision. This works because the dynamics have the sigmoidal training curve where overcoming the336

initial saddle point takes long and then there is a stage-like transition once the mode begins being337

learned. This simplifies the expression further to:338

1

λG
α−1

⪆
1

λG
α

This is true by definition and so it is appropriate to apply IL for all generations. We will now consider339

the relationship between the removable modes hitting time and the maintained modes convergence340
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time.341

t̂α−1 >t∗α

τ

2λG
α−1

log

(
λG
α−1ρ− δα−1π0ρ

λG
α−1π0 − δα−1π0ρ

)
>

τ

2λG
α

log

(
λG2

α − δαλ
G
απ0 − δαλ

G
αρ+ δ2απ0ρ

δ2απ0ρ

)

Once again, applying the usual limits of π0 → 0 and ρ → 0 simplifies the expression to:342

1

λG
α−1

log

(
λG
α−1ρ

λG
α−1π0

)
>

1

λG
α

log

(
c
λG2

α

δ2α

)
1

λG
α−1

log

(
ρ

π0

)
>

2

λG
α

log

(√
c
λG
α

δα

)
1

λG
α−1

log

(
ρ

π0

)
>

2

λG
α

log

(√
c
λG
α

δα

)
1

λG
α−1

log
(
ρ2c
)
>

2

λG
α

log

(√
c
λG
α

δα

)
2

λG
α−1

log
(
ρ
√
c
)
>

2

λG
α

log

(√
c
λG
α

δα

)
1

λG
α−1

log
(
ρ
√
c
)
>

1

λG
α

log

(
λG
α

δα

√
c

)
1

λG
α−1

log

(
ρ

√
ρπ0

)
>

1

λG
α

log

(
λG
α

δα

1
√
ρπ0

)
1

λG
α−1

log

( √
ρ

√
π0

)
>

1

λG
α

log

(
λG
α

δα

1
√
ρπ0

)
This expression is not true in general. For example if we set: λG

α−1 = 1, λG
α =

√
2 and δα = 1 then343

we obtain:344

1

2
log

(
ρ

π0

)
>

1

2
√
2
log

(
2

ρπ0

)
log

(
ρ

π0

)
>

1√
2
log

(
2

ρπ0

)
However ρ → 0 and the left side of the expression is tending towards 0 while the right side is tending345

towards ∞. Thus, this is a contradiction. However, if we use the fact that λG
α−1 → 0 as would be the346

case when the IL algorithm is applied, then regardless of the other dataset statistics the expression347

simplifies to:348

lim
G→∞

1

λG
α−1

log

(
ρ

π0

)
> lim

G→∞

2

λG
α

log

(√
c
λG
α

δα

)
1

λ∞
α−1

log

(
ρ

π0

)
>

2

λG
α

log

(√
c
λG
α

δα

)
∞ >

2

λG
α

log

(√
c
λG
α

δα

)
This is true by definition. In practice all that is required is to find some G for which the expression349

holds by a sufficient decrease in λG
α−1. Thus, we have shown that it is always possible to reach a350

point where a removable mode’s hitting time is higher than the maintained modes convergence time.351

This is not guaranteed to be the case for the first generation and may require multiple generations,352

which have shown to always be a viable strategy. As a consequence it is always possible to remove a353

removable mode while maintaining the maintained mode.354
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C Proof of Observation 3.2355

Observation 3.2. For all points in the space of datasets: nx, ny, kx, ky, r ∈ Z+ the input-output356

covariance matrix Σyx singular values will be ordered as: λ1 > λ2 > λ3.357

Firstly we prove that λ1 > λ2:358

λ1 > λ2(
(kxr

2 + 2nx)(kyr
2 + 2nx)

22nx

) 1
2

>

(
(kxr

2 + 2nx)(kyr
2)

22nx

) 1
2

(
(kxr

2 + 2nx)(kyr
2 + 2nx)

)
>
(
(kxr

2 + 2nx)(kyr
2)
)

kyr
2 + 2nx > kyr

2

2nx > 0

2nx > 0 is true by definition since nx ∈ Z+ and, thus, λ1 > λ2 for all points in our space of datasets.359

Now we prove that λ2 > λ3:360

λ2 > λ3(
(kxr

2 + 2nx)(kyr
2)

22nx

) 1
2

>

(
kxkyr

4

22nx

) 1
2

(kxr
2 + 2nx)(kyr

2) > kxkyr
4

kxkyr
4 + 2nxkyr

2 > kxkyr
4

2nxkyr
2 > 0

2nxkyr
2 > 0 is true by definition since nx, ky, r ∈ Z+ and, thus, λ2 > λ3 for all points in our space361

of datasets. Thus, using the transitivity of inequality: λ1 > λ2 > λ3 for all points in the space of362

datasets.363

D Simulations of IL Dynamics364

To empirically verify our theoretical results we simulate the full training dynamics for deep and365

shallow linear networks trained using gradient descent on an instantiation from the space of datasets366

with parameters nx = 3, ny = 2, kx = 3, ky = 1, r = 2 (shown in Figure 2). While training,367

we compute the singular values of the network after each epoch. These simulations of the training368

dynamics for each unique singular value are then compared to the predicted dynamics. We also369

compute the Frobenius norms of portions of the network. These norms are functions of the singular370

values and summarize how entire portions of the input space connect to portions of the output space.371

