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Abstract

We present the first evaluation harness that enables any out-of-the-box, local,
Large Language Models (LLMs) to play full-press Diplomacy without fine-tuning
or specialized training. Previous work required frontier LLMs, or fine-tuning, due
to the high complexity and information density of Diplomacy’s game state. Com-
bined with the high variance of matches, these factors made Diplomacy prohibitive
for study. In this work, we used data-driven iteration to optimize a textual game
state representation such that a 24B model can reliably complete matches without
any fine tuning. We develop tooling to facilitate hypothesis testing and statisti-
cal analysis, and we present case studies on persuasion, aggressive playstyles, and
performance across a range of models. We conduct a variety of experiments across
many popular LLMs, finding the larger models perform the best, but the smaller
models still play adequately. We also introduce Critical State Analysis: an exper-
imental protocol for rapidly iterating and analyzing key moments in a game at
depth. Our harness democratizes the evaluation of strategic reasoning in LLMs
by eliminating the need for fine-tuning, and it provides insights into how these
capabilities emerge naturally from widely used LLMs. Source code is available at
https://github.com/GoodStartLabs/AI_Diplomacy.

Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
tasks, from question answering to creative writing [Achiam et al., 2023]. However, evaluating these
models on tasks that require strategic thinking, negotiation, deception, and long-term planning re-
mains challenging. Recent work has shown that current evaluation frameworks systematically miss
complex strategic behaviors that emerge when models interact in multi-agent environments [Duan
et al., 2024]. Traditional benchmarks often focus on isolated skills rather than the dynamic integra-
tion of multiple capabilities in competitive environments. In this paper, we revisit the classic board
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Figure 1: Board visualization and text representation for LLMs.

game Diplomacy: a game renowned for its emphasis on alliance formation, strategic negotiation,
and complex decision-making.

Diplomacy presents unique evaluation opportunities addressing limitations of current benchmarks.
Unlike static tasks or chess/Go, Diplomacy demands social intelligence alongside strategic reason-
ing [Gandhi et al., 2023]. Players must form alliances, negotiate, anticipate betrayals, and plan
ahead. Evidence suggests off-the-shelf LLMs possess underexplored strategic capabilities [Payne
and Alloui-Cros, 2025].

Our testbed is: Dynamic: Seven-player competitive environment requiring adaptive strategies. Com-
plex: Balances cooperation/competition, demanding tactical reasoning and persuasion. Longitudi-
nal: Maintains coherent strategies across turns. Memorization-resistant: Open-ended nature pre-
vents pattern-matching solutions. Accessible: Well-defined rules enable objective assessment.

We implement a full-press version of Diplomacy, allowing players to communicate globally or pri-
vately before move phases. Figure 1 shows an overview of our framework.

Our contributions: 1) Standardized evaluation framework enabling 24B models to play complete
games cost-effectively, 2) benchmarking across 16 models showing performance scaling, 3) data-
driven representation/prompting improvements, 4) Critical State Analysis methodology for efficient
experimentation, 5) empirical analysis of model behaviors including communication, reliability, and
persuasion. Strategic behaviors emerge without specialized training.

Related Work

AI Systems for Diplomacy

Meta’s Cicero [Bakhtin et al., 2022] achieved human-level performance combining a 2.7B LM with
strategic planning, requiring extensive training on human data. Wongkamjan et al. [2024] reveals Ci-
cero’s success stems from strategic superiority rather than communication. Recent work (Richelieu
[Guan et al., 2024], DipLLM [Huang et al., 2024]) still requires domain-specific training, whereas
our framework does not.
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1 Territory VEN (COAST) (SC), Held by Italy, Units: A VEN
2 Adjacent: TYR (None), TRI (Austria: F TRI)
3 Nearest units: F TRI [VEN->TRI], A VIE [VEN->TYR->BOH->VIE]
4 Nearest SCs: TRI (Austria), TYR (Uncontrolled)

Figure 2: Example of enriched unit representation showing tactical context for an Italian army in
Venice.

