
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSE TRAINING OF NEURAL NETWORKS BASED ON
MULTILEVEL MIRROR DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a dynamic sparse training algorithm based on linearized Bregman
iterations / mirror descent that exploits the naturally incurred sparsity by alter-
nating between periods of static and dynamic sparsity pattern updates. The key
idea is to combine sparsity-inducing Bregman iterations with adaptive freezing of
the network structure to enable efficient exploration of the sparse parameter space
while maintaining sparsity. We provide convergence guaranties by embedding
our method in a multilevel optimization framework. Furthermore, we empirically
show that our algorithm can produce highly sparse and accurate models on stan-
dard benchmarks. We also show that the theoretical number of FLOPs compared
to SGD training can be reduced from 38% for standard Bregman iterations to 6%
for our method while maintaining test accuracy.

1 INTRODUCTION

Deep neural networks have produced astonishing results in various areas such as computer vision
and natural language processing (Noor & Ige, 2025) but demand significant memory and special-
ized hardware, contributing to growing concerns about their environmental impact, particularly the
carbon footprint of training and inference (Dhar, 2020).

In response, researchers have explored techniques for developing compact and efficient models, such
as sparse neural networks, wherein many neuron connections are absent. Within this context, the
Lottery Ticket Hypothesis (Frankle & Carbin, 2018) plays a central role, suggesting that every dense
network contains a sparse subnetwork that, when trained independently, can achieve comparable
accuracy.

There are two main approaches to obtain sparse neural networks: pruning and sparse training. In
pruning, a dense model is first trained and unwanted connections are removed afterward. Because
this usually causes a drop in performance, the pruned model is often retrained with the sparsity
pattern fixed. By contrast, sparse training incorporates mechanisms that encourage sparsity already
during training. Pruning methods themselves vary widely, depending on how weights are selected
for removal and at what stage of training pruning is applied. A key distinction is between unstruc-
tured pruning, which eliminates individual weights, and structured pruning, which removes entire
components such as neurons or filters, see Hoefler et al. (2021) for an extensive overview.

In addition to pruning-based methods, another technique to encourage sparsity is to include explicit
regularization terms in the loss function. A common example is Lasso regularization, which uses the
ℓ1-norm as a penalty in the objective function (Tibshirani, 1996). The resulting optimization problem
can be solved using algorithms such as Proximal Gradient Descent (Rosasco et al., 2020; Mosci
et al., 2010). A conceptually different approach is to enforce sparsity through implicit regularization
which can be achieved using mirror descent (Nemirovskij & Yudin, 1983). Here we would like to
highlight a series of works (Huang et al., 2016; Azizan et al., 2021; Bungert et al., 2021; 2022; Wang
& Benning, 2023; Heeringa et al., 2023) that utilize mirror descent or linearized Bregman iterations
to induce sparsity in neural networks without explicit regularization.

Linearized Bregman iterations are equivalent to mirror descent, but they are typically formulated
and analyzed with less regularity assumptions on the mirror map (e.g., compared to Azizan et al.
(2021)), thereby lending themselves toward non-smooth sparsity-promoting mirror maps. This was

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

exploited in (Bungert et al., 2022) to devise the LinBreg algorithm which essentially is a stochastic
mirror descent algorithm applied with a non-smooth mirror map.

Within the context of sparse training, we also highlight the relevance of genetic evolutionary al-
gorithms, particularly Sparse Evolutionary Training (SET) (Mocanu et al., 2018). SET applies a
dynamic sparse training approach by performing pruning at the end of each epoch—removing a
fraction of the active connections—and regrowing an equal number of new connections at random
positions. This iterative process maintains a fixed sparsity level. Beyond sparse training, evolu-
tionary algorithms have also been successfully applied to Neural Architecture Search (Miikkulainen
et al., 2024; Elsken et al., 2019); however, they typically lack rigorous convergence guarantees.

In this paper, we propose a training algorithm based on linearized Bregman iterations, designed to
promote sparsity in neural networks during training. A key benefit of Bregman iterations over reg-
ularization methods like the Lasso is that for the former the number of non-zero parameters of the
trained networks usually increases monotonically. Hence, algorithms like LinBreg lend themselves
to exploiting sparsity early on in the training process. In our method, we periodically freeze the net-
work’s structure: that is, we restrict updates to parameters that are non-zero in the current iteration.
This approach offers two key benefits. First, stricter sparsity is enforced than through LinBreg alone,
as the number of non-zero parameters cannot increase during the frozen phases. Second, during the
frozen phases only derivatives corresponding to active parameters are required which provides scope
for significant computational savings during training.

We embed the resulting algorithm within a multilevel optimization framework (Nash, 2000), which
enables us to leverage existing convergence theory. In particular, we adapt the convergence analysis
of Multilevel Bregman Proximal Gradient Descent (Elshiaty & Petra, 2025) to our sparse training
setup. We find that our method can outperform the standard LinBreg algorithm by yielding models
that are sparser while achieving comparable or even superior performance for image classification.

The remainder of this paper is structured as follows. First, we explain our algorithm and present
how it can be interpreted as a multilevel optimization method. We proceed by proving a sublinear
convergence result for the algorithm. Finally, we perform numerical experiments comparing our
method to other methods that aim at achieving sparse but performative models.

2 RELATED WORK

Bregman Iterations / Mirror descent Bregman iterations were originally introduced by Osher
et al. (2005) as iterative reconstruction method for imaging inverse problems to overcome the bias
of regularization methods like total variation denoising (Rudin et al., 1992). Later they were applied
to compressed sensing (Yin et al., 2008) and nonlinear inverse problems (Bachmayr & Burger, 2009;
Benning et al., 2021). In the context of machine learning, they were used for sparsity (Bungert et al.,
2021; 2022; Heeringa et al., 2023; 2025) of neural network representations as well as for training
networks with non-smooth activations of proximal type (Wang & Benning, 2023). While Bregman
iterations in their original form generalize the implicit Euler method, so-called linearized Bregman
iterations are closely related to mirror descent (Nemirovskij & Yudin, 1983) or more precisely to
lazy mirror descent / Nestorov’s dual averaging (Nesterov, 2009). The method is also referred to
as Bregman proximal gradient descent and a stochastic gradient version of it was coined LinBreg
by Bungert et al. (2022). It must be emphasized that, just like different communities use different
terminologies, they also developed different mathematical tools to analyze the convergence behavior.
In particular, the inverse problems community put a lot of effort into analyzing Bregman iterations
with sparsity-promoting regularizers which translates to mirror descent with non-smooth mirror
maps. This will also be our approach in this paper.

Multilevel Optimization Multilevel optimization methods originate from multigrid techniques,
which were initially developed to solve differential equations efficiently. The MGOPT algorithm
(Nash, 2000) was among the first to adapt these ideas to optimization problems. More recently,
Elshiaty & Petra (2025) extended this framework by incorporating linearized Bregman iterations.
Their work provides convergence guarantees via a Polyak–Łojasiewicz-type inequality for the ML
BPGD algorithm and demonstrates its effectiveness in image reconstruction tasks. Hovhannisyan
et al. (2016) provide a connection between multilevel optimization and mirror descent, noting that
the latter is equivalent to linearized Bregman iterations. They further incorporate acceleration tech-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

niques, prove convergence of their algorithm, and illustrate its performance through numerical ex-
periments on face recognition. Multilevel strategies have also been explored in deep learning, par-
ticularly for training residual neural networks (ResNets). Kopaničáková & Krause (2023) introduce
a hierarchy based on networks of varying depth and width, leveraging the fact that smaller models
are faster and cheaper to train. Similar approaches have been made e.g. by Gaedke-Merzhäuser et al.
(2021). Other approaches embed the multilevel hierarchy directly into the objective function rather
than the model architecture. For example, Braglia et al. (2020) use varying batch sizes to compute
the loss, effectively inducing a multiscale structure during training.

