
Aging with GRACE: Lifelong Model Editing with
Discrete Key-Value Adaptors

Thomas Hartvigsen1, Swaminathan Sankaranarayanan1, Hamid Palangi2,
Yoon Kim1, Marzyeh Ghassemi1

MIT1, Microsoft2
{tomh,swamiviv,yoonkim,mghassem}@mit.edu, hpalangi@microsoft.com

Abstract

Large language models often err during deployment due to non-representative
training data or distribution shift in the test set. Recently, model editors have been
proposed to fix errors by adjusting a pre-trained model’s weights. However, these
approaches quickly decay a model’s performance on upstream data, and forget how
to fix previous errors. We propose and study a novel Lifelong Model Editing setting,
where errors stream into a deployed model and we update the model to correct
its predictions without influencing it for unrelated inputs. We propose General
Retrieval Adaptors for Continual Editing, or GRACE, which learns and caches a
particular layer’s activations in a codebook as edits stream in, while the original
model weights remain frozen. This ensures similar edits are treated similarly
without altering the model’s performance on unrelated instances. Experimentally,
we show that GRACE substantially improves over recent model editors.

1 Introduction

Modern machine learning systems perform extremely well on challenging, real-world tasks. Many of
the successes stem from giant models trained on massive amounts of data, achieving state-of-the-art
performance on challenging tasks in natural language processing [1, 2] and computer vision [3, 4].
However, despite high performance, large models still make critical mistakes during deployment
[5]. Further, when models are deployed over long periods of time their error rates increase as data
distributions shift, labels shift as annotation guidelines change, or ground-truth information about
the world simply changes. For example, a language model trained in 2016 would correctly Barack
Obama as president of the United States, but this would be incorrect in 2017 and 2021. As models
contain more knowledge, the correct answers will change many times during deployment [6]. In such
cases, Lifelong Model Editing methods are an ideal fix to large models’ mistakes because such edits
do not incur costly retraining or degrade the model’s upstream performance [7].

One approach to lifelong editing is to finetune a model on data as they arrive [8]. However, finetuning
on singular errors is prone to overfitting — even when using customized regularization techniques
[9] — and the edited model can catastrophically forget its original training data, devaluing upstream
pretraining. Further, edited models can also forget previously-fixed errors, counteracting the objective
of editing in the first place [5]. A better approach for lifelong editing could be existing model editors,
which update model weights with minimal influence on upstream data. However, these methods need
lots of hard-to-obtain training data to make edits [7, 10]. Additionally, regularization approaches
[11, 5, 12] rely on sets of semantically-equivalent inputs to preserve upstream model performance.
Further, prior model editors [7, 5, 12, 10] have yet to consider sequential edits.

In this paper, we introduce Lifelong Model Editing. Given a model f0 that was pretrained on upstream
instances U , let ft denote the edited model at timestep t. When deploying f0, we begin to observe a

Workshop on Robustness in Sequence Modeling, 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).

stream of errors made by the model {(Xe
t , y

e
t)}Tt=1, where ft−1(X

e
t) ̸= yet ∀ t. At each step t, given

an edit input and edit label pair (Xe
t , y

e
t) our aim is to produce an edited model ft that 1) Corrects a

given error, 2) remembers edits for previous errors, and 3) maintains upstream testing performance.

To address this challenging Lifelong Editing setting, we propose General Retrieval Adaptors for
Continual Editing, or GRACE. GRACE modifies individual layers of a frozen, pretrained model f0,
treating it as an encoder. To modify f0’s predictions for a given input, GRACE uses the input to
a selected layer as an encoding, with which it selects the nearest key from a codebook memory
filled with previously-learned keys. GRACE makes local edits to a large model’s behavior by learning
activations that influence the model’s predictions for specific concepts maintained by separate keys.
As new inputs and errors arrive over time, GRACE only needs to decide when to retrieve activations—
determined by similarity search—and how to modify existing keys and values. GRACE thus provides
a new paradigm for managing conflicts between upstream and downstream behavior.

