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ABSTRACT

We introduce a dynamic sparse training algorithm based on linearized Bregman
iterations / mirror descent that exploits the naturally incurred sparsity by alter-
nating between periods of static and dynamic sparsity pattern updates. The key
idea is to combine sparsity-inducing Bregman iterations with adaptive freezing of
the network structure to enable efficient exploration of the sparse parameter space
while maintaining sparsity. We provide convergence guaranties by embedding
our method in a multilevel optimization framework. Furthermore, we empirically
show that our algorithm can produce highly sparse and accurate models on stan-
dard benchmarks. We also show that the theoretical number of FLOPs compared
to SGD training can be reduced from 38% for standard Bregman iterations to 6%
for our method while maintaining test accuracy.

1 INTRODUCTION

Deep neural networks have produced astonishing results in various areas such as computer vision
and natural language processing (Noor & Ige, 2025) but demand significant memory and special-
ized hardware, contributing to growing concerns about their environmental impact, particularly the
carbon footprint of training and inference (Dhar, 2020).

In response, researchers have explored techniques for developing compact and efficient models, such
as sparse neural networks, wherein many neuron connections are absent. Within this context, the
Lottery Ticket Hypothesis (Frankle & Carbin, 2018) plays a central role, suggesting that every dense
network contains a sparse subnetwork that, when trained independently, can achieve comparable
accuracy.

There are two main approaches to obtain sparse neural networks: pruning and sparse training. In
pruning, a dense model is first trained and unwanted connections are removed afterward. Because
this usually causes a drop in performance, the pruned model is often retrained with the sparsity
pattern fixed. By contrast, sparse training incorporates mechanisms that encourage sparsity already
during training. Pruning methods themselves vary widely, depending on how weights are selected
for removal and at what stage of training pruning is applied. A key distinction is between unstruc-
tured pruning, which eliminates individual weights, and structured pruning, which removes entire
components such as neurons or filters, see Hoefler et al. (2021) for an extensive overview.

In addition to pruning-based methods, another technique to encourage sparsity is to include explicit
regularization terms in the loss function. A common example is Lasso regularization, which uses the
ℓ1-norm as a penalty in the objective function (Tibshirani, 1996). The resulting optimization problem
can be solved using algorithms such as Proximal Gradient Descent (Rosasco et al., 2020; Mosci
et al., 2010). A conceptually different approach is to enforce sparsity through implicit regularization
which can be achieved using mirror descent (Nemirovskij & Yudin, 1983). Here we would like to
highlight a series of works (Huang et al., 2016; Azizan et al., 2021; Bungert et al., 2021; 2022; Wang
& Benning, 2023; Heeringa et al., 2023) that utilize mirror descent or linearized Bregman iterations
to induce sparsity in neural networks without explicit regularization.

Linearized Bregman iterations are equivalent to mirror descent, but they are typically formulated
and analyzed with less regularity assumptions on the mirror map (e.g., compared to Azizan et al.
(2021)), thereby lending themselves toward non-smooth sparsity-promoting mirror maps. This was
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exploited in (Bungert et al., 2022) to devise the LinBreg algorithm which essentially is a stochastic
mirror descent algorithm applied with a non-smooth mirror map.

Within the context of sparse training, we also highlight the relevance of genetic evolutionary al-
gorithms, particularly Sparse Evolutionary Training (SET) (Mocanu et al., 2018). SET applies a
dynamic sparse training approach by performing pruning at the end of each epoch—removing a
fraction of the active connections—and regrowing an equal number of new connections at random
positions. This iterative process maintains a fixed sparsity level. Beyond sparse training, evolu-
tionary algorithms have also been successfully applied to Neural Architecture Search (Miikkulainen
et al., 2024; Elsken et al., 2019); however, they typically lack rigorous convergence guarantees.

In this paper, we propose a training algorithm based on linearized Bregman iterations, designed to
promote sparsity in neural networks during training. A key benefit of Bregman iterations over reg-
ularization methods like the Lasso is that for the former the number of non-zero parameters of the
trained networks usually increases monotonically. Hence, algorithms like LinBreg lend themselves
to exploiting sparsity early on in the training process. In our method, we periodically freeze the net-
work’s structure: that is, we restrict updates to parameters that are non-zero in the current iteration.
This approach offers two key benefits. First, stricter sparsity is enforced than through LinBreg alone,
as the number of non-zero parameters cannot increase during the frozen phases. Second, during the
frozen phases only derivatives corresponding to active parameters are required which provides scope
for significant computational savings during training.

We embed the resulting algorithm within a multilevel optimization framework (Nash, 2000), which
enables us to leverage existing convergence theory. In particular, we adapt the convergence analysis
of Multilevel Bregman Proximal Gradient Descent (Elshiaty & Petra, 2025) to our sparse training
setup. We find that our method can outperform the standard LinBreg algorithm by yielding models
that are sparser while achieving comparable or even superior performance for image classification.

The remainder of this paper is structured as follows. First, we explain our algorithm and present
how it can be interpreted as a multilevel optimization method. We proceed by proving a sublinear
convergence result for the algorithm. Finally, we perform numerical experiments comparing our
method to other methods that aim at achieving sparse but performative models.