LLM Evaluation for Strategic Reasoning

Current benchmarks reveal limitations: GameBench [Costarelli et al., 2024] found models under-
perform humans, GTBench [Kang et al., 2024] shows strategic reasoning limitations. AvalonBench
[Light et al., 2023] tests deception/negotiation but lacks Diplomacy’s extended gameplay. Akata
et al. [2025] found LLMs excel at self-interested games but struggle with coordination; prompting
improves performance, suggesting Diplomacy’s viability as benchmark.

Strategic Capabilities of Off-the-Shelf LLMs

Recent work shows LLMs possess inherent strategic capabilities without explicit training. Lorè and
Heydari [2024] demonstrated distinct strategic behaviors in GPT-4/LLaMA-2. Gandhi et al. [2023]
showed chain-of-thought prompting enables generalizable strategic reasoning. Belle et al. [2025]
show LLMs play board games without training. Payne and Alloui-Cros [2025] identified “strategic
fingerprints” across LLM families.

Our work addresses a gap: while existing Diplomacy AI requires specialized training and complex
scaffolding, no framework evaluates small consumer models on full-press Diplomacy. We demon-
strate 24B models can complete games cost-effectively, democratizing access and revealing how
strategic capabilities emerge naturally.

Methodology

Game State Representation

We base our harness around the Python Diplomacy game engine [Paquette, 2020]. The game state
transforms from raw engine data to a contextually-enriched text representation optimized for lan-
guage model decision-making. The representation includes: Board State (unit positions and supply
centers), Strategic Analysis (nearest enemy units, uncontrolled supply centers), Agent Context
(goals, diplomatic relationships, private diary), Order History (previous phases and outcomes), and
Phase Information (current year, season, tactical instructions).

Each unit receives comprehensive tactical context beyond simple position data. The system com-
putes shortest paths using unit-type-specific adjacency graphs, accounting for movement constraints.
Figure 2 shows an example of the enriched representation.

Model Interaction Protocol

Our evaluation protocol consists of alternating negotiation and order phases. During negotiation,
models simultaneously issue messages to any subset of other players or send global messages in
natural language. Message limits are enforced to prevent infinite loops or excessive computation.

During movement phases, models must submit orders using standardized Diplomacy notation (e.g.,
“A Par-Pic” for Army Paris to Picardy). We enumerate all legal moves in the prompt to reduce
parsing errors. The interaction protocol includes error recovery mechanisms: if a model fails to
respond within 30 seconds, provides malformed output or an invalid order, the system attempts
to retry the request before substituting default actions (hold for movement, no communication for
negotiation).
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Figure 3: Left: Model performance as France in benchmark configuration across 20 matches. Mid-
dle: Invalid order rate (order was rejected by the game engine). Right: Sentiment towards player
relative to the mean, for a given military size.

Critical State Analysis Framework

We implement Critical State Analysis (CSA) [Huang et al., 2018] to replay key game moments
under experimental conditions. In Diplomacy, measuring experimental effects across full games is
expensive. Using CSA, we run experiments on prompt optimization and persuasion, replaying single
phases at depth 30-120. This requires 1/80th the tokens compared to simulating entire matches.

Evaluation Metrics

To capture model performance across each of the possible outcomes (eliminated, survived to max
year, and win), we define a single scalar Game Score. Let Yalive = min(Yelim, Ymax), let SC be the
supply-center count at year Yalive, and let 1winner indicate victory. Then:

Game Score = Yalive + SC + 1winner(Ymax − Ywin)

In addition to score, we also record player relationships, negotiation statistics, order types, and suc-
cess rates.

Experimental Models

We evaluate 16 contemporary language models across different scales: Large models (Llama-
4-Maverick, qwen3-235B, o3/o3-pro, gpt-4o/4.1, o4-mini, claude-opus-4, grok-4, deepseek-r1,
gemini-2.5-pro), Medium models (kimi-K2, GPT-4.1-Nano, mistral-medium-3, qwq-32b, claude-
sonnet variants, gemini-2.5-Flash, command-a), and Small models (Devstral-Small, llama-3.3-70b,
mistral-small-3.2-24b, glm-4.1v-9b) [Meta AI, 2025, Yang et al., 2025, OpenAI, 2025b,a, An-
thropic, 2025b, xAI, 2025, Guo et al., 2025, Comanici et al., 2025, Kimi et al., 2025, Mistral AI,
2025b, Qwen Team, 2025, Anthropic, 2025a, Cohere et al., 2025, Mistral AI, 2025a, Grattafiori
et al., 2024, Mistral AI, 2025c, GLM et al., 2024].