Our contributions in this work are:

1. We cast model editing in a more realistic lifelong streaming setting. To our knowledge, this
setting is unstudied, yet is crucial to successfully deploying large language models.

2. We present GRACE, a novel key-value model editor which learns to cache and retrieve
activations for selected layers using only errors observed during deployment.

3. Our experiments show that GRACE is a state-of-the-art model editor, ultimately outperforming
alternatives on real model editing tasks with shifting data and label distributions.

2 Editing Large Models with GRACE

Problem Formulation Assume we are given a large model f that was pretrained on some upstream
dataset U . Let f0 denote the frozen pretrained model at time step t = 0. We then deploy f0 on a task
and monitor its predictions ŷt = f(Xt) as inputs Xt stream in, one step t at a time. Over time, we
receive some errors Xt for which ŷt ̸= yt, the true label for Xt. In order to continue safely deploying
f , we aim to edit f such that f(Xt) = yt – let ft denote the edited model at step t. Note that ft will
be different from models used at prior steps and that prior models are discarded. Beyond correcting
ft−1 on Xt, we also desire that ft maintains high performance on 1) prior edits X<t and 2) the
upstream dataset U . Further, upstream training data are often proprietary or too large, so we assume
no access to U during editing, contrasting prior works’ strong assumptions [7].

General Retrieval Adaptors for Continual Editing GRACE presents a novel paradigm for model
editing: As errors are identified and corrected over time, GRACE modifies a pre-trained model’s
behavior without altering its weights. GRACE can edit any desired layer in a pre-trained model by
learning a discrete codebook C that modifies a layer’s behavior for similar instances. While inspired
by recent success in learning discrete key-value models [13], GRACE operates within the layers of
a pretrained model, and manages keys and values over time without pretraining the codebook. A
GRACE codebook added to layer l contains the following contents:

• Keys (K): Set of keys which are the same size as f0’s activations from layer l − 1.

• Values (V): Set of values that are learned as the model is deployed and accumulating errors.
Each value has the same number of dimensions as the next layer’s input.

• Influence radii (E): Each key is paired with an influence radius ϵ, which are used as a
threshold for similarity matching. Given a GRACE layer l and f l−1

0 , the pretrained model
activations at layer l− 1, we use a similarity search over existing keys to find the key closest
to f l−1

0 via a distance function d(·):

dmin = min
i
(d(f l−1

0 ,Kl
i)).

GRACE is activated at layer l only if dmin ≤ ϵlk, where k indexes the most similar key. The
larger the value of ϵ, the more influence the key has, since it covers more of the embedding
space. As we discuss below, as GRACE fixes edits over time, ϵ values will shrink and expand
to ensure that GRACE layers adapt to changing data distributions.

2

• Key labels (Y): When a new key is added, its corresponding edit label is also stored. By
accessing edit labels only while editing, keys and their ϵs can be adapted to generalize to
similar instances without influencing too much of the embedding space.

To perform inference with a GRACE-edited model, layer l is computed using a discrete key-value
search over GRACE’s keys:

f l
t(·) =

{
GRACEl[f l−1

0], ifmini(d(f
l−1
0 ,Kl

i)− ϵli) < 0

f l
0, otherwise,

where ϵli and Kl
i are the influence radius and key i in layer l, respectively. d(·) is a distance function

(we use Euclidean distance in our experiments). By using a discrete similarity search, if a new
input is unlike any cached keys, GRACE simply defers to f0’s pretrained weights. This way, if the
edit instances are out-of-distribution for the training data, GRACE layers can avoid interference with
upstream data by leaving the model weights unaltered. Further, edits are usually rare compared to
streaming inputs, so a GRACE-edited model will often defer to a pretrained layer’s outputs.