2 RELATED WORK

Bregman Iterations / Mirror descent Bregman iterations were originally introduced by Osher
et al. (2005) as iterative reconstruction method for imaging inverse problems to overcome the bias
of regularization methods like total variation denoising (Rudin et al., 1992). Later they were applied
to compressed sensing (Yin et al., 2008) and nonlinear inverse problems (Bachmayr & Burger, 2009;
Benning et al., 2021). In the context of machine learning, they were used for sparsity (Bungert et al.,
2021; 2022; Heeringa et al., 2023; 2025) of neural network representations as well as for training
networks with non-smooth activations of proximal type (Wang & Benning, 2023). While Bregman
iterations in their original form generalize the implicit Euler method, so-called linearized Bregman
iterations are closely related to mirror descent (Nemirovskij & Yudin, 1983) or more precisely to
lazy mirror descent / Nestorov’s dual averaging (Nesterov, 2009). The method is also referred to
as Bregman proximal gradient descent and a stochastic gradient version of it was coined LinBreg
by Bungert et al. (2022). It must be emphasized that, just like different communities use different
terminologies, they also developed different mathematical tools to analyze the convergence behavior.
In particular, the inverse problems community put a lot of effort into analyzing Bregman iterations
with sparsity-promoting regularizers which translates to mirror descent with non-smooth mirror
maps. This will also be our approach in this paper.

Multilevel Optimization Multilevel optimization methods originate from multigrid techniques,
which were initially developed to solve differential equations efficiently. The MGOPT algorithm
(Nash, 2000) was among the first to adapt these ideas to optimization problems. More recently,
Elshiaty & Petra (2025) extended this framework by incorporating linearized Bregman iterations.
Their work provides convergence guarantees via a Polyak–Łojasiewicz-type inequality for the ML
BPGD algorithm and demonstrates its effectiveness in image reconstruction tasks. Hovhannisyan
et al. (2016) provide a connection between multilevel optimization and mirror descent, noting that
the latter is equivalent to linearized Bregman iterations. They further incorporate acceleration tech-
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niques, prove convergence of their algorithm, and illustrate its performance through numerical ex-
periments on face recognition. Multilevel strategies have also been explored in deep learning, par-
ticularly for training residual neural networks (ResNets). Kopaničáková & Krause (2023) introduce
a hierarchy based on networks of varying depth and width, leveraging the fact that smaller models
are faster and cheaper to train. Similar approaches have been made e.g. by Gaedke-Merzhäuser et al.
(2021). Other approaches embed the multilevel hierarchy directly into the objective function rather
than the model architecture. For example, Braglia et al. (2020) use varying batch sizes to compute
the loss, effectively inducing a multiscale structure during training.

Sparse neural networks Within the context of sparse training, several methods have been pro-
posed to obtain sparse yet performant models without the need to train a dense network beforehand.
DEEP-R (Bellec et al., 2018) fixes the number of active connections in a network and then removes
and stochastically regrows them during training, maintaining a constant level of sparsity. Similarly,
RigL (Evci et al., 2020) also removes and regrows connections, but instead of random growth, it
deterministically activates new connections in locations with the largest gradient magnitudes. SNFS
(Dettmers & Zettlemoyer, 2019) follows a related strategy, but bases the regrowth decision on the
momentum of the parameters. In contrast, SNIP (Lee et al., 2019) determines important connections
before training by estimating the sensitivity of the loss to each weight. This produces a fixed spar-
sity mask that remains unchanged during training. DFBST (Pote et al., 2023) applies binary masks
during both the forward and backward passes. The forward pass mask sparsifies the weights, while
the backward pass mask restricts gradient updates, enabling sparse training.

3 METHOD

A typical training problem to find optimal network parameters θ ∈ Rd consists of solving

min
θ∈Rd

L(θ), (1)

whereL : Rd → R is a differentiable and non-negative loss function, for example, the empirical loss.
One way to enforce constraints or encourage sparsity in solutions is to specify a proper, convex, and
lower semicontinuous function J : Rd → (−∞,∞], such as the ℓ1-norm or indicator function of a
closed convex set, and consider a minimization of L+ J. The approach of Bregman iterations is to
directly minimize L, while implicitly minimizing J. This is achieved through the scheme

θ(k+1) = argmin
θ∈Rd

Dp(k)

J (θ, θ(k)) + τ (k)L(θ),

p(k+1) = p(k) − τ (k)∇L(θ(k+1)) ∈ ∂J(θ(k+1)),

(2)

where the so-called Bregman divergence (associated to J) is defined as:

Dp
J(θ̃, θ) := J(θ̃)− J(θ)− ⟨p, θ̃ − θ⟩. (3)

Here θ ∈ dom(∂J), p ∈ ∂J(θ) is a subgradient, and τ (k) > 0 is a sequence of step sizes. The
Bregman divergence (3) can be interpreted as the difference between J and its linearization around
θ and satisfies properties such as Dp

J(θ, θ) = 0 and, due to convexity of J, Dp
J(θ̃, θ) ≥ 0.

Since solving the optimization problem (2) is typically almost as hard as solving (1), one typically
replaces L in (2) with its first order approximation L(θ(k)) + ⟨∇L(θ(k)), θ − θ(k)⟩ and J with the
strongly convex elastic-net regularizer

Jδ(θ) :=
1

2δ
∥θ∥2 + J(θ), δ ∈ (0,∞),

to obtain (see, e.g., Bungert et al. (2022) for a derivation)

v(k+1) = v(k) − τ∇L(θ(k)), (4a)

θ(k+1) = proxδJ(δv
(k+1)), (4b)

starting at some θ(0) and v(0) ∈ ∂Jδ(θ
(0)). The algorithm involves the proximal operator

proxδJ(θ) := argmin
θ̃∈Rd

1

2δ
∥θ̃ − θ∥2 + J(θ̃).

3
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To make (4) feasible for the high-dimensional and non-convex problems arising in machine learning,
Bungert et al. (2022) in their LinBreg method replaced the gradient∇L(θ(k)) in (4a) by an unbiased
stochastic estimator and provided a convergence analysis.