Sparse neural networks Within the context of sparse training, several methods have been pro-
posed to obtain sparse yet performant models without the need to train a dense network beforehand.
DEEP-R (Bellec et al., 2018) fixes the number of active connections in a network and then removes
and stochastically regrows them during training, maintaining a constant level of sparsity. Similarly,
RigL (Evci et al., 2020) also removes and regrows connections, but instead of random growth, it
deterministically activates new connections in locations with the largest gradient magnitudes. SNFS
(Dettmers & Zettlemoyer, 2019) follows a related strategy, but bases the regrowth decision on the
momentum of the parameters. In contrast, SNIP (Lee et al., 2019) determines important connections
before training by estimating the sensitivity of the loss to each weight. This produces a fixed spar-
sity mask that remains unchanged during training. DFBST (Pote et al., 2023) applies binary masks
during both the forward and backward passes. The forward pass mask sparsifies the weights, while
the backward pass mask restricts gradient updates, enabling sparse training.

3 METHOD

A typical training problem to find optimal network parameters θ ∈ Rd consists of solving

min
θ∈Rd

L(θ), (1)

whereL : Rd → R is a differentiable and non-negative loss function, for example, the empirical loss.
One way to enforce constraints or encourage sparsity in solutions is to specify a proper, convex, and
lower semicontinuous function J : Rd → (−∞,∞], such as the ℓ1-norm or indicator function of a
closed convex set, and consider a minimization of L+ J. The approach of Bregman iterations is to
directly minimize L, while implicitly minimizing J. This is achieved through the scheme

θ(k+1) = argmin
θ∈Rd

Dp(k)

J (θ, θ(k)) + τ (k)L(θ),

p(k+1) = p(k) − τ (k)∇L(θ(k+1)) ∈ ∂J(θ(k+1)),

(2)

where the so-called Bregman divergence (associated to J) is defined as:

Dp
J(θ̃, θ) := J(θ̃)− J(θ)− ⟨p, θ̃ − θ⟩. (3)

Here θ ∈ dom(∂J), p ∈ ∂J(θ) is a subgradient, and τ (k) > 0 is a sequence of step sizes. The
Bregman divergence (3) can be interpreted as the difference between J and its linearization around
θ and satisfies properties such as Dp

J(θ, θ) = 0 and, due to convexity of J, Dp
J(θ̃, θ) ≥ 0.

Since solving the optimization problem (2) is typically almost as hard as solving (1), one typically
replaces L in (2) with its first order approximation L(θ(k)) + ⟨∇L(θ(k)), θ − θ(k)⟩ and J with the
strongly convex elastic-net regularizer

Jδ(θ) :=
1

2δ
∥θ∥2 + J(θ), δ ∈ (0,∞),

to obtain (see, e.g., Bungert et al. (2022) for a derivation)

v(k+1) = v(k) − τ∇L(θ(k)), (4a)

θ(k+1) = proxδJ(δv
(k+1)), (4b)

starting at some θ(0) and v(0) ∈ ∂Jδ(θ
(0)). The algorithm involves the proximal operator

proxδJ(θ) := argmin
θ̃∈Rd

1

2δ
∥θ̃ − θ∥2 + J(θ̃).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To make (4) feasible for the high-dimensional and non-convex problems arising in machine learning,
Bungert et al. (2022) in their LinBreg method replaced the gradient∇L(θ(k)) in (4a) by an unbiased
stochastic estimator and provided a convergence analysis.

Note that if J ≡ 0, the proximal operator is the identity map and, taking δ = 1, (4) recovers Gradient
Descent. More generally, (4) coincides with mirror descent (Beck & Teboulle, 2003) applied to the
distance generating function Jδ . This can be seen by noting that ∇J∗

δ = proxδJ(δ·), where J∗
δ

denotes the convex conjugate (Bauschke & Combettes, 2011) of Jδ .

Although evaluating the proximal operator in (4b) is phrased as a minimization problem, particular
choices of J admit closed forms, e.g., J = λ∥ · ∥1 yields the soft shrinkage operator

proxδJ(δv) = δ sign(v)max(|v| − λ, 0) (5)

applied componentwise. This particular choice also demonstrates how Bregman iterations can lead
to sparse networks. In (5); only parameters whose corresponding dual variable v exceeds the thresh-
old λ in absolute value will be non-zero. Thus, we can view (4b) as a pruning step inherent to the
optimizer, where the pruning criterion employs information associated with the regularizer J, and
not just the magnitude of the parameter or of the gradient of the training loss L.
In practice, θ can represent the parameters of several network layers, and as such one may wish
to employ a different regularizer for each layer. To represent this, we split the parameter vector θ
into groups via θ = (θ(1), . . . , θ(G)), where each group θ(g) ∈ Rdg contains dg scalar parameters.
Furthermore, we assume the regularizer J acts on these groups separately, taking the form

J(θ) =

G∑
g=1

Jg(θ(g)), (6)

where each Jg : Rdg → (−∞,∞] is proper, convex, and lower-semicontinuous. We see that (6)
includes the standard ℓ1-norm but also the group ℓ1,2-norm (Scardapane et al., 2017), given by

J(θ) :=

G∑
g=1

√
ng∥θ(g)∥2, (7)

where ng denotes the number of parameters in the group. While the ℓ1-norm encourages individual
parameters to become zero, the group ℓ1,2-norm can be used to enforce entire structures, such as
convolutional kernels, to vanish.

The main idea of our algorithm is to use this induced sparsity of the iterations (4) by only performing
a full update with this rule every m iterations. In all other iterations, we update only the non-zero
parameters and consequently only require gradients with respect to the active parameters. Depending
on the induced sparsity pattern, this provides scope for significant computational savings during
most training steps. We show that we can interpret this idea as a multilevel optimization scheme,
allowing us to adapt convergence proofs from the multilevel optimization literature.

More precisely, we consider a two-level framework consisting of the actual minimization problem
(1) and a coarse problem with fewer variables. To map between these levels, the restriction and pro-
longation operators are used. The restriction operator at iteration k, denoted R(k) : Rd → RDk with
Dk < d, is a linear map that decides which of the variables we restrict ourselves to. Consequently,
the rows of the matrix R(k) are standard unit vectors and θi is selected by R(k) if and only if one
of the rows of the matrix is the i-th standard unit vector. We only consider the case where entire
groups are selected by the restriction operator, so if one component of a group θ(g) is selected, then
all the other components must be selected as well. Given the number of selected groups G(k), we
can define an injective function r(k) : {1, 2, . . . , G(k)} → {1, 2, . . . , G} such that

R(k)θ = (θ(r(k)(1)), . . . , θ(r(k)(G(k)))), θ ∈ Rd.