When an edit is required, f0 serves as an encoder, computing an embedding for an instance at layer
l. Then, f l

0 serves as a query across any existing keys in the GRACE codebook for layer l. A GRACE
layer can perform one of the following operations at any given time step:

1. KEY-INITIALIZE: If no keys are present, GRACE initializes the query as a key. This step
only happens when the model makes its very first error—otherwise, GRACE always either
Adds a key or Splits an existing key. We initialize a new key’s value to be a vector of shape
|f l|, the number of dimensions of the output embedding. Then the value is then updated
using gradient descent with standard finetuning loss to encourage the model to predict the
edit label given the value as input to the next layer.

2. KEY-ADD: If the input embedding f l−1
0 does not fall within the ϵ radius of any existing

keys according to distance function d(·), then a new key is initialized to be f l−1
0 along with

a corresponding value v, base influence radius ϵl, and edit label ye. The value is learned as
described in Step 1.

3. KEY-UPDATE: If f l−1
0 is similar-enough to any existing keys—determined by whether or

not the query lands inside the ϵ radius of any keys, we need to ensure that the matched key’s
activation carries the same semantic content as the edit input. To do this, we compare the
current edit’s label to the label cached along with the matched key:
(a) If the query’s nearest key has the same label as the edit label, expand the nearest key’s

ϵ to encompass the query:

{Kl
i : [V

l
i , ϵ

l
i]} →

{
Kl

i : [V
l
i , d(f

l
0,K

l
i)]

}
(b) If the query’s nearest key has a different label from the edit label, split the nearest key

into two keys by (1) decreasing the influence radius of the nearest key, then (2) creating
a new key-value pair where the key is the query. The new key is the activation of f0 at
layer l − 1 for the current edit input.

{Kl
i : V

l
i , ϵ

l
i} →

{
Kl

i : [V l
i , 0.5 ∗ d(f l

0,K
l
i)]

f l
0 : [V l

i+1, 0.5 ∗ d(f l
0,K

l
i)]

}
As edits stream in, by continuously adding and updating GRACE’s keys and values, the embedding
space for a selected layer l becomes partitioned according to which instances need modified outputs.
When not performing edits, these operations are bypassed, and keys are entirely frozen, regardless of
whether or not the instance lands within a key’s influence. Overall, GRACE introduces a new model
editing paradigm in which edits can be made sequentially, similar edits are encouraged to be edited
similarly, and the ultimate influence of new edits can be controlled and monitored explicitly.

2.1 Training and Inference with GRACE Layers

When an edit is required and GRACE layers are used, the closest key matching the edit input query is
found using a similarity search followed by the key update steps described above. Once a closest
key is either found or newly created, the corresponding value is returned. This value serves as the

3

activation of the next layer. Then, the final model output is computed and a downstream loss is
calculated between the predicted label and the edit label. During backpropagation, only the values of
the GRACE layers are updated based on the downstream loss, thereby learning activations that alter
the model’s predictions.

During inference, at each GRACE layer, the key closest to the query embedding is identified through
a similarity search. In our experiments, we find that euclidean distance works well, similar to [13].
The corresponding value is returned as an activation to the next layer, and this step is repeated for all
GRACE layers added to the model. GRACE naturally applies to all recent transformer models, as any
layers that compute new updates can be edited using it.

3 Experiments

To evaluate GRACE, we investigate three points. (If you drop the synthetic stuff, you need to edit this)
First, using synthetic data, we validate that GRACE indeed learns local fixes for pre-trained models.
Second, using a real Question Answering task, we evaluate GRACE’s capacity to alter a language
model’s predicted tokens over long deployment periods. Third, we experiment with a real label-shift
case, evaluating lifelong model editing when label distributions change during deployment. We
compare GRACE with three alternatives. First, we finetune a model’s weights on errors as they arrive.
Second, we use a streaming version of MEND [7], which trains a hypernetwork to edit a model’s
weights using streaming errors as training data. Third, we compare against a memory network-based
adaptor, which serves as a softer version of GRACE.

Implementation Details We experiment with T5 [14] for question answering, though GRACE is
general and applicable to other large NLP models as well. Following [7], we edit the dense-relu-dense
layer of the last encoder block of a 60 million parameter model.