Note that if J ≡ 0, the proximal operator is the identity map and, taking δ = 1, (4) recovers Gradient
Descent. More generally, (4) coincides with mirror descent (Beck & Teboulle, 2003) applied to the
distance generating function Jδ . This can be seen by noting that ∇J∗

δ = proxδJ(δ·), where J∗
δ

denotes the convex conjugate (Bauschke & Combettes, 2011) of Jδ .

Although evaluating the proximal operator in (4b) is phrased as a minimization problem, particular
choices of J admit closed forms, e.g., J = λ∥ · ∥1 yields the soft shrinkage operator

proxδJ(δv) = δ sign(v)max(|v| − λ, 0) (5)

applied componentwise. This particular choice also demonstrates how Bregman iterations can lead
to sparse networks. In (5); only parameters whose corresponding dual variable v exceeds the thresh-
old λ in absolute value will be non-zero. Thus, we can view (4b) as a pruning step inherent to the
optimizer, where the pruning criterion employs information associated with the regularizer J, and
not just the magnitude of the parameter or of the gradient of the training loss L.
In practice, θ can represent the parameters of several network layers, and as such one may wish
to employ a different regularizer for each layer. To represent this, we split the parameter vector θ
into groups via θ = (θ(1), . . . , θ(G)), where each group θ(g) ∈ Rdg contains dg scalar parameters.
Furthermore, we assume the regularizer J acts on these groups separately, taking the form

J(θ) =

G∑
g=1

Jg(θ(g)), (6)

where each Jg : Rdg → (−∞,∞] is proper, convex, and lower-semicontinuous. We see that (6)
includes the standard ℓ1-norm but also the group ℓ1,2-norm (Scardapane et al., 2017), given by

J(θ) :=

G∑
g=1

√
ng∥θ(g)∥2, (7)

where ng denotes the number of parameters in the group. While the ℓ1-norm encourages individual
parameters to become zero, the group ℓ1,2-norm can be used to enforce entire structures, such as
convolutional kernels, to vanish.

The main idea of our algorithm is to use this induced sparsity of the iterations (4) by only performing
a full update with this rule every m iterations. In all other iterations, we update only the non-zero
parameters and consequently only require gradients with respect to the active parameters. Depending
on the induced sparsity pattern, this provides scope for significant computational savings during
most training steps. We show that we can interpret this idea as a multilevel optimization scheme,
allowing us to adapt convergence proofs from the multilevel optimization literature.

More precisely, we consider a two-level framework consisting of the actual minimization problem
(1) and a coarse problem with fewer variables. To map between these levels, the restriction and pro-
longation operators are used. The restriction operator at iteration k, denoted R(k) : Rd → RDk with
Dk < d, is a linear map that decides which of the variables we restrict ourselves to. Consequently,
the rows of the matrix R(k) are standard unit vectors and θi is selected by R(k) if and only if one
of the rows of the matrix is the i-th standard unit vector. We only consider the case where entire
groups are selected by the restriction operator, so if one component of a group θ(g) is selected, then
all the other components must be selected as well. Given the number of selected groups G(k), we
can define an injective function r(k) : {1, 2, . . . , G(k)} → {1, 2, . . . , G} such that

R(k)θ = (θ(r(k)(1)), . . . , θ(r(k)(G(k)))), θ ∈ Rd.

For a given coarse variable θ̂, this function is useful to determine where its parameter groups belong
on the fine level.

The corresponding prolongation operator P (k) : RDk → Rd maps from the coarse to the fine level
and is defined as the transpose of the restriction P (k) = (R(k))T . This means that the prolongation

4
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operator maps the groups that were selected by the restriction back and simply completes the param-
eter vector θ by setting zero for every parameter group that was not selected by the restriction. Using
the previously defined function r(k), we can explicitly write the prolongation of a coarse variable
θ̂ ∈ RDk as

(P (k)θ̂)(g) =

{
θ̂(i), if g = r(k)(i),

0, otherwise.

While the case where the restriction operator chooses the groups that are non-zero at iteration k is
the most interesting for us, our analysis works for arbitrary selections of parameter groups.

In our algorithm, during each iteration k, a predefined criterion is evaluated to decide whether to
invoke the coarse-level model. If the coarse model is employed, the restriction operator R(k) maps
the current iterate θ(k) and the corresponding subgradient v(k) to the coarse level. We denote these
restrictions by θ̂0,k := R(k)θ(k) and v̂0,k := R(k)v(k). The algorithm then performs m LinBreg
steps to minimize the coarse loss

L̂(k)(θ̂) := L(θ(k) + P (k)(θ̂ − θ̂0,k)) (8)

using Ĵ
(k)
δ (θ̂) := 1

2δ∥θ̂∥
2 + Ĵ (k)(θ̂) as the regularizer, where

Ĵ (k)(θ̂) :=

G(k)∑
i=1

Jr(k)(i)(θ̂(i)).

The result of these coarse iteration steps θ̂m,k with corresponding subgradient v̂m,k is then mapped
back to the fine level via

θ̃(k+1) := θ(k) + P (k)(θ̂m,k − θ̂0,k),

ṽ(k+1) := v(k) + P (k)(v̂m,k − v̂0,k),

before performing a LinBreg step on the fine level to obtain θ(k+1) and v(k+1). See Algorithm 1.

If the restriction operator at iteration k only selects the parameter groups that are non-zero for θ(k),
the coarse loss (8) and the prolongation to the fine level simplify to

L̂(k)(θ̂) = L(P (k)θ̂), θ̃(k+1) = P (k)θ̂m,k.

For the subgradients, however, such simplification is not available.