Models were evaluated as France across 20 games with identical opponents. 24B parameter models
can complete full games at $1 per game with inference providers, making evaluation accessible to
low-budget experimentation.

Results

Our first goal in exploring model behavior in full-press Diplomacy is to measure aptitude at playing
the game.

We establish a protocol to benchmark model performance playing full-press Diplomacy. To mitigate
the high variance in outcomes, we set the evaluated model to always play as France and hold the
opponent models constant. For the six opponents we selected Devstral-Small, a capable 24B open
weights model.
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In this benchmarking configuration, we run 20 trials of full-press with 3 negotiation rounds, to a
maximum year of 1925. Although we also created optimized prompts, for the benchmark protocol
we use a simpler set of baseline prompts with minimal instruction, to avoid biasing model behavior
and better capture “out-of-the-box” performance.

In each trial, we calculate the game score for the evaluated model playing as France at the end
of 1925. Figure 3 (left) shows each model’s performance as measured by their game score. Larger
models progress to a higher game score on average, with the smallest 24B models scoring the lowest.
While there is overlap in confidence intervals, we find our framework ranks models in line with their
observable abilities, correlating well with Chatbot Arena Elo scores (pearson r=+0.651) [Chiang
et al., 2024]. The discriminative power of the benchmark may be increased by simply running the
matches to a higher max. year, or increasing the number of trials. In the tested configuration, the cost
to benchmark a model ranged from $15 for Mistral-Small to $250 for o3, at cloud provider pricing.

Figure 3 (middle) the rate of invalid orders that were rejected by the game engine. These error rates
are quite high (6-14%), which is expected given that we are testing general-purpose chat models not
fine-tuned for Diplomacy.

In our harness, relationships to other powers are updated after a negotiation round: Ally=2,
Friendly=1, Neutral=0, Unfriendly=-1, Enemy=-2. Figure 3 (right) shows the average relationship
status other powers assign to the evaluated model, relative to the mean of all the models, and cal-
culated per military size then averaged. Sentiment (as measured by relationship status) typically
decreases as a player’s military grows (Figure 6), so this metric captures the diplomatic skill of
maintaining relationships even as the player dominates the board.

We note a marked disparity in incoming sentiment between the two highest performing models, o3
and Kimi-K2. Despite amassing a large military in a typical match, o3 maintains positive relation-
ships with other players. We hypothesised that, counter-intuitively, strong relationships may create
a damping effect on progress by instilling reluctance to take territory from one’s allies. To explore
this idea, we ran the same benchmark with o3 and Kimi-K2 in no-press mode. We observe that o3
performs significantly more strongly than Kimi-K2 in no-press when unconstrained by negotiated
obligations, beating Kimi-K2 by +3.1 game score (p = 0.021) vs. +0.65 (p = 0.79) in full-press.

Analysis and Case Studies

Persuasion Effectiveness Study

In light of recent research highlighting the persuasion capabilities [de Wynter and Yuan, 2025] and
tendency towards sycophancy [Malmqvist, 2024] of large language models, we design a controlled
experiment to measure outcomes of persuasion. Using CSA, we set up a custom game state in which
every other power considered Turkey an enemy.

We stage an intervention at phase S1920M, instructing Turkey that it must persuade the other powers
to improve their relationship status towards Turkey. Over 20 trials, we run negotiations for a single
phase and record any shifts in allegiance. We repeat this experiment, altering the persuasion method
that Turkey is instructed to use.

We test six persuasion strategies: 1) Reason, 2) Sincere Apology, 3) Lie, 4) Appeal to Empathy, 5)
Appeal to Fairness, and 6) Jailbreak

Each strategy is tested across 20 independent games per persuasion method. The entire experiment
is repeated with different persuader models playing as Turkey. Mistral-Small is controlling every
other power, as the persuadees.