Here we track how compositional/non-compositional inputs affect compositional/non-compositional372

outputs. The equations of these form Frobenius norms are shown below and were also first introduced373

in Jarvis et al. (2023). We see close agreement between the predicted and simulated trajectories1. Note374

the requirement of depth and multiple generations of IL to effectively remove a mode of variation375

without also losing information on other modes. The difference between deep and shallow network376

training dynamics can be seen by comparing the shape of the learning trajectories between Figures377

2(a) and 2(c). Note how π3 is removed with the deep network (Figure 2(a)) while π1 and π2 remain378

unchanged. In contrast, all modes are decreased with the shallow network (Figure 2(c)) but none are379

removed.380

XΩY
G
Ω -Norm =

(
22nxnyπ

2
1(t)

(kxr2 + 2nx)(kyr2 + 2nx)

) 1
2

(6)
381

XΓY
G
Ω -Norm =

(
2nxnykxr

2π2
1(t)

(kxr2 + 2nx)(kyr2 + 2nx)

) 1
2

(7)
382

XΩY
G
Γ -Norm =

(
2nxkynyr

2π2
1(t)

(kxr2 + 2nx)(kyr2 + 2nx)
+

2nx(nx − ny)

kxr2 + 2nx
π2
2(t)

) 1
2

(8)

1All experiments are run using the Jax library (Bradbury et al., 2018).
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Singular Value Dynamics Frobenius Norm Dynamics

Figure 2: Analytical learning dynamics for deep (panels a-b) and shallow (panels c-d) linear networks.
(a,c) Comparison of predicted and actual singular value trajectories over learning, for the three
unique dataset singular values. t̂1 and t∗1 denote the escaping time and hitting time respectively for
the first mode of variation with ρ = 0.005. (b,d) Comparison of predicted and actual Frobenius
norms of the input-output mapping to/from compositional (XΩ, YΩ) and non-compositional (XΓ, YΓ)
features. Deep networks show distinct stages of improvement over learning. However, at no point is
a mapping learned which relies exclusively on compositional features or language. However, this
setting depicts the progressive removal of the π3 mode of variation over 10 generations. By the final
generation of the dense network training the non-systematic norms exhibit two stage-like transitions
corresponding to the learning of the two remaining modes of variation. The shallow network does
not learn the modes in separate stages and so the removal of one distinct mode is impossible without
simultaneously removing portions of all other modes. This demonstrates the theoretical observations
from the dynamics of IL above. Dataset Parameters: nx = 3, ny = 2, kx = 3, ky = 1, r = 2.

383

XΓY
G
Γ -Norm =

(
kxkynyr

4π2
1(t)

(kxr2 + 2nx)(kyr2 + 2nx)
+

(nx − ny)kxr
2

kxr2 + 2nx
π2
2(t) + (2nx − nx)π

2
3(t)

) 1
2

(9)
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E NeurIPS Paper Checklist384

1. Claims385

Question: Do the main claims made in the abstract and introduction accurately reflect the386

paper’s contributions and scope?387

Answer: [Yes]388

Justification: There are three main contributions in the abstract and each is given its own389

section in our results. The introduction highlights the use of Saxe et al. (2019) and Jarvis390

et al. (2023) in particular for informing or methods and this is exactly what we use.391

Guidelines:392

• The answer NA means that the abstract and introduction do not include the claims393

made in the paper.394

• The abstract and/or introduction should clearly state the claims made, including the395

contributions made in the paper and important assumptions and limitations. A No or396

NA answer to this question will not be perceived well by the reviewers.397

• The claims made should match theoretical and experimental results, and reflect how398

much the results can be expected to generalize to other settings.399

• It is fine to include aspirational goals as motivation as long as it is clear that these goals400

are not attained by the paper.401

2. Limitations402

Question: Does the paper discuss the limitations of the work performed by the authors?403

Answer: [Yes]404

Justification: The limitations of the approach are clearly stated where appropriate. We also405

review the linear dynamics and its assumptions in Section A.406

Guidelines:407

• The answer NA means that the paper has no limitation while the answer No means that408

the paper has limitations, but those are not discussed in the paper.409

• The authors are encouraged to create a separate "Limitations" section in their paper.410

• The paper should point out any strong assumptions and how robust the results are to411

violations of these assumptions (e.g., independence assumptions, noiseless settings,412

model well-specification, asymptotic approximations only holding locally). The authors413

should reflect on how these assumptions might be violated in practice and what the414

implications would be.415

• The authors should reflect on the scope of the claims made, e.g., if the approach was416

only tested on a few datasets or with a few runs. In general, empirical results often417

depend on implicit assumptions, which should be articulated.418

• The authors should reflect on the factors that influence the performance of the approach.419