Typically in multilevel optimization, a linear correction term is added to the coarse objective function
to ensure first-order coherence, i.e., critical points on the fine level are transferred to ones on the
coarse level. In our case, due to the special structure of L̂(k) no correction term is necessary, since

∇L̂(k)(θ̂0,k) = R(k)∇L(θ(k)).

Hence, if θ(k) is a critical point of L, then θ̂0,k := R(k)θ(k) is a critical point of L̂(k).

A criterion to decide when to use the coarse model is (Wen & Goldfarb, 2009; Vanmaele et al., 2025)

∥R(k)∇L(θ(k))∥ ≥ κ∥∇L(θ(k)∥,
∥R(k)∇L(θ(k))∥ > ε,

(9)

where κ and ε are positive hyperparameters. This, in particular, prevents coarse iteration updates in
the case that θ̂0,k is a critical point of L̂(k) (which does not necessarily mean that θ(k) is a critical
point of L). MAGMA (Hovhannisyan et al., 2016) uses a similar criterion to decide when to invoke
the coarse model. Specifically, it checks the first part of (9) and, in addition, whether the current
iterate is sufficiently far from the point of the last coarse update or the number of consecutive fine
updates is below a predefined limit. This ensures coarse updates are triggered only when they are
beneficial—either because the iterate has changed significantly, or because not too many consecutive
fine steps have yet been taken.

Since we work with subgradients, we carefully investigate the transfer between the different levels.
In particular, we show that restricting the subgradients from the fine level yields subgradients of the
coarse regularizer and mapping the coarse subgradients back to the fine level as described also leads
to subgradients on the fine level due to the structure of J from (6). The proofs of the following
propositions can be found in Section A in the appendix.
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Proposition 1. If v(k) ∈ ∂Jδ(θ
(k)), then defining v̂0,k := R(k)v(k) and θ̂0,k := R(k)θ(k) we have

v̂0,k ∈ ∂Ĵ
(k)
δ (θ̂0,k).

This implies that in Algorithm 1 we start the coarse iteration with a feasible pair (θ̂0,k, v̂0,k). Con-
sequently, due to the structure of the iteration, we subsequently obtain v̂i,k ∈ ∂Ĵ

(k)
δ (θ̂i,k) for

i = 1, . . . ,m. We also observe that the way of transferring the updated variables back to the fine
level preserves the fact that ṽ(k+1) is a subgradient of Jδ at θ̃(k+1).

Proposition 2. If θ̂m,k ∈ dom(∂Ĵ (k)) and v̂m,k ∈ ∂Ĵ
(k)
δ , then defining

θ̃(k+1) := θ(k) + P (k)(θ̂m,k − θ̂0,k),

ṽ(k+1) := v(k) + P (k)(v̂m,k − v̂0,k)

we have ṽ(k+1) ∈ ∂Jδ(θ̃
(k+1)).

Algorithm 1 Multilevel LinBreg

Input: Initial guess θ(0) ∈ Rd, v(0) ∈ ∂Jδ(θ
(0))

for k ∈ N do
if condition to use coarse model is satisfied at θ(k) then

θ̂0,k = R(k)θ(k)

v̂0,k = R(k)v(k)

for i = 1, . . . ,m do
ĝ(k) ← unbiased estimator of∇L̂(k)(θ̂i−1,k)
v̂i,k = v̂i−1,k − τ̂ ĝ(k)

θ̂i,k = proxδĴ(k)(δv̂i,k)
end for
ṽ(k+1) = v(k) + P (k)(v̂m,k − v̂0,k)

θ̃(k+1) = θ(k) + P (k)(θ̂m,k − θ̂0,k)

g(k+1) ← unbiased estimator of∇L(θ̃(k+1))
v(k+1) = ṽ(k+1) − τg(k+1)

θ(k+1) = proxδJ(δv
(k+1))

else
g(k) ← unbiased estimator of∇L(θ(k))
v(k+1) = v(k) − τg(k)

θ(k+1) = proxδJ(δv
(k+1))

end if
end for

To conclude this section, we would like to highlight the key differences between our algorithm
and the methods ML BPGD (Elshiaty & Petra, 2025) and MGOPT (Nash, 2000). Firstly, we use
adaptive restriction and prolongation operators, which are necessary to focus on different parameters
at different iterations. Secondly, we do not perform a line search when mapping from the coarse
level to the fine level. MGOPT and ML BPGD both use arbitrary convex coarse objective functions
with a linear correction term to ensure that the direction found with the coarse iterations is a descent
direction, as well as a line search to ensure that the fine loss actually decreases. Our specific selection
of the coarse objective function ensures a decrease in the fine loss (see Lemma 3), eliminating the
need for a line search. Lastly, unlike for ML BPGD, our regularizer Jδ is generally not differentiable.
Therefore, we cannot work with its gradients, but must use subgradients instead. These subgradients
must be handled carefully when mapping between different levels (see Propositions 1 and 2).

4 CONVERGENCE ANALYSIS

For the convergence analysis, we need to make further assumptions. We follow Bauschke et al.
(2019); Elshiaty & Petra (2025) and require the loss function to be smooth relative to the regularizer
and to satisfy a Polyak–Łojasiewicz-like inequality.

6
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Assumption 1. We assume that L is L-smooth with respect to Jδ , i.e.

L(θ̃) ≤ L(θ) + ⟨∇L(θ), θ̃ − θ⟩+ LDv
Jδ
(θ̃, θ)

for θ̃ ∈ Rd, θ ∈ dom(∂J) and v ∈ ∂Jδ(θ).