For a given coarse variable θ̂, this function is useful to determine where its parameter groups belong
on the fine level.

The corresponding prolongation operator P (k) : RDk → Rd maps from the coarse to the fine level
and is defined as the transpose of the restriction P (k) = (R(k))T . This means that the prolongation

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

operator maps the groups that were selected by the restriction back and simply completes the param-
eter vector θ by setting zero for every parameter group that was not selected by the restriction. Using
the previously defined function r(k), we can explicitly write the prolongation of a coarse variable
θ̂ ∈ RDk as

(P (k)θ̂)(g) =

{
θ̂(i), if g = r(k)(i),

0, otherwise.

While the case where the restriction operator chooses the groups that are non-zero at iteration k is
the most interesting for us, our analysis works for arbitrary selections of parameter groups.

In our algorithm, during each iteration k, a predefined criterion is evaluated to decide whether to
invoke the coarse-level model. If the coarse model is employed, the restriction operator R(k) maps
the current iterate θ(k) and the corresponding subgradient v(k) to the coarse level. We denote these
restrictions by θ̂0,k := R(k)θ(k) and v̂0,k := R(k)v(k). The algorithm then performs m LinBreg
steps to minimize the coarse loss

L̂(k)(θ̂) := L(θ(k) + P (k)(θ̂ − θ̂0,k)) (8)

using Ĵ
(k)
δ (θ̂) := 1

2δ∥θ̂∥
2 + Ĵ (k)(θ̂) as the regularizer, where

Ĵ (k)(θ̂) :=

G(k)∑
i=1

Jr(k)(i)(θ̂(i)).

The result of these coarse iteration steps θ̂m,k with corresponding subgradient v̂m,k is then mapped
back to the fine level via

θ̃(k+1) := θ(k) + P (k)(θ̂m,k − θ̂0,k),

ṽ(k+1) := v(k) + P (k)(v̂m,k − v̂0,k),

before performing a LinBreg step on the fine level to obtain θ(k+1) and v(k+1). See Algorithm 1.

If the restriction operator at iteration k only selects the parameter groups that are non-zero for θ(k),
the coarse loss (8) and the prolongation to the fine level simplify to

L̂(k)(θ̂) = L(P (k)θ̂), θ̃(k+1) = P (k)θ̂m,k.

For the subgradients, however, such simplification is not available.

Typically in multilevel optimization, a linear correction term is added to the coarse objective function
to ensure first-order coherence, i.e., critical points on the fine level are transferred to ones on the
coarse level. In our case, due to the special structure of L̂(k) no correction term is necessary, since

∇L̂(k)(θ̂0,k) = R(k)∇L(θ(k)).

Hence, if θ(k) is a critical point of L, then θ̂0,k := R(k)θ(k) is a critical point of L̂(k).

A criterion to decide when to use the coarse model is (Wen & Goldfarb, 2009; Vanmaele et al., 2025)

∥R(k)∇L(θ(k))∥ ≥ κ∥∇L(θ(k)∥,
∥R(k)∇L(θ(k))∥ > ε,

(9)

where κ and ε are positive hyperparameters. This, in particular, prevents coarse iteration updates in
the case that θ̂0,k is a critical point of L̂(k) (which does not necessarily mean that θ(k) is a critical
point of L). MAGMA (Hovhannisyan et al., 2016) uses a similar criterion to decide when to invoke
the coarse model. Specifically, it checks the first part of (9) and, in addition, whether the current
iterate is sufficiently far from the point of the last coarse update or the number of consecutive fine
updates is below a predefined limit. This ensures coarse updates are triggered only when they are
beneficial—either because the iterate has changed significantly, or because not too many consecutive
fine steps have yet been taken.

Since we work with subgradients, we carefully investigate the transfer between the different levels.
In particular, we show that restricting the subgradients from the fine level yields subgradients of the
coarse regularizer and mapping the coarse subgradients back to the fine level as described also leads
to subgradients on the fine level due to the structure of J from (6). The proofs of the following
propositions can be found in Section A in the appendix.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proposition 1. If v(k) ∈ ∂Jδ(θ
(k)), then defining v̂0,k := R(k)v(k) and θ̂0,k := R(k)θ(k) we have

v̂0,k ∈ ∂Ĵ
(k)
δ (θ̂0,k).

This implies that in Algorithm 1 we start the coarse iteration with a feasible pair (θ̂0,k, v̂0,k). Con-
sequently, due to the structure of the iteration, we subsequently obtain v̂i,k ∈ ∂Ĵ

(k)
δ (θ̂i,k) for

i = 1, . . . ,m. We also observe that the way of transferring the updated variables back to the fine
level preserves the fact that ṽ(k+1) is a subgradient of Jδ at θ̃(k+1).

Proposition 2. If θ̂m,k ∈ dom(∂Ĵ (k)) and v̂m,k ∈ ∂Ĵ
(k)
δ , then defining

θ̃(k+1) := θ(k) + P (k)(θ̂m,k − θ̂0,k),

ṽ(k+1) := v(k) + P (k)(v̂m,k − v̂0,k)

we have ṽ(k+1) ∈ ∂Jδ(θ̃
(k+1)).

Algorithm 1 Multilevel LinBreg

Input: Initial guess θ(0) ∈ Rd, v(0) ∈ ∂Jδ(θ
(0))

for k ∈ N do
if condition to use coarse model is satisfied at θ(k) then

θ̂0,k = R(k)θ(k)

v̂0,k = R(k)v(k)

for i = 1, . . . ,m do
ĝ(k) ← unbiased estimator of∇L̂(k)(θ̂i−1,k)
v̂i,k = v̂i−1,k − τ̂ ĝ(k)

θ̂i,k = proxδĴ(k)(δv̂i,k)
end for
ṽ(k+1) = v(k) + P (k)(v̂m,k − v̂0,k)

θ̃(k+1) = θ(k) + P (k)(θ̂m,k − θ̂0,k)

g(k+1) ← unbiased estimator of∇L(θ̃(k+1))
v(k+1) = ṽ(k+1) − τg(k+1)

θ(k+1) = proxδJ(δv
(k+1))

else
g(k) ← unbiased estimator of∇L(θ(k))
v(k+1) = v(k) − τg(k)

θ(k+1) = proxδJ(δv
(k+1))

end if
end for

To conclude this section, we would like to highlight the key differences between our algorithm
and the methods ML BPGD (Elshiaty & Petra, 2025) and MGOPT (Nash, 2000). Firstly, we use
adaptive restriction and prolongation operators, which are necessary to focus on different parameters
at different iterations. Secondly, we do not perform a line search when mapping from the coarse
level to the fine level. MGOPT and ML BPGD both use arbitrary convex coarse objective functions
with a linear correction term to ensure that the direction found with the coarse iterations is a descent
direction, as well as a line search to ensure that the fine loss actually decreases. Our specific selection
of the coarse objective function ensures a decrease in the fine loss (see Lemma 3), eliminating the
need for a line search. Lastly, unlike for ML BPGD, our regularizer Jδ is generally not differentiable.
Therefore, we cannot work with its gradients, but must use subgradients instead. These subgradients
must be handled carefully when mapping between different levels (see Propositions 1 and 2).