For example, a facial recognition algorithm may perform poorly when image resolution420

is low or images are taken in low lighting. Or a speech-to-text system might not be421

used reliably to provide closed captions for online lectures because it fails to handle422

technical jargon.423

• The authors should discuss the computational efficiency of the proposed algorithms424

and how they scale with dataset size.425

• If applicable, the authors should discuss possible limitations of their approach to426

address problems of privacy and fairness.427

• While the authors might fear that complete honesty about limitations might be used by428

reviewers as grounds for rejection, a worse outcome might be that reviewers discover429

limitations that aren’t acknowledged in the paper. The authors should use their best430

judgment and recognize that individual actions in favor of transparency play an impor-431

tant role in developing norms that preserve the integrity of the community. Reviewers432

will be specifically instructed to not penalize honesty concerning limitations.433

3. Theory Assumptions and Proofs434

Question: For each theoretical result, does the paper provide the full set of assumptions and435

a complete (and correct) proof?436
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Answer: [Yes]437

Justification: We state the assumptions and provide a proof sketch in the main text. Full438

proves are given in the appendix.439

Guidelines:440

• The answer NA means that the paper does not include theoretical results.441

• All the theorems, formulas, and proofs in the paper should be numbered and cross-442

referenced.443

• All assumptions should be clearly stated or referenced in the statement of any theorems.444

• The proofs can either appear in the main paper or the supplemental material, but if445

they appear in the supplemental material, the authors are encouraged to provide a short446

proof sketch to provide intuition.447

• Inversely, any informal proof provided in the core of the paper should be complemented448

by formal proofs provided in appendix or supplemental material.449

• Theorems and Lemmas that the proof relies upon should be properly referenced.450

4. Experimental Result Reproducibility451

Question: Does the paper fully disclose all the information needed to reproduce the main ex-452

perimental results of the paper to the extent that it affects the main claims and/or conclusions453

of the paper (regardless of whether the code and data are provided or not)?454

Answer: [Yes]455

Justification: We describe the datasets, network architectures and training algorithms for all456

experiments in the work.457

Guidelines:458

• The answer NA means that the paper does not include experiments.459

• If the paper includes experiments, a No answer to this question will not be perceived460

well by the reviewers: Making the paper reproducible is important, regardless of461

whether the code and data are provided or not. Finally, we release the code for all462

experiments (including bash scripts to make this easy) with a requirements file for463

reproducibility.464

• If the contribution is a dataset and/or model, the authors should describe the steps taken465

to make their results reproducible or verifiable.466

• Depending on the contribution, reproducibility can be accomplished in various ways.467

For example, if the contribution is a novel architecture, describing the architecture fully468

might suffice, or if the contribution is a specific model and empirical evaluation, it may469

be necessary to either make it possible for others to replicate the model with the same470

dataset, or provide access to the model. In general. releasing code and data is often471

one good way to accomplish this, but reproducibility can also be provided via detailed472

instructions for how to replicate the results, access to a hosted model (e.g., in the case473

of a large language model), releasing of a model checkpoint, or other means that are474

appropriate to the research performed.475

• While NeurIPS does not require releasing code, the conference does require all submis-476

sions to provide some reasonable avenue for reproducibility, which may depend on the477

nature of the contribution. For example478

(a) If the contribution is primarily a new algorithm, the paper should make it clear how479

to reproduce that algorithm.480

(b) If the contribution is primarily a new model architecture, the paper should describe481

the architecture clearly and fully.482

(c) If the contribution is a new model (e.g., a large language model), then there should483

either be a way to access this model for reproducing the results or a way to reproduce484

the model (e.g., with an open-source dataset or instructions for how to construct485

the dataset).486

(d) We recognize that reproducibility may be tricky in some cases, in which case487

authors are welcome to describe the particular way they provide for reproducibility.488

In the case of closed-source models, it may be that access to the model is limited in489

some way (e.g., to registered users), but it should be possible for other researchers490

to have some path to reproducing or verifying the results.491
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5. Open access to data and code492

Question: Does the paper provide open access to the data and code, with sufficient instruc-493

tions to faithfully reproduce the main experimental results, as described in supplemental494

material?495

Answer: [No]496

Justification: This is a preprint, and so we omit code at this point. However we guide a497

reader to code release for Jarvis et al. (2023) which provides code to imitate the setup of this498

work and the linear network dynamics in that setting.499

Guidelines:500

• The answer NA means that paper does not include experiments requiring code.501

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/502

public/guides/CodeSubmissionPolicy) for more details.503

• While we encourage the release of code and data, we understand that this might not be504

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not505

including code, unless this is central to the contribution (e.g., for a new open-source506

benchmark).507

• The instructions should contain the exact command and environment needed to run to508

reproduce the results. See the NeurIPS code and data submission guidelines (https:509
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