Since Jδ is strongly convex, its induced Bregman divergence is bounded from below by the squared
Euclidean norm. Therefore, from the descent lemma for L-smooth functions (Bauschke & Com-
bettes, 2011; Beck, 2017) it follows that this assumption holds in particular for loss functions L
with a Lipschitz-continuous gradient which, however, is generally a much stronger condition than
Assumption 1.
Assumption 2. For θ ∈ dom(∂J), v ∈ ∂Jδ(θ) and τ > 0, let v+τ := v − τ∇L(θ) and θ+τ :=
proxδJ(δv

+
τ ). We assume the existence of a function λ : (0,∞)→ (0,∞) and some η > 0 such that

D
v+
τ

Jδ
(θ, θ+τ ) ≥ λ(τ)D

v+
1

Jδ
(θ, θ+1 ) (10)

for θ ∈ dom(∂J), v ∈ ∂Jδ(θ), τ > 0 and

D
v+
1

Jδ
(θ, θ+1 ) ≥ η(L(θ)− L∗), (11)

where L∗ := infRd L.

In the gradient descent case where Jδ = 1
2∥ · ∥

2, assumption (10) is satisfied with λ(τ) = τ2 and
(11) becomes the well known Polyak–Łojasiewicz inequality

∥∇L(θ)∥2 ≥ 2η(L(θ)− L∗)

which is weaker than convexity but requires every stationary point of L to be a minimizer.

Using these two assumptions and again following Bauschke et al. (2019); Elshiaty & Petra (2025)
we can prove the convergence of Algorithm 1 in the case of exact gradients.

Theorem 1. Let τ, τ̂ ≤ 1
L . Then, the sequence (θ(k))k∈N generated by Algorithm 1 using exact

gradients in place of unbiased estimators satisfies

L(θ(k))− L∗ ≤ (1− r)k(L(θ(0))− L∗)−
k−1∑
i=0

(1− r)k−iρ̂i,

where r = η λ(τ)
τ ∈ (0, 1] and

ρ̂i :=

{
1
τ̂

∑m
j=1 D

v̂j,i

Ĵ
(i)
δ

(θ̂j−1,i, θ̂j,i) if i triggers a coarse step,

0 otherwise.

5 NUMERICAL EXPERIMENTS

All gradient estimators in Algorithm 1 are computed using mini-batch approximations. It is also
important to note that the ordering of coarse and fine updates is flexible. For instance, one may
perform a single fine update—using a mini-batch to update the fine model—followed by m coarse
updates. Alternatively, switching can occur at the epoch level, where fine updates are carried out for
an entire epoch, and then coarse updates are applied for m consecutive epochs.

CIFAR10 training In order to evaluate our proposed training algorithm, we train different neu-
ral network architectures on the CIFAR10 dataset, containing 60,000 32-by-32 color images in 10
different classes. The objective is to construct sparse models that exhibit only marginal reductions
in test accuracy. As mentioned above, we choose the linear map that selects all the parameters that
are not zero in the current state as the restriction operator. Sparsity is evaluated by computing the
percentage of non-zero parameters relative to the total number of parameters, denoted by Ntotal. We
then define overall sparsity as

Stotal := 100%−Ntotal.
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We consider the standard case of ℓ1-regularization, where the regularizer is defined as J = λ∥ · ∥1.
The hyperparameter λ plays a significant role in determining the characteristics of the trained net-
work. As expected, stronger regularization—i.e., larger values of λ—leads to increased sparsity in
the resulting model, potentially at the cost of reduced accuracy (see Figure 2a). Therefore, our aim
is to find a trade-off between sparsity and accuracy.

We initialize the network with a sparsity of 99%. Due to our considerations regarding the initializa-
tion (see Appendix C), we would need to multiply every sparsified group of weights by 1√

0.01
= 10.

However, we find that a multiplication by 5 improves the results, so we choose this instead. For the
training setup, we use the step-wise switching strategy between fine and coarse model rather than
switching epoch-wise. To simplify the algorithm, we use the coarse model at every stage, taking
100 steps on the coarse level before returning to the fine level.

We train models using Algorithm 1 with different choices of the regularization parameter λ across
multiple random seeds to produce models with different levels of sparsity. As baselines, we in-
clude dense models trained with stochastic gradient descent, LinBreg, and pruned versions of the
SGD-trained models. The latter were pruned to match the sparsity levels achieved by LinBreg and
then fine-tuned. For a fair comparison, the pruned models were trained for only 180 epochs before
undergoing an additional 20 epochs of fine-tuning, whereas the baseline methods were trained for
the full 200 epochs. Thus, the overall training budget is aligned at 200 epochs across all methods.
For a clear comparison, we visualize these results in Figure 1 using boxplots of the test accuracy
at the corresponding sparsity levels for different regularizers, for LinBreg, our proposed algorithm
and pruned and fine-tuned models. We emphasize that, while achieving results comparable to Lin-
Breg and pruning on ResNet18, our method requires substantially less gradient information. For
the VGG16 architecture, the pruned architectures outperform the other approaches, however, at the
cost of requiring training of a full architecture. Moreover, for WideResNet28-10, our algorithm out-
performs both LinBreg and the pruning approach by producing models that are sparser and equally
accurate. Compared to pruning, our method (and to some extent also LinBreg) has the advantage of
not requiring a dense model to be trained.
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Figure 1: Accuracy and sparsity for different regularizers with LinBreg and ML LinBreg as well as
a pruning baseline on CIFAR10 for different architectures.
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Figure 2: Comparison of accuracy and sparsity across different hyperparameters.
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To demonstrate the effect of the regularization parameter λ in our training procedure, we train mod-
els with varying values of λ and evaluate both the test accuracy and sparsity of the resulting models.
As expected, smaller values of λ yield highly accurate but less sparse models, whereas increasing
λ results in reduced accuracy but greater sparsity. The results of this experiment are presented in
Figure 2a.