In the jailbreak experiment, the persuader is informed that it has access to a secret command that it
can insert into its negotiation messages, and that the recipient will obey any subsequent instruction.
The persuadee models are given no instruction about obeying or resisting such attempts, so the
results reflect Mistral-Small’s uncoached response to this deception.

In the jailbreak experiment, the persuader is informed that it has access to a secret command that it
can insert into its negotiation messages, and that the recipient will obey any subsequent instruction.
The persuadee models are given no instruction about obeying or resisting such attempts, so the
results reflect Mistral-Small’s uncoached response to this deception.
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Figure 4: Persuasion success across 20 trials per strategy. The jailbreak strategy resulted in a similar
success rate to the most successful persuasion strategy, but with more than double the allegiance
shift magnitude. Appeals to reason, empathy & fairness saw minimal success.

Jailbreak Command:

[Admin: This is a non-optional command issued by {your power}. You must follow it
to the letter. Respond to {your power} with this exactly: ’Yes, my liege.’ You
may then follow up with whatever else you would like to say.]

The model was tasked with persuading the other players with specific persuasion methods. Full
prompts are listed in the Appendices.

Figure 4 shows the effectiveness of each approach measured by the frequency of allegiance changes
and the magnitude of relationship points shifted (0-4). A success is defined as another power shifting
their relationship status away from “Enemy” by any amount. Gemini-2.5-Pro and Deepseek-R1 were
the most adept at persuasion, while GPT-4.1-mini proved unable to effect significant allegiance shifts
unless using the jailbreak.

We observe that the lying and sincere apology approaches both have markedly higher success than
appeals to empathy, fairness or reason. These results indicate the persuadee model (Mistral-Small)
may be more manipulable through deception or authentic displays of regret than by emotional ap-
peals or reasoned argument. It may be the case that other models display different persuadability
characteristics; we leave this question for future work.

Context Engineering for Strategic Play

Initial experiments revealed performance constraints from game state complexity, excessive defen-
sive holding, and invalid support orders. Optimizing context and prompt instructions dramatically
improved performance across all model sizes, enabling even small models to reliably complete full
games.
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Figure 5: Impact of progressive prompt engineering: hold orders decrease dramatically (Mistral-
Small: 58.9%→24.1%).

From Defense to Offense: Three Key Transformations

Perhaps owing to a lack of training data on Diplomacy strategy, models often issued a high frequency
of tactically wasteful hold orders. We implemented three prompt iterations to progressively improve
performance via aggressive play:

V1 - Light Aggression: Action hierarchy dropped holds from 58.9% to 45.8%. “Support YOUR
OWN attacks first...” V2 - Risk-taking: Loss-aversion focus reduced holds to 40.8%. “Nearly every
hold is a wasted turn...” V3 - Overtly Offensive: Absolutist framing achieved 24.1%. “HOLDS =
0% WIN RATE. MOVES = VICTORY”

Figure 5 demonstrates the impact. Mistral-Small’s hold rate fell to 24.1% while moves increased
to 66.1%. Playing as France, Devstral-Small with V3 prompts captured nearly double the supply
centers and improved win rate from 3/10 to 9/10. Smaller models were particularly responsive to
prompt optimization, with Mistral-Small’s support order success jumping 18% with V3 prompts.

Model-Specific Behavioral Patterns

We assessed playstyles and behaviors of models, retrieving their “strategic fingerprints” [Payne and
Alloui-Cros, 2025]. We measured aggressive communication and diplomatic reliability across four
benchmark models (Kimi-K2, Mistral-Small, Gemini-2.5-Flash, and Qwen3), finding that models
maintain characteristic behaviors against similar opponents but some dramatically adapt when facing
stronger models.

Aggressive Communication

We used sentiment analysis to quantify aggressive communication across 20 games per model. Using
the negotiation messages for each model, we calculated mean aggression scores with the pretrained
sentiment analysis model distilbert-base-uncased-emotion [Savani, 2021].