4 CONVERGENCE ANALYSIS

For the convergence analysis, we need to make further assumptions. We follow Bauschke et al.
(2019); Elshiaty & Petra (2025) and require the loss function to be smooth relative to the regularizer
and to satisfy a Polyak–Łojasiewicz-like inequality.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Assumption 1. We assume that L is L-smooth with respect to Jδ , i.e.

L(θ̃) ≤ L(θ) + ⟨∇L(θ), θ̃ − θ⟩+ LDv
Jδ
(θ̃, θ)

for θ̃ ∈ Rd, θ ∈ dom(∂J) and v ∈ ∂Jδ(θ).

Since Jδ is strongly convex, its induced Bregman divergence is bounded from below by the squared
Euclidean norm. Therefore, from the descent lemma for L-smooth functions (Bauschke & Com-
bettes, 2011; Beck, 2017) it follows that this assumption holds in particular for loss functions L
with a Lipschitz-continuous gradient which, however, is generally a much stronger condition than
Assumption 1.
Assumption 2. For θ ∈ dom(∂J), v ∈ ∂Jδ(θ) and τ > 0, let v+τ := v − τ∇L(θ) and θ+τ :=
proxδJ(δv

+
τ). We assume the existence of a function λ : (0,∞)→ (0,∞) and some η > 0 such that

D
v+
τ

Jδ
(θ, θ+τ) ≥ λ(τ)D

v+
1

Jδ
(θ, θ+1) (10)

for θ ∈ dom(∂J), v ∈ ∂Jδ(θ), τ > 0 and

D
v+
1

Jδ
(θ, θ+1) ≥ η(L(θ)− L∗), (11)

where L∗ := infRd L.

In the gradient descent case where Jδ = 1
2∥ · ∥

2, assumption (10) is satisfied with λ(τ) = τ2 and
(11) becomes the well known Polyak–Łojasiewicz inequality

∥∇L(θ)∥2 ≥ 2η(L(θ)− L∗)

which is weaker than convexity but requires every stationary point of L to be a minimizer.

Using these two assumptions and again following Bauschke et al. (2019); Elshiaty & Petra (2025)
we can prove the convergence of Algorithm 1 in the case of exact gradients.

Theorem 1. Let τ, τ̂ ≤ 1
L . Then, the sequence (θ(k))k∈N generated by Algorithm 1 using exact

gradients in place of unbiased estimators satisfies

L(θ(k))− L∗ ≤ (1− r)k(L(θ(0))− L∗)−
k−1∑
i=0

(1− r)k−iρ̂i,

where r = η λ(τ)
τ ∈ (0, 1] and

ρ̂i :=

{
1
τ̂

∑m
j=1 D

v̂j,i

Ĵ
(i)
δ

(θ̂j−1,i, θ̂j,i) if i triggers a coarse step,

0 otherwise.

5 NUMERICAL EXPERIMENTS

All gradient estimators in Algorithm 1 are computed using mini-batch approximations. It is also
important to note that the ordering of coarse and fine updates is flexible. For instance, one may
perform a single fine update—using a mini-batch to update the fine model—followed by m coarse
updates. Alternatively, switching can occur at the epoch level, where fine updates are carried out for
an entire epoch, and then coarse updates are applied for m consecutive epochs.

CIFAR10 training In order to evaluate our proposed training algorithm, we train different neu-
ral network architectures on the CIFAR10 dataset, containing 60,000 32-by-32 color images in 10
different classes. The objective is to construct sparse models that exhibit only marginal reductions
in test accuracy. As mentioned above, we choose the linear map that selects all the parameters that
are not zero in the current state as the restriction operator. Sparsity is evaluated by computing the
percentage of non-zero parameters relative to the total number of parameters, denoted by Ntotal. We
then define overall sparsity as

Stotal := 100%−Ntotal.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We consider the standard case of ℓ1-regularization, where the regularizer is defined as J = λ∥ · ∥1.
The hyperparameter λ plays a significant role in determining the characteristics of the trained net-
work. As expected, stronger regularization—i.e., larger values of λ—leads to increased sparsity in
the resulting model, potentially at the cost of reduced accuracy (see Figure 2a). Therefore, our aim
is to find a trade-off between sparsity and accuracy.

We initialize the network with a sparsity of 99%. Due to our considerations regarding the initializa-
tion (see Appendix C), we would need to multiply every sparsified group of weights by 1√

0.01
= 10.

However, we find that a multiplication by 5 improves the results, so we choose this instead. For the
training setup, we use the step-wise switching strategy between fine and coarse model rather than
switching epoch-wise. To simplify the algorithm, we use the coarse model at every stage, taking
100 steps on the coarse level before returning to the fine level.

We train models using Algorithm 1 with different choices of the regularization parameter λ across
multiple random seeds to produce models with different levels of sparsity. As baselines, we in-
clude dense models trained with stochastic gradient descent, LinBreg, and pruned versions of the
SGD-trained models. The latter were pruned to match the sparsity levels achieved by LinBreg and
then fine-tuned. For a fair comparison, the pruned models were trained for only 180 epochs before
undergoing an additional 20 epochs of fine-tuning, whereas the baseline methods were trained for
the full 200 epochs. Thus, the overall training budget is aligned at 200 epochs across all methods.
For a clear comparison, we visualize these results in Figure 1 using boxplots of the test accuracy
at the corresponding sparsity levels for different regularizers, for LinBreg, our proposed algorithm
and pruned and fine-tuned models. We emphasize that, while achieving results comparable to Lin-
Breg and pruning on ResNet18, our method requires substantially less gradient information. For
the VGG16 architecture, the pruned architectures outperform the other approaches, however, at the
cost of requiring training of a full architecture. Moreover, for WideResNet28-10, our algorithm out-
performs both LinBreg and the pruning approach by producing models that are sparser and equally
accurate. Compared to pruning, our method (and to some extent also LinBreg) has the advantage of
not requiring a dense model to be trained.

94 95 96 97 98

Sparsity [%]

88

89

90

91

92

93

Te
st

 A
cc

ur
ac

y
[%

]

Optimizer
LinBreg
ML LinBreg
pruning

(a) ResNet18

89 90 91 92 93 94 95 96 97 98

Sparsity [%]

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

Te
st

 A
cc

ur
ac

y
[%

]

Optimizer
LinBreg
ML LinBreg
pruning

(b) VGG16

89 90 91 92 93 94 95 96 97 98 99

Sparsity [%]

85

86

87

88

89

90

91

92

93

94

Te
st

 A
cc

ur
ac

y
[%

]

Optimizer
LinBreg
ML LinBreg
pruning

(c) WideResNet28-10

Figure 1: Accuracy and sparsity for different regularizers with LinBreg and ML LinBreg as well as
a pruning baseline on CIFAR10 for different architectures.