In Figure 2b, we investigate the effect of the coarse update duration m in Algorithm 1 on test accu-
racy and sparsity of the trained models. All other parameters are fixed; in particular, the regularizer
is chosen as J = 0.005∥·∥1. The network is trained on multiple random seeds, and we report the
mean values in the figure. Note that on the x-axis we display N := m + 1, so that the value 1
corresponds to the case without coarse updates, i.e., the standard LinBreg algorithm. As expected,
increasing m–and thus prolonging the freezing period–quickly yields sparser models, where the
reduction in accuracy is pretty flat.

The theoretical computational savings of our method compared to standard training with SGD and
LinBreg are explained in Section B in the appendix, and we also refer to Section C for more results
on CIFAR10.

TinyImageNet training We further evaluate our approach on the TinyImageNet dataset, contain-
ing 100,000 64-by-64 color images in 200 different classes, using two different architectures. As in
the CIFAR10 experiments, we train models with the regularizer J = λ∥ · ∥1 for different values of λ
across multiple random seeds. The results are summarized in Figure 3, where we present boxplots of
the achieved test accuracies located at the sparsity of the models. For comparison, we also include a
dense baseline trained with standard SGD. We additionally provide the results that can be achieved
by pruning and fine-tuning the dense SGD models to different levels of sparsity. Our findings show
that the proposed multilevel method consistently outperforms the standard LinBreg algorithm by
producing models that are sparser while maintaining, or even improving, test accuracy. Compared
to the pruning approach, we achieve comparable or better test accuracy across all sparsity levels.
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Figure 3: Accuracy and sparsity for different regularizers with LinBreg and ML LinBreg as well as
SGD and pruning baselines on TinyImageNet.

6 CONCLUSION AND OUTLOOK

We proposed a multilevel framework for linearized Bregman iterations in the context of sparse train-
ing. We established convergence of the function values for our method and demonstrated its effec-
tiveness in producing sparse yet accurate models for image classification tasks. By preserving the
network structure throughout training, our approach enables substantial computational savings. An
interesting direction for future work is to analyze the convergence of our algorithm in a stochastic
setting, using gradient estimators in place of exact gradients. Moreover, sparsity-informed training
implementations of our method have the potential to substantially reduce training time and resource
requirements.
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REPRODUCIBILITY STATEMENT

The code used to produce the results will be released at a GitHub repository that will be made
available after blind review.
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A THEORETICAL PROOFS

A first very important observation is that Ĵ (k)
δ coincides with Ĵ := Jδ(θ

(k) + P (k)(· − θ̂0,k)) up to
a constant depending on θ(k). To see this, note that

(θ(k) + P (k)(θ̂ − θ̂0,k))(g) =

{
θ̂(i), if g = r(k)(i),

(θ(k))(g), otherwise
(12)
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due to the definitions of P (k) and θ̂0,k. Using this, it is straight-forward to compute

Ĵ(θ̂) =
1

2δ
∥θ(k) + P (k)(θ̂ − θ̂0,k)∥2 + J(θ(k) + P (k)(θ̂ − θ̂0,k))

=
1

2δ
∥θ̂∥2 + 1

2δ

∑
g∈X

∥(θ(k))(g)∥2 +
G(k)∑
i=1

Jr(k)(i)(θ̂(i)) +
∑
g∈X

Jg((θ
(k))(g))

= Ĵ
(k)
δ (θ̂) + const(θ(k)),

where we use the abbreviation

X := {1, 2, . . . , G} \ r(k)({1, 2, . . . , G(k)})

to denote all groups that are not selected by R(k). Therefore, Ĵ (k)
δ and Ĵ share the same subd-

ifferential and also induce the same Bregman divergence. We can make use of this fact to prove
Proposition 1.

Proof of Proposition 1. Due to the sum and chain rule for subdifferentials,

∂Ĵ(θ̂) =
1

δ
θ̂ + (P (k))T∂J(θ(k) + P (k)(θ̂ − θ̂0,k)).

for θ̂ ∈ RDk such that J(θ(k) + P (k)(θ̂ − θ̂0,k)) < ∞ and ∂J(θ(k) + P (k)(θ̂ − θ̂0,k)) ̸= ∅.
Consequently, since we have already established that Ĵ (k)

δ and Ĵ share the same subdifferential, for
θ̂ = θ̂0,k, we have

∂Ĵ
(k)
δ (θ̂0,k) = ∂Ĵ(θ̂0,k)

=
1

δ
θ̂0,k +R(k)∂J(θ(k))

= R(k)∂Jδ(θ
(k)).

Obviously, v̂0,k = R(k)v(k) belongs to the latter, concluding the proof.

Proof of Proposition 2. Using (12) with θ̂ = θ̂m,k together with (6), it is easy to see that

∂(g)Jδ(θ̃
(k+1)) =

1

δ
θ̃
(k+1)
(g) + ∂Jg((θ̃

(k+1))(g))

=

{
∂(i)Ĵ

(k)
δ ((θ̂m,k)(i)), if g = r(k)(i),

∂(g)Jδ(θ
(k)), otherwise.

Since by definition

ṽ(k+1) =

{
(v̂m,k)(i), if g = r(k)(i),

(v(k))(g), otherwise,

together with v̂m,k ∈ ∂Ĵδ
(k)

(θ̂m,k) and v(k) ∈ ∂Jδ(θ
(k)), we obtain overall that ṽ(k+1) ∈

∂Jδ(θ̃
(k+1)).

As a next step, we prove that the coarse objective L̂(k) is L-smooth relative to the coarse regular-
izer Ĵ (k)

δ .