Metrics To evaluate lifelong model editors, we track two key metrics over time: (1) Upstream
performance is the model’s performance on a portion of its training set, indicating how much the
model remembers its past knowledge, and (2) Online performance is the edited model’s accuracy on
the history of streaming edits. Both should ideally be high, though they often contradict in practice.

3.1 Question Answering with Shifting Answers

Experiment: Pretraining and finetuning large language models is an increasingly-successful approach
to Question Answering (QA) [6], especially for open-domain tasks [15]. In recent methods for open
domain QA, language models learn to correctly answer questions without any context [16]. While
such approaches are growing more successful, as the world changes the correct answers to open-
domain questions naturally change. For example, when asking “Who is the president of the United
States?” the correct answer will change every few years. As correct answers shift, pretrained models
age and underperform [11].

We study methods for correcting for QA shift through the lens of model editing. We edit a T5 model
[6] that was pretrained on the Natural Questions dataset (NQ) [17] to correct its mistakes on questions
from the downstream zsRE dataset [18] using splits from [12]. For repeated upstream evaluation, we
sample 1000 instances from NQ. For editing, we sample 1000 edits from zsRE, including random
samples of 5 rephrasings for each question. We focus our QA evaluation on the standard F1 metric,
measuring overlap between predicted and true tokens.

Before any editing, T5 achieves an F1 score of 0.66. As zsRE questions stream in, we first check that
the model makes a mistake. We run this check for every instance in this experiment as the model is
being updated frequently over time. If T5 makes a mistake, we then pass it to GRACE to edit the model.
Since edits stream in, errors are identified with respect to only the current version of the model at
timestep t. Over 1000 edits, each method ends up making errors on about 500 inputs. After each edit,
we report the new model’s performance on a holdout set of 1000 questions from the upstream Natural
Questions dataset. An ideal model editor should only update the requested edits, leaving unrelated
instances untouched. We also report Online F1: the edited model’s F1 score on the growing set of
previous edits. A successful model editor should make new edits without forgetting old edits.

4

(a) Comparing all methods’ performance on up-
stream data and previous edits. Ideal performance
is in the upper right corner. Arrows denote each
model’s performance throughout streaming.

(b) Impact of parameter ϵ on GRACE. By increasing ϵ, more
upstream data lands within the radius of influence for any
given key, decaying upstream F1.

Figure 1: Results for lifelong editing for context-free QA editing. Each editor sequentially updates
the same pretrained model on around 500 errors sampled from the zsRE dataset.

Result: As we show in Figure 1a, GRACE successfully edits the pretrained T5 model while remem-
bering upstream information. For the Finetuning, Memory Network, and MEND baselines, we vary
the learning rate. For GRACE, we vary ϵ, the initial radius of influence for keys as they are initialized.
As each method is trained on streams of edits, we show arrows indicating their progression through
the multi-objective space over time. The optimal performance is in the upper right corner. Indicated
in black, GRACE succeeds to maintain high F1 scores on upstream data, while also remembering
previous edits. As described above, this is by adding a small number of new parameters in the GRACE
codebook. However, the number of new parameters is tiny compared to the pretrained model. As
expected, as learning rates increase for Finetuning and the Memory Network, their F1 performance
on upstream data severely decreases. As finetuning progresses, the models move farther from their
initial state. Further, indicated by the arrows pointing to the lower right, the Finetuning succeeds to
generally increase F1 on all previous edits over time, indicating that.

As reported in Figure 1b, we also tune ϵ, which controls the influence radius of each stored key in a
layer’s GRACE codebook. Larger ϵ values result in few keys that cover large portions of the embedding
space. As expected, this decays the upstream performance, since more upstream data will conflict
with edits. We also notice that each ϵ leads to near-perfect F1 on previous edits, indicating perfect
memory. This may occur when edits are far apart in the embedding space and we hypothesize that F1
on previous edits will eventually drop as the number of edits increases. Still, when performing 500
edits in a row is a substantial improvement over the state-of-the-art alternatives.