0.00 0.02 0.04 0.06 0.08 0.10
76

78

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y
[%

]

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Sp
ar

sit
y

[%
]

(a) Accuracy and sparsity for ML LinBreg with dif-
ferent values of λ with fixed m

1 2 5 10 20 50 100 200 500 1000

Full step every N steps
89.5

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

Te
st

 A
cc

ur
ac

y
[%

]

20

30

40

50

60

70

80

90

100

Sp
ar

sit
y

[%
]

(b) Accuracy and sparsity for ML LinBreg with dif-
ferent values of m with fixed λ

Figure 2: Comparison of accuracy and sparsity across different hyperparameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

To demonstrate the effect of the regularization parameter λ in our training procedure, we train mod-
els with varying values of λ and evaluate both the test accuracy and sparsity of the resulting models.
As expected, smaller values of λ yield highly accurate but less sparse models, whereas increasing
λ results in reduced accuracy but greater sparsity. The results of this experiment are presented in
Figure 2a.

In Figure 2b, we investigate the effect of the coarse update duration m in Algorithm 1 on test accu-
racy and sparsity of the trained models. All other parameters are fixed; in particular, the regularizer
is chosen as J = 0.005∥·∥1. The network is trained on multiple random seeds, and we report the
mean values in the figure. Note that on the x-axis we display N := m + 1, so that the value 1
corresponds to the case without coarse updates, i.e., the standard LinBreg algorithm. As expected,
increasing m–and thus prolonging the freezing period–quickly yields sparser models, where the
reduction in accuracy is pretty flat.

The theoretical computational savings of our method compared to standard training with SGD and
LinBreg are explained in Section B in the appendix, and we also refer to Section C for more results
on CIFAR10.

TinyImageNet training We further evaluate our approach on the TinyImageNet dataset, contain-
ing 100,000 64-by-64 color images in 200 different classes, using two different architectures. As in
the CIFAR10 experiments, we train models with the regularizer J = λ∥ · ∥1 for different values of λ
across multiple random seeds. The results are summarized in Figure 3, where we present boxplots of
the achieved test accuracies located at the sparsity of the models. For comparison, we also include a
dense baseline trained with standard SGD. We additionally provide the results that can be achieved
by pruning and fine-tuning the dense SGD models to different levels of sparsity. Our findings show
that the proposed multilevel method consistently outperforms the standard LinBreg algorithm by
producing models that are sparser while maintaining, or even improving, test accuracy. Compared
to the pruning approach, we achieve comparable or better test accuracy across all sparsity levels.

0 10 20 30 40 50 60 70 80 90

Sparsity [%]

54

55

56

57

58

59

Te
st

 A
cc

ur
ac

y
[%

]

Optimizer
LinBreg
ML LinBreg
SGD
pruning

(a) ResNet18

0 10 20 30 40 50 60 70 80 90

Sparsity [%]
56

57

58

59

60

61

62

63

Te
st

 A
cc

ur
ac

y
[%

]

Optimizer
LinBreg
ML LinBreg
SGD
pruning

(b) WideResNet28-10

Figure 3: Accuracy and sparsity for different regularizers with LinBreg and ML LinBreg as well as
SGD and pruning baselines on TinyImageNet.

6 CONCLUSION AND OUTLOOK

We proposed a multilevel framework for linearized Bregman iterations in the context of sparse train-
ing. We established convergence of the function values for our method and demonstrated its effec-
tiveness in producing sparse yet accurate models for image classification tasks. By preserving the
network structure throughout training, our approach enables substantial computational savings. An
interesting direction for future work is to analyze the convergence of our algorithm in a stochastic
setting, using gradient estimators in place of exact gradients. Moreover, sparsity-informed training
implementations of our method have the potential to substantially reduce training time and resource
requirements.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The code used to produce the results will be released at a GitHub repository that will be made
available after blind review.

REFERENCES

Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic mirror descent on overparameterized
nonlinear models. IEEE Transactions on Neural Networks and Learning Systems, 33(12):7717–
7727, 2021.

Markus Bachmayr and Martin Burger. Iterative total variation schemes for nonlinear inverse prob-
lems. Inverse Problems, 25(10):105004, 2009.

Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Operator The-
ory in Hilbert Spaces. Springer Publishing Company, Incorporated, 1st edition, 2011. ISBN
1441994661.

Heinz H. Bauschke, Jérôme Bolte, Jiawei Chen, Marc Teboulle, and Xianfu Wang. On
linear convergence of non-Euclidean gradient methods without strong convexity and Lips-
chitz gradient continuity. J. Optim. Theory Appl., 182(3):1068–1087, 2019. ISSN 0022-
3239,1573-2878. doi: 10.1007/s10957-019-01516-9. URL https://doi.org/10.1007/
s10957-019-01516-9.

Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2017. doi: 10.1137/1.9781611974997. URL https://epubs.siam.org/
doi/abs/10.1137/1.9781611974997.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3):167–175, 2003. ISSN 0167-
6377. doi: 10.1016/S0167-6377(02)00231-6. URL https://www.sciencedirect.com/
science/article/pii/S0167637702002316.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=BJ_wN01C-.

Martin Benning, Marta M. Betcke, Matthias J. Ehrhardt, and Carola-Bibiane Schönlieb. Choose
your path wisely: gradient descent in a Bregman distance framework. SIAM J. Imaging Sci., 14
(2):814–843, 2021. ISSN 1936-4954. doi: 10.1137/20M1357500. URL https://doi.org/
10.1137/20M1357500.

Vanessa Braglia, Alena Kopanicáková, and Rolf Krause. A multilevel approach to training. CoRR,
abs/2006.15602, 2020. URL https://arxiv.org/abs/2006.15602.

Leon Bungert, Tim Roith, Daniel Tenbrinck, and Martin Burger. Neural architecture search via
bregman iterations, 2021. URL https://arxiv.org/abs/2106.02479.

Leon Bungert, Tim Roith, Daniel Tenbrinck, and Martin Burger. A Bregman learning framework
for sparse neural networks. J. Mach. Learn. Res., 23:Paper No. [192], 43, 2022. ISSN 1532-
4435,1533-7928.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. CoRR, abs/1907.04840, 2019. URL http://arxiv.org/abs/1907.04840.

Payal Dhar. The carbon impact of artificial intelligence. Nature Machine Intelligence, 2:423–425,
08 2020. doi: 10.1038/s42256-020-0219-9.

Yara Elshiaty and Stefania Petra. Multilevel bregman proximal gradient descent, 2025. URL
https://arxiv.org/abs/2506.03950.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=ByME42AqK7.

10

https://doi.org/10.1007/s10957-019-01516-9
https://doi.org/10.1007/s10957-019-01516-9
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://epubs.siam.org/doi/abs/10.1137/1.9781611974997
https://www.sciencedirect.com/science/article/pii/S0167637702002316
https://www.sciencedirect.com/science/article/pii/S0167637702002316
https://openreview.net/forum?id=BJ_wN01C-
https://doi.org/10.1137/20M1357500
https://doi.org/10.1137/20M1357500
https://arxiv.org/abs/2006.15602
https://arxiv.org/abs/2106.02479
http://arxiv.org/abs/1907.04840
https://arxiv.org/abs/2506.03950
https://openreview.net/forum?id=ByME42AqK7

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 2943–2952. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/evci20a.html.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural net-
works. CoRR, abs/1803.03635, 2018. URL http://arxiv.org/abs/1803.03635.