Lemma 1. Let Assumption 1 be satisfied. Then, the coarse objective L̂(k) defined in (8) is L-smooth
relative to Ĵ

(k)
δ .

Proof. Let θ̂ ∈ dom ∂J with v̂ ∈ ∂Ĵ(θ̂) and θ̂′ ∈ RDk . We define

ṽ := v(k) + P (k)(v̂ − v̂0,k),

θ̃ := θ(k) + P (k)(θ̂ − θ̂0,k),

13
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and note that this leads to ṽ ∈ ∂Jδ(θ̃) following from the same argumentation as in the proof of
Proposition 2. In particular, θ̃ ∈ dom ∂J . Hence, from the L-smoothness of L relative to Jδ , we
deduce

L̂(k)(θ̂′)− L̂(k)(θ̂)− ⟨∇L(θ̃), P (k)(θ̂′ − θ̂)⟩ ≤ L(Ĵ(θ̂′)− Ĵ(θ̂)− ⟨ṽ, P (k)(θ̂′ − θ̂)⟩)

and using (P (k))T∇L(θ̃) = ∇L̂(k)(θ̂), we obtain

L̂(k)(θ̂′)− L̂(k)(θ̂)− ⟨∇L̂(k)(θ̂), θ̂′ − θ̂⟩ ≤ L(Ĵ(θ̂′)− Ĵ(θ̂)− ⟨(P (k))T ṽ, θ̂′ − θ̂⟩).

Due to the definition of ṽ, we have (P (k))T ṽ = R(k)ṽ = v̂, since R(k)P (k) = id. Consequently,

L̂(k)(θ̂′)− L̂(k)(θ̂)− ⟨∇L̂(k)(θ̂), θ̂′ − θ̂⟩ ≤ LDv̂
Ĵ
(θ̂′, θ̂),

meaning that L̂(k) is L-smooth relative to Ĵ . Since we have already established that Ĵ and Ĵ
(k)
δ

induce the same Bregman divergence, relative smoothness with respect to these two functions is
equivalent.

For the proof of our main result Theorem 1 we require two more lemmas, the proofs of which work
as in Bauschke et al. (2019); Elshiaty & Petra (2025) with the key difference being that we utilize
subgradients instead of classical gradients of the regularizer Jδ .

The first lemma asserts a linear convergence rate for the linearized Bregman iterations (4) without a
multilevel component.
Lemma 2. For θ ∈ dom(∂J), v ∈ ∂Jδ(θ) and 0 < τ < 1

L , let v+τ := v − τ∇L(θ) and θ+τ :=
proxδJ(δv

+
τ ). Then,

L(θ+τ )− L∗ ≤
(
1− η

λ(τ)

τ

)
(L(θ)− L∗).

Proof. Using Assumption 1 the defintion of v+τ and Assumption 2 together with the definition of the
symmetrized Bregman divergence

Dsym
Jδ

(θ, θ̃) := Dv
Jδ
(θ̃, θ) +Dṽ

Jδ
(θ, θ̃)

= ⟨v − ṽ, θ − θ̃⟩,

for θ, θ̃ ∈ dom∂J and v ∈ ∂Jδ(θ), ṽ ∈ ∂Jδ(θ̃), we obtain

L(θ+τ ) ≤ L(θ) + ⟨∇L(θ), θ+τ − θ⟩+ LDv
Jδ
(θ+τ , θ)

= L(θ)− 1

τ
Dsym

Jδ
(θ+τ , θ) + LDv

Jδ
(θ+τ , θ)

≤ L(θ)− 1

τ
D

v+
τ

Jδ
(θ, θ+τ )

≤ L(θ)− λ(τ)

τ
D

v+
1

Jδ
(θ, θ+1 )

≤ L(θ)− η
λ(τ)

τ
(L(θ)− L∗).

Subtracting L∗ from both sides yields the desired estimate.

The second lemma investigates the decay of the function value if a coarse update is taken. The key
observation to prove this result is that our coarse objective L̂(k) is L-smooth relative to the coarse
regularizer Ĵ (k)

δ . This property follows from Assumption 1.
Lemma 3. If iteration k in Algorithm 1 triggers a coarse update and the coarse step size is chosen
such that τ̂ ≤ 1

L , then we have

L(θ̃(k+1)) ≤ L(θ(k))− 1

τ̂

m∑
i=1

Dv̂i,k

Ĵ
(k)
δ

(θ̂i−1,k, θ̂i,k).

14
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Proof. By Lemma 1, L̂(k) is L-smooth relative to Ĵ
(k)
δ . Hence, as in its proof, we obtain

L̂(k)(θ̂i+1,k) ≤ L̂(k)(θ̂i,k)− 1

τ̂
Dv̂i+1,k

Ĵ
(k)
δ

(θ̂i,k, θ̂i+1,k).

Since L(θ̃(k+1)) = L̂(k)(θ̂m,k) and L(θ(k)) = L̂(k)(θ̂0,k), iterating this inequality yields the desired
result.

Combining the previous results we arrive at the proof of our main result.

Proof of Theorem 1. The result follows by combining Lemmas 2 and 3 in the appendix and iterating.

B COMPUTATIONAL SAVINGS

Regarding the computational effort, we follow Evci et al. (2020) and estimate the theoretical FLOPs
required for training. As in their approach, we approximate the FLOPs for one training step by
summing the forward pass FLOPs and twice the forward pass FLOPs for the backward pass. We
only account for the FLOPs of convolutional and linear layers. Other operations such as BatchNorm,
pooling, and residual additions are ignored, as their contribution to the total FLOPs is negligible
compared to the dominant convolutional and linear computations. Denoting the FLOPs of a sparse
forward pass by fS and of a dense forward pass by fD, the expected FLOPs per training step are

m · 3fS + (2fS + fD)

m+ 1
,

since every (m + 1)-th step computes a full gradient. This matches the estimation used in RigL,
where the network structure is fixed for most iterations and the full gradient is only computed peri-
odically. In our method, however, the sparsity level evolves during training, whereas RigL enforces
a fixed sparsity. As a result, particularly in the early stages of training, our method requires sub-
stantially fewer FLOPs. By contrast, LinBreg incurs 2fS + fD FLOPs per training step, since a full
gradient is computed at every iteration.