4 Conclusions

Language models are quickly becoming larger and are being applied to a diverse set of downstream
tasks. However, they are often computationally prohibitive to finetune and easily forget past knowl-
edge. In this work, we proposed a realistic problem setting where we edit such large models, Lifelong
Model Editing, and presented GRACE, a plug-in module that can wrap around any given layer in a large
pretrained model. GRACE layers (1) retain the functionality of the original model, thereby minimizing
catastrophic forgetting and (2) adapt to changing data distributions by storing a codebook of cached
activations that can grow or shrink over time. We demonstrate GRACE’s efficacy by showing that
GRACE provides the best trade-off between upstream performance and accuracy on streaming edits
among competing model editing baselines and finetuning methods.

5

References

[1] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson,
R. Ring, S. Young, et al., “Scaling language models: Methods, analysis & insights from training
gopher,” arXiv preprint arXiv:2112.11446, 2021.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al., “Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, pp. 1877–1901, 2020.

[3] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image
generation with clip latents,” arXiv preprint arXiv:2204.06125, 2022.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[5] A. Sinitsin, V. Plokhotnyuk, D. Pyrkin, S. Popov, and A. Babenko, “Editable neural networks,”
in International Conference on Learning Representations, 2019.

[6] A. Roberts, C. Raffel, and N. Shazeer, “How much knowledge can you pack into the parameters
of a language model?,” in Empirical Methods in Natural Language Processing (EMNLP), 2020.

[7] E. Mitchell, C. Lin, A. Bosselut, C. Finn, and C. D. Manning, “Fast model editing at scale,” in
International Conference on Learning Representations, 2022.

[8] C. Lee, K. Cho, and W. Kang, “Mixout: Effective regularization to finetune large-scale pretrained
language models,” in International Conference on Learning Representations, 2020.

[9] B. Y. Lin, S. I. Wang, X. Lin, R. Jia, L. Xiao, X. Ren, and S. Yih, “On continual model
refinement in out-of-distribution data streams,” in Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3128–3139, 2022.

[10] E. Mitchell, C. Lin, A. Bosselut, C. D. Manning, and C. Finn, “Memory-based model editing at
scale,” in International Conference on Machine Learning, pp. 15817–15831, PMLR, 2022.

[11] K. Meng, D. Bau, A. Andonian, and Y. Belinkov, “Locating and editing factual associations in
gpt,” arXiv preprint arXiv:2202.05262, 2022.

[12] N. De Cao, W. Aziz, and I. Titov, “Editing factual knowledge in language models,” in Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pp. 6491–6506, 2021.

[13] F. Träuble, A. Goyal, N. Rahaman, M. Mozer, K. Kawaguchi, Y. Bengio, and B. Schölkopf,
“Discrete key-value bottleneck,” arXiv preprint arXiv:2207.11240, 2022.

[14] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu,
et al., “Exploring the limits of transfer learning with a unified text-to-text transformer.,” Journal
of Machine Learning Research, vol. 21, no. 140, pp. 1–67, 2020.

[15] J. Prager et al., “Open-domain question–answering,” Foundations and Trends® in Information
Retrieval, vol. 1, no. 2, pp. 91–231, 2007.

[16] G. Izacard and E. Grave, “Leveraging passage retrieval with generative models for open domain
question answering,” in EACL 2021-16th Conference of the European Chapter of the Association
for Computational Linguistics, pp. 874–880, Association for Computational Linguistics, 2021.

[17] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, M. Kelcey, J. Devlin, K. Lee, K. N. Toutanova, L. Jones, M.-W. Chang, A. Dai,
J. Uszkoreit, Q. Le, and S. Petrov, “Natural questions: a benchmark for question answering
research,” Transactions of the Association of Computational Linguistics, 2019.

[18] O. Levy, M. Seo, E. Choi, and L. Zettlemoyer, “Zero-shot relation extraction via reading
comprehension,” in Proceedings of the 21st Conference on Computational Natural Language
Learning (CoNLL 2017), pp. 333–342, 2017.

6