Lisa Gaedke-Merzhäuser, Alena Kopaničáková, and Rolf Krause. Multilevel minimization for
deep residual networks. In FGS’2019—19th French-German-Swiss conference on Optimiza-
tion, volume 71 of ESAIM Proc. Surveys, pp. 131–144. EDP Sci., Les Ulis, 2021. doi:
10.1051/proc/202171131. URL https://doi.org/10.1051/proc/202171131.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

Tjeerd Jan Heeringa, Tim Roith, Christoph Brune, and Martin Burger. Learning a sparse representa-
tion of barron functions with the inverse scale space flow, 2023. URL https://arxiv.org/
abs/2312.02671.

Tjeerd Jan Heeringa, Christoph Brune, and Mengwu Guo. Sparsifying dimensionality reduction of
pde solution data with bregman learning. SIAM Journal on Scientific Computing, 47(5):C1033–
C1058, 2025. doi: 10.1137/24M1684566.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal
of Machine Learning Research, 22(241):1–124, 2021. URL http://jmlr.org/papers/
v22/21-0366.html.

Vahan Hovhannisyan, Panos Parpas, and Stefanos Zafeiriou. MAGMA: multilevel accelerated
gradient mirror descent algorithm for large-scale convex composite minimization. SIAM J.
Imaging Sci., 9(4):1829–1857, 2016. ISSN 1936-4954. doi: 10.1137/15M104013X. URL
https://doi.org/10.1137/15M104013X.

Chendi Huang, Xinwei Sun, Jiechao Xiong, and Yuan Yao. Split lbi: An iterative regularization path
with structural sparsity. Advances In Neural Information Processing Systems, 29, 2016.

Alena Kopaničáková and Rolf Krause. Globally convergent multilevel training of deep resid-
ual networks. SIAM Journal on Scientific Computing, 45(3):S254–S280, 2023. doi: 10.1137/
21M1434076. URL https://doi.org/10.1137/21M1434076.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: single-shot network pruning
based on connection sensitivity. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. 14 - evolving deep
neural networks. In Robert Kozma, Cesare Alippi, Yoonsuck Choe, and Francesco Carlo Mora-
bito (eds.), Artificial Intelligence in the Age of Neural Networks and Brain Computing (Second
Edition), pp. 269–287. Academic Press, second edition edition, 2024. ISBN 978-0-323-96104-2.
doi: 10.1016/B978-0-323-96104-2.00002-6. URL https://www.sciencedirect.com/
science/article/pii/B9780323961042000026.

Decebal Mocanu, Elena Mocanu, Peter Stone, Phuong Nguyen, Madeleine Gibescu, and Antonio
Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired
by network science. Nature Communications, 9, 06 2018. doi: 10.1038/s41467-018-04316-3.

Sofia Mosci, Lorenzo Rosasco, Matteo Santoro, Alessandro Verri, and Silvia Villa. Solving struc-
tured sparsity regularization with proximal methods. In José Luis Balcázar, Francesco Bonchi,
Aristides Gionis, and Michèle Sebag (eds.), Machine Learning and Knowledge Discovery in
Databases, pp. 418–433, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-
642-15883-4.

11

https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v119/evci20a.html
http://arxiv.org/abs/1803.03635
https://doi.org/10.1051/proc/202171131
https://arxiv.org/abs/2312.02671
https://arxiv.org/abs/2312.02671
http://jmlr.org/papers/v22/21-0366.html
http://jmlr.org/papers/v22/21-0366.html
https://doi.org/10.1137/15M104013X
https://doi.org/10.1137/21M1434076
https://www.sciencedirect.com/science/article/pii/B9780323961042000026
https://www.sciencedirect.com/science/article/pii/B9780323961042000026

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stephen G. Nash. A multigrid approach to discretized optimization problems. Optimization Methods
and Software, 14(1-2):99–116, 2000. doi: 10.1080/10556780008805795. URL https://doi.
org/10.1080/10556780008805795.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,
120(1):221–259, 2009.

Mohd Halim Mohd Noor and Ayokunle Olalekan Ige. A survey on state-of-the-art deep learning
applications and challenges, 2025. URL https://arxiv.org/abs/2403.17561.

Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao Yin. An iterative regulariza-
tion method for total variation-based image restoration. Multiscale Modeling & Simulation, 4(2):
460–489, 2005.

Tejas Pote, Muhammad Athar Ganaie, Atif Hassan, and Swanand Khare. Dynamic forward and
backward sparse training (dfbst): Accelerated deep learning through completely sparse training
schedule. In Emtiyaz Khan and Mehmet Gonen (eds.), Proceedings of The 14th Asian Conference
on Machine Learning, volume 189 of Proceedings of Machine Learning Research, pp. 848–863.
PMLR, 12–14 Dec 2023. URL https://proceedings.mlr.press/v189/pote23a.
html.

Lorenzo Rosasco, Silvia Villa, and Bundefinedng Công Vundefined. Convergence of stochas-
tic proximal gradient algorithm. Appl. Math. Optim., 82(3):891–917, December 2020. ISSN
0095-4616. doi: 10.1007/s00245-019-09617-7. URL https://doi.org/10.1007/
s00245-019-09617-7.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regu-
larization for deep neural networks. Neurocomputing, 241:81–89, 2017.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 00359246. URL http://www.
jstor.org/stable/2346178.

Ferdinand Vanmaele, Yara Elshiaty, and Stefania Petra. Multilevel optimization: Geometric coarse
models and convergence analysis, 2025. URL https://arxiv.org/abs/2505.11104.

Xiaoyu Wang and Martin Benning. Lifted bregman training of neural networks. Journal of Machine
Learning Research, 24(232):1–51, 2023.

Zaiwen Wen and Donald Goldfarb. A line search multigrid method for large-scale nonlinear
optimization. SIAM J. Optim., 20(3):1478–1503, 2009. ISSN 1052-6234,1095-7189. doi:
10.1137/08071524X. URL https://doi.org/10.1137/08071524X.

Wotao Yin, Stanley Osher, Donald Goldfarb, and Jerome Darbon. Bregman iterative algorithms for
ℓ1-minimization with applications to compressed sensing. SIAM Journal on Imaging sciences, 1
(1):143–168, 2008.

A THEORETICAL PROOFS

A first very important observation is that Ĵ (k)
δ coincides with Ĵ := Jδ(θ

(k) + P (k)(· − θ̂0,k)) up to
a constant depending on θ(k). To see this, note that

(θ(k) + P (k)(θ̂ − θ̂0,k))(g) =

{
θ̂(i), if g = r(k)(i),

(θ(k))(g), otherwise
(12)

12

https://doi.org/10.1080/10556780008805795
https://doi.org/10.1080/10556780008805795
https://arxiv.org/abs/2403.17561
https://proceedings.mlr.press/v189/pote23a.html
https://proceedings.mlr.press/v189/pote23a.html
https://doi.org/10.1007/s00245-019-09617-7
https://doi.org/10.1007/s00245-019-09617-7
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://arxiv.org/abs/2505.11104
https://doi.org/10.1137/08071524X

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

due to the definitions of P (k) and θ̂0,k. Using this, it is straight-forward to compute

Ĵ(θ̂) =
1

2δ
∥θ(k) + P (k)(θ̂ − θ̂0,k)∥2 + J(θ(k) + P (k)(θ̂ − θ̂0,k))

=
1

2δ
∥θ̂∥2 + 1

2δ

∑
g∈X

∥(θ(k))(g)∥2 +
G(k)∑
i=1

Jr(k)(i)(θ̂(i)) +
∑
g∈X

Jg((θ
(k))(g))

= Ĵ
(k)
δ (θ̂) + const(θ(k)),

where we use the abbreviation

X := {1, 2, . . . , G} \ r(k)({1, 2, . . . , G(k)})

to denote all groups that are not selected by R(k). Therefore, Ĵ (k)
δ and Ĵ share the same subd-

ifferential and also induce the same Bregman divergence. We can make use of this fact to prove
Proposition 1.