We estimate the theoretical training FLOPs for the WideResNet28-10 models reported in Table 1.
Using standard SGD training as the dense baseline, our analysis indicates that LinBreg requires only
0.38× the FLOPs of the baseline, while our method further reduces this to 0.06×.

For the VGG16 models from Table 1, LinBreg requires 0.47× the FLOPs of the dense model,
whereas our method only needs 0.18×. Finally, for ResNet18, we consider the LinBreg approach
with λ = 0.2, which leads to 96.03% sparsity on average, and the ML LinBreg with λ = 0.007,
which reaches 96.12% sparsity. This results in a theoretical FLOPs reduction of 0.43× for the
former and 0.12× for the latter.

C BACKGROUND ON NUMERICAL EXPERIMENTS

Initialization As previously mentioned, the network is initialized in a highly sparse fashion, allow-
ing the training algorithm to subsequently activate additional parameters by setting them to non-zero
values. For this initialization, we follow the approach proposed by Bungert et al. (2022).

He et al. (2015) suggest that for ReLU activation functions, the variance of the weights should satisfy

Var
[
W l

]
=

2

nl−1
, (13)

where nl denotes the size of the l-th layer.

To obtain a sparse initialization, we apply binary masks to dense weight matrices, defining the initial
weights as

W l = W̃ l ⊙M l,

15
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where ⊙ denotes the element-wise (Hadamard) product, and each entry of the mask M l is indepen-
dently drawn from a Bernoulli distribution with parameter r ∈ [0, 1]. This construction implies that
the variance of the resulting weights scales as

Var
[
W l

]
= rVar

[
W̃ l

]
.

To ensure that the condition in (13) is met, we adjust the distribution of W̃ l accordingly. For instance,
if W̃ l originally satisfies (13), we scale it accordingly.

CIFAR10 training We summarize some of the results from our training on the CIFAR10 dataset in
Table 1, most of which are also visualized in Figure 1. As previously mentioned, we use J = λ∥ · ∥1
as the regularizer and choose to perform a full update on the fine level every 100 iterations, meaning
that m = 99 in Algorithm 1.

Table 1: Total sparsity and test accuracy for different network architectures and different optimizers

Architecture Optimizer Stotal in [%] Test acc in [%]

ResNet18

SGD 0.39± 0.08 92.93± 0.23
Prune+Fine-Tuning 95.00 90.84± 0.30

ML LinBreg (λ = 0.005) 94.76± 0.12 90.89± 0.21
ML LinBreg (λ = 0.007) 96.12± 0.08 90.24± 0.33
ML LinBreg (λ = 0.01) 97.20± 0.06 89.60± 0.27

LinBreg (λ = 0.2) 96.03± 0.04 90.35± 0.22

VGG16

SGD 0.11± 0.02 91.98± 0.13
Prune+Fine-Tuning 92.00 91.39± 0.18
LinBreg (λ = 0.1) 91.82± 0.05 90.21± 0.24

ML LinBreg (λ = 0.003) 91.29± 0.18 90.71± 0.19

WideResNet28-10

SGD 0.17± 0.03 93.79± 0.08
Prune+Fine-Tuning 96.00 90.55± 0.32
LinBreg (λ = 0.1) 95.89± 0.16 91.70± 0.25

ML LinBreg (λ = 0.005) 96.58± 0.14 91.69± 0.27

To obtain some additional information on the training procedure, we track the mean and standard
deviation of the validation accuracy and the sparsity as well as the train loss throughout the training
procedure. The resulting plots for ResNet18 are displayed in Figure 4. We observe that freezing the
network structure neither affects the final characteristics of the model nor alters the training speed.
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Figure 4: Mean and standard deviation of validation accuracy, sparsity, and train loss of the model
parameters over training epochs, shown for different regularization parameters, λ = 0.005 and
λ = 0.01 and for LinBreg with λ = 0.2.

Structured sparsity Even though, we do not induce any structured sparsity through the regularizer
J , we observe that for our trained models many of the 2D-kernels are zero. To measure this kind of
sparsity, we define the convolutional sparsity as

Sconv := 1−
∑

l∈Iconv
|{Kl

ij ̸= 0}|∑
l∈Iconv

cl−1 · cl
,
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where Iconv denotes the index set of all convolutional layers, cl−1 and cl are the number of input
and output channels of layer l ∈ Iconv, respectively, and Kl

ij is the kernel connecting input channel
i to output channel j.

For example, in the WideResNet28-10 case with λ = 0.005, where we observed a test accuracy
of 91.69% ± 0.27% we obtain Sconv = 78.21% ± 0.82%, meaning that almost 80% of input-
output connections are zero. We can further increase this structured sparsity by taking the group
ℓ1,2 norm from (7) as the regularizer. We again scale it by some positive factor λ to control its
influence on the optimization procedure. With this approach, we achieve a convolutional sparsity of
Sconv = 84.06%± 0.79% while maintaining a test accuracy of 91.45%± 0.59%. By increasing the
strength of the regularizer, this can be further improved to 93.09%± 0.46% convolutional sparsity,
with a corresponding test accuracy of 90.48%± 0.72%.
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