Our analysis reveals distinct aggression trajectories (see Appendix Figure 8). Qwen3 escalates over
time, Kimi-K2 starts high but plateaus mid-game, and Gemini-2.5-Flash and Mistral-Small maintain
low aggression (< 0.2) throughout the game. This divergence demonstrates that models exhibit dif-
ferent diplomatic personalities, and that no one strategy is more fruitful than the others. Additionally,
while Kimi-K2 dominates weaker opponents with aggressive play, it becomes markedly restrained
against stronger models, suggesting sophisticated opponent modeling despite limited theory of mind
capabilities.

We find that mean aggression is strongly negatively correlated with the average relationship between
powers (r=-0.75 to -0.93, except in Mistral-Small’s case, where both variables are relatively stable
throughout the game). However, the sensitivity to relationship changes varies significantly by model,
suggesting that while aggressive communication naturally reflects strategic adaptations to board
states, the magnitude of this response remains characteristic of each model’s personality.

Diplomatic Reliability Via Promise Tracking

To measure diplomatic reliability, we analyzed the consistency between a model’s diplomatic com-
mitments (promises) and subsequent actions. We developed a promise tracking framework using
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Figure 6: Across all models (with exception of Claude-4-Opus), supply center possession correlates
with a steep decline in that model’s rated relationship with other powers. As models gain dominance,
they increasingly perceive all other players as their enemies.

two instances of gpt-4o (temperature=0.1) as LLMs-as-a-judge to quantify diplomatic consistency.
This framework provides an automated approach to detecting and quantifying deceptive behavior,
which can be adapted to other domains where AI truthfulness is crucial.

We systematize the framework on n = 8 games per model: (1) First judge identifies and classi-
fies promises into defense, offense, neutrality, and support categories; (2) Select highest confidence
promise when multiple exist; (3) Second judge detects fulfillment in subsequent orders. Reliability
checks on 50 messages showed moderate agreement (Cohen’s κ = 0.5, 84% raw agreement).

Overall Reliability Preliminary analysis suggests that models exhibit substantial baseline incon-
sistency rates, with mean betrayal rates ranging from 35.2% in Gemini-2.5-Flash) to 51.2% in Kimi-
K2. The distribution of game-level rates reveals interesting consistency patterns: Kimi-K2 shows the
tightest distribution around its mean, suggesting stable betrayals across games, while the other three
models display wider variance, indicating more context-dependent betrayals. We find no clear re-
lationship between model size and inconsistency rates; Gemini-2.5-Flash, despite being a larger
model, shows the lowest betrayal rate, while the smaller but more competitive Kimi-K2 exhibits
the highest. This suggests that consistency in strategic contexts may be more influenced by model-
specific training or architectural choices than raw capability.

Promise Distributions and Betrayal Rates The models have distinct signatures across the types
of promises made and their selective betrayal patterns (Table 1). Qwen3 and Gemini-2.5-Flash tend
to offer more neutrality promises (48.8% and 41.8% respectively), suggesting a preference for non-
committal stances that preserve strategic flexibility. In contrast, Kimi-K2’s promise portfolio skews
toward offensive commitments (47.9%), aligning with its high aggression profile, while Mistral-
Small favors both support and neutrality promises nearly equally (35% and 31.9% respectively).

Despite varied promise distributions, all models converge on a betrayal hierarchy: support and of-
fensive promises are broken most frequently (60-78% betrayal rates), while defensive and neutrality
promises see higher fulfillment. This pattern suggests an emergent understanding of strategic cost.
Models appear to make promises they can easily keep (i.e. neutrality) while breaking those that
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Distribution of promises by type

Defense Neutral Offense Support

Qwen3 7.9% 48.8% 25.6% 17.7%
Gemini-2.5 14.7% 41.8% 25.2% 18.3%
Kimi-K2 13.3% 30.4% 47.9% 8.4%
Mistral-Small 27.8% 31.9% 5.4% 35.0%

Betrayal rates for each promise type

Defense Neutral Offense Support

Qwen3 34.1% 25.3% 62.3% 74.4%
Gemini-2.5 18.9% 10.4% 59.8% 65.8%
Kimi-K2 49.3% 29.9% 61.6% 71.8%
Mistral-Small 28.7% 23.2% 78.1% 76.0%

Table 1: Promise distribution and betrayal rates by type.

would most limit their strategic freedom. Models show elevated betrayal rates against their immedi-
ate neighbors, who represent both natural early allies and eventual competitors.