Proof of Proposition 1. Due to the sum and chain rule for subdifferentials,

∂Ĵ(θ̂) =
1

δ
θ̂ + (P (k))T∂J(θ(k) + P (k)(θ̂ − θ̂0,k)).

for θ̂ ∈ RDk such that J(θ(k) + P (k)(θ̂ − θ̂0,k)) < ∞ and ∂J(θ(k) + P (k)(θ̂ − θ̂0,k)) ̸= ∅.
Consequently, since we have already established that Ĵ (k)

δ and Ĵ share the same subdifferential, for
θ̂ = θ̂0,k, we have

∂Ĵ
(k)
δ (θ̂0,k) = ∂Ĵ(θ̂0,k)

=
1

δ
θ̂0,k +R(k)∂J(θ(k))

= R(k)∂Jδ(θ
(k)).

Obviously, v̂0,k = R(k)v(k) belongs to the latter, concluding the proof.

Proof of Proposition 2. Using (12) with θ̂ = θ̂m,k together with (6), it is easy to see that

∂(g)Jδ(θ̃
(k+1)) =

1

δ
θ̃
(k+1)
(g) + ∂Jg((θ̃

(k+1))(g))

=

{
∂(i)Ĵ

(k)
δ ((θ̂m,k)(i)), if g = r(k)(i),

∂(g)Jδ(θ
(k)), otherwise.

Since by definition

ṽ(k+1) =

{
(v̂m,k)(i), if g = r(k)(i),

(v(k))(g), otherwise,

together with v̂m,k ∈ ∂Ĵδ
(k)

(θ̂m,k) and v(k) ∈ ∂Jδ(θ
(k)), we obtain overall that ṽ(k+1) ∈

∂Jδ(θ̃
(k+1)).

As a next step, we prove that the coarse objective L̂(k) is L-smooth relative to the coarse regular-
izer Ĵ (k)

δ .

Lemma 1. Let Assumption 1 be satisfied. Then, the coarse objective L̂(k) defined in (8) is L-smooth
relative to Ĵ

(k)
δ .

Proof. Let θ̂ ∈ dom ∂J with v̂ ∈ ∂Ĵ(θ̂) and θ̂′ ∈ RDk . We define

ṽ := v(k) + P (k)(v̂ − v̂0,k),

θ̃ := θ(k) + P (k)(θ̂ − θ̂0,k),

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

and note that this leads to ṽ ∈ ∂Jδ(θ̃) following from the same argumentation as in the proof of
Proposition 2. In particular, θ̃ ∈ dom ∂J . Hence, from the L-smoothness of L relative to Jδ , we
deduce

L̂(k)(θ̂′)− L̂(k)(θ̂)− ⟨∇L(θ̃), P (k)(θ̂′ − θ̂)⟩ ≤ L(Ĵ(θ̂′)− Ĵ(θ̂)− ⟨ṽ, P (k)(θ̂′ − θ̂)⟩)

and using (P (k))T∇L(θ̃) = ∇L̂(k)(θ̂), we obtain

L̂(k)(θ̂′)− L̂(k)(θ̂)− ⟨∇L̂(k)(θ̂), θ̂′ − θ̂⟩ ≤ L(Ĵ(θ̂′)− Ĵ(θ̂)− ⟨(P (k))T ṽ, θ̂′ − θ̂⟩).

Due to the definition of ṽ, we have (P (k))T ṽ = R(k)ṽ = v̂, since R(k)P (k) = id. Consequently,

L̂(k)(θ̂′)− L̂(k)(θ̂)− ⟨∇L̂(k)(θ̂), θ̂′ − θ̂⟩ ≤ LDv̂
Ĵ
(θ̂′, θ̂),

meaning that L̂(k) is L-smooth relative to Ĵ . Since we have already established that Ĵ and Ĵ
(k)
δ

induce the same Bregman divergence, relative smoothness with respect to these two functions is
equivalent.

For the proof of our main result Theorem 1 we require two more lemmas, the proofs of which work
as in Bauschke et al. (2019); Elshiaty & Petra (2025) with the key difference being that we utilize
subgradients instead of classical gradients of the regularizer Jδ .

The first lemma asserts a linear convergence rate for the linearized Bregman iterations (4) without a
multilevel component.
Lemma 2. For θ ∈ dom(∂J), v ∈ ∂Jδ(θ) and 0 < τ < 1

L , let v+τ := v − τ∇L(θ) and θ+τ :=
proxδJ(δv

+
τ). Then,

L(θ+τ)− L∗ ≤
(
1− η

λ(τ)

τ

)
(L(θ)− L∗).

Proof. Using Assumption 1 the defintion of v+τ and Assumption 2 together with the definition of the
symmetrized Bregman divergence

Dsym
Jδ

(θ, θ̃) := Dv
Jδ
(θ̃, θ) +Dṽ

Jδ
(θ, θ̃)

= ⟨v − ṽ, θ − θ̃⟩,

for θ, θ̃ ∈ dom∂J and v ∈ ∂Jδ(θ), ṽ ∈ ∂Jδ(θ̃), we obtain

L(θ+τ) ≤ L(θ) + ⟨∇L(θ), θ+τ − θ⟩+ LDv
Jδ
(θ+τ , θ)

= L(θ)− 1

τ
Dsym

Jδ
(θ+τ , θ) + LDv

Jδ
(θ+τ , θ)

≤ L(θ)− 1

τ
D

v+
τ

Jδ
(θ, θ+τ)

≤ L(θ)− λ(τ)

τ
D

v+
1

Jδ
(θ, θ+1)

≤ L(θ)− η
λ(τ)

τ
(L(θ)− L∗).

Subtracting L∗ from both sides yields the desired estimate.

The second lemma investigates the decay of the function value if a coarse update is taken. The key
observation to prove this result is that our coarse objective L̂(k) is L-smooth relative to the coarse
regularizer Ĵ (k)

δ . This property follows from Assumption 1.
Lemma 3. If iteration k in Algorithm 1 triggers a coarse update and the coarse step size is chosen
such that τ̂ ≤ 1

L , then we have

L(θ̃(k+1)) ≤ L(θ(k))− 1

τ̂

m∑
i=1

Dv̂i,k

Ĵ
(k)
δ

(θ̂i−1,k, θ̂i,k).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. By Lemma 1, L̂(k) is L-smooth relative to Ĵ
(k)
δ . Hence, as in its proof, we obtain

L̂(k)(θ̂i+1,k) ≤ L̂(k)(θ̂i,k)− 1

τ̂
Dv̂i+1,k

Ĵ
(k)
δ

(θ̂i,k, θ̂i+1,k).

Since L(θ̃(k+1)) = L̂(k)(θ̂m,k) and L(θ(k)) = L̂(k)(θ̂0,k), iterating this inequality yields the desired
result.

Combining the previous results we arrive at the proof of our main result.

Proof of Theorem 1. The result follows by combining Lemmas 2 and 3 in the appendix and iterating.

B COMPUTATIONAL SAVINGS

Regarding the computational effort, we follow Evci et al. (2020) and estimate the theoretical FLOPs
required for training. As in their approach, we approximate the FLOPs for one training step by
summing the forward pass FLOPs and twice the forward pass FLOPs for the backward pass. We
only account for the FLOPs of convolutional and linear layers. Other operations such as BatchNorm,
pooling, and residual additions are ignored, as their contribution to the total FLOPs is negligible
compared to the dominant convolutional and linear computations. Denoting the FLOPs of a sparse
forward pass by fS and of a dense forward pass by fD, the expected FLOPs per training step are

m · 3fS + (2fS + fD)

m+ 1
,

since every (m + 1)-th step computes a full gradient. This matches the estimation used in RigL,
where the network structure is fixed for most iterations and the full gradient is only computed peri-
odically. In our method, however, the sparsity level evolves during training, whereas RigL enforces
a fixed sparsity. As a result, particularly in the early stages of training, our method requires sub-
stantially fewer FLOPs. By contrast, LinBreg incurs 2fS + fD FLOPs per training step, since a full
gradient is computed at every iteration.

We estimate the theoretical training FLOPs for the WideResNet28-10 models reported in Table 1.
Using standard SGD training as the dense baseline, our analysis indicates that LinBreg requires only
0.38× the FLOPs of the baseline, while our method further reduces this to 0.06×.

For the VGG16 models from Table 1, LinBreg requires 0.47× the FLOPs of the dense model,
whereas our method only needs 0.18×. Finally, for ResNet18, we consider the LinBreg approach
with λ = 0.2, which leads to 96.03% sparsity on average, and the ML LinBreg with λ = 0.007,
which reaches 96.12% sparsity. This results in a theoretical FLOPs reduction of 0.43× for the
former and 0.12× for the latter.

C BACKGROUND ON NUMERICAL EXPERIMENTS

Initialization As previously mentioned, the network is initialized in a highly sparse fashion, allow-
ing the training algorithm to subsequently activate additional parameters by setting them to non-zero
values. For this initialization, we follow the approach proposed by Bungert et al. (2022).

He et al. (2015) suggest that for ReLU activation functions, the variance of the weights should satisfy

Var
[
W l

]
=

2

nl−1
, (13)

where nl denotes the size of the l-th layer.

To obtain a sparse initialization, we apply binary masks to dense weight matrices, defining the initial
weights as

W l = W̃ l ⊙M l,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where ⊙ denotes the element-wise (Hadamard) product, and each entry of the mask M l is indepen-
dently drawn from a Bernoulli distribution with parameter r ∈ [0, 1]. This construction implies that
the variance of the resulting weights scales as

Var
[
W l

]
= rVar

[
W̃ l

]
.

To ensure that the condition in (13) is met, we adjust the distribution of W̃ l accordingly. For instance,
if W̃ l originally satisfies (13), we scale it accordingly.

CIFAR10 training We summarize some of the results from our training on the CIFAR10 dataset in
Table 1, most of which are also visualized in Figure 1. As previously mentioned, we use J = λ∥ · ∥1
as the regularizer and choose to perform a full update on the fine level every 100 iterations, meaning
that m = 99 in Algorithm 1.

Table 1: Total sparsity and test accuracy for different network architectures and different optimizers

Architecture Optimizer Stotal in [%] Test acc in [%]

ResNet18

SGD 0.39± 0.08 92.93± 0.23
Prune+Fine-Tuning 95.00 90.84± 0.30

ML LinBreg (λ = 0.005) 94.76± 0.12 90.89± 0.21
ML LinBreg (λ = 0.007) 96.12± 0.08 90.24± 0.33
ML LinBreg (λ = 0.01) 97.20± 0.06 89.60± 0.27

LinBreg (λ = 0.2) 96.03± 0.04 90.35± 0.22

VGG16

SGD 0.11± 0.02 91.98± 0.13
Prune+Fine-Tuning 92.00 91.39± 0.18
LinBreg (λ = 0.1) 91.82± 0.05 90.21± 0.24

ML LinBreg (λ = 0.003) 91.29± 0.18 90.71± 0.19

WideResNet28-10

SGD 0.17± 0.03 93.79± 0.08
Prune+Fine-Tuning 96.00 90.55± 0.32
LinBreg (λ = 0.1) 95.89± 0.16 91.70± 0.25

ML LinBreg (λ = 0.005) 96.58± 0.14 91.69± 0.27

To obtain some additional information on the training procedure, we track the mean and standard
deviation of the validation accuracy and the sparsity as well as the train loss throughout the training
procedure. The resulting plots for ResNet18 are displayed in Figure 4. We observe that freezing the
network structure neither affects the final characteristics of the model nor alters the training speed.

0 25 50 75 100 125 150 175 200

Epoch
80

82

84

86

88

90

92

94

Va
lid

at
io

n
Ac

cu
ra

cy
 [%

]

= 0.01
= 0.005

LinBreg (= 0.2)
0 25 50 75 100 125 150 175 200

Epoch
92

93

94

95

96

97

98

99

S t
ot

al
 [%

]

= 0.01
= 0.005

LinBreg (= 0.2)
0 25 50 75 100 125 150 175 200

Epoch
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

tra
in

in
g

lo
ss

= 0.01
= 0.005

LinBreg (= 0.2)

Figure 4: Mean and standard deviation of validation accuracy, sparsity, and train loss of the model
parameters over training epochs, shown for different regularization parameters, λ = 0.005 and
λ = 0.01 and for LinBreg with λ = 0.2.

Structured sparsity Even though, we do not induce any structured sparsity through the regularizer
J , we observe that for our trained models many of the 2D-kernels are zero. To measure this kind of
sparsity, we define the convolutional sparsity as

Sconv := 1−
∑

l∈Iconv
|{Kl

ij ̸= 0}|∑
l∈Iconv

cl−1 · cl
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where Iconv denotes the index set of all convolutional layers, cl−1 and cl are the number of input
and output channels of layer l ∈ Iconv, respectively, and Kl

ij is the kernel connecting input channel
i to output channel j.

For example, in the WideResNet28-10 case with λ = 0.005, where we observed a test accuracy
of 91.69% ± 0.27% we obtain Sconv = 78.21% ± 0.82%, meaning that almost 80% of input-
output connections are zero. We can further increase this structured sparsity by taking the group
ℓ1,2 norm from (7) as the regularizer. We again scale it by some positive factor λ to control its
influence on the optimization procedure. With this approach, we achieve a convolutional sparsity of
Sconv = 84.06%± 0.79% while maintaining a test accuracy of 91.45%± 0.59%. By increasing the
strength of the regularizer, this can be further improved to 93.09%± 0.46% convolutional sparsity,
with a corresponding test accuracy of 90.48%± 0.72%.

17

	Introduction
	Related Work
	Method
	Convergence Analysis
	Numerical Experiments
	Conclusion and Outlook
	Theoretical proofs
	Computational savings
	Background on numerical experiments