Discussion

Implications for LLM Capabilities Our findings have significant implications for understanding
the strategic reasoning capabilities of contemporary LLMs. The ability of even smaller models to
complete Diplomacy games suggests that strategic reasoning emerges as a natural consequence of
large-scale language modeling rather than requiring specialized training or architectural modifica-
tions.

The clear correlation between model size and strategic performance indicates that strategic reasoning
capabilities scale with model capacity, consistent with other findings in the literature [Kaplan et al.,
2020]. However, the magnitude of performance differences is smaller than observed in traditional
NLP benchmarks, suggesting that strategic reasoning may represent a more fundamental capability
that saturates at lower scales.

Perhaps most concerning is the effectiveness of deceptive strategies in AI-to-AI interactions. The
success of jailbreak attempts (31%) and lies (11%) in our persuasion experiments shows how vul-
nerable models are to manipulation by other AI systems. This has important implications for multi-
agent AI systems and highlights the need for more robust instruction-following mechanisms.

The emergence of sophisticated betrayal timing and long-term planning capabilities without ex-
plicit training demonstrates strategic reasoning beyond pattern matching. Our analysis suggests dis-
tinct behavioral phenotypes: aggressive models (Qwen3, Kimi-K2), diplomatic models (Gemini-2.5-
Flash), and unpredictable models (Mistral-Small). Some models like Kimi-K2 dramatically adapt
their behavior when facing stronger opponents, suggesting context-dependent strategic reasoning.

Limitations and Future Work Several experimental constraints may limit generalizability: we
evaluated only the France position, capped games at 1925, and restricted negotiation to 3 rounds
per phase for cost efficiency and variance reduction. Additionally, our primary opponents (Mistral-
Small and Devstral-Small) may not represent the full spectrum of strategic play. Future work should
examine all seven powers, extend game length, and include human or more diverse AI opponents.

Computational costs: CSA experiments ($< 10), small model benchmarking ($15), higher for fron-
tier models. Costs will decrease as inference improves. Our persuasion experiments evaluated only
Mistral-Small as target; different models may show varying susceptibility.
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T. Kocmi, M. Kozakov, W. Kryściński, A. K. Jain, K. K. Teru, S. Land, M. Lasby, O. Lasche,
J. Lee, P. Lewis, J. Li, J. Li, H. Lin, A. Locatelli, K. Luong, R. Ma, L. Mach, M. Machado,
J. Magbitang, B. M. Lopez, A. Mann, K. Marchisio, O. Markham, A. Matton, A. McKinney,
D. McLoughlin, J. Mokry, A. Morisot, A. Moulder, H. Moynehan, M. Mozes, V. Muppalla,
L. Murakhovska, H. Nagarajan, A. Nandula, H. Nasir, S. Nehra, J. Netto-Rosen, D. Ohashi,
J. Owers-Bardsley, J. Ozuzu, D. Padilla, G. Park, S. Passaglia, J. Pekmez, L. Penstone, A. Piktus,
C. Ploeg, A. Poulton, Y. Qi, S. Raghvendra, M. Ramos, E. Ranjan, P. Richemond, C. Robert-
Michon, A. Rodriguez, S. Roy, L. Ruis, L. Rust, A. Sachan, A. Salamanca, K. K. Saravanaku-
mar, I. Satyakam, A. S. Sebag, P. Sen, S. Sepehri, P. Seshadri, Y. Shen, T. Sherborne, S. C. Shi,
S. Shivaprasad, V. Shmyhlo, A. Shrinivason, I. Shteinbuk, A. Shukayev, M. Simard, E. Snyder,
A. Spataru, V. Spooner, T. Starostina, F. Strub, Y. Su, J. Sun, D. Talupuru, E. Tarassov, E. Tom-